
 

517

 

Index

 

A 

 

ACID (atomicity, consistency, isolation, 
and durability), 71–76 

business and system transactions, 74–76 
reducing transaction isolation for live-

ness, 73–74 
transactional resources, 72–73 

Active Record, 160–64 
example 

simple person (Java), 162–64 
how it works, 160–61 
when to use it, 161–62 

ADO.NET data sets, 148–51 
Advice, some technology-specific, 

100–103 
Java and J2EE, 100–101 
.NET, 101–2 
stored procedures, 102–3 
Web services, 103 

Affinity, server, 85 
Albums and tracks (Java), 264–67 
Albums, transferring information about, 

407–11 
Application Controller, 379–86 

example 
state model Application Controller 

(Java), 382–86 
further reading, 382 
how it works, 380–81 
when to use it, 381–82 

Application Controller, state model, 
382–86 

Application server concurrency, 78–80 
Applications, evolution of layers in enter-

prise, 18–19 
Architectural patterns, 33–38 
Architectural patterns, data source, 143–81 

Active Record, 160–64 
Data Mapper, 165–81 
Row Data Gateway, 152–59 
Table Data Gateway, 144–51 

ASP.NET server page (C#), 357–60 
Association Table Mapping, 248–61 

examples 
employees and skills (C#), 250–53 
using direct SQL (Java), 253–56 
using single query for multiple 

employees (Java), 256–61 
how it works, 248–49 
when to use it, 249 

 

B 

 

Base patterns, 465–510 
Gateway, 466–72 
Layer Supertype, 475 
Mapper, 473–74 
Money, 488–95 
Plugin, 499–503 
Record Set, 508–10 
Registry, 480–85 
Separated Interface, 476–79 
Service Stub, 504–7 
Special Case, 496–98 
Value Object, 486–87 

 

eaa.book  Page 517  Monday, October 7, 2002  8:23 AM



 

518

 

I

 

NDEX

 

Behavioral patterns, object-relational, 
183–214 

Identity Map, 195–99 
Lazy Load, 200–214 
Unit of Work, 184–94 

Behavioral problem, 38–39 
Boosters, complexity, 24 
Boundaries, working with distribution, 

91–92 
Brown layers, 104 
Business and system transactions, 74–76 
Business logic, 20 

 

C 

 

C# 
ASP.NET server page, 357–60 
collection of references, 244–47 
concrete players, 296–301 
employees and skills, 250–53 
integral key, 221–22 
page handler with code behind, 340–43 
Person Gateway, 146–48 
players and their kin, 287–92 
revenue recognition with Table Module, 

129–32 
simple null objects, 498 
single table for players, 280–81 
using ADO.NET data sets, 148–51 
using ghosts, 206–14 
Web service, 395–400 

Cases, Special, 496–98 
example 

simple null objects (C#), 498 
further reading, 497 
how it works, 497 
when to use it, 497 

Class, money, 491–95 
Class Table Inheritance, 285–92 

example 
players and their kin (C#), 287–92 

further reading, 287 
how it works, 285–86 
when to use it, 286–87 

Client Session State, 456–57 
how it works, 456–57 
when to use it, 457 

Coarse-Grained Lock, 438–48 
examples 

root Optimistic Offline Lock (Java), 
447–48 

shared Optimistic Offline Lock 
(Java), 441–46 

shared Pessimistic Offline Lock 
(Java), 446–47 

how it works, 438–41 
when to use it, 441 

Committed, read, 73 
Complexity boosters defined, 24 
Compound key (Java), 224–35 
Concrete players (C#), 296–301 
Concrete Table Inheritance, 293–301 

example 
concrete players (C#), 296–301 

how it works, 293–95 
when to use it, 295–96 

Concurrency, 63–80 
application server, 78–80 
application server concurrency, 78–80 
concurrency problems, 64–65 
execution contexts, 65–66 
isolation and immutability, 66–67 
off line, 75 
offline, 63 
optimistic and pessimistic concurrency 

controls, 67–71 
patterns for off line concurrency con-

trol, 76–78 
Concurrency controls 

optimistic and pessimistic, 67–71 
ACID (atomicity, consistency, isola-

tion, and durability), 71–76 
deadlocks, 70–71 
preventing inconsistent reads, 68–69 
transactions, 71 

patterns for offline, 76–78 
Concurrency patterns, offline, 415–53 
Connections, database, 50–52 
Contexts, execution, 65–66 
Controller, Front, 344–49 

example 
simple display (Java), 347–49 

further reading, 347 

 

eaa.book  Page 518  Monday, October 7, 2002  8:23 AM



 

I

 

NDEX

 

519

 

how it works, 344–46 
when to use it, 346 

Controller, Page, 333–43 
examples 

page handler with code behind (C#), 
340–43 

simple display with JSP view (Java), 
335–37 

simple display with servlet controller 
(Java), 335–37 

using JSP as handler (Java), 337–40 
how it works, 333–34 
when to use it, 334–35 

Controller patterns, input, 61 
Controllers 

simple display with, 335–37 
state model Application, 382–86 
using JSP as view with separate, 355–57 

Controllers, Application, 379–86 
example 

state model Application Controller 
(Java), 382–86 

further reading, 382 
how it works, 380–81 
when to use it, 381–82 

Controls 
optimistic and pessimistic concurrency, 

67–71 
ACID (atomicity, consistency, isola-

tion, and durability), 71–76 
deadlocks, 70–71 
preventing inconsistent reads, 

68–69 
transactions, 71 

patterns for offline concurrency, 
76–78 

Correctness, 65 
Custom tags, JSP and, 374–78 

 

