
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134049847
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134049847
https://plusone.google.com/share?url=http://www.informit.com/title/9780134049847
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134049847
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134049847/Free-Sample-Chapter

DevOps

The SEI Series in Software Engineering is a collaborative undertaking of the
Carnegie Mellon Software Engineering Institute (SEI) and Addison-Wesley to

develop and publish books on software engineering and related topics. The common
goal of the SEI and Addison-Wesley is to provide the most current information on
these topics in a form that is easily usable by practitioners and students.

Titles in the series describe frameworks, tools, methods, and technologies designed
to help organizations, teams, and individuals improve their technical or management
capabilities. Some books describe processes and practices for developing higher-
quality software, acquiring programs for complex systems, or delivering services more

development. Still others, from the SEI’s CERT Program, describe technologies and
practices needed to manage software and network security risk. These and all titles
in the series address critical problems in software engineering for which practical
solutions are available.

Visit informit.com/sei for a complete list of available publications.

The SEI Series in Software Engineering
 Software Engineering Institute of Carnegie Mellon University and Addison-Wesley

Make sure to connect with us!
informit.com/socialconnect

DevOps

A Software
Architect’s
Perspective

Len Bass
Ingo Weber
Liming Zhu

New York  •  Boston  •  Indianapolis  •  San Francisco
Toronto  •  Montreal  •  London  •  Munich  •  Paris  •  Madrid
Capetown  •  Sydney  •  Tokyo  •  Singapore  •  Mexico City

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT,
and CERT Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation;
CURE; EPIC; Evolutionary Process for Integrating COTS Based Systems; Framework for Software
Product Line Practice; IDEAL; Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset,
and Vulnerability Evaluation; Options Analysis for Reengineering; Personal Software Process; PLTP;
Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead Assessor;
SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Bass, Len.
 DevOps : a software architect’s perspective / Len Bass, Ingo Weber, Liming Zhu.—First [edition].
 pages  cm.—(The SEI series in software engineering)
 Includes bibliographical references and index.
 ISBN 978-0-13-404984-7 (hardcover : alk. paper)
 1. Software architecture. 2. Computer software—Development.
3. Operating systems (Computers) I. Weber, Ingo M. II. Zhu, Liming, 1975- III. Title.
 QA76.76.D47B377 2015
 005.1′2—dc23
� 2015007093

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, 200 Old Tappan Road,
Old Tappan, New Jersey 07675, or you may fax your request to (201) 236-3290.

