
263

1 If you have trouble implementing multimethods, you can look at this chapter as a sleep aid—which I hope

doesn’t mean it has an actual soporific effect.

11
Multimethods

This chapter defines, discusses, and implements multimethods in the context of C��.

The C�� virtual function mechanism allows dispatching a call depending on the

dynamic type of one object. The multimethods feature allows dispatching a function call

depending on the types of multiple objects. A universally good implementation requires

language support, which is the route that languages such as CLOS, ML, Haskell, and

Dylan have taken. C�� lacks such support, so its emulation is left to library writers.

This chapter discusses some typical solutions and some generic implementations of

each. The solutions feature various trade-offs in terms of speed, flexibility, and dependency

management. To describe the technique of dispatching a function call depending on mul-

tiple objects, this book uses the terms multimethod (borrowed from CLOS) and multiple dis-
patch. A particularization of multiple dispatch for two objects is known as double dispatch.

Implementing multimethods is a problem as fascinating as dreaded, one that has stolen

lots of hours of good, healthy sleep from designers and programmers.1

The topics of this chapter include

• Defining multimethods

• Identifying situations in which the need for multiobject polymorphism appears

• Discussing and implementing three double dispatchers that foster different trade-offs

• Enhancing double-dispatch engines

After reading this chapter, you will have a firm grasp of the typical situations for which

multimethods are the way to go. In addition, you will be able to use and extend several ro-

bust generic components implementing multimethods, provided by Loki.

This chapter limits discussion to multimethods for two objects (double dispatch). You

can use the underlying techniques to extend the number of supported objects to three or

more. It is likely, though, that in most situations you can get away with dispatching de-

pending on two objects, and therefore you’ll be able to use Loki directly.

11-A1568 01/23/2001 12:39 PM Page 263

264 Multimethods Chapter 11

2A more generous view of polymorphism would qualify automatic conversions as the crudest form of poly-

morphism. They allow, for example, std::sin to be called with an int although it was written for a double.

This polymorphism through coercion is only apparent, because the same function call will be issued for both

types.

11.1 What Are Multimethods?

In C��, polymorphism essentially means that a given function call can be bound to dif-

ferent implementations, depending on compile-time or runtime contextual issues.

Two types of polymorphism are implemented in C��:

• Compile-time polymorphism, supported by overloading and template functions2

• Runtime polymorphism, implemented with virtual functions

Overloading is a simple form of polymorphism that allows multiple functions with the

same name to coexist in a scope. If the functions have different parameter lists, the compiler

is able to differentiate among them at compile time. Overloading is simple syntactic sugar,

a convenient syntactic abbreviation.

Template functions are a static dispatch mechanism. They offer more sophisticated

compile-time polymorphism.

Virtual member function calls allow the C�� runtime support, instead of the compiler,

to decide which actual function implementation to call. Virtual functions bind a name to a

function implementation at runtime. The function called depends on the dynamic type of

the object for which you make the virtual call.

Let’s now see how these three mechanisms for polymorphism scale to multiple objects.

Overloading and template functions scale to multiple objects naturally. Both features allow

multiple parameters, and intricate compile-time rules govern function selection.

Unfortunately, virtual functions—the only mechanism that implements runtime poly-

morphism in C��—are tailored for one object only. Even the call syntax —obj.Fun
(arguments)—gives obj a privileged role over arguments. (In fact, you can think of obj as

nothing more than one of Fun’s arguments, accessible inside Fun as *this. The Dylan lan-

guage, for example, accepts the dot call syntax only as a particular expression of a general

function-call mechanism.)

We define multimethods or multiple dispatch as the mechanism that dispatches a function

call to different concrete functions depending on the dynamic types of multiple objects

involved in the call. Because we can take compile-time multiobject polymorphism for

granted, we only have to implement runtime multiobject polymorphism. Don’t be worried;

there’s a lot left to talk about.

11.2 When Are Multimethods Needed?

Detecting the need for multimethods is simple. You have an operation that manipulates

multiple polymorphic objects through pointers or references to their base classes. You

would like the behavior of that operation to vary with the dynamic type of more than one

of those objects.

Collisions form a typical category of problems best solved with multimethods. For

instance, you might write a video game in which moving objects are derived from a Game

11-A1568 01/23/2001 12:39 PM Page 264

Section 11.3 Double Switch-on-Type: Brute Force 265

Figure 11.1: Hatching the intersection of two shapes

3This example and names were borrowed from Scott Meyers’s More Effective C�� (1996a), Item 31.

Object abstract class. You would like their collision to behave differently depending on

which two types collide: a space ship with an asteroid, a ship with a space station, or an as-

teroid with a space station.3

An example that this chapter uses is marking overlapping areas of drawing objects.

Suppose you write a drawing program that allows its users to define rectangles, circles, el-

lipses, polygons, and other shapes. The basic design is an object-oriented classic: Define an

abstract class Shape and have all the concrete shapes derive from it; then manipulate a

drawing as a collection of pointers to Shape.

Now say the client comes and asks for a nice-to-have feature: If two closed shapes in-

tersect, the intersection should be drawn in a way different than each of the two shapes.

For instance, the intersection area could be hatched, as in Figure 11.1.

Finding a single algorithm that will hatch any intersection is difficult. For instance, the

algorithm that hatches the intersection between an ellipse and a rectangle is very different

(and much more complex) from the one that hatches the intersection between two rectan-

gles. Besides, an overly general algorithm (for instance, one that operates at a pixel level) is

likely to be highly inefficient, since some intersections (such as rectangle-rectangle) are

trivial.

What you need here is a battery of algorithms, each specialized for two shape types,

such as rectangle-rectangle, rectangle-polygon, polygon-polygon, ellipse-rectangle, ellipse-

polygon, and ellipse-ellipse. At runtime, as the user moves shapes on the screen, you’d like

to pick up and fire the appropriate algorithms, which in turn will quickly compute and

hatch the overlapping areas.

Because you manipulate all drawing objects as pointers to Shape, you don’t have the

type information necessary to select the suitable algorithm. You have to start from pointers

to Shape only. Because you have two objects involved, simple virtual functions cannot solve

this problem. You have to use double dispatch.

11.3 Double Switch-on-Type: Brute Force

The most straightforward approach to a double dispatch implementation is to implement a

double switch-on-type. You try to dynamic cast the first object against each of the possible

left-hand types in succession. For each branch, you do the same with the second argument.

11-A1568 01/23/2001 12:39 PM Page 265

266 Multimethods Chapter 11

When you have discovered the types of both objects, you know what function to call. The

code looks like this:

// various intersection algorithms
void DoHatchArea1(Rectangle&, Rectangle&);
void DoHatchArea2(Rectangle&, Ellipse&);
void DoHatchArea3(Rectangle&, Poly&);
void DoHatchArea4(Ellipse&, Poly&);
void DoHatchArea5(Ellipse&, Ellipse&);
void DoHatchArea6(Poly&, Poly&);

void DoubleDispatch(Shape& lhs, Shape& rhs)
{

if (Rectangle* p1 = dynamic_cast<Rectangle*>(&lhs))
{

if (Rectangle* p2 = dynamic_cast<Rectangle*>(&rhs))
DoHatchArea1(*p1, *p2);

else if (Ellipse p2 = dynamic_cast<Ellipse*>(&rhs))
DoHatchArea2(*p1, *p2);

else if (Poly p2 = dynamic_cast<Poly*>(&rhs))
DoHatchArea3(*p1, *p2);

else
Error("Undefined Intersection");

}
else if (Ellipse* p1 = dynamic_cast<Ellipse*>(&lhs))
{

if (Rectangle* p2 = dynamic_cast<Rectangle*>(&rhs))
DoHatchArea2(*p2, *p1);

else if (Ellipse* p2 = dynamic_cast<Ellipse*>(&rhs))
DoHatchArea5(*p1, *p2);

else if (Poly* p2 = dynamic_cast<Poly*>(&rhs))
DoHatchArea4(*p1, *p2);

else
Error("Undefined Intersection");

}
else if (Poly* p1 = dynamic_cast<Poly*>(&lhs))
{

if (Rectangle* p2 = dynamic_cast<Rectangle*>(&rhs))
DoHatchArea2(*p2, *p1);

else if (Ellipse* p2 = dynamic_cast<Ellipse*>(&rhs))
DoHatchArea4(*p2, *p1);

else if (Poly* p2 = dynamic_cast<Poly*>(&rhs))
DoHatchArea6(*p1, *p2);

else
Error("Undefined Intersection");

}
else
{

Error("Undefined Intersection");
}

}

Whew! It’s been quite a few lines. As you can see, the brute-force approach asks you to

write a lot of (allegedly trivial) code. You can count on any dependable C�� programmer

11-A1568 01/23/2001 12:39 PM Page 266

Section 11.3 Double Switch-on-Type: Brute Force 267

to put together the appropriate net of if statements. In addition, the solution has the ad-

vantage of being fast if the number of possible classes is not too high. From a speed perspec-

tive, DoubleDispatch implements a linear search in the set of possible types. Because the

search is unrolled—a succession of if-else statements as opposed to a loop—the speed is

very good for small sets.

One problem with the brute-force approach is sheer code size, which makes the code

unmaintainable as the number of classes grows. The code just given deals only with three

classes, yet it’s already of considerable size. The size grows exponentially as you add

more classes. Imagine how the code of DoubleDispatch would look for a hierarchy of

20 classes!

Another problem is that DoubleDispatch is a dependency bottleneck—its implementa-

tion must know of the existence of all classes in a hierarchy. It is best to keep the depen-

dency net as loose as possible, and DoubleDispatch is a dependency hog.