D 

 

Data 
immutable, 67 
reading in, 40–41 
record, 83 

Data holder for domain object (Java), 
158–59 

Data Mapper, 165–81 
domain layer with, 421–25 
examples 

creating empty objects (Java), 179–81 
separating finders (Java), 176–79 
simple database mapper (Java), 

171–76 
how it works, 165–70 
when to use it, 170–71 

Data sets, ADO.NET, 148–51 
Data source 

architectural patterns, 143–81 
Active Record, 160–64 
Data Mapper, 165–81 
Row Data Gateway, 152–59 
Table Data Gateway, 144–51 

for Domain Models, 98–99 
logic, 20 
Table Modules, 98 
for Transaction Scripts, 97–98 

Data source layers, down to, 97–100 
data source for Domain Models, 98–99 
data source for Transaction Scripts, 

97–98 
data source Table Modules, 98 
presentation layers, 99–100 

Data Transfer Objects, 401–13 
examples 

serializing using XML (Java), 411–13 
transferring information about 

albums (Java), 407–11 
further reading, 407 
how it works, 401–6 
when to use it, 406 

Database connections, 50–52 
Database mapper, simple, 171–76 
Database Session State, 462–64 

how it works, 462–63 
when to use it, 464 

Databases 
loading objects from, 281–84 
mapping to relational, 33–53 

architectural patterns, 33–38 
behavioral problem, 38–39 
building mapping, 47–49 
database connections, 50–52 

 

eaa.book  Page 519  Monday, October 7, 2002  8:23 AM



 

520

 

I

 

NDEX

 

Databases, mapping to relational, 

 

continued

 

reading in data, 40–41 
some miscellaneous points, 52–53 
structural mapping patterns, 41–47 
using metadata, 49–50 

Deadlocks, 70–71 
Department hierarchy, serializing, 274–77 
Dependent Mapping, 262–67 

example 
albums and tracks (Java), 264–67 

how it works, 262–63 
when to use it, 263–64 

Dependents, finding person’s, 325–26 
Dirty reads, 74 
Display, simple, 347–49 
Distributed objects, allure of, 87–88 
Distribution boundaries, working with, 

91–92 
Distribution, interfaces for, 92–93 
Distribution patterns, 387–413 

Data Transfer Objects, 401–13 
Remote Facade, 388–400 

Distribution strategies, 87–93 
allure of distributed objects, 87–88 
interfaces for distribution, 92–93 
remote and local interfaces, 88–90 
where you have to distribute, 90–91 
working with distribution boundaries, 

91–92 
DNA layers, Microsoft, 105 
Domain layer with Data Mappers (Java), 

421–25 
Domain layers, starting with, 96–97 
Domain logic, 20 

organizing, 25–32 
making choices, 29–30 
Service Layers, 30–32 

patterns, 109–41 
Domain Model, 116–24 
Service Layer, 133–41 
Table Module, 125–32 
Transaction Script, 110–15 

Domain Model, 116–24 
data source for, 98–99 
example 

revenue recognition (Java), 
120–24 

further reading, 119–20 
how it works, 116–19 
when to use it, 119 

Domain objects, data holder for, 158–59 
Domain objects (Java), 475 

 

E 

 

EAI (Enterprise Application Integration), 
468 

Embedded Value, 268–71 
example 

simple value objects (Java), 270–71 
further reading, 270 
how it works, 268 
when to use it, 268–69 

Employees and skills (C#), 250–53 
Employees, using single query for multi-

ple, 256–61 
Enterprise Application Integration (EAI), 

468 
Enterprise applications, evolution of layers 

in, 18–19 
Examples 

albums and tracks (Java), 264–67 
ASP.NET server page (C#), 357–60 
collection of references (C#), 244–47 
concrete players (C#), 296–301 
data holder for domain object (Java), 

158–59 
domain objects (Java), 475 
employees and skills (C#), 250–53 
finding person’s dependents (Java), 

325–26 
gateway to proprietary messaging ser-

vice (Java), 468–72 
Id Generator (Java), 501–3 
implicit Pessimistic Offline Lock (Java), 

451–53 
integral key (C#), 221–22 
lazy initialization (Java), 203 
methods for Identity Map (Java), 

198–99 
money class (Java), 491–95 
multitable find (Java}, 243–44 
Person Gateway (C#), 146–48 
person record (Java), 155–58 
players and their kin (C#), 287–92 

 

eaa.book  Page 520  Monday, October 7, 2002  8:23 AM



 

I

 

NDEX

 

521

 

revenue recognition (Java), 120–24, 
138–41 

revenue recognition with Table Module 
(C#), 129–32 

root Optimistic Offline Lock (Java), 
447–48 

sales tax service (Java), 505–7 
separating finders (Java), 176–79 
serializing department hierarchy in 

XML (Java), 274–77 
serializing using XML (Java), 411–13 
shared Optimistic Offline Lock (Java), 

441–46 
shared Pessimistic Offline Lock (Java), 

446–47 
simple database mapper (Java), 171–76 
simple display (Java), 347–49 
simple display with servlet controller 

