
A
Ada, 87–88
AD/Cycle, 26
Ad hoc, 163
Advocacy research, 148–150
Agile development, 13, 83–84, 86, 111, 162, 163
Algorithmic approaches, 28–31
Analysis paralysis, 72
Applied Computer Research (ACR), 26–27,

99–100
Assembly language, 87–89, 139–143
Audience, 3, 182

B
Basili, Vic, 60, 71–72, 107, 109, 111–112, 156
“Bathtub” shape (to software maintenance cost

curve), 177–180
Beck, Kent, 19, 38, 141
Benson, Miles, 22
Biased errors, 134–135, 172
Biggerstaff, Ted, 47, 50–51
Boddie, John, 30
Boehm, Barry, 12–13, 15, 71–72, 107, 116, 132,

136–137, 139
Bollinger, Terry, 13
Bosch, Jan, 49
Bowen, Thomas B., 128–129
Branch testing. See Logic paths

Brooks, Fred (and Brooks’s Law), 16–17, 20–22,
55, 60, 103, 111–112

Brossler, P., 111–112
Bucher, 13–14
Bush, Marilyn, 107

C
Capability Maturity Model (CMM), 11–12, 138
CASE tools, 20, 25–27, 34–35, 101
Chapin, Ned, 122
Checkout. See Error–removal
Churchill, Winston, 89
Cleanroom (testing approach), 173–174
Clerical (software work as), 60–63
Cluster (of errors), 135–136, 172
COBOL, 87–89
Cockburn, Alistair, 163
Coding, 65, 84–89, 139–143
Cognitive processes, 82
Cole, Andy, 30, 40–42, 70
Collofello, Jim, 109
Colter, Mel, 40–42
Communism, 161
Complexity, 10, 58–63, 77–79, 81–84, 174, 185
Component. See Reuse
Comprehension. See Understanding
Computer Sciences Corp, 186
Corbi, T.A., 183

191

Index



Creative (software work as), 60–63, 66
Crunch mode, 27, 30
Curmudgeon, 6
Curtis, Bill, 81–84

D
Dangerfield, Rodney, 98
Davis, Al , 9, 11, 13, 15, 22, 72, 136–137
Death march, 27, 30
Debug code, 103–104
Debuggers, 19, 97–100, 175
DeGrace, Peter, 165–166
Deimel, Lionel, 183
Dekleva, Sasa, 125–126
DeMarco, Tom, 12–13, 17–19, 154, 158, 159,

165–166
Denver International Airport, 36, 69, 71
Department of Defense (DoD), U.S., 12, 128–129
Derived requirements, 76–79
Design, 65–67, 76–84, 139–141
Design envelope, 52
Design pattern. See Pattern
Disconnect (between programmers and

managers), 34, 39–42, 185
Diversity (differences among projects and

domains), 46–47, 162–163
Domain dependence, 48–49
Domain-specific languages, 87–89
Dyer, Mike, 79

E
Early adapters, 21
Easy–part first (design), 83
Ebner, Gerald, 79
Education (of software engineers and computer

scientists), 181–184
Efficiency, 130–132, 139–145
Egoless programming, 114, 160–161
Endres, A,, 136–137
Enhancement, 117–120, 177–180
Enterprise resource planning system, 24, 53
Error-free (software product), 67, 74–76, 93–95,

108, 137–139
Error removal, 65–67, 74, 99–115, 134–139
Errors of combinatorics, 96

Errors of omission, 96
Estimation, 10, 27–43, 58, 132–134, 167–169, 185
Evaluative research, 20, 148–150
Exception case handling, 172
Experience factory, 111–112
Experience level (of software field), 111–112
Extreme Programming, 19, 20, 23–24, 38, 52, 70,

72, 80, 83–84, 86, 111, 141
Eyeballs, 174, 177

F
Failure (of a software project), 39–42, 68
Fallacies, 151–184
Families (of related systems). See Domain

dependence
Fault-tolerance, fault–tolerant programming, 108,

135
F-Book, 4–5
Feasibility, 42–43, 82
Feature point, 29
Fenton, Norman, 149–150
Fit and finish, 131
Fjelstad, Robert K., 121–124
Formal specification, 68–72
Formal verification, 108–109, 173
Fortran, 87
Fourth generation languages, 20
Fowler, Martin, 119, 141
Front-end loading, 90
Function point, 29
Fuzz papers, 175–177