The third problem with DoubleDispatch is that the order of the if statements mat-

ters. This is a very subtle and dangerous problem. Imagine, for instance, you derive class

RoundedRectangle (a rectangle with rounded corners) from Rectangle. You then edit

DoubleDispatch and insert the additional if statement at the end of each if-else state-

ment, right before the Error call. You have just introduced a bug.

The reason is that if you pass DoubleDispatch a pointer to a RoundedRectangle,

the dynamic_cast<Rectangle*> succeeds. Because that test is before the test for

dynamic_cast<RoundedRectangle*>, the first test will “eat” both Rectangles and Rounded
Rectangles. The second test will never get a chance. Most compilers don’t warn about

this.

A candidate solution would be to change the tests as follows:

void DoubleDispatch(Shape& lhs, Shape& rhs)
{

if (typeid(lhs) == typeid(Rectangle))
{

Rectangle* p1 = dynamic_cast<Rectangle*>(&lhs);
...

}
else ...

}

The tests are now for the exact type instead of the exact or derived type. The typeid com-

parison shown in this code fails if lhs is a RoundedRectangle, so the tests continue. Ulti-

mately, the test against typeid(RoundedRectangle) succeeds.

Alas, this fixes one aspect but breaks another: DoubleDispatch is too rigid now. If you

didn’t add support for a type in DoubleDispatch, you would like DoubleDispatch to fire

on the closest base type. This is what you’d normally expect when using inheritance—

by default, derived objects do what base objects do unless you override some behavior.

The problem is that the typeid-based implementation of DoubleDispatch fails to preserve

this property. The rule of thumb that results from this fact is that you must still use

dynamic_cast in DoubleDispatch and “sort” the if tests so that the most derived classes

are tried first.

This adds two more disadvantages to the brute-force implementation of multimethods.

11-A1568 01/23/2001 12:39 PM Page 267

268 Multimethods Chapter 11

First, the dependency between DoubleDispatch and theShapehierarchy deepens —Double-
Dispatch must know about not only classes but also the inheritance relationships between

classes. Second, maintaining the appropriate ordering of dynamic casts puts a supplemen-

tal burden on the shoulders of the maintainer.

11.4 The Brute-Force Approach Automated

Because in some situations the speed of the brute-force approach can be unbeatable, it’s

worth paying attention to implementing such a dispatcher. Here’s where typelists can be

of help.

Recall from Chapter 3 that Loki defines a typelist facility—a collection of structures

and compile-time algorithms that allow you to manipulate collections of types. A brute-

force implementation of multimethods can use a client-provided typelist that specifies the

classes in the hierarchy (in our example, Rectangle, Poly, Ellipse, etc.). Then a recursive

template can generate the sequence of if-else statements.

In the general case, we can dispatch on different collections of types, so the typelist for

the left-hand operand and the one for the right-hand operand can be different.

Let’s try outlining a StaticDispatcher class template that performs the type deduction

algorithm, then fires a function in another class. Explanations follow the code.

template
<

class Executor,
class BaseLhs,
class TypesLhs,
class BaseRhs = BaseLhs,
class TypesRhs = TypesLhs
typename ResultType = void

>
class StaticDispatcher
{

typedef typename TypesLhs::Head Head;
typedef typename TypesLhs::Tail Tail;

public:
static ResultType Go(BaseLhs& lhs, BaseRhs& rhs,

Executor exec)
{

if (Head* p1 = dynamic_cast<Head*>(&lhs))
{

return StaticDispatcher<Executor, BaseLhs,
NullType, BaseRhs, TypesRhs>::DispatchRhs(

*p1, rhs, exec);
}
else
{

return StaticDispatcher<Executor, BaseLhs,
Tail, BaseRhs, TypesRhs>::Go(

lhs, rhs, exec);
}

}

11-A1568 01/23/2001 12:39 PM Page 268

Section 11.4 The Brute-Force Approach Automated 269

...
};

If you are familiar with typelists, the workings of StaticDispatcher are seen to be quite

simple. StaticDispatcher has surprisingly little code for what it does.

StaticDispatcher has six template parameters. Executor is the type of the object that

does the actual processing—in our example, hatching the intersection area. We’ll discuss

what Executor looks like a bit later.

BaseLhs and BaseRhs are the base types of the arguments on the left-hand side and the

right-hand side, respectively. TypesLhs and TypesRhs are typelists containing the possible

derived types for the two arguments. The default values of BaseRhs and TypesRhs foster a

dispatcher for types in the same class hierarchy, as is the case with the drawing program

example.

ResultType is the type of the result of the double-dispatch operation. In the general

case, the dispatched function can return an arbitrary type. StaticDispatcher supports this

dimension of genericity and forwards the result to the caller.

StaticDispatcher::Go tries a dynamic cast to the first type found in the TypesLhs type-

list, against the address of lhs. If the dynamic cast fails, Go delegates to the remainder (tail)

of TypesLhs in a recursive call to itself. (This is not a true recursive call, because each time

we have a different instantiation of StaticDispatcher.)

The net effect is that Go performs a suite of if-else statements that apply dynamic_-
cast to each type in the typelist. When a match is found, Go invokes DispatchRhs.

DispatchRhs does the second and last step of the type deduction—finding the dynamic

type of rhs.

template <...>
class StaticDispatcher
{

... as above ...
template <class SomeLhs>
static ResultType DispatchRhs(SomeLhs& lhs, BaseRhs& rhs,

Executor exec)
{

typedef typename TypesRhs::Head Head;
typedef typename TypesRhs::Tail Tail;

if (Head* p2 = dynamic_cast<Head*>(&rhs))
{

return exec.Fire(lhs, *p2);
}
else
{

return StaticDispatcher<Executor, SomeLhs,
NullType, BaseRhs, Tail>::DispatchRhs(

lhs, rhs, exec);
}

}
};

11-A1568 01/23/2001 12:39 PM Page 269

270 Multimethods Chapter 11

DispatchRhs performs the same algorithm for rhs as Go applied for lhs. In addition,

when the dynamic cast on rhs succeeds, DispatchRhs calls Executor::Fire, passing it

the two discovered types. Again, the code that the compiler generates is a suite of if-else
statements. Interestingly, the compiler generates one such suite of if-else statements for

each type in TypesLhs. Effectively, StaticDispatcher manages to generate an exponential

amount of code with two typelists and a fixed codebase. This is an asset, but also a poten-

tial danger—too much code can hurt compile times, program size, and execution time all

together.

To treat the limit conditions that stop the compile-time recursion, we need to specialize

StaticDispatcher for two cases: The type of lhs is not found in TypesLhs, and the type of

rhs is not found in TypesRhs.

The first case (error on lhs) appears when you invoke Go on a StaticDispatcher with

NullType as TypesLhs. This is the sign that the search depleted TypesLhs. (Recall from

Chapter 3 that NullType is used to signal the last element in any typelist.)

template
<

class Executor,
class BaseLhs,
class BaseRhs,
class TypesRhs,
typename ResultType

>
class StaticDispatcher<Executor, BaseLhs, NullType,

BaseRhs, TypesRhs, ResultType>
{

static void Go(BaseLhs& lhs, BaseRhs& rhs, Executor exec)
{

exec.OnError(lhs, rhs);
}

};

Error handling is elegantly delegated to the Executor class, as you will see in the discus-

sion on Executor later.

The second case (error on rhs) appears when you invoke DispatchRhs on a Static
Dispatcher with NullType as TypesRhs. Hence the following specialization:

template
<

class Executor,
class BaseLhs,
class TypesLhs,
class BaseRhs,
class TypesRhs,
typename ResultType

>
class StaticDispatcher<Executor, BaseLhs, TypesLhs,

BaseRhs, NullType, ResultType>
{
public:

11-A1568 01/23/2001 12:39 PM Page 270

Section 11.4 The Brute-Force Approach Automated 271

static void DispatchRhs(BaseLhs& lhs, BaseRhs& rhs,
Executor& exec)

{
exec.OnError(lhs, rhs);

}
};

It is time now to discuss what Executor has to implement to take advantage of the

double-dispatch engine we have just defined.

StaticDispatcher deals only with type discovery. After finding the right types and ob-

jects, it passes them to a call of Executor::Fire. To differentiate these calls, Executor must

implement several overloads of Fire. For example, the Executor class for hatching shape

intersections is as follows:

class HatchingExecutor
{
public:

// Various intersection algorithms
void Fire(Rectangle&, Rectangle&);
void Fire(Rectangle&, Ellipse&);
void Fire(Rectangle&, Poly&);
void Fire(Ellipse&, Poly&);
void Fire(Ellipse&, Ellipse&);
void Fire(Poly&, Poly&);

// Error handling routine
void OnError(Shape&, Shape&);

};

You use HatchingExecutor with StaticDispatcher as shown in the following code:

typedef StaticDispatcher<HatchingExecutor, Shape,
TYPELIST_3(Rectangle, Ellipse, Poly)> Dispatcher;

Shape *p1 = ...;
Shape *p2 = ...;
HatchingExecutor exec;
Dispatcher::Go(*p1, *p2, exec);

This code invokes the appropriate Fire overload in the HatchingExecutor class. You can

see the StaticDispatcher class template as a mechanism that achieves dynamic overload-

ing—it defers overloading rules to runtime. This makes StaticDispatcher remarkably

easy to use. You just implement HatchingExecutor with the overloading rules in mind, and

then you use StaticDispatcher as a black box that does the magic of applying overload-

ing rules at runtime.