ISBN-13:	978-0-13-404984-7
ISBN-10:   0-13-404984-5

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, May 2015

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com

v

Contents

Preface   xi

Previewing the Book   xiii

Acknowledgments   xv

Legend   xvii

	PART ONE	 BACKGROUND   1

CHAPTER 1	 What Is DevOps?   3

1.1	 Introduction     3

1.2	 Why DevOps?     7

1.3	 DevOps Perspective     11

1.4	 DevOps and Agile     12

1.5	 Team Structure     13

1.6	 Coordination     17

1.7	 Barriers     20

1.8	 Summary     23

1.9	 For Further Reading     24

CHAPTER 2	 The Cloud as a Platform   27

2.1	 Introduction     27

2.2	 Features of the Cloud     29

2.3	 DevOps Consequences of the Unique Cloud
Features     41

2.4	 Summary     44

2.5	 For Further Reading     45

vi  Contents

CHAPTER 3	 Operations   47

3.1	 Introduction     47

3.2	 Operations Services     47

3.3	 Service Operation Functions     57

3.4	 Continual Service Improvement     58

3.5	 Operations and DevOps     59

3.6	 Summary     61

3.7	 For Further Reading     61

	PART TWO	 THE DEPLOYMENT PIPELINE   63

CHAPTER 4	 Overall Architecture   65

4.1	 Do DevOps Practices Require Architectural
Change?     65

4.2	 Overall Architecture Structure     66

4.3	 Quality Discussion of Microservice
Architecture     72

4.4	 Amazon’s Rules for Teams     75

4.5	 Microservice Adoption for Existing
Systems     76

4.6	 Summary     77

4.7	 For Further Reading     78

CHAPTER 5	 Building and Testing   79

5.1	 Introduction     79

5.2	 Moving a System Through the Deployment
Pipeline     81

5.3	 Crosscutting Aspects     84

5.4	 Development and Pre-commit Testing     86

5.5	 Build and Integration Testing     91

5.6	 UAT/Staging/Performance Testing     95

5.7	 Production     96

5.8	 Incidents     98

5.9	 Summary     98

5.10	 For Further Reading     99

CHAPTER 6	 Deployment   101

6.1	 Introduction     101

6.2	 Strategies for Managing a Deployment     102

Contents vii

6.3	 Logical Consistency     105

6.4	 Packaging     111

6.5	 Deploying to Multiple Environments     114

6.6	 Partial Deployment     117

6.7	 Rollback     118

6.8	 Tools     121

6.9	 Summary     121

6.10	 For Further Reading     122

	PART THREE	 CROSSCUTTING CONCERNS   125

CHAPTER 7	 Monitoring   127

7.1	 Introduction     127

7.2	 What to Monitor     129

7.3	 How to Monitor     134

7.4	 When to Change the Monitoring
Configuration     139

7.5	 Interpreting Monitoring Data     139

7.6	 Challenges     143

7.7	 Tools     147

7.8	 Diagnosing an Anomaly from Monitoring
Data—the Case of Platformer.com     148

7.9	 Summary     152

7.10	 For Further Reading     153

CHAPTER 8	 Security and Security Audits   155

8.1	 What Is Security?     156

8.2	 Threats     157

8.3	 Resources to Be Protected     159

8.4	 Security Roles and Activities     162

8.5	 Identity Management     165

8.6	 Access Control     169

8.7	 Detection, Auditing, and Denial of
Service     172

8.8	 Development     173

8.9	 Auditors     174

8.10	 Application Design Considerations     175

8.11	 Deployment Pipeline Design
Considerations     176

viii  Contents

8.12	 Summary     177

8.13	 For Further Reading     178

CHAPTER 9	 Other Ilities   181

9.1	 Introduction     181

9.2	 Repeatability     183

9.3	 Performance     186

9.4	 Reliability     188

9.5	 Recoverability     190

9.6	 Interoperability     191

9.7	 Testability     192

9.8	 Modifiability     194

9.9	 Summary     195

9.10	 For Further Reading     196

CHAPTER 10	 Business Considerations   197

10.1	 Introduction     197

10.2	 Business Case     197

10.3	 Measurements and Compliance to
DevOps Practices     206

10.4	 Points of Interaction Between
Dev and Ops     209

10.5	 Summary     211

10.6	 For Further Reading     211

	PART FOUR	 CASE STUDIES   213

CHAPTER 11	 Supporting Multiple Datacenters   215

11.1	 Introduction     215

11.2	 Current State     216

11.3	 Business Logic and Web Tiers     216

11.4	 Database Tier     220

11.5	 Other Infrastructure Tools     223

11.6	 Datacenter Switch     225

11.7	 Testing     232

11.8	 Summary     233

11.9	 For Further Reading     234

Contents ix

CHAPTER 12	 Implementing a Continuous Deployment
Pipeline for Enterprises   237

12.1	 Introduction     237

12.2	 Organizational Context     238

12.3	 The Continuous Deployment Pipeline     240

12.4	 Baking Security into the Foundations of the
CD Pipeline     257

12.5	 Advanced Concepts     259

12.6	 Summary     261

12.7	 For Further Reading     262

CHAPTER 13	 Migrating to Microservices   263

13.1	 Introduction to Atlassian     263

13.2	 Building a Platform for Deploying
Microservices     265

13.3	 BlobStore: A Microservice Example     268

13.4	 Development Process     273

13.5	 Evolving BlobStore     279

13.6	 Summary     284

13.7	 For Further Reading     284

	PART FIVE	 MOVING INTO THE FUTURE   285

CHAPTER 14	 Operations as a Process   287

14.1	 Introduction     287

14.2	 Motivation and Overview     288

14.3	 Offline Activities     289

14.4	 Online Activities     294

14.5	 Error Diagnosis     296

14.6	 Monitoring     296

14.7	 Summary     298

14.8	 For Further Reading     298

CHAPTER 15	 The Future of DevOps   299

15.1	 Introduction     299

15.2	 Organizational Issues     300

15.3	 Process Issues     302

x  Contents

15.4	 Technology Issues     305

15.5	 What About Error Reporting and
Repair?     309

15.6	 Final Words     310

15.7	 For Further Reading     310

References   311