(Java), 335–37 
simple lock manager (Java), 431–37 
simple null objects (C#), 498 
simple person (Java), 162–64 
simple Query Object (Java), 318–21 
simple transform (Java), 363–64 
simple value objects (Java), 270–71 
single table for players (C#), 280–81 
single-valued reference (Java), 240–43 
singleton registry (Java), 483–84 
state model Application Controller 

(Java), 382–86 
swapping Repository strategies (Java), 

326–27 
thread-safe registry (Java), 484–85 
transferring information about albums 

(Java), 407–11 
two-stage XSLT (XSLT), 371–74 
Unit of Work with object registration 

(Java), 190–94 
using ADO.NET data sets (C#), 

148–51 
using compound key (Java), 224–35 
using direct SQL (Java), 253–56 
using ghosts (C#), 206–14 
using Java session been as Remote 

Facade (Java), 392–95 
using JSP as handler (Java), 337–40 
using key table (Java), 222–24 

using metadata and reflection(Java), 
309–15 

using single query for multiple employ-
ees (Java), 256–61 

using value holder (Java), 205–6 
virtual proxy (Java), 203–5 
Web service (C#), 395–400 

Execution contexts, 65–66 

 

F 

 

Facade, Remote, 388–400 
examples 

using Java session been as Remote 
Facade (Java), 392–95 

Web service (C#), 395–400 
how it works, 389–92 
when to use it, 392 

Fields, Identity, 216–35 
examples 

integral key (C#), 221–22 
using compound key (Java), 224–35 
using key table (Java), 222–24 

further reading, 221 
how it works, 216–20 
when to use it, 220–21 

Find, multitable, 243–44 
Finders, separating, 176–79 
Foreign Key Mapping, 236–47 

examples 
collection of references (C#), 244–47 
multitable find (Java}, 243–44 
single-valued reference (Java), 240–43 

how it works, 236–39 
when to use it, 239–40 

Front Controller, 344–49 
example 

simple display (Java), 347–49 
further reading, 347 
how it works, 344–46 
when to use it, 346 

 

G 

 

Gateway, 466–72 
example 

gateway to proprietary messaging ser-
vice (Java), 468–72 

how it works, 466–67 

 

eaa.book  Page 521  Monday, October 7, 2002  8:23 AM



 

522

 

I

 

NDEX

 

Gateway, 

 

continued

 

Person, 146–48 
when to use it, 467–68 

Gateway, Row Data, 152–59 
examples 

data holder for domain object (Java), 
158–59 

person record (Java), 155–58 
how it works, 152–53 
when to use it, 153–55 

Gateway, Table Data, 144–51 
examples 

Person Gateway (C#), 146–48 
using ADO.NET data sets (C#), 

148–51 
further reading, 146 
how it works, 144–45 
when to use it, 145–46 

Gateway to proprietary messaging service 
(Java), 468–72 

Generator, Id, 501–3 
Ghosts, 202, 206–14 
Globally Unique IDentifier (GUID), 219 
GUID (Globally Unique IDentifier), 219 

 

H 

 

Handlers 
page, 340–43 
using JSP as, 337–40 

Hierarchy, serializing department, 274–77 
Holder, using value, 205–6 

 

I 

 

Id Generator (Java), 501–3 
Identity Field, 216–35 

examples 
integral key (C#), 221–22 
using compound key (Java), 224–35 
using key table (Java), 222–24 

further reading, 221 
how it works, 216–20 
when to use it, 220–21 

Identity Map, 195–99 
example 

methods for Identity Map (Java), 
198–99 

how it works, 195–97 
methods for, 198–99 
when to use it, 198 

Immutability, isolation and, 66–67 
Immutable data, 67 
Implicit Lock, 449–53 

example 
implicit Pessimistic Offline Lock 

(Java), 451–53 
how it works, 450–51 
when to use it, 451 

Implicit Pessimistic Offline Lock (Java), 
451–53 

Inconsistent reads, 64 
preventing, 68–69 

Inheritance, 45–47 
Inheritance, Class Table, 285–92 

example 
players and their kin (C#), 287–92 

further reading, 287 
how it works, 285–86 
when to use it, 286–87 

Inheritance, Concrete Table, 293–301 
example 

concrete players (C#), 296–301 
how it works, 293–95 
when to use it, 295–96 

Inheritance Mappers, 302–4 
how it works, 303–4 
when to use it, 304 

Inheritance, Single Table 
example 

single table for players (C#), 280–81 
how it works, 278–79 
loading objects from databases, 281–84 
when to use it, 279–80 

Initialization, lazy, 203 
Input controller patterns, 61 
Integral key (C#), 221–22 
Interfaces 

for distribution, 92–93 
remote and local, 88–90 
Separated, 476–79 

how it works, 477–78 
when to use it, 478–79 

Isolated threads, 66 

 

eaa.book  Page 522  Monday, October 7, 2002  8:23 AM



 

I

 

NDEX

 

523

 

Isolation 
and immutability, 66–67 
reducing transaction for liveness, 

73–74 

 

J 

 

J2EE, Java and, 100–101 
J2EE layers, core, 104 
Java 

albums and tracks, 264–67 
creating empty objects, 179–81 
data holder for domain object, 158–59 
domain layer with Data Mappers, 

421–25 
domain objects, 475 
finding person’s dependents, 325–26 
gateway to proprietary messaging ser-

vice, 468–72 
Id Generator, 501–3 
and J2EE, 100–101 
JSP and custom tags, 374–78 
methods for Identity Map, 198–99 
money class, 491–95 
multitable find, 243–44 
person record, 155–58 
revenue recognition, 113–15, 120–24, 