As a nice side effect, StaticDispatcher will unveil any overloading ambiguities at

compile time. For instance, assume you don’t declare HatchingExecutor::Fire(Ellipse&,
Poly&). Instead, you declare HatchingExecutor::Fire(Ellipse&,Shape&) and Hatching
Executor::Fire(Shape&, Poly&). Calling Hatching Executor::Fire with an Ellipse
and a Poly would result in an ambiguity—both functions compete to handle the call.

11-A1568 01/23/2001 12:39 PM Page 271

272 Multimethods Chapter 11

Remarkably, StaticDispatcher signals the same error for you and with the same level

of detail. StaticDispatcher is a tool that’s very consistent with the existing C�� over-

loading rules.

What happens in the case of a runtime error—for instance, if you pass a Circle as one

of the arguments of StaticDispatcher::Go? As hinted earlier, StaticDispatcher handles

border cases by simply calling Executor::OnError with the original (not casted) lhs and

rhs. This means that, in our example, HatchingExecutor::OnError (Shape&, Shape&) is the

error handling routine. You can use this routine to do whatever you find appropriate—

when it’s called, it means that StaticDispatcher gave up on finding the dynamic types.

As discussed in the previous section, inheritance adds additional problems to a brute-

force dispatcher. That is, the following instantiation of StaticDispatcher has a bug:

typedef StaticDispatcher
<

SomeExecutor,
Shape,
TYPELIST_4(Rectangle, Ellipse, Poly, RoundedRectangle)

>
MyDispatcher;

If you pass a RoundedRectangle to MyDispatcher, it will be considered a Rectangle. The

dynamic_cast<Rectangle*> succeeds on a pointer to a RoundedRectangle, and because the

dynamic_cast<RoundedRectangle*> is lower down on the food chain, it will never be given

a chance. The correct instantiation is

typedef StaticDispatcher
<

SomeExecutor,
Shape,
TYPELIST_4(RoundedRectangle, Ellipse, Poly, Rectangle)

>
Dispatcher;

The general rule is to put the most derived types at the front of the typelist.

It would be nice if this transformation could be applied automatically, and typelists do

support that. We have a means to detect inheritance at compile time (Chapter 2), and type-

lists can be sorted. This led to the DerivedToFront compile-time algorithm in Chapter 3.

All we have to do to take advantage of automatic sorting is to modify the implementa-

tion of StaticDispatcher as follows:

template <...>
class StaticDispatcher
{

typedef typename DerivedToFront<
typename TypesLhs::Head>::Result Head;

typedef typename DerivedToFront<
typename TypesLhs::Tail>::Result Tail;

public:
... as above ...

};

11-A1568 01/23/2001 12:39 PM Page 272

Section 11.5 Symmetry with the Brute-Force Dispatcher 273

After all this handy automation, don’t forget that all we obtained is the code generation

part. The dependency problems are still with us. Although it makes it very easy to imple-

ment brute-force multimethods, StaticDispatcher still has a dependency on all the types

in the hierarchy. Its advantages are speed (if there are not too many types in the hierarchy)

and nonintrusiveness—you don’t have to modify a hierarchy to use StaticDispatcher
with it.

11.5 Symmetry with the Brute-Force Dispatcher

When you hatch the intersection between two shapes, you might want to do it differently

if you have a rectangle covering an ellipse than if you have an ellipse covering a rectangle.

Or, on the contrary, you might need to hatch the intersection area the same way when an

ellipse and a rectangle intersect, no matter which covers which. In the latter case, you need

a symmetric multimethod—a multimethod that is insensitive to the order in which you pass

its arguments.

Symmetry applies only when the two parameter types are identical (in our case,

BaseLhs is the same as BaseRhs, and LhsTypes is the same as RhsTypes).

The brute-force StaticDispatcher defined previously is asymmetric; that is, it doesn’t

offer any built-in support for symmetric multimethods. For example, assume you define

the following classes:

class HatchingExecutor
{
public:

void Fire(Rectangle&, Rectangle&);
void Fire(Rectangle&, Ellipse&);
...
// Error handler
void OnError(Shape&, Shape&);

};

typedef StaticDispatcher
<

HatchingExecutor,
Shape,
TYPELIST_3(Rectangle, Ellipse, Poly)

>
HatchingDispatcher;

The HatchingDispatcher does not fire when passed an Ellipse as the left-hand parameter

and a Rectangle as the right-hand parameter. Even though from your HatchingExecutor’s

viewpoint it doesn’t matter who’s first and who’s second, HatchingDispatcher will insist

that you pass objects in a certain order.

Fixing the symmetry in the client code is possible by reversing arguments and for-

warding from one overload to another:

class HatchingExecutor
{

11-A1568 01/23/2001 12:39 PM Page 273

274 Multimethods Chapter 11

public:
void Fire(Rectangle&, Ellipse&);
// Symmetry assurance
void Fire(Ellipse& lhs, Rectangle& rhs)
{

// Forward to Fire(Rectangle&, Ellipse&)
// by switching the order of arguments
Fire(rhs, lhs);

}
...

};

These little forwarding functions are hard to maintain. Ideally, StaticDispatcher would

provide itself optional support for symmetry through an additional bool template

parameter, which is worth looking into.

The need is to have StaticDispatcher reverse the order of arguments when invoking

the callback, for certain cases. What are those cases? Let’s analyze the previous example.

Expanding the template argument lists from their default values, we get the following

instantiation:

typedef StaticDispatcher
<

HatchingExecutor,
Shape,
TYPELIST_2(Rectangle, Ellipse, Poly), // TypesLhs
Shape,
TYPELIST_2(Rectangle, Ellipse, Poly), // TypesRhs
void

>
HatchingDispatcher;

An algorithm for selecting parameter pairs for a symmetric dispatcher can be as

follows: Combine the first type in the first typelist (TypesLhs) with each type in the second

typelist (TypesRhs). This gives three combinations: Rectangle-Rectangle, Rectangle-

Ellipse, and Rectangle-Poly. Next, combine the second type in Types Lhs (Ellipse)

with types in TypesRhs. However, because the first combination (Rectangle-Ellipse)

has already been made in the first step, this time start with the second element in Types
Rhs. This step yields Ellipse-Ellipse and Ellipse-Poly. The same reasoning applies

to the next step: Poly in TypesLhs must be combined only with types starting with the

third one in TypesRhs. This gives only one combination, Poly-Poly, and the algorithm

stops here.

Following this algorithm, you implement only the functions for the selected combina-

tion, as follows:

class HatchingExecutor
{
public:

void Fire(Rectangle&, Rectangle&);
void Fire(Rectangle&, Ellipse&);
void Fire(Rectangle&, Poly&);
void Fire(Ellipse&, Ellipse&);

11-A1568 01/23/2001 12:39 PM Page 274

Section 11.5 Symmetry with the Brute-Force Dispatcher 275

void Fire(Ellipse&, Poly&);
void Fire(Poly&, Poly&);
// Error handler
void OnError(Shape&, Shape&);

};

StaticDispatcher must detect all by itself the combinations that were eliminated by the

algorithm just discussed, namely Ellipse-Rectangle, Poly-Rectangle, and Poly-Ellipse.

For these three combinations, StaticDispatcher must reverse the arguments. For all oth-

ers, StaticDispatcher forwards the call just as it did before.

What’s the Boolean condition that determines whether or not argument swapping is

needed? The algorithm selects the types in TL2 only at indices greater than or equal to the in-

dex of the type in TL1. Therefore, the condition is as follows:

For two types T and U, if the index of U in TypesRhs is less than the index of T in Types-
Lhs, then the arguments must be swapped.

For example, say T is Ellipse and U is Rectangle. Then T’s index in TypesLhs is 1 and U’s

index in TypesRhs is 0. Consequently, Ellipse and Rectangle must be swapped before

invoking Executor::Fire, which is correct.

The typelist facility already provides the IndexOf compile-time algorithm that returns

the position of a type in a typelist. We can then write the swapping condition easily.

First, we must add a new template parameter that says whether the dispatcher is sym-

metric. Then, we add a simple little traits class template InvocationTraits that either

swaps the arguments or does not swap them when calling the Executor::Fire member

function. Here is the relevant excerpt.

template
<

class Executor,
bool symmetric,
class BaseLhs,
class TypesLhs,
class BaseRhs = BaseLhs,
class TypesRhs = TypesLhs,
typename ResultType = void

>
class StaticDispatcher
{

template <bool swapArgs, class SomeLhs, class SomeRhs>
struct InvocationTraits
{

static void DoDispatch(SomeLhs& lhs, SomeRhs& rhs,
Executor& exec)

{
exec.Fire(lhs, rhs);

}
};
template <class SomeLhs, class SomeRhs>
struct InvocationTraits<True, SomeLhs, SomeRhs>
{

11-A1568 01/23/2001 12:39 PM Page 275

276 Multimethods Chapter 11

static void DoDispatch(SomeLhs& lhs, SomeRhs& rhs,
Executor& exec)

{
exec.Fire(rhs, lhs); // swap arguments

}
}

public:
static void DispatchRhs(BaseLhs& lhs, BaseRhs& rhs,

Executor exec)
{

if (Head* p2 = dynamic_cast<Head*>(&rhs))
{

enum { swapArgs = symmetric &&
IndexOf<Head, TypesRhs>::result <
IndexOf<BaseLhs, TypesLhs>::result };

typedef InvocationTraits<swapArgs, BaseLhs, Head>
CallTraits;

return CallTraits::DoDispatch(lhs, *p2);
}
else
{

return StaticDispatcher<Executor, BaseLhs,
NullType, BaseRhs, Tail>::DispatchRhs(

lhs, rhs, exec);
}

}
};

Support for symmetry adds some complexity to StaticDispatcher, but it certainly

makes things much easier for StaticDispatcher’s user.