About the Authors   315

Index   317

xi

Preface

We have been investigating problems in operations for several years and have,
naturally, been tracking the DevOps movement. It is moving up the Gartner Hype
Curve and has a solid business reason for existing. We were able to find treatments
from the IT manager’s perspective (e.g., the novel The Phoenix Project: A Novel
about IT, DevOps, and Helping Your Business Win) and from the project manager’s
perspective (e.g., Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation). In addition, there is a raft of material about cul-
tural change and what it means to tear down barriers between organizational units.

What frustrated us is that there is very little material from the software archi-
tect’s perspective. Treating operations personnel as first-class stakeholders and
listening to their requirements is certainly important. Using tools to support oper-
ations and project management is also important. Yet, we had the strong feeling
that there was more to it than stakeholder management and the use of tools.

Indeed there is, and that is the gap that this book intends to fill. DevOps
presents a fascinating interplay between design, process, tooling, and organiza-
tional structure. We try to answer two primary questions: What technical deci-
sions do I, as a software architect, have to make to achieve the DevOps goals?
What impact do the other actors in the DevOps space have on me?

The answers are that achieving DevOps goals can involve fundamental
changes in the architecture of your systems and in the roles and responsibilities
required to get your systems into production and support them once they are there.

Just as software architects must understand the business context and goals
for the systems they design and construct, understanding DevOps requires under-
standing organizational and business contexts, as well as technical and opera-
tional contexts. We explore all of these.

The primary audience for this book is practicing software architects who
have been or expect to be asked, “Should this project or organization adopt
DevOps practices?” Instead of being asked, the architect may be told. As with
all books, we expect additional categories of readers. Students who are interested
in learning more about the practice of software architecture should find interest-
ing material here. Researchers who wish to investigate DevOps topics can find
important background material. Our primary focus, however, is on practicing
architects.

This page intentionally left blank

xiii

Previewing the Book

We begin the book by discussing the background for DevOps. Part One begins
by delving into the goals of DevOps and the problems it is intended to solve. We
touch on organizational and cultural issues, as well as the relationship of DevOps
practices to agile methodologies.

In Chapter 2, we explore the cloud. DevOps practices have grown in tandem
with the growth of the cloud as a platform. The two, in theory, are separable,
but in practice virtualization and the cloud are important enablers for DevOps
practices.

In our final background chapter, Chapter 3, we explore operations through
the prism of the Information Technology Infrastructure Library (ITIL). ITIL is a
system of organization of the most important functions of an operations group.
Not all of operations are included in DevOps practices but understanding some-
thing of the responsibilities of an operations group provides important context,
especially when it comes to understanding roles and responsibilities.

Part Two describes the deployment pipeline. We begin this part by exploring
the microservice architectural style in Chapter 4. It is not mandatory that systems
be architected in this style in order to apply DevOps practices but the microser-
vice architectural style is designed to solve many of the problems that motivated
DevOps.

In Chapter 5, we hurry through the building and testing processes and tool
chains. It is important to understand these but they are not our focus. We touch on
the different environments used to get a system into production and the different
sorts of tests run on these environments. Since many of the tools used in DevOps
are used in the building and testing processes, we provide context for understand-
ing these tools and how to control them.

We conclude Part Two by discussing deployment. One of the goals of
DevOps is to speed up deployments. A technique used to achieve this goal is
to allow each development team to independently deploy their code when it is
ready. Independent deployment introduces many issues of consistency. We dis-
cuss different deployment models, managing distinct versions of a system that
are simultaneously in production, rolling back in the case of errors, and other
topics having to do with actually placing your system in production.

xiv  Previewing the Book	

Part Two presents a functional perspective on deployment practices. Yet,
just as with any other system, it is frequently the quality perspectives that control
the design and the acceptance of the system. In Part Three, we focus on crosscut-
ting concerns. This begins with our discussion of monitoring and live testing in
Chapter 7. Modern software testing practices do not end when a system is placed
into production. First, systems are monitored extensively to detect problems, and
secondly, testing continues in a variety of forms after a system has been placed
into production.