138–41 
root Optimistic Offline Lock, 447–48 
sales tax service, 505–7 
separating finders, 176–79 
serializing department hierarchy in 

XML, 274–77 
serializing using XML, 411–13 
shared Optimistic Offline Lock, 441–46 
shared Pessimistic Offline Lock, 446–47 
simple database mapper, 171–76 
simple display, 347–49 
simple display with JSP view, 335–37 
simple display with servlet controller, 

335–37 
simple person, 162–64 
simple Query Object, 318–21 
simple transform, 363–64 
simple value objects, 270–71 
single-valued reference (Java), 

240–43 

singleton registry, 483–84 
state model Application Controller, 

382–86 
swapping Repository strategies,

326–27 
thread-safe registry, 484–85 
transferring information about albums, 

407–11 
Unit of Work with object registration, 

190–94 
using compound key, 224–35 
using direct SQL, 253–56 
using Java session bean as Remote 

Facade, 392–95 
using JSP as handler, 337–40 
using JSP as view with separate control-

ler, 355–57 
using key table, 222–24 
using metadata and reflection, 

309–15 
using single query for multiple employ-

ees, 256–61 
using value holder, 205–6 

Java session bean, using as Remote Facade 
(Java), 392–95 

JSP 
using as handler, 337–40 
using as view, 355–57 

JSP and custom tags (Java), 374–78 
JSP view, simple display with, 335–37 

 

K 

 

Key Mapping, Foreign, 236–47 
Key table, 222–24 
Keys 

compound, 224–35 
integral, 221–22 

Kin, players and their, 287–92 

 

L 

 

Late transactions, 72 
Layer Supertype, 475 

example 
domain objects (Java), 475 

how it works, 475 
when to use it, 475 

 

eaa.book  Page 523  Monday, October 7, 2002  8:23 AM



 

524

 

I

 

NDEX

 

Layering, 17–24 
choosing to run your layers, 22–24 
evolution of layers in enterprise applica-

tions, 18–19 
schemes, 103–6 
three principal layers, 19–22 

Layers 
Brown, 104 
choosing to run your, 22–24 
core J2EE, 104 
down to data source, 97–100 

data source for Domain Models, 
98–99 

data source for Transaction Scripts, 
97–98 

data source Table Modules, 98 
presentation layers, 99–100 

Marinescu, 105 
Microsoft DNA, 105 
Nilsson, 106 
presentation, 99–100 
Service, 30–32 
starting with domain, 96–97 
three principal, 19–22 

Layers, evolution of, 18–19 
Layers, Service, 133–41 

example 
revenue recognition (Java), 138–41 

further reading, 137 
how it works, 134–37 
when to use it, 137 

Lazy initialization (Java), 203 
Lazy Load, 200–214 

examples 
lazy initialization (Java), 203 
using ghosts (C#), 206–14 
using value holder (Java), 205–6 
virtual proxy (Java), 203–5 

how it works, 200–203 
when to use it, 203 

Liveness, 65 
reducing transactions isolation for, 

73–74 
Load, Lazy, 200–214 

examples 
lazy initialization (Java), 203 
using ghosts (C#), 206–14 

using value holder (Java), 205–6 
virtual proxy (Java), 203–5 

how it works, 200–203 
when to use it, 203 

Loading, ripple, 202 
LOBs (large objects), serialized, 272–77 

example 
serializing department hierarchy in 

XML (Java), 274–77 
how it works, 272–73 
when to use it, 274 

Local interfaces, remote and, 88–90 
Lock manager, simple, 431–37 
Locking 

optimistic, 67 
pessimistic, 67 

Locks 
root Optimistic Offline, 447–48 
shared Optimistic Offline, 441–46 
shared Pessimistic Offline, 446–47 

Locks, Coarse-Grained, 438–48 
examples 

root Optimistic Offline Lock (Java), 
447–48 

shared Optimistic Offline Lock 
(Java), 441–46 

shared Pessimistic Offline Lock 
(Java), 446–47 

how it works, 438–41 
when to use it, 441 

Locks, Implicit, 449–53 
example 

implicit Pessimistic Offline Lock 
(Java), 451–53 

how it works, 450–51 
when to use it, 451 

Locks, implicit Pessimistic Offline, 451–53 
Locks, Optimistic Offline, 416–25 

example 
domain layer with Data Mappers 

(Java), 421–25 
how it works, 417–20 
when to use it, 420–21 

Locks, Pessimistic Offline, 426–37 
example 

simple lock manager (Java),
431–37 

 

eaa.book  Page 524  Monday, October 7, 2002  8:23 AM



 

I

 

NDEX

 

525

 

how it works, 427–31 
when to use it, 431 

Logic 
business, 20 
data source, 20 
domain, 20 
organizing domain, 25–32 

making choices, 29–30 
Service Layers, 30–32 

presentation, 19–20 
Logic patterns, domain, 109–41 

Domain Model, 116–24 
Service Layer, 133–41 
Table Module, 125–32 
Transaction Script, 110–15 

Long transactions, 72 
Lost updates, 64 

 

M 

 