11.6 The Logarithmic Double Dispatcher

If you want to avoid the heavy dependencies accompanying the brute-force solution,

you must look into a more dynamic approach. Instead of generating code at compile time,

you must keep a runtime structure and use runtime algorithms that help in dynamically

dispatching function calls depending on types.

RTTI (runtime type information) can be of further help here because it provides not

only dynamic_cast and type identification, but also a runtime ordering of types, through

the before member function of std::type_info. What before offers is an ordering rela-

tionship on all types in a program. We can use this ordering relationship for fast searches

of types.

The implementation here is similar to the one found in Item 31 of Scott Meyers’ More
Effective C�� (1996a), with some improvements: the casting step when invoking a handler

is automated, and the implementation herein aims at being generic.

We will avail ourselves of the OrderedTypeInfo class, described in Chapter 2.

OrderedTypeInfo is a wrapper providing exactly the same functionality as std::type_
info. In addition, OrderedTypeInfo provides value semantics and a caveat-free less-than

operator. You can thus store OrderedTypeInfo objects in standard containers, which is of

interest to this chapter.

11-A1568 01/23/2001 12:39 PM Page 276

Section 11.6 The Logarithmic Double Dispatcher 277

Meyers’s approach was simple: For each pair of std::type_info objects you want to

dispatch upon, you register a pointer to a function with the double dispatcher. The double

dispatcher stores the information in a std::map. At runtime, when invoked with two un-

known objects, the double dispatcher performs a fast search (logarithmic time) for type dis-

covery, and if it finds an entry, fires the appropriate pointer to a function.

Let’s define the structure of a generic engine operating on these principles. We must

templatize the engine with the base types of the two arguments (left-hand side and right-

hand side). We call this engine BasicDispatcher, because we will use it as the base device

for several more advanced double dispatchers.

template <class BaseLhs, class BaseRhs = BaseLhs,
typename ResultType = void>

class BasicDispatcher
{

typedef std::pair<OrderedTypeInfo, OrderedTypeInfo>
KeyType;

typedef ResultType (*CallbackType)(BaseLhs&, BaseRhs&);
typedef CallbackType MappedType;
typedef std::map<KeyType, MappedType> MapType;
MapType callbackMap_;

public:
...

};

The key type in the map is a std::pair of two OrderedTypeInfo objects. The std::pair
class supports ordering, so we don’t have to provide a custom ordering functor.

BasicDispatcher can be more general if we templatize the callback type. In general,

the callback does not have to be a function. It can be, for example, a functor (refer to the in-

troduction of Chapter 5 for a discussion of functors). BasicDispatcher can accommo-

date functors by transforming its inner CallbackType type definition into a template

parameter.

An important improvement is to change the std::map type to a more efficient structure.

Matt Austern (2000) explains that the standard associative containers have a slightly nar-

rower area of applicability than one might think. In particular, a sorted vector in combina-

tion with binary search algorithms (such as std::lower_bound) might perform much

better, in both space and time, than an associative container. This happens when the num-

ber of accesses is much larger than the number of insertions. So we should take a close look

at the typical usage pattern of a double-dispatcher object.

Most often, a double dispatcher is a write-once, read-many type of structure. Typically,

a program sets the callbacks once and then uses the dispatcher many, many times. This is

in keeping with the virtual functions mechanism, which double dispatchers extend. You

decide which functions are virtual and which are not, at compile time.

It seems as if we’re better off with a sorted vector. The disadvantages of a sorted vector

are linear-time insertions and linear-time deletions, and a double dispatcher is not typi-

cally concerned about the speed of either. In exchange, a vector offers about twice the

lookup speed and a much smaller working set, so it is definitely a better choice for a double

dispatcher.

Loki saves the trouble of maintaining a sorted vector by hand by defining an Assoc-

11-A1568 01/23/2001 12:39 PM Page 277

278 Multimethods Chapter 11

Vector class template. AssocVector is a drop-in replacement for std::map (it supports the

same set of member functions), implemented on top of std::vector. Assoc Vector differs

from a map in the behavior of its erase functions (AssocVector:: erase invalidates all

iterators into the object) and in the complexity guarantees of insert and erase (linear as

opposed to constant). Because of the high degree of compatibility of AssocVector with

std::map, we’ll continue to use the term map to describe the data structure held by the

double dispatcher.

Here is the revised definition of BasicDispatcher:

template
<

class BaseLhs,
class BaseRhs = BaseLhs,
typename ResultType = void,
typename CallbackType = ResultType (*)(BaseLhs&, BaseRhs&)

>
class BasicDispatcher
{

typedef std::pair<TypeInfo, TypeInfo>
KeyType;

typedef CallbackType MappedType;
typedef AssocVector<KeyType, MappedType> MapType;
MapType callbackMap_;

public:
...

};

The registration function is easy to define. This is all we need:

template <...>
class BasicDispatcher
{

... as above ...
template <class SomeLhs, SomeRhs>
void Add(CallbackType fun)
{

const KeyType key(typeid(SomeLhs), typeid(SomeRhs));
callbackMap_[key] = fun;

}
};

The types SomeLhs and SomeRhs are the concrete types for which you need to dispatch

the call. Just like std::map, AssocVector overloads operator[] to find a key’s correspond-

ing mapped type. If the entry is missing, a new element is inserted. Then operator[] re-

turns a reference to that new or found element, and Add assigns fun to it.

The following is an example of using Add:

typedef BasicDispatcher<Shape> Dispatcher;
// Hatches the intersection between a rectangle and a polygon
void HatchRectanglePoly(Shape& lhs, Shape& rhs)
{

Rectangle& rc = dynamic_cast<Rectangle&>(lhs);

11-A1568 01/23/2001 12:39 PM Page 278

Section 11.6 The Logarithmic Double Dispatcher 279

4 I am convinced there is a solution to the inheritance problem. But, alas, writers of books have deadlines, too.

Poly& pl = dynamic_cast<Poly&>(rhs);
... use rc and pl ...

}
...
Dispatcher disp;
disp.Add<Rectangle, Poly>(HatchRectanglePoly);

The member function that does the search and invocation is simple:

template <...>
class BasicDispatcher
{

... as above ...
ResultType Go(BaseLhs& lhs, BaseRhs& rhs)
{

MapType::iterator i = callbackMap_.find(
KeyType(typeid(lhs), typeid(rhs));

if (i == callbackMap_.end())
{

throw std::runtime_error("Function not found");
}
return (i->second)(lhs, rhs);

}
};

11.6.1 The Logarithmic Dispatcher and Inheritance

BasicDispatcher does not work correctly with inheritance. If you register only Hatch-
RectanglePoly(Shape& lhs,Shape&rhs) with BasicDispatcher, you get proper dispatch-

ing only for objects of type Rectangle and Poly—nothing else. If, for instance, you pass

references to a RoundedRectangle and a Poly to BasicDispatcher::Go, BasicDispatcher
will reject the call.

The behavior of BasicDispatcher is not in keeping with inheritance rules, according

to which derived types must by default act like their base types. It would be nice if

BasicDispatcher accepted calls with objects of derived classes, as long as these calls were

unambiguous per C��’s overloading rules.

There are quite a few things you can do to correct this problem, but to date there is

no complete solution. You must be careful to register all the pairs of types with Basic
Dispatcher.4

11.6.2 The Logarithmic Dispatcher and Casts

BasicDispatcher is usable, but not quite satisfactory. Although you register a function

that handles the intersection between a Rectangle and a Poly, that function must ac-

cept arguments of the base type, Shape&. It is awkward and error prone to ask client code

(HatchRectanglePoly’s implementation) to cast the Shape references back to the cor-

rect types.

On the other hand, the callback map cannot hold a different function or functor type for

11-A1568 01/23/2001 12:39 PM Page 279

280 Multimethods Chapter 11

each element, so we must stick to a uniform representation. Item 31 in More Effective C��
(Meyers 1996a) discusses this issue, too. No function-pointer-to-function-pointer cast helps

because once you exit FnDoubleDispatcher::Add, you’ve lost the static type information,

so you don’t know what to cast to. (If this sounds confusing, try spinning some code and

you’ll immediately figure it out.)

We will implement a solution to the casting problem in the context of simple callback

functions (not functors). That is, the CallbackType template argument is a pointer to a

function.

An idea that could help is using a trampoline function, also known as a thunk. Trampo-

line functions are small functions that perform little adjustments before calling other func-

tions. They are commonly used by C�� compiler writers to implement features such as

covariant return types and pointer adjustments for multiple inheritance.

We can use a trampoline function that performs the appropriate cast and then calls a

function of the proper signature, thus making life much easier for the client. The problem,

however, is that callbackMap_ must now store two pointers to functions: one to the pointer

provided by the client, and one to the pointer to the trampoline function. This is worrisome

in terms of speed. Instead of an indirect call through a pointer, we have two. In addition,

the implementation becomes more complicated.