G
Gamma, Erich, 56–57
Gang of Four, 57
Gates, Bill, 124, 184
Genetic testing (dynamic generation of test cases),

173–174
Glass, Robert L., 11, 16, 20, 22, 27, 45, 63, 71, 76,

79, 84, 87, 90–91, 93–95, 96–97, 104, 107, 109,
111–112, 120, 129, 131–132, 135, 137, 138,
148–150, 159, 162–164, 166, 176, 180, 183

GQM (Goals/Questions/Metrics ), 156
Grady, Robert B., 20–22
Gramms, Timm, 134–135

192 INDEX



H
Halstead, Murray, 156, 158
“Hard drives out soft”, 18
Hard-part first (design), 81–84
Hardware envy, 21
Hardy, Colin, 164, 167
Hetzel, Bill, 156–158
Heuristic, 58, 82
Highsmith, James A., 13–14, 163–164
HOL (High-Order Language), 19, 141–143
Human engineering, 130–132
Hunt, Andrew, 88–89
Hype, 19–22, 44, 137, 148, 149, 176, 185

I
IEEE, 47
Individual Differences, 14–16
Inspection, 59, 67, 104–115, 173, 174–177
Intellectual (software work as), 60–63, 66

J
Jacobson, Ivar, 62–63
JAD (Joint Application Development), 69
JARGON, 51
Java, 144
Jazayeri, Mehdi, 49
Jeffery, D.R., 41–42
Jenkin, Steve, 111
Jones, Capers, 31, 162–164, 168–169

K
Kaner, Cem, 103, 139
Kerth, Norman, 110–113
Kitchenham, Barbara, 30–31

L
Laggards, 21
Lammers, Susan, 124, 184
Landsbaum, Jerome B., 41–42, 117
Learning curve, 23–26
Lederer, Albert, 34–35
Lessons learned, 24
Libraries (reuse-in-the-small), 43–45
Lientz, Bennet, 117
Life cycle, software, 65–126, 171–180

Linberg, K.R., 39–42
Lines of code (LOC), 29–30, 40, 106, 167–169
Lister, Tim, 12–13, 17–19
Little Moron (joke), 12
Logic paths, 93–97
Loyal Opposition (in IEEE Software), 6

M
Mainframe, 43
Maintenance, 52–53, 59, 65,115–126, 177–180, 183
Malpractice, 30
Management, 9–63, 155–169
Management by schedule, 37–38
Management by schedule (alternatives to), 37
Maryland, University of, 186
McBreen, Pete, 15, 48–49, 86–87, 89, 163
MCC (Microelectronics and Computing

Consortium), 81
McCall, J., 132
McClure, Carma, 47
McConnell, Steve, 17
McGarry, Frank, 54–55
Measure, Metric, 155–158
Methodology, 11, 164–167
Michael, Christopher C., 173–174
Microsoft, 36, 75–76
Miller, Barton P., 175–176
Mills, Harlan, 154, 173–174, 184
Minimum standard toolset, 26–27
Modeling, 71, 72
Modifiability, 127, 130–132
Mohanty, S.N., 28, 31
Myers, Glenford, 15–16, 109
Mythical Man–Month, 17

N
N-version programming, 135
NASA (especially NASA-Goddard), 35–36, 46, 48,

54–55, 75–76, 155, 186
Not invented here (NIH), 26, 46

O
Object-orientation, 20
Open source, 53–54, 99–100, 165, 174–177
Operating systems, 19

INDEX 193



Opportunistic (design), 81–84
Optimal design, 81–84
Optimization, 143–145
Oracle (correct answers for testing), 172
Outsourcing, 85

P
Pair Programming, 19
Parnas, David, 60, 83–84
Pattern, 55–58
People, 10, 11–19, 33–35, 58, 160–161
Peopleware, 12–13, 17–19
Persistent software errors, 74–76, 96–97
Pirsig, Robert M., 127, 129
Plauger, P.J., 163–164
PL/1, 88
Portability, 128, 120–132
Post-delivery reviews, 110–113
Potts, Colin, 149–150
Power of Peonage, 10, 11
Practical Programmer (in Communications of the