Manager, simple lock, 431–37 
Map, Identity, 195–99 

example 
methods for Identity Map (Java), 

198–99 
how it works, 195–97 
when to use it, 198 

Mapper, 473–74 
how it works, 473 
when to use it, 474 

Mapper, Data, 165–81 
examples 

creating empty objects (Java), 179–81 
separating finders (Java), 176–79 
simple database mapper (Java), 171–76 

how it works, 165–70 
when to use it, 170–71 

Mapper, simple database, 171–76 
Mappers, domain layer with Data, 421–25 
Mappers, Inheritance, 302–4 

how it works, 303–4 
when to use it, 304 

Mapping, Association Table, 248–61 
examples 

employees and skills (C#), 250–53 
using direct SQL (Java), 253–56 
using single query for multiple 

employees (Java), 256–61 

how it works, 248–49 
when to use it, 249 

Mapping, building, 47–49 
Mapping, Dependent, 262–67 

example 
albums and tracks (Java), 264–67 

how it works, 262–63 
when to use it, 263–64 

Mapping, Foreign Key, 236–47 
examples 

collection of references (C#), 
244–47 

multitable find (Java}, 243–44 
single-valued reference (Java), 240–43 

how it works, 236–39 
when to use it, 239–40 

Mapping, Metadata 
example 

using metadata and reflection(Java), 
309–15 

how it works, 306–8 
when to use it, 308–9 

Mapping patterns 
object-relational metadata, 305–27 

Metadata Mapping, 306–15 
Query Object, 316–21 
Repository, 322–27 

structural, 41–47 
inheritance, 45–47 
mapping relationships, 41–45 

Mapping relationships, 41–45 
Mapping to relational databases, 33–53 

architectural patterns, 33–38 
behavioral problem, 38–39 
building mapping, 47–49 
database connections, 50–52 
reading in data, 40–41 
some miscellaneous points, 52–53 
structural mapping patterns, 41–47 
using metadata, 49–50 

Marinescu layers, 105 
Messaging service, gateway to, 468–72 
Metadata and reflection, using, 309–15 
Metadata Mapping, 306–15 

example 
using metadata and reflection (Java), 

309–15 

 

eaa.book  Page 525  Monday, October 7, 2002  8:23 AM



 

526

 

I

 

NDEX

 

Metadata Mapping, 

 

continued

 

how it works, 306–8 
when to use it, 308–9 

Metadata mapping patterns, object-
relational, 305–27 

Metadata Mapping, 306–15 
Query Object, 316–21 
Repository, 322–27 

Metadata, using, 49–50 
Microsoft DNA layers, 105 
Migration, session, 85 
Model, Domain, 116–24 

example 
revenue recognition (Java), 120–24 

further reading, 119–20 
how it works, 116–19 
when to use it, 119 

Model View Controller (MVC), 330–32 
Models, data source for Domain, 98–99 
Modules, data source Table, 98 
Modules, Table, 125–32 

example 
revenue recognition with Table 

Module (C#), 129–32 
how it works, 126–28 
when to use it, 128 

Money, 488–95 
example 

money class (Java), 491–95 
how it works, 488–90 
when to use it, 490–91 

Money class (Java), 491–95 
Multiple employees, using single query for, 

256–61 
Multitable find (Java), 243–44 
MVC (Model View Controller), 330–32 

how it works, 330–32 
when to use it, 332 

 

N 

 

.NET, 101–2 
Nilsson layers, 106 
Null objects, simple, 498 

 

O 

 

Object registration, 186 
Object registration, Unit of Work with, 

190–94 

Object-relational behavioral patterns, 
183–214 

Identity Map, 195–99 
Lazy Load, 200–214 
Unit of Work, 184–94 

Object-relational metadata mapping pat-
terns, 305–27 

Metadata Mapping, 306–15 
Query Object, 316–21 
Repository, 322–27 

Object-relational structural patterns, 
215–84 

Association Table Mapping, 248–61 
Class Table Inheritance, 285–92 
Concrete Table Inheritance, 293–301 
Dependent Mapping, 262–67 
Embedded Value, 268–71 
Foreign Key Mapping, 236–47 
Identity Field, 216–35 
Inheritance Mappers, 302–4 
serialized LOBs (large objects), 272–77 
Single Table Inheritance, 278–84 

Object, simple Query, 318–21 
Objects 

allure of distributed, 87–88 
creating empty, 179–81 
domain, 475 
loading from databases, 281–84 
simple null, 498 
simple value, 270–71 

Objects, Data Transfer, 401–13 
examples 

serializing using XML (Java), 411–13 
transferring information about 

albums (Java), 407–11 
further reading, 407 
how it works, 401–6 
when to use it, 406 

Objects, Query, 316–21 
example 

simple Query Object (Java), 318–21 
further reading, 318 
how it works, 316–17 
when to use it, 317–18 

Objects, Value, 486–87 
how it works, 486–87 
when to use it, 487 

Offline concurrency, 63, 75 

 

eaa.book  Page 526  Monday, October 7, 2002  8:23 AM



 

I

 

NDEX

 

527

 

Offline concurrency control, patterns for, 
76–78 

Offline concurrency patterns, 415–53 
Coarse-Grained Lock, 438–48 
Implicit Lock, 449–53 
Optimistic Offline Lock, 416–25 
Pessimistic Offline Lock, 426–37 