An interesting bit of wizardry saves the day. A template can accept a pointer to a

function as a nontype template parameter. (Most often in this book, nontype template

parameters are integral values.) A template is allowed to accept pointers to global objects,

including functions, as nontype template parameters. The only condition is that the func-

tion whose address is used as a template argument must have external linkage. You can

easily transform static functions in functions with external linkage by removing static
and putting them in unnamed namespaces. For example, what you would write as

static void Fun();

in pre-namespace C��, you can write using an anonymous namespace as

namespace
{

void Fun();
}

Using a pointer to a function as a nontype template argument means that we don’t

need to store it in the map anymore. This essential aspect needs thorough understanding.

The reason we don’t need to store the pointer to a function is that the compiler has static

knowledge about it. Thus, the compiler can hardcode the function address in the trampo-

line code.

We implement this idea in a new class that uses BasicDispatcher as its back end. The

new class, FnDispatcher, is tuned for dispatching to functions only—not to functors.

FnDispatcher aggregates BasicDispatcher privately and provides appropriate forward-

ing functions.

The FnDispatcher::Add template function accepts three template parameters. Two rep-

resent the left-hand-side and the right-hand-side types for which the dispatch is registered

11-A1568 01/23/2001 12:39 PM Page 280

Section 11.6 The Logarithmic Double Dispatcher 281

(ConcreteLhs and ConcreteRhs). The third template parameter (callback) is the pointer to

a function. The added FnDispatcher::Add overloads the template Add with only two tem-

plate parameters, defined earlier.

template <class BaseLhs, class BaseRhs = BaseLhs,
ResultType = void>

class FnDispatcher
{

BaseDispatcher<BaseLhs, BaseRhs, ResultType> backEnd_;
...

public:
template <class ConcreteLhs, class ConcreteRhs,

ResultType (*callback)(ConcreteLhs&, ConcreteRhs&)>
void Add()
{

struct Local // see Chapter 2
{

static ResultType Trampoline(BaseLhs& lhs, BaseRhs& rhs)
{

return callback(
dynamic_cast<ConcreteLhs&>(lhs),
dynamic_cast<ConcreteRhs&>(rhs));

}
};
return backEnd_.Add<ConcreteLhs, ConcreteRhs>(

&Local::Trampoline);
}

};

Using a local structure, we define the trampoline right inside Add. The trampoline

casts the arguments to the right types and then forwards to callback. Then, the Add func-

tion uses backEnd_’s Add function (defined by BaseDispatcher) to add the trampoline to

callbackMap_.

As far as speed is concerned, the trampoline does not incur additional overhead. Al-

though it looks like an indirect call, the call to callback is not. As said before, the compiler

hardwires callback’s address right into Trampoline so there is no second indirection. A

clever compiler can even inline the call to callback if possible.

Using the newly defined Add function is simple:

typedef FnDispatcher<Shape> Dispatcher;

// Possibly in an unnamed namespace
void HatchRectanglePoly(Rectangle& lhs, Poly& rhs)
{

...
}

Dispatcher disp;
disp.Add<Rectangle, Poly, Hatch>();

11-A1568 01/23/2001 12:39 PM Page 281

282 Multimethods Chapter 11

5One case in which you cannot use FnDispatcher::Add is when you need to register dynamically loaded

functions. Even in this case, however, you can make slight changes to your design so you can take advantage of

trampolines.

Because of its Add member function, FnDispatcher is easy to use. FnDispatcher also ex-

poses an Add function similar to the one defined by BaseDispatcher, so you still can use

this function if you need.5

11.7 FnDispatcher and Symmetry

Because of FnDispatcher’s dynamism, adding support for symmetry is much easier than it

was with the static StaticDispatcher.

All we have to do to support symmetry is to register two trampolines: one that calls the

executor in normal order, and one that swaps the parameters before calling. We add a new

template parameter to Add, as shown.

template <class BaseLhs, class BaseRhs = BaseLhs,
typename ResultType = void>

class FnDispatcher
{

...
template <class ConcreteLhs, class ConcreteRhs,

ResultType (*callback)(ConcreteLhs&, ConcreteRhs&),
bool symmetric>

bool Add()
{

struct Local
{

... Trampoline as before ...
static void TrampolineR(BaseRhs& rhs, BaseLhs& lhs)
{

return Trampoline(lhs, rhs);
}

};
Add<ConcreteLhs, ConcreteRhs>(&Local::Trampoline);
if (symmetric)
{

Add<ConcreteRhs, ConcreteLhs>(&Local::TrampolineR);
}

}
};

Symmetry with FnDispatcher has function-level granularity—for each function you

register, you can decide whether you want symmetric dispatching or not.

11.8 Double Dispatch to Functors

As described earlier, the trampoline trick works nicely with pointers to nonstatic functions.

Anonymous namespaces provide a clean way to replace static functions with nonstatic

functions that are not visible outside the current compilation unit.

11-A1568 01/23/2001 12:39 PM Page 282

Section 11.8 Double Dispatch to Functors 283

Sometimes, however, you need your callback objects (the CallbackType template pa-

rameter of BasicDispatcher) to be more substantial than simple pointers to functions. For

instance, you might want each callback to hold some state, and functions cannot hold much

state (only static variables). Consequently, you need to register functors, and not functions,

with the double dispatcher.

Functors (Chapter 5) are classes that overload the function call operator, operator(),

thus imitating simple functions in call syntax. Additionally, functors can use member vari-

ables for storing and accessing state. Unfortunately, the trampoline trick cannot work with

functors, precisely because functors hold state and simple functions do not. (Where would

the trampoline hold the state?)

Client code can use BasicDispatcher directly, instantiated with the appropriate func-

tor type.

struct HatchFunctor
{

void operator()(Shape&, Shape&)
{

...
}

};

typedef BasicDispatcher<Shape, Shape, void, HatchFunctor>
HatchingDispatcher;

HatchFunctor::operator() cannot be virtual itself, because BasicDispatcher needs

a functor with value semantics, and value semantics don’t mix nicely with runtime

polymorphism. However, HatchFunctor::operator() can forward a call to a virtual

function.

The real disadvantage is that the client loses some automation that the dispatcher could

do—namely, taking care of the casts and providing symmetry.

Seems like we’re back to square one, but only if you haven’t read Chapter 5 on general-

ized functors. Chapter 5 defines a Functor class template that’s able to aggregate any

kind of functor and pointers to functions, even other Functor objects. You can even de-

fine specialized Functor objects by deriving from the FunctorImpl class. We can define a

Functor to take care of the casts. Once the casts are confined to the library, we can imple-

ment symmetry easily.

Let’s define a FunctorDispatcher that dispatches to any Functor objects. This dis-

patcher will aggregate a BasicDispatcher that stores Functor objects.

template <class BaseLhs, class BaseRhs = BaseLhs, ResultType = void>
class FunctorDispatcher
{

typedef Functor<ResultType,
TYPELIST_2(BaseLhs&, BaseRhs&)>

FunctorType;
typedef BasicDispatcher<BaseLhs, BaseRhs, ResultType,

FunctorType>
BackEndType;

BackEndType backEnd_;

11-A1568 01/23/2001 12:39 PM Page 283

284 Multimethods Chapter 11

public:
...

};

FunctorDispatcher uses a BasicDispatcher instantiation as its back end. Basic-
Dispatcher stores objects of type FunctorType, which are Functors that accept two pa-

rameters (BaseLhs and BaseRhs) and return a ResultType.

The FunctorDispatcher::Add member function defines a specialized Functor Impl
class by deriving from it. The specialized class (Adapter, shown below) takes care of cast-

ing the arguments to the right types; in other words, it adapts the argument types from

BaseLhs and BaseRhs to SomeLhs and SomeRhs.

template <class BaseLhs, class BaseRhs = BaseLhs,
ResultType = void>

class FunctorDispatcher
{

... as above ...
template <class SomeLhs, class SomeRhs, class Fun>
void Add(const Fun& fun)
{

typedef
FunctorImpl<ResultType, TYPELIST_2(BaseLhs&, BaseRhs&)>
FunctorImplType;

class Adapter : public FunctorImplType
{

Fun fun_;
virtual ResultType operator()(BaseLhs& lhs, BaseRhs& rhs)
{

return fun_(
dynamic_cast<SomeLhs&>(lhs),
dynamic_cast<SomeRhs&>(rhs));

}
virtual FunctorImplType* Clone()const
{ return new Adapter; }

public:
Adapter(const Fun& fun) : fun_(fun) {}

};
backEnd_.Add<SomeLhs, SomeRhs>(

FunctorType((FunctorImplType*)new Adapter(fun));
}

};

The Adapter class does exactly what the trampoline function did. Because functors

have state, Adapter aggregates a Fun object—something that was impossible with a simple

trampoline function. The Clone member function, with obvious semantics, is required by

Functor.

FunctorDispatcher::Add has remarkably broad uses. You can use it to register not

only pointers to functions, but also just about any functor you want, even generalized

functors. The only requirements for the Fun type in Add is that it accept the function-call

operator with arguments of types SomeLhs and SomeRhs and that it return a type convert-

ible to ResultType. The following example registers two different functors to a Functor-
Dispatcher object.

11-A1568 01/23/2001 12:39 PM Page 284

Section 11.9 Converting Arguments: static_cast or dynamic_cast? 285

typedef FunctorDispatcher<Shape> Dispatcher;
struct HatchRectanglePoly
{

void operator()(Rectangle& r, Poly& p)
{

...
}

};
struct HatchEllipseRectangle
{

void operator()(Ellipse& e, Rectangle& r)
{

...
}

};
...
Dispatcher disp;
disp.Add<Rectangle, Poly>(HatchRectanglePoly());
disp.Add<Ellipse, Rectangle>(HatchEllipseRectangle());

The two functors don’t have to be related in any way (like inheriting from a common

base). All they have to do is to implement operator() for the types that they advertise

to handle.