Another crosscutting concern is security, which we cover in Chapter 8. We
present the different types of security controls that exist in an environment, span-
ning those that are organization wide and those that are specific system wide. We
discuss the different roles associated with achieving security and how these roles
are evaluated in the case of a security audit.

Security is not the only quality of interest, and in Chapter 9 we discuss other
qualities that are relevant to the practices associated with DevOps. We cover top-
ics such as performance, reliability, and modifiability of the deployment pipeline.

Finally, in Part Three we discuss business considerations in Chapter 10.
Practices as broad as DevOps cannot be adopted without buy-in from man-
agement. A business plan is a typical means of acquiring this buy-in; thus, we
present the elements of a business plan for DevOps adoption and discuss how the
argument, rollout, and measurement should proceed.

In Part Four we present three case studies. Organizations that have imple-
mented DevOps practices tell us some of their tricks. Chapter 11 discusses how
to maintain two datacenters for the purpose of business continuity; Chapter
12 presents the specifics of a continuous deployment pipeline; and Chapter 13
describes how one organization is migrating to a microservice architecture.

We close by speculating about the future in Part Five. Chapter 14 describes
our research and how it is based on viewing operations as a series of processes,
and Chapter 15 gives our prediction for how the next three to five years are going
to evolve in terms of DevOps.

xv

Acknowledgments

Books like this require a lot of assistance. We would like to thank Chris Williams,
John Painter, Daniel Hand, and Sidney Shek for their contributions to the case
studies, as well as Adnene Guabtni, Kanchana Wickremasinghe, Min Fu, and
Xiwei Xu for helping us with some of the chapters.

Manuel Pais helped us arrange case studies. Philippe Kruchten, Eoin Woods,
Gregory Hartman, Sidney Shek, Michael Lorant, Wouter Geurts, and Eltjo Poort
commented on or contributed to various aspects of the book.

We would like to thank Jean-Michel Lemieux, Greg Warden, Robin
Fernandes, Jerome Touffe-Blin, Felipe Cuozzo, Pramod Korathota, Nick Wright,
Vitaly Osipov, Brad Baker, and Jim Watts for their comments on Chapter 13.

Addison-Wesley did their usual professional and efficient job in the produc-
tion process, and this book has benefited from their expertise.

Finally, we would like to thank NICTA and NICTA management. NICTA is
funded by the Australian government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence
Program. Without their generous support, this book would not have been written.

This page intentionally left blank

xvii

Legend

We use four distinct legends for the figures. We have an architectural notation
that identifies the key architectural concepts that we use; we use Business Process
Model and Notation (BPMN) to describe some processes, Porter’s Value Notation
to describe a few others, and UML sequence diagrams for interleaving sequences
of activities. We do not show the UML sequence diagram notation here but the
notation that we use from these other sources is:

Architecture

Person Group

FIGURE P.1  People, both individual and groups

Component Module
Data Flow

FIGURE P.2  Components (runtime entities), modules (code-time collections of
entities), and data flow

Database

Data Object

VM
VM

Image
DNS Entry or
IP Address

FIGURE P.3  Specialized entities

xviii  Legend	

BPMN

We use Business Process Model and Notation (BPMN) for describing events and
activities [OMG 11].

Porter’s Value Chain

This notation is used to describe processes (which, in turn, have activities mod-
elled in BPMN).

Collection

FIGURE P.4  Collections of entities

Event (start) Event (end) Exclusive Gateway Repetition

FIGURE P.5  Event indications

Activity Sequential
Flow

Conditional
Flow

Default
Flow

FIGURE P.6  Activities and sequences of activities

Phase in a
sequence of
processes

FIGURE P.7  Entry in a value chain

This page intentionally left blank

65

4
Overall Architecture

A distributed system is one in which the failure of a computer
you didn’t even know existed can render you own computer unusable.