ACM), 6
Prentiss, Nelson H., 143
Pressman, Roger, 32
Preventive maintenance, 118–119, 141
Primitives (for coding), 84–87
Principles (of software engineering), 9, 11
Priority (of software errors), 76
Procaccino, J. Drew, 41
Process, 11–12
Productivity, 17–19, 23–25
Prototyping, 69, 71

Q
Quality (of the software product), 17–19, 37,

137–145, 158–159

R
Radice, Ronald A,, 108–109
Ramping up, 86
Random testing approaches. See Statistics-driven

testing
Rational Software, 62
Reading-before-writing, 181–184
Reality, 187

Refactoring. See Preventive maintenance
Regression testing, 172
Reifer, Donald J., 47–48
Reilly and Maloney, 147
Reliability, 128, 129–132, 133–134, 134–139
Requirements, 31, 65–67, 67–76, 132–134
Requirements-driven testing, 92–93
Requirements explosion, 58, 92
Requirements traceability, 77–79
Research (software engineering), 147–150
Retrospectives. See Post-delivery reviews
Reuse, 10, 43–58
Reviews, 67, 72, 76, 104–115
Rich, Charles, 101–103
Rifkin, Stan, 106–107
Rigor vs. relevance (in research), 61
Risk-driven testing, 92–93
Rolling totals, 82, 85
Rombach, Dieter, 155, 158
RPG, 87
Rubey, Raymond, 13–14, 142–143, 144–145
Rules of three. See Reuse
Runaway projects, 27–43, 67–71

S
Sackman, H., 14–16
Sanden, Bo, 163–164
SAP. See Enterprise resource planning system
Satisficing, 83–84
Schwartz, Jules, 15–16
Seattle University, 78, 159
Severity (of software errors), 74–76, 137–139, 175
Share, 44–45
Shelfware, 25, 98, 101
Silver bullet, 20–22, 137
Simon, Herbert, 83–84
Simulation, 71, 82
Smidts, Carol, 138–139
Software crisis, 68
Software Engineering Institute (SEI), 11–12, 186
Software Engineering Laboratory (SEL). See NASA
Software Practitioner, 88–89
Software science, 156
Soloway, Elliott, 81–84
Spiral (life cycle), 66, 91

194 INDEX



SQL, 87
Statistics-driven testing, 92–93, 171–174
Structure-driven testing, 92–97
Structured methods, 149
Success (of a software project), 39–42
Sullivan, Daniel J., 177, 180
Sweeney, Mary, 103
SYMPL, 87
Systems analyst, 73–74, 85
Systems engineer, 73–74, 85

T
Taylor, Dennis, 60
Teams, 160–161
Techniques, 10–12, 19–22, 23–25, 161–167
Testability, 130–132
Test automation, 98–103
Test coverage, 59, 91–104, 171
Test coverage analyzer, 23–25, 91–104
Testing, 65–67, 72, 91–104, 171–174
Test managers, 172
Test tools, 97–100
Theory, 187
Thinking traps, 134–135
Thomas, William , 54–55
Through a Glass, Darkly (in ACM’s SIGMIS data-

base), 6
Tichy, Walter F., 149–150
Tools, 10–12, 19–22, 23–25, 25–27, 161–167
Tracz, Will, 47–48, 51

U
Understanding, Understandability, 120–124,

130–132, 181–184
Unified Modeling Language (UML), 62

Unstable requirements, 28
Used program salesman. See Tracz
User satisfaction, 132–134

V
Van Genuchten, Michiel, 30, 70
Verification and validation, 90
Vessey, Iris, 149–150, 163–164
Visser, Willemien, 56–58
Vlasbom, Gerjan, 164, 167

W
Waterfall (life cycle), 65–67
Web software, 86
Weinberg, Gerald , 22, 25, 43, 136–137, 154,

161
Wiegers, Karl, 27, 76, 83–84, 107, 112, 115,

123–124, 164–167
Williams, Laurie, 19
Wisdom, 111–112
Woodfield, Scott, 59–60
Workspace (for programmers), 17–19
Writing-before-reading, 181–184

Y
Y2K (year 2000) problem, 116
Yale University, 81
Yourdon, Ed, 30, 163–164

Z
Zealots, 24, 175, 177
Zen and the Art of Motorcycle Maintenance, 127,

129
Zhao, Luyin, 99–100, 175–177

INDEX 195