Implementing symmetry with FunctorDispatcher is similar to implementing symme-

try in FnDispatcher. FunctorDispatcher::Add defines a new Reverse Adapter object that

does the casts and reverses the order of calls.

11.9 Converting Arguments: static_cast or dynamic_cast?

All the previous code has performed casting with the safe dynamic_cast. But in the case of

dynamic_cast, safety comes at a cost in runtime efficiency.

At registration time, you already know that your function or functor will fire for a pair

of specific, known types. Through the mechanism it implements, the double dispatcher

knows the actual types when an entry in the map is found. It seems a waste, then, to have

dynamic_cast check again for correctness when a simple static_cast achieves the same

result in much shorter time.

There are, however, two cases in which static_cast may fail and the only cast to rely

on is dynamic_cast. The first occurs when using virtual inheritance. Consider the follow-

ing class hierarchy:

class Shape { ... };
class Rectangle : virtual public Shape { ... };
class RoundedShape : virtual public Shape { ... };
class RoundedRectangle : public Rectangle,

public RoundedShape { ... };

Figure 11.2 displays a graphical representation of the relationships between classes in this

hierarchy.

This may not be a very smart class hierarchy, but one thing about designing class li-

braries is that you never know what your clients might need to do. There are definitely

11-A1568 01/23/2001 12:39 PM Page 285

286 Multimethods Chapter 11

Shape

RoundedRectangle

RoundedShapeRectangle

virtual virtual

Figure 11.2: A diamond-shaped class hierarchy using virtual inheritance

reasonable situations in which a diamond-shaped class hierarchy is needed, in spite of all

its caveats. Consequently, the double dispatchers we defined should work with diamond-

shaped class hierarchies.

The dispatchers actually work fine as of now. But if you try to replace the dynamic_-
casts with static_casts, you will get compile-time errors whenever you try to cast a

Shape& to any of Rectangle&, RoundedShape&, and RoundedRectangle&. The reason is that

virtual inheritance works very differently from plain inheritance. Virtual inheritance pro-

vides a means for several derived classes to share the same base class object. The compiler

cannot just lay out a derived object in memory by gluing together a base object with what-

ever the derived class adds.

In some implementations of multiple inheritance, each derived object stores a pointer

to its base object. When you cast from derived to base, the compiler uses that pointer. But

the base object does not store pointers to its derived objects. From a pragmatic viewpoint,

this all means that after you cast an object of derived type to a virtual base type, there’s no

compile-time mechanism for getting back to the derived object. You cannot static_cast
from a virtual base to an object of derived type.

However, dynamic_cast uses more advanced means to retrieve the relationships be-

tween classes and works nicely even in the presence of virtual bases. In a nutshell, you

must use dynamic_cast if you have a hierarchy using virtual inheritance.

Second, let’s analyze the situation with a similar class hierarchy, but one that doesn’t use

virtual inheritance— only plain multiple inheritance.

class Shape { ... };
class Rectangle : public Shape { ... };
class RoundedShape : public Shape { ... };
class RoundedRectangle : public Rectangle,

public RoundedShape { ... };

Figure 11.3 shows the resulting inheritance graph.

Although the shape of the class hierarchy is the same, the structure of the objects is very

different. RoundedRectangle now has two distinct subobjects of type Shape. This means

11-A1568 01/23/2001 12:39 PM Page 286

Section 11.9 Converting Arguments: static_cast or dynamic_cast? 287

Shape

RoundedRectangle

RoundedShapeRectangle

Figure 11.3: A diamond-shaped class hierarchy using nonvirtual inheritance

that converting from RoundedRectangle to Shape is now ambiguous: Which Shape do you

mean—that in the RoundedShape or that in the Rectangle? Similarly, you cannot even

static cast a Shape& to a RoundedRectangle& because the compiler doesn’t know which

Shape subobject to consider.

We’re facing trouble again. Consider the following code:

RoundedRectangle roundRect;
Rectangle& rect = roundRect; // Unambiguous implicit conversion
Shape& shape1 = rect;
RoundedShape& roundShape = roundRect; // Unambiguous implicit

// conversion
Shape& shape2 = roundShape;
SomeDispatcher d;
Shape& someOtherShape = ...;
d.Go(shape1, someOtherShape);
d.Go(shape2, someOtherShape);

Here, it is essential that the dispatcher use dynamic_cast to convert the Shape& to a Rounded
Shape&. If you try to register a trampoline for converting a Shape& to a RoundedRectangle&,

a compile-time error occurs due to ambiguity.

There is no trouble at all if the dispatcher uses dynamic_cast. A dynamic_cast<Rounded
Rectangle&> applied to any of the two base Shape subobjects of a RoundedRectangle leads

to the correct object. As you can see, nothing beats a dynamic cast. The dynamic_cast
operator is designed to reach the right object in a class hierarchy, no matter how intricate

its structure is.

The conclusion that consolidates these findings is: You cannot use static_cast with a

double dispatcher in a class hierarchy that has multiple occurrences of the same base class,

be it through virtual inheritance or not.

This might give you a strong incentive to use dynamic_cast in all dispatchers. However,

there are two supplemental considerations.

11-A1568 01/23/2001 12:39 PM Page 287

288 Multimethods Chapter 11

• Very few class hierarchies in the real world foster a diamond-shaped inheritance graph.

Such class hierarchies are very complicated, and their problems tend to outweigh their

advantages. That’s why most designers avoid them whenever possible.

• dynamic_cast is much slower than static_cast. Its power comes at a cost. There are

many clients who have simple class hierarchies and who require high speed. Commit-

ting the double dispatcher to dynamic_cast leaves these clients with two options: Reim-

plement the whole dispatcher from scratch, or rely on some embarrassing surgery into

library code.

The solution that Loki adopts is to make casting a policy—CastingPolicy. (Refer to

Chapter 1 for a description of policies.) Here, the policy is a class template with two pa-

rameters, the source and the destination type. The only function the policy exposes is a

static function called Cast. The following is the DynamicCaster policy class.

template <class To, class From>
struct DynamicCaster
{

static To& Cast(From& obj)
{

return dynamic_cast<To&>(obj);
}

};

The dispatchers FnDispatcher and FunctorDispatcher use CastingPolicy according to

the guidelines described in Chapter 1. Here is the modified FunctorDispatcher class. The

changes are shown in bold.

template
<

class BaseLhs,
class BaseRhs = BaseLhs,
ResultType = void,
template <class, class> class CastingPolicy = DynamicCaster

>
class FunctorDispatcher
{

...
template <class SomeLhs, class SomeRhs, class Fun>
void Add(const Fun& fun)
{

class Adapter : public FunctorType::Impl
{

Fun fun_;
virtual ResultType operator()(BaseLhs& lhs,

BaseRhs& rhs)
{

return fun_(
CastingPolicy<SomeLhs, BaseLhs>::Cast(lhs),
CastingPolicy<SomeRhs, BaseRhs>::Cast(rhs));

}
... as before ...

};

11-A1568 01/23/2001 12:39 PM Page 288

Section 11.9 Converting Arguments: static_cast or dynamic_cast? 289

Shape

RoundedRectangle

RoundedShapeRectangle

Triangle

Figure 11.4: A class hierarchy with a diamond-shaped portion

backEnd_.Add<SomeLhs, SomeRhs>(
FunctorType(new Adapter(fun));

}
};

Cautiously, the casting policy defaults to DynamicCaster.

Finally, you can do a very interesting thing with casting policies. Consider the hierar-

chy in Figure 11.4. There are two categories of casts within this hierarchy. Some do not in-

volve a diamond-shaped structure, so static_cast is safe. Namely, static_cast suffices

for casting a Shape& to a Triangle&. On the other hand, you cannot static_ cast a Shape&
to Rectangle& and any of its derivatives; you must use dynamic_cast.

Suppose you define your own casting policy template for this class hierarchy, namely

ShapeCast. You can make it default to dynamic_cast. You can then specialize the policy for

the special cases, like so:

template <class To, class From>
struct ShapeCaster
{

static To& Cast(From& obj)
{

return dynamic_cast<To&>(obj);
}

};

template<>
class ShapeCaster<Triangle, Shape>
{

static Triangle& Cast(Shape& obj)
{

return static_cast<Triangle&>(obj);
}

};

11-A1568 01/23/2001 12:39 PM Page 289

290 Multimethods Chapter 11

You now get the best of both worlds—speedy casts whenever you can, and safe casts

whenever you must.

11.10 Constant-Time Multimethods: Raw Speed

Maybe you considered the static dispatcher but found it too coupled, tried the map-based

dispatcher but found it too slow. You cannot settle for less: You need absolute speed and

absolute scalability, and you’re ready to pay for it.

The price to pay in this case is changing your classes. You are willing to allow the double

dispatcher to plant some hooks in your classes so that it leverages them later.

This opportunity gives a fresh perspective to implementing a double-dispatch engine.

The support for casts remains the same. The means of storing and retrieving handlers must

be changed, however—logarithmic time is not constant time.

To find a better dispatching mechanism, let’s ask ourselves again: What is double dis-

patching? You can see it as finding a handler function (or functor) in a two-dimensional

space. On one axis are the types of the left-hand operator. On the other axis are the types

of the right-hand operator. At the intersection between two types, you find their respective

handler function. Figure 11.5 illustrates double dispatch for two class hierarchies— one of

Shapes and one of DrawingDevices. The handlers can be drawing functions that know how

to render each concrete Shape object on each concrete DrawingDevice object.