—Leslie Lamport

In this chapter we begin to see the structural implications of the DevOps practices.
These practices have implications with respect to both the overall structure of
the system and techniques that should be used in the system’s elements. DevOps
achieves its goals partially by replacing explicit coordination with implicit and
often less coordination, and we will see how the architecture of the system being
developed acts as the implicit coordination mechanism. We begin by discussing
whether DevOps practices necessarily imply architectural change.

4.1	 Do DevOps Practices Require Architectural
Change?

You may have a large investment in your current systems and your current
architecture. If you must re-architect your systems in order to take advantage of
DevOps, a legitimate question is “Is it worth it?” In this section we see that some
DevOps practices are independent of architecture, whereas in order to get the full
benefit of others, architectural refactoring may be necessary.

Recall from Chapter 1 that there are five categories of DevOps practices.

1.	 Treat Ops as first-class citizens from the point of view of requirements.
Adding requirements to a system from Ops may require some architectural
modification. In particular, the Ops requirements are likely to be in the
area of logging, monitoring, and information to support incident handling.
These requirements will be like other requirements for modifications to a

66  Part Two  The Deployment Pipeline	 4—Overall Architecture

system: possibly requiring some minor modifications to the architecture
but, typically, not drastic modifications.

2.	 Make Dev more responsible for relevant incident handling. By itself,
this change is just a process change and should require no architectural
modifications. However, just as with the previous category, once
Dev becomes aware of the requirements for incident handling, some
architectural modifications may result.

3.	 Enforce deployment process used by all, including Dev and Ops personnel.
In general, when a process becomes enforced, some individuals may
be required to change their normal operating procedures and, possibly,
the structure of the systems on which they work. One point where a
deployment process could be enforced is in the initiation phase of each
system. Each system, when it is initialized, verifies its pedigree. That is, it
arrived at execution through a series of steps, each of which can be checked
to have occurred. Furthermore, the systems on which it depends (e.g.,
operating systems or middleware) also have verifiable pedigrees.

4.	 Use continuous deployment. Continuous deployment is the practice that
leads to the most far-reaching architectural modifications. On the one
hand, an organization can introduce continuous deployment practices
with no major architectural changes. See, for example, our case study in
Chapter 12. On the other hand, organizations that have adopted continuous
deployment practices frequently begin moving to a microservice-based
architecture. See, for example, our case study in Chapter 13. We explore the
reasons for the adoption of a microservice architecture in the remainder of
this chapter

5.	 Develop infrastructure code with the same set of practices as application
code. These practices will not affect the application code but may affect the
architecture of the infrastructure code.

4.2	 Overall Architecture Structure

Before delving into the details of the overall structure, let us clarify how we use
certain terminology. The terms module and component are frequently overloaded
and used in different fashions in different writings. For us, a module is a code unit
with coherent functionality. A component is an executable unit. A compiler or
interpreter turns modules into binaries, and a builder turns the binaries into com-
ponents. The development team thus directly develops modules. Components are
results of the modules developed by development teams, and so it is possible to
speak of a team developing a component, but it should be clear that the develop-
ment of a component is an indirect activity of a development team.

4.2  Overall Architecture Structure 67

As we described in Chapter 1, development teams using DevOps pro-
cesses are usually small and should have limited inter-team coordination. Small
teams imply that each team has a limited scope in terms of the components they
develop. When a team deploys a component, it cannot go into production unless
the component is compatible with other components with which it interacts. This
compatibility can be ensured explicitly through multi-team coordination, or it can
be ensured implicitly through the definition of the architecture.

An organization can introduce continuous deployment without major archi-
tectural modifications. For example, the case study in Chapter 12 is fundamen-
tally architecture-agnostic. Dramatically reducing the time required to place a
component into production, however, requires architectural support:

nn Deploying without the necessity of explicit coordination with other teams
reduces the time required to place a component into production.

nn Allowing for different versions of the same service to be simultaneously in
production leads to different team members deploying without coordination
with other members of their team.

nn Rolling back a deployment in the event of errors allows for various forms
of live testing.