Offline Lock, implicit Pessimistic, 451–53 
Offline Lock, Optimistic, 416–25 

example 
domain layer with Data Mappers 

(Java), 421–25 
how it works, 417–20 
when to use it, 420–21 

Offline Lock, Pessimistic, 426–37 
example 

simple lock manager (Java), 431–37 
how it works, 427–31 
when to use it, 431 

Offline Lock, root Optimistic, 447–48 
Offline Lock, shared Optimistic, 441–46 
Offline Lock, shared Pessimistic, 446–47 
Optimistic and pessimistic concurrency 

controls, 67–71 
Optimistic locking, 67 
Optimistic Offline Lock, 416–25 

example 
domain layer with Data Mappers 

(Java), 421–25 
how it works, 417–20 
root, 447–48 
shared, 441–46 
when to use it, 420–21 

 

P 

 

Page Controller, 333–43 
examples 

page handler with code behind (C#), 
340–43 

simple display with JSP view (Java), 
335–37 

simple display with servlet controller 
(Java), 335–37 

using JSP as handler (Java), 337–40 
how it works, 333–34 
when to use it, 334–35 

Page handler with code behind, 
340–43 

Patterns 
architectural, 33–38 
base, 465–510 

Gateway, 466–72 
Layer Supertype, 475 
Mapper, 473–74 
Money, 488–95 
Plugin, 499–503 
Record Set, 508–10 
Registry, 480–85 
Separated Interface, 476–79 
Service Stub, 504–7 
Special Case, 496–98 
Value Object, 486–87 

data source architectural, 143–81 
Active Record, 160–64 
Data Mapper, 165–81 
Row Data Gateway, 152–59 
Table Data Gateway, 144–51 

distribution, 387–413 
Data Transfer Objects, 401–13 
Remote Facade, 388–400 

domain logic, 109–41 
input controller, 61 
mapping structural, 41–47 

inheritance, 45–47 
mapping relationships, 41–45 

object-relational behavioral, 183–214 
Identity Map, 195–99 
Lazy Load, 200–214 
Unit of Work, 184–94 

object-relational metadata mapping, 
305–27 

Metadata Mapping, 306–15 
Query Object, 316–21 
Repository, 322–27 

object-relational structural, 215–84 
Association Table Mapping, 248–61 
Class Table Inheritance, 285–92 
Concrete Table Inheritance, 293–301 
Dependent Mapping, 262–67 
Embedded Value, 268–71 
Foreign Key Mapping, 236–47 
Identity Field, 216–35 
Inheritance Mappers, 302–4 
Serialized LOBs (large objects), 

272–77 
Single Table Inheritance, 278–84 

 

eaa.book  Page 527  Monday, October 7, 2002  8:23 AM



 

528

 

I

 

NDEX

 

Patterns, 

 

continued

 

offline concurrency, 415–53 
Coarse-Grained Lock, 438–48 
Implicit Lock, 449–53 
Optimistic Offline Lock, 416–25 
Pessimistic Offline Lock, 426–37 

session state, 455–64 
Client Session State, 456–57 
Database Session State, 462–64 
Server Session State, 458–61 

view, 58–60 
Web presentation, 329–86 

Application Controller, 379–86 
Front Controller, 344–49 
MVC (Model View Controller), 

330–32 
Page Controller, 333–43 
Template View, 350–60 
Transform View, 361–64 
Two Step View, 365–78 

Person Gateway (C#), 146–48 
Person record (Java), 155–58 
Person, simple, 162–64 
Person’s dependents, finding, 325–26 
Pessimistic concurrency controls, optimis-

tic and, 67–71 
Pessimistic locking, 67 
Pessimistic Offline Lock, 426–37 

example 
simple lock manager (Java), 

431–37 
how it works, 427–31 
implicit, 451–53 
shared, 446–47 
when to use it, 431 

Phantoms, 73 
Plain old Java objects (POJOs), 392 
Players 

concrete, 296–301 
single table for, 280–81 

Players and their kin (C#), 287–92 
Plugin, 499–503 

example 
Id Generator (Java), 501–3 

how it works, 499–500 
when to use it, 500 

POJOs (plain old Java objects), 392 

Presentation 
layers, 99–100 
logic, 19–20 
Web, 55–61 

Presentation patterns, Web, 329–86 
Application Controller, 379–86 
Front Controller, 344–49 
MVC (Model View Controller), 330–32 
Page Controller, 333–43 
Template View, 350–60 
Transform View, 361–64 
Two Step View, 365–78 

Problems 
behavioral, 38–39 
concurrency, 64–65 

Procedures, stored, 102–3 
Process-per-request, 78 
Process-per-session, 78 
Processes defined, 66 
Proxy, virtual, 203–5 
Putting it all together, 95–106 

down to data source layers, 97–100 
miscellaneous layering schemes, 103–6 
some technology-specific advice, 100–103 
starting with domain layers, 96–97 

 

Q 

 

Query Object, 316–21 
example 

simple Query Object (Java), 318–21 
further reading, 318 
how it works, 316–17 
when to use it, 317–18 

Query Object, simple, 318–21 
Query, using single, 256–61 

 

R 

 

Read 
inconsistent, 64 
repeatable, 73 

Read committed, 73 
Read uncommitted, 74 
Reads 

dirty, 74 
preventing inconsistent, 68–69 
Temporal, 69 
unrepeatable, 73 

 

eaa.book  Page 528  Monday, October 7, 2002  8:23 AM



 

I

 

NDEX

 

529

 