It doesn’t take long to figure out that if you need constant-time searches in this two-

dimensional space, you must rely on indexed access in a two-dimensional matrix.

The idea takes off swiftly. Each class must bear a unique integral value, which is the in-

dex in the dispatcher matrix. That integral value must be accessible for each class in con-

stant time. A virtual function can help here. When you issue a double-dispatch call, the

dispatcher fetches the two indices from the two objects, accesses the handler in the matrix,

and launches the handler. Cost: two virtual calls, one matrix indexing operation, and a call

through a pointer to a function. The cost is constant.

It seems as if the idea should work quite nicely, but some details of it are not easy to get

right. For instance, maintaining indices is very likely to be uncomfortable. For each class,

you must assign a unique integral ID and hope that you can detect any duplicates at com-

pile time. The integral IDs must start from zero and have no gaps— otherwise, we would

waste matrix storage.

A much better solution is to move index management to the dispatcher itself. Each class

stores a static integral variable; initially, its value is �1, meaning “unassigned.” A virtual

function returns a reference to that static variable, allowing the dispatcher to change it at

runtime. As you add new handlers to the matrix, the dispatcher accesses the ID and, if it is

�1, assigns the next available slot in the matrix to it.

Here’s the gist of this implementation—a simple macro that you must plant in each

class of your class hierarchy.

#define IMPLEMENT_INDEXABLE_CLASS(SomeClass)
static int& GetClassIndexStatic()\
{\

static int index = -1;\
return index;\

11-A1568 01/23/2001 12:39 PM Page 290

Section 11.10 Constant-Time Multimethods: Raw Speed 291

Rectangle

Circle

Ellipse

Triangle

S
creen

P
rinter

P
lotter

M
em

ory

Figure 11.5: Dispatching on Shapes and Drawing Devices

6Yes, multiple, not only double, dispatch. You can easily generalize the index-based solution to support mul-

tiple dispatch.

}\
virtual int& GetClassIndex()\
{\

assert(typeid(*this) == typeid(SomeClass));\
return GetClassIndexStatic();\

}

You must insert this macro in the public portion of each class for which you want to sup-

port multiple dispatch.6

The BasicFastDispatcher class template exposes exactly the same functionality as the

previously defined BasicDispatcher but uses different storage and retrieval mechanisms.

template
<

class BaseLhs,
class BaseRhs = BaseLhs,
typename ResultType = void,
typename CallbackType = ResultType (*)(BaseLhs&, BaseRhs&)

>
class BasicFastDispatcher
{

typedef std::vector<CallbackType> Row;
typedef std::vector<Row> Matrix;
Matrix callbacks_;

11-A1568 01/23/2001 12:39 PM Page 291

292 Multimethods Chapter 11

int columns_;
public:

BasicFastDispatcher() : columns_(0) {}
template <class SomeLhs, SomeRhs>
void Add(CallbackType pFun)
{

int& idxLhs = SomeLhs::GetClassIndexStatic();
if (idxLhs < 0)
{

callbacks_.push_back(Row());
idxLhs = callbacks_.size() - 1;

}
else if (callbacks_.size() <= idxLhs)
{

callbacks_.resize(idxLhs + 1);
}
Row& thisRow = callbacks_[idxLhs];
int& idxRhs = SomeRhs::GetClassIndexStatic();
if (idxRhs < 0)
{

thisRow.resize(++columns_);
idxRhs = thisRow.size() - 1;

}
else if (thisRow.size() <= idxRhs)
{

thisRow.resize(idxRhs + 1);
}
thisRow[idxRhs] = pFun;

}
};

The callback matrix is implemented as a vector of vectors of MappedType. The Basic
FastDispatcher::Add function performs the following sequence of actions:

1. Fetches the ID of each class by calling GetClassIndexStatic.

2. Performs initialization and adjustments if one or both indices were not initialized. For

uninitialized indices, Add expands the matrix to accommodate one extra element.

3. Inserts the callback at the correct position in the matrix.

The columns_ member variable tallies the number of columns added so far. Strictly

speaking, columns_ is redundant; a search for the maximum row length in the matrix

would yield the same result. However, column_’s convenience justifies its presence.

The BasicFastDispatcher::Go is easy to implement now. The main difference is that Go
uses the virtual function GetClassIndex.

template <...>
class BasicFastDispatcher
{

... as above ...
ResultType Go(BaseLhs& lhs, BaseRhs& rhs)
{

int& idxLhs = lhs.GetClassIndex();

11-A1568 01/23/2001 12:39 PM Page 292

Section 11.11 BasicDispatcher and BasicFastDispatcher as Policies 293

int& idxRhs = rhs.GetClassIndex();
if (idxLhs < 0 || idxRhs < 0 ||

idxLhs >= callbacks_.size() ||
idxRhs >= callbacks_[idxLhs].size() ||
callbacks_[idxLhs][idxRhs] == 0)

{
... error handling goes here ...

}
return callbacks_[idxLhs][idxRhs].callback_(lhs, rhs);

}
};

Let’s recap this section. We defined a matrix-based dispatcher that reaches callback ob-

jects in constant time by assigning an integral index to each class. In addition, it performs

automatic initialization of its support data (the indices corresponding to the classes).

Users of BasicFastDispatcher must add a one-macro line, IMPLEMENT_INDEXABLE_CLASS-
(YourClass), to each class that is to use BasicFastDispatcher.

11.11 BasicDispatcher and
BasicFastDispatcher as Policies

BasicFastDispatcher (matrix based) is preferable to BasicDispatcher (map based)

when speed is a concern. However, the nice advanced classes FnDispatcher and Functor-
Dispatcher are built around BasicDispatcher. Should we develop two new classes,

FnFastDispatcher and FunctorFastDispatcher, that use BasicFastDispatcher as their

back end?

A better idea is to try to adapt FnDispatcher and FunctorDispatcher to use either

BasicDispatcher or BasicFastDispatcher, depending on a template parameter. That is,

make the dispatcher a policy for the classes FnDispatcher and FunctorDispatcher, much as

we did with the casting strategy.

The task of morphing the dispatcher into a policy is eased by the fact that Basic
Dispatcher and BasicFastDispatcher have the same call interface. This makes replacing

one with the other as easy as changing a template argument.

The following is the revised declaration of FnDispatcher (FunctorDispatcher’s decla-

ration is similar). The changes are shown in bold.

template
<

class BaseLhs,
class BaseRhs = BaseLhs,
typename ResultType = void,
template <class, class>

class CastingPolicy = DynamicCaster,
template <class, class, class, class>

class DispatcherBackend = BasicDispatcher
>
class FnDispatcher; // similarly for FunctorDispatcher

11-A1568 01/23/2001 12:39 PM Page 293

294 Multimethods Chapter 11

Table 11.1 DispatcherBackend Policy Requirements

Expression Return Type Notes

copy, assign, swap, Value semantics.

destroy

backEnd.Add<SomeLhs, void Add a callback to the backEnd
SomeRhs>(callback) object for types SomeLhs and

SomeRhs.

backEnd.Go(BaseLhs&, ResultType Performs a lookup and a dispatch

BaseRhs&) for the two objects. Throws

std::runtime_error if a

handler is not found.

backEnd.Remove<SomeLhs, bool Removes the callback for the types

SomeRhs>() SomeLhs and SomeRhs. Returns

true if there was a callback.

backEnd.HandlerExists bool Returns true if a callback is

<SomeLhs, SomeRhs>() registered for the types

SomeLhs and SomeRhs. No

callback is added.

The two classes themselves undergo very few changes.

Let’s clarify the DispatcherBackend policy requirements. First of all, obviously,

DispatcherBackend must be a template with four parameters. The parameter semantics

are, in order:

• Left-hand operand type

• Right-hand operand type

• Return type of the callback

• The callback type

In Table 11.1, BackendType represents an instantiation of the dispatcher back-end tem-

plate, and backEnd represents a variable of that type. The table contains functions that we

didn’t mention yet—don’t worry. A complete dispatcher must come with functions that

remove callbacks and that do a “passive” lookup without calling the callback. These are

trivial to implement; you can see them in Loki’s source code, file MultiMethods.h.

11.12 Looking Forward

Generalization is right around the corner. We can take our findings regarding double dis-

patch and apply them to implementing true generic multiple dispatch.

It’s actually quite easy. This chapter defines three types of double dispatchers:

11-A1568 01/23/2001 12:39 PM Page 294

Section 11.12 Looking Forward 295

7Dressed as OrderedTypeInfo to ease comparisons and copying.

• A static dispatcher, driven by two typelists

• A map-based dispatcher, driven by a map keyed by a pair of std::type_info objects7

• A matrix-based dispatcher, driven by a matrix indexed with unique numeric class IDs

It’s easy to generalize these dispatchers as follows. You can generalize the static dis-

patcher to one driven by a typelist of typelists, instead of two typelists. Yes, you can define

a typelist of typelists because any typelist is a type. The following typedef defines a type-

list of three typelists, possible participants in a triple-dispatch scenario. Remarkably, the

resulting typelist is actually easy to read.

typedef TYPELIST_3
(

TYPELIST_3(Shape, Rectangle, Ellipse),
TYPELIST_3(Screen, Printer, Plotter),
TYPELIST_3(File, Socket, Memory)

)
ListOfLists;

You can generalize the map-based dispatcher to one that is keyed by a vector of std::
type_info objects (as opposed to a std::pair). That vector’s size will be the number of

objects involved in the multiple-dispatch operation. A possible synopsis of a generalized

BasicDispatcher is as follows:

template
<

class ListOfTypes,
typename ResultType,
typename CallbackType

>
class GeneralBasicDispatcher;

The ListOfTypes template parameter is a typelist containing the base types involved in the

multiple dispatch. For instance, our earlier example of hatching intersections between two

shapes would have used a TYPELIST_2(Shape, Shape).