Microservice architecture is an architectural style that satisfies these
requirements. This style is used in practice by organizations that have adopted or
inspired many DevOps practices. Although project requirements may cause devi-
ations to this style, it remains a good general basis for projects that are adopting
DevOps practices.

A microservice architecture consists of a collection of services where each
service provides a small amount of functionality and the total functionality of the
system is derived from composing multiple services. In Chapter 6, we also see
that a microservice architecture, with some modifications, gives each team the
ability to deploy their service independently from other teams, to have multiple
versions of a service in production simultaneously, and to roll back to a prior
version relatively easily.

Figure 4.1 describes the situation that results from using a microservice
architecture. A user interacts with a single consumer-facing service. This service,
in turn, utilizes a collection of other services. We use the terminology service to
refer to a component that provides a service and client to refer to a component
that requests a service. A single component can be a client in one interaction and
a service in another. In a system such as LinkedIn, the service depth may reach as
much as 70 for a single user request.

Having an architecture composed of small services is a response to having
small teams. Now we look at the aspects of an architecture that can be specified
globally as a response to the requirement that inter-team coordination be min-
imized. We discuss three categories of design decisions that can be made glob-
ally as a portion of the architecture design, thus removing the need for inter-team

68  Part Two  The Deployment Pipeline	 4—Overall Architecture

coordination with respect to these decisions. The three categories are: the coordina-
tion model, management of resources, and mapping among architectural elements.

Coordination Model

If two services interact, the two development teams responsible for those services
must coordinate in some fashion. Two details of the coordination model that can
be included in the overall architecture are: how a client discovers a service that it
wishes to use, and how the individual services communicate.

Figure 4.2 gives an overview of the interaction between a service and its
client. The service registers with a registry. The registration includes a name for
the service as well as information on how to invoke it, for example, an endpoint
location as a URL or an IP address. A client can retrieve the information about
the service from the registry and invoke the service using this information. If the
registry provides IP addresses, it acts as a local DNS server—local, because typi-
cally, the registry is not open to the general Internet but is within the environment
of the application. Netflix Eureka is an example of a cloud service registry that
acts as a DNS server. The registry serves as a catalogue of available services, and

Business Service

Microservice

Microservice

Microservice Microservice Microservice

Microservice Microservice Microservice

MicroserviceMicroservice Microservice

Figure 4.1  User interacting with a single service that, in turn, utilizes multiple
other services [Notation: Architecture]

4.2  Overall Architecture Structure 69

can further be used to track aspects such as versioning, ownership, service level
agreements (SLAs), etc., for the set of services in an organization. We discuss
extensions to the registry further in Chapter 6.

There will typically be multiple instances of a service, both to support a
load too heavy for a single instance and to guard against failure. The registry can
rotate among the instances registered to balance the load. That is, the registry acts
as a load balancer as well as a registry. Finally, consider the possibility that an
instance of a service may fail. In this case, the registry should not direct the client
to the failed instance. By requiring the service to periodically renew its registra-
tion or proactively checking the health of the service, a guard against failure is put
in place. If the service fails to renew its registration within the specified period, it
is removed from the registry. Multiple instances of the service typically exist, and
so the failure of one instance does not remove the service. The above-mentioned
Netflix Eureka is an example for a registry offering load balancing. Eureka sup-
ports the requirement that services periodically renew their registration.

The protocol used for communication between the client and the service can
be any remote communication protocol, for example, HTTP, RPC, SOAP, etc.
The service can provide a RESTful interface or not. The remote communication
protocol should be the only means for communication among the services. The
details of the interface provided by the service still require cross-team coordina-
tion. When we discuss the example of Amazon later, we will see one method of
providing this coordination. We will also see an explicit requirement for restrict-
ing communication among services to the remote communication protocol.

Management of Resources

Two types of resource management decisions can be made globally and incor-
porated in the architecture—provisioning/deprovisioning VMs and managing
variation in demand.