Record data, 83 
Record Set, 508–10 

how it works, 508–10 
when to use it, 510 

Records, Active, 160–64 
example 

simple person (Java), 162–64 
how it works, 160–61 
when to use it, 161–62 

References 
collection of, 244–47 
single-valued, 240–43 

Reflection, using metadata and, 
309–15 

Registration 
object, 186 
Unit of Work with object, 190–94 

Registry, 480–85 
examples 

singleton registry (Java), 483–84 
thread-safe registry (Java), 484–85 

how it works, 480–82 
singleton, 483–84 
thread-safe, 484–85 
when to use it, 482–83 

Relational databases, mapping to, 
33–53 

architectural patterns, 33–38 
behavioral problem, 38–39 
building mapping, 47–49 
database connections, 50–52 
reading in data, 40–41 
some miscellaneous points, 52–53 
structural mapping patterns, 41–47 
using metadata, 49–50 

Relationships, mapping, 41–45 
Remote and local interfaces, 88–90 
Remote Facade, 388–400 

examples 
using Java session been as Remote 

Facade (Java), 392–95 
Web service (C#), 395–400 

how it works, 389–92 
when to use it, 392 

Remote Facade, using Java session bean 
as, 392–95 

Repeatable read, 73 

Repository, 322–27 
examples 

finding person’s dependents (Java), 
325–26 

swapping Repository strategies 
(Java), 326–27 

further reading, 325 
how it works, 323–24 
when to use it, 324–25 

Repository strategies, swapping, 326–27 
Request transactions, 72 
Requests, 65 
Resources, transactional, 72–73 
Revenue recognition (Java), 113–15, 

120–24 
Revenue recognition problem, 112–13 
Revenue recognition with Table Module 

(C#), 129–32 
Ripple loading, 202 
Root Optimistic Offline Lock (Java), 

447–48 
Row Data Gateway, 152–59 

examples 
data holder for domain object (Java), 

158–59 
person record (Java), 155–58 

how it works, 152–53 
when to use it, 153–55 

 

S 

 

Safety, 65 
Sales tax service (Java), 505–7 
Schemes, miscellaneous layering, 103–6 
SCM (source code management), 420 
Scripts, data source for Transaction, 

97–98 
Scripts, Transaction, 110–15 

example 
revenue recognition (Java), 113–15 

how it works, 110–11 
revenue recognition problem, 112–13 
when to use it, 111–12 

Separate controller, using JSP as view 
with, 355–57 

Separated Interface, 476–79 
how it works, 477–78 
when to use it, 478–79 

 

eaa.book  Page 529  Monday, October 7, 2002  8:23 AM



 

530

 

I

 

NDEX

 

Serializable, transactions are, 73 
Serialized LOBs (large objects), 272–77 

example 
serializing department hierarchy in 

XML (Java), 274–77 
how it works, 272–73 
when to use it, 274 

Serializing using XML (Java), 411–13 
Server affinity, 85 
Server concurrency, application, 78–80 
Server page, ASP.NET, 357–60 
Server Session State, 458–61 

how it works, 458–60 
when to use it, 460–61 

Servers, stateless, 81 
Service Layer, 30–32, 133–41 

example 
revenue recognition (Java), 138–41 

further reading, 137 
how it works, 134–37 
when to use it, 137 

Service Stub, 504–7 
example 

sales tax service (Java), 505–7 
how it works, 504–5 
when to use it, 505 

Services, gateway to proprietary messag-
ing, 468–72 

Services, Web, 103, 395–400 
Servlet controller, simple display with, 

335–37 
Session migration, 85 
Session state, 81, 83–86 
Session State 

Client, 456–57 
how it works, 456–57 
when to use it, 457 

Database, 462–64 
how it works, 462–63 
when to use it, 464 

Server, 458–61 
how it works, 458–60 
when to use it, 460–61 

Session state 
value of statelessness, 81–83 
ways to store, 84–86 
ways to store session state, 84–86 

Session state patterns, 455–64 
Client Session State, 456–57 
Database Session State, 462–64 
Server Session State, 458–61 

Sessions defined, 66 
Shared Optimistic Offline Lock (Java), 

441–46 
Shared Pessimistic Offline Lock (Java), 

446–47 
Simple display (Java), 347–49 
Simple person (Java), 162–64 
Simple transform (Java), 363–64 
Single Table Inheritance 

example 
single table for players (C#), 

280–81 
how it works, 278–79 
loading objects from databases, 

281–84 
when to use it, 279–80 

Singleton registry (Java), 483–84 
Skills, employees and, 250–53 
Source code management (SCM), 420 
Source layers, down to data, 97–100 
Special Case, 496–98 

example 
simple null objects (C#), 498 

further reading, 497 
how it works, 497 
when to use it, 497 

SQL, using direct, 253–56 
State 

session, 81, 83–86 
ways to store session, 84–86 

State model Application Controller (Java), 
382–86 

Stateless servers, 81 
Stored procedures, 102–3 
Strategies 

distribution, 87–93 
allure of distributed objects, 87–88 
interfaces for distribution, 92–93 
remote and local interfaces, 88–90 
where you have to distribute, 90–91 
working with distribution bound-

aries, 91–92 
swapping Repository, 326–27 

 

eaa.book  Page 530  Monday, October 7, 2002  8:23 AM



 

I

 

NDEX

 

531

 

Structural mapping patterns., 41–47 
inheritance, 45–47 
mapping relationships, 41–45 