You can generalize the matrix-based dispatcher by using a multidimensional array. You

can build a multidimensional array with a recursive class template. The existing scheme of

assigning numeric IDs to types works just as it is. This has the nice effect that if you mod-

ify a hierarchy once to support double dispatch, you don’t have to modify it again to sup-

port multiple dispatch.

All these possible extensions need the usual amount of work to get all the details right.

A particularly nasty problem related to multiple dispatch and C�� is that there’s no uni-

form way to represent functions with a variable number of arguments.

As of now, Loki implements double dispatch only. The interesting generalizations just

suggested are left in the dreaded form of the exercise for . . . you know.

11-A1568 01/23/2001 12:39 PM Page 295

296 Multimethods Chapter 11

11.13 Summary

Multimethods are generalized virtual functions. Whereas the C�� runtime support dis-

patches virtual functions on a per-class basis, multimethods are dispatched depending on

multiple classes at once. This allows you to implement virtual functions for collections of

types instead of one type at a time.

By their nature, multimethods are best implemented as a language feature. C�� lacks

such a feature, but there are several ways to implement it in libraries.

Multimethods are needed in applications that call algorithms that depend on the type

of two or more objects. Typical examples include collisions between polymorphic objects,

intersections, and displaying objects on various target devices.

This chapter limits discussion to defining multimethods for two objects. An object that

takes care of selecting the appropriate function to call is called a double dispatcher. The

types of dispatchers discussed are as follows:

• The brute-force dispatcher. This dispatcher relies on static type information (provided

in the form of a typelist) and does a linear unrolled search for the correct types. Once

the types are found, the dispatcher calls an overloaded member function in a handler

object.

• The map-based dispatcher. This uses a map keyed by std::type_info objects. The

mapped value is a callback (either a pointer to a function or a functor). The type dis-

covery algorithm performs a binary search.

• The constant-time dispatcher. This is the fastest dispatcher of all, but it requires you to

modify the classes on which it acts. The change is to add a macro to each class that you

want to use with the constant-time dispatcher. The cost of a dispatch is two virtual calls,

a couple of numeric tests, and a matrix element access.

On top of the last two dispatchers, higher-level facilities can be implemented:

• Automated conversions. (Not to be confused with automatic conversions.) Because of

their uniformity, the dispatchers above require the client to cast the objects from their

base types to their derived types. A casting layer can provide a trampoline function that

takes care of these conversions.

• Symmetry. Some double-dispatch applications are symmetric in nature. They dispatch

on the same base type on both sides of the double-dispatch operation, and they don’t

care about the order of elements. For instance, in a collision detector it doesn’t matter

whether a spaceship hits a torpedo or a torpedo hits a spaceship—the behavior is the

same. Implementing support for symmetry in the library makes client code smaller and

less exposed to errors.

The brute-force dispatcher supports these higher-level features directly. This is possible

because the brute-force dispatcher has extensive type information available. The other two

dispatchers use different methods and add an extra layer to implement automated conver-

sions and symmetry. Double dispatchers for functions implement this extra layer differ-

ently (and more efficiently) than double dispatchers for functors.

Table 11.2 compares the three dispatcher types defined in this chapter. As you can see,

11-A1568 01/23/2001 12:39 PM Page 296

Section 11.14 Double Dispatcher Quick Facts 297

Table 11.2: Comparison of Various
Implementations of Double Dispatch

Static Logarithmic Constant-Time
Dispatcher Dispatcher Dispatcher
(Static- (Basic- (BasicFast-
Dispatcher) Dispatcher) Dispatcher)

Speed for few classes Best Modest Good

Speed for many classes Low Good Best

Dependency introduced Heavy Low Low

Alteration of existing None None Add a macro

classes needed to each class

Compile-time safety Best Good Good

Runtime safety Best Good Good

none of the presented implementations is ideal. You should choose the solution that best

fits your needs for a given situation.

11.14 Double Dispatcher Quick Facts

• Loki defines three basic double dispatchers: StaticDispatcher, BasicDispatcher, and

BasicFastDispatcher.

• StaticDispatcher’s declaration:

template
<

class Executor,
class BaseLhs,
class TypesLhs,
class BaseRhs = BaseLhs,
class TypesRhs = TypesLhs,
typename ResultType = void

>
class StaticDispatcher;

where

BaseLhs is the base left-hand type.

TypesLhs is a typelist containing the set of concrete types involved in the double

dispatch on the left-hand side.

BaseRhs is the base right-hand type.

TypesRhs is a typelist containing the set of concrete types involved in the double

dispatch on the right-hand side.

11-A1568 01/23/2001 12:39 PM Page 297

298 Multimethods Chapter 11

Executor is a class that provides the functions to be invoked after type discov-

ery. Executor must provide an overloaded member function Fire for each com-

bination of types in TypesLhs and TypesRhs.

ResultType is the type returned by the Executor::Fire overloaded functions.

The returned value will be forwarded as the result of StaticDispatcher::Go.

• Executor must provide a member function OnError(BaseLhs&, BaseRhs&) for error

handling. StaticDispatcher calls Executor::OnError when it encounters an unknown

type.

• Example (assume Rectangle and Ellipse inherit Shape, and Printer and Screen in-

herit OutputDevice):

struct Painter
{

bool Fire(Rectangle&, Printer&);
bool Fire(Ellipse&, Printer&);
bool Fire(Rectangle&, Screen&);
bool Fire(Ellipse&, Screen&);
bool OnError(Shape&, OutputDevice&);

};

typedef StaticDispatcher
<

Painter,
Shape,
TYPELIST_2(Rectangle, Ellipse),
OutputDevice,
TYPELIST_2(Printer&, Screen),
bool

>
Dispatcher;

• StaticDispatcher implements the Go member function, which takes a BaseLhs&, a

BaseRhs&, and an Executor&, and executes the dispatch. Example (using the previous

definitions):

Dispatcher disp;
Shape* pSh = ...;
OutputDevice* pDev = ...;
bool result = disp.Go(*pSh, *pDev);

• BasicDispatcher and BasicFastDispatcher implement dynamic dispatchers that al-

low users to add handler functions at runtime.

• BasicDispatcher finds a handler in logarithmic time. BasicFastDispatcher finds a

handler in constant time but requires the user to change the definitions of all dispatched

classes.

• Both classes implement the same interface, illustrated here for BasicDispatcher.

template
<

class BaseLhs,
class BaseRhs = BaseLhs,
typename ResultType = void,

11-A1568 01/23/2001 12:39 PM Page 298

Section 11.14 Double Dispatcher Quick Facts 299

typename CallbackType = ResultType (*)(BaseLhs&, BaseRhs&)
>
class BasicDispatcher;

where:

CallbackType is the type of object that handles the dispatch. BasicDispatcher
and BasicFastDispatcher store and invoke objects of this type.

All other parameters have the same meaning as for StaticDispatcher.

• The two dispatchers implement the functions described in Table 11.1.

• In addition to the three basic dispatchers, Loki also defines two advanced layers: Fn-
Dispatcher and FunctorDispatcher. They use one of BasicDispatcher or BasicFast-
Dispatcher as a policy.

• FnDispatcher and FunctorDispatcher have similar declarations, as shown here.

template
<

class BaseLhs,
class BaseRhs = BaseLhs,
ResultType = void,
template <class To, class From>

class CastingPolicy = DynamicCast
template <class, class, class, class>

class DispatcherBackend = BasicDispatcher
>
class FnDispatcher;

where

BaseLhs and BaseRhs are the base classes of the two hierarchies involved in the

double dispatch.

ResultType is the type returned by the callbacks and the dispatcher.

CastingPolicy is a class template with two parameters. It must implement a

static member function Cast that accepts a reference to From and returns a

reference to To. The stock implementations DynamicCaster and Static Caster
use dynamic_cast and static_cast, respectively.

DispatcherBackend is a class template that implements the same interface as

BasicDispatcher and BasicFastDispatcher, described in Table 11.1.

• Both FnDispatcher and FunctorDispatcher provide an Add member function or their

primitive handler type. For FnDispatcher the primitive handler type is ResultType-
(*)(BaseLhs&, BaseRhs&). For FunctorDispatcher, the primitive handler type is

Functor<ResultType,TYPELIST_2(BaseLhs&, Base Rhs&)>. Refer to Chapter 5 for a de-

scription of Functor.

• In addition, FnDispatcher provides a template function to register callbacks with the

engine:

void Add<SomeLhs, SomeRhs,
ResultType (*callback)(SomeLhs&, SomeRhs&),
bool symmetric>();

11-A1568 01/23/2001 12:39 PM Page 299

300 Multimethods Chapter 11

• If you register handlers with the Add member function shown in the previous code, you

benefit from automated casting and optional symmetry.

• FunctorDispatcher provides a template Add member function:

template <class SomeLhs, class SomeRhs, class F>
void Add(const F& fun);

• F can be any of the types accepted by the Functor object (see Chapter 5), including an-

other Functor instantiation. An object of type F must accept the function-call operator

with arguments of types BaseLhs& and BaseRhs& and return a type convertible to

ResultType.

• If no handler is found, all dispatch engines throw an exception of type std::-
runtime_error.

11-A1568 01/23/2001 12:39 PM Page 300