Instance of a
Service

Registry /
Load Balancer

Client

QueryInvoke

Register

Figure 4.2  An instance of a service registers itself with the registry, the client
queries the registry for the address of the service and invokes the service.
[Notation: Architecture]

70  Part Two  The Deployment Pipeline	 4—Overall Architecture

Provisioning and Deprovisioning VMs
New VMs can be created in response to client demand or to failure. When the
demand subsides, instances should be deprovisioned. If the instances are stateless
(i.e., they do not retain any information between requests), a new instance can be
placed into service as soon as it is provisioned. Similarly, if no state is kept in an
instance, deprovisioning becomes relatively painless: After a cool-down period
where the instance receives no new requests and responds to existing ones, the
instance can be deprovisioned. The cool-down period should therefore be long
enough for an instance to respond to all requests it received (i.e., the backlog).
If you deprovision an instance due to reduced demand, the backlog should be
fairly small—in any other case this action needs to be considered carefully. An
additional advantage of a stateless service is that messages can be routed to any
instance of that service, which facilitates load sharing among the instances.

This leads to a global decision to maintain state external to a service
instance. As discussed in Chapter 2, large amounts of application state can be
maintained in persistent storage, small amounts of application state can be main-
tained by tools such as ZooKeeper, and client state should not be maintained on
the provider’s side anyway.

Determining which component controls the provisioning and deprovision-
ing of a new instance for a service is another important aspect. Three possibilities
exist for the controlling component.

1.	 A service itself can be responsible for (de)provisioning additional instances.
A service can know its own queue lengths and its own performance in
response to requests. It can compare these metrics to thresholds and (de)
provision an instance itself if the threshold is crossed. Assuming that the
distribution of requests is fair, in some sense, across all instances of the
service, one particular instance (e.g., the oldest one) of the service can
make the decision when to provision or deprovision instances. Thus, the
service is allowed to expand or shrink capacity to meet demand.

2.	 A client or a component in the client chain can be responsible for (de)
provisioning instances of a service. For instance, the client, based on the
demands on it, may be aware that it will shortly be making demands on
the service that exceed a given threshold and provisions new instances of
the service.

3.	 An external component monitors the performance of service instances (e.g.,
their CPU load) and (de)provisions an instance when the load reaches a
given threshold. Amazon’s autoscaling groups provide this capability, in
collaboration with the CloudWatch monitoring system.

Managing Demand
The number of instances of an individual service that exist should reflect the
demand on the service from client requests. We just discussed several different

4.2  Overall Architecture Structure 71

methods for provisioning and deprovisioning instances, and these methods make
different assumptions about how demand is managed.

nn One method for managing demand is to monitor performance. Other
decisions to be made include determining how to implement monitoring
(e.g., whether done internally by running a monitoring agent inside
each service instance or externally by a specialized component). That
is, when demand grows that needs to be detected, a new instance can be
provisioned. It takes time to provision a new instance, so it is important that
the indicators are timely and even predictive to accommodate for that time.
We discuss more details about monitoring in Chapter 7.

nn Another possible technique is to use SLAs to control the number of
instances. Each instance of the service guarantees through its SLAs that it
is able to handle a certain number of requests with a specified latency. The
clients of that service then know how many requests they can send and still
receive a response within the specified latency. This technique has several
constraints. First, it is likely that the requirements that a client imposes
on your service will depend on the requirements imposed on the client, so
there is a cascading effect up through the demand chain. This cascading
will cause uncertainty in both the specification and the realization of the
SLAs. A second constraint of the SLA technique is that each instance of
your service may know how many requests it can handle, but the client
has multiple available instances of your service. Thus, the provisioning
component has to know how many instances currently exist of your service.