Structural patterns, object-relational, 
215–84 

Association Table Mapping, 248–61 
Class Table Inheritance, 285–92 
Concrete Table Inheritance, 293–301 
Dependent Mapping, 262–67 
Embedded Value, 268–71 
Foreign Key Mapping, 236–47 
Identity Field, 216–35 
Inheritance Mappers, 302–4 
serialized LOBs (large objects), 

272–77 
Single Table Inheritance, 278–84 

Stub, Service, 504–7 
example 

sales tax service (Java), 505–7 
how it works, 504–5 
when to use it, 505 

System transactions, business and, 
74–76 

 

T 

 

Table Data Gateway, 144–51 
examples 

Person Gateway (C#), 146–48 
using ADO.NET data sets (C#), 

148–51 
further reading, 146 
how it works, 144–45 
when to use it, 145–46 

Table Inheritance, Class, 285–92 
Table Inheritance, Concrete, 293–301 

example 
concrete players (C#), 296–301 

how it works, 293–95 
when to use it, 295–96 

Table Inheritance, Single 
example 

single table for players (C#), 
280–81 

how it works, 278–79 
loading objects from databases, 

281–84 
when to use it, 279–80 

Table Mapping, Association, 248–61 
examples 

employees and skills (C#), 250–53 
using direct SQL (Java), 253–56 
using single query for multiple 

employees (Java), 256–61 
how it works, 248–49 
when to use it, 249 

Table Modules, 125–32 
data source, 98 
example 

revenue recognition with Table 
Module (C#), 129–32 

how it works, 126–28 
when to use it, 128 

Tables, key, 222–24 
Tags, JSP and custom, 374–78 
Tax service, sales, 505–7 
Technology-specific advice, some, 

100–103 
Java and J2EE, 100–101 
.NET, 101–2 
stored procedures, 102–3 
Web services, 103 

Template View, 350–60 
examples 

ASP.NET server page (C#), 
357–60 

using JSP as view with separate con-
troller (Java), 355–57 

how it works, 351–54 
when to use it, 354–55 

Temporal Reads, 69 
Thread-safe registry (Java), 484–85 
Threads 

defined, 66 
isolated, 66 

Together, putting it all, 95–106 
down to data source layers, 97–100 
miscellaneous layering schemes, 

103–6 
some technology-specific advice, 

100–103 
starting with domain layers, 96–97 

Tracks, albums and, 264–67 
Transaction isolation, reducing for live-

ness, 73–74 

 

eaa.book  Page 531  Monday, October 7, 2002  8:23 AM



 

532

 

I

 

NDEX

 

Transaction Script, 110–15 
example 

revenue recognition (Java), 113–15 
how it works, 110–11 
revenue recognition problem, 112–13 
when to use it, 111–12 

Transaction Scripts, data source for, 
97–98 

Transactional resources, 72–73 
Transactions, 66, 71 

business and system, 74–76 
late, 72 
long, 72 
request, 72 
system, 74–76 

Transform, simple, 363–64 
Transform View, 361–64 

example 
simple transform (Java), 363–64 

when to use it, 362–63 
Two-stage XSLT (XSLT), 371–74 
Two Step View, 365–78 

examples 
JSP and custom tags (Java), 374–78 
two-stage XSLT (XSLT), 371–74 

how it works, 365–67 
when to use it, 367–71 

 

U 

 

Uncommitted, read, 74 
Unit of Work, 184–94 

example 
Unit of Work with object registration 

(Java), 190–94 
how it works, 184–89 
when to use it, 189–90 

Unit of Work with object registration 
(Java), 190–94 

Unrepeatable reads, 73 
Updates, lost, 64 

 

V 

 

Value holder, using, 205–6 
Value Object, 486–87 

how it works, 486–87 
when to use it, 487 

Value objects, simple, 270–71 
Values, Embedded, 268–71 

example 
simple value objects (Java), 270–71 

further reading, 270 
how it works, 268 
when to use it, 268–69 

View patterns, 58–60 
View, simple display with JSP, 335–37 
Views, Template, 350–60 

examples 
ASP.NET server page (C#), 

357–60 
using JSP as view with separate con-

troller (Java), 355–57 
how it works, 351–54 
when to use it, 354–55 

Views, Transform, 361–64 
example 

simple transform (Java), 363–64 
how it works, 361–62 
when to use it, 362–63 

Views, Two Step, 365–78 
examples 

JSP and custom tags (Java), 
374–78 

two-stage XSLT (XSLT), 371–74 
how it works, 365–67 
when to use it, 367–71 

Virtual proxy (Java), 203–5 

 

W 

 

Web presentation, 55–61 
input controller patterns, 61 
view patterns, 58–60 

Web presentation patterns, 329–86 
Application Controller, 379–86 
Front Controller, 344–49 
MVC (Model View Controller), 

330–32 
Page Controller, 333–43 
Template View, 350–60 
Transform View, 361–64 
Two Step View, 365–78 

Web service (C#), 395–400 
Web services, 103 

 

eaa.book  Page 532  Monday, October 7, 2002  8:23 AM



 

I

 

NDEX

 

533

 

Work, Unit of, 184–94 
example 

Unit of Work with object registration 
(Java), 190–94 

how it works, 184–89 
when to use it, 189–90 

 

X 

 

XML 
serializing department hierarchy in, 

274–77 
serializing using, 411–13 

XSLT, two stage, 371–74 

 

eaa.book  Page 533  Monday, October 7, 2002  8:23 AM