Mapping Among Architectural Elements

The final type of coordination decision that can be specified in the architecture
is the mapping among architectural elements. We discuss two different types of
mappings—work assignments and allocation. Both of these are decisions that are
made globally.

nn Work assignments. A single team may work on multiple modules, but
having multiple development teams work on the same module requires
a great deal of coordination among those development teams. Since
coordination takes time, an easier structure is to package the work of a
single team into modules and develop interfaces among the modules to
allow modules developed by different teams to interoperate. In fact, the
original definition of a module by David Parnas in the 1970s was as a work
assignment of a team. Although not required, it is reasonable that each
component (i.e., microservice) is the responsibility of a single development
team. That is, the set of modules that, when linked, constitute a component
are the output of a single development team. This does not preclude a

72  Part Two  The Deployment Pipeline	 4—Overall Architecture

single development team from being responsible for multiple components
but it means that any coordination involving a component is settled within
a single development team, and that any coordination involving multiple
development teams goes across components. Given the set of constraints
on the architecture we are describing, cross-team coordination requirements
are limited.

nn Allocation. Each component (i.e., microservice) will exist as an
independent deployable unit. This allows each component to be allocated
to a single (virtual) machine or container, or it allows multiple components
to be allocated to a single (virtual) machine. The redeployment or upgrade
of one microservice will not affect any other microservices. We explore this
choice in Chapter 6.

4.3	 Quality Discussion of Microservice Architecture

We have described an architectural style—microservice architecture—that reduces
the necessity for inter-team coordination by making global architectural choices.
The style provides some support for the qualities of dependability (stateless ser-
vices) and modifiability (small services), but there are additional practices that a
team should use to improve both dependability and modifiability of their services.

Dependability

Three sources for dependability problems are: the small amount of inter-team
coordination, correctness of environment, and the possibility that an instance of
a service can fail.

Small Amount of Inter-team Coordination
The limited amount of inter-team coordination may cause misunderstandings
between the team developing a client and the team developing a service in terms
of the semantics of an interface. In particular, unexpected input to a service or
unexpected output from a service can happen. There are several options. First,
a team should practice defensive programming and not assume that the input or
the results of a service invocation are correct. Checking values for reasonable-
ness will help detect errors early. Providing a rich collection of exceptions will
enable faster determination of the cause of an error. Second, integration and end-
to-end testing with all or most microservices should be done judiciously. It can
be expensive to run these tests frequently due to the involvement of a potentially
large number of microservices and realistic external resources. A testing practice
called Consumer Driven Contract (CDC) can be used to alleviate the problem.

4.3  Quality Discussion of Microservice Architecture 73

That is, the test cases for testing a microservice are decided and even co-owned
by all the consumers of that microservice. Any changes to the CDC test cases
need to be agreed on by both the consumers and the developers of the microser-
vice. Running the CDC test cases, as a form of integration testing, is less expen-
sive than running end-to-end test cases. If CDC is practiced properly, confidence
in the microservice can be high without running many end-to-end test cases.

CDC serves as a method of coordination and has implications on how user
stories of a microservice should be made up and evolve over time. Consumers
and microservice developers collectively make up and own the user stories.
CDC definition becomes a function of the allocation of functionality to the
microservice, is managed by the service owner as a portion of the coordination
that defines the next iteration, and, consequently, does not delay the progress of
the current iteration.

Correctness of Environment
A service will operate in multiple different environments during the passage from
unit test to post-production. Each environment is provisioned and maintained
through code and a collection of configuration parameters. Errors in code and
configuration parameters are quite common. Inconsistent configuration parame-
ters are also possible. Due to a degree of uncertainty in cloud-based infrastruc-
ture, even executing the correct code and configuration may lead to an incorrect
environment. Thus, the initialization portion of a service should test its current
environment to determine whether it is as expected. It should also test the config-
uration parameters to detect, as far as possible, unexpected inconsistencies from
different environments. If the behavior of the service depends on its environment
(e.g., certain actions are performed during unit test but not during production),
then the initialization should determine the environment and provide the settings
for turning on or off the behavior. An important trend in DevOps is to manage all
the code and parameters for setting up an environment just as you manage your
application code, with proper version control and testing. This is an example of
“infrastructure-as-code” as defined in Chapter 1 and discussed in more detail in
Chapter 5. The testing of infrastructure code is a particularly challenging issue.
We discuss the issues in Chapters 7 and 9.

Failure of an Instance
Failure is always a possibility for instances. An instance is deployed onto a physical
machine, either directly or through the use of virtualization, and in large datacenters,
the failure of a physical machine is common. The standard method through which
a client detects the failure of an instance of a service is through the timeout of a
request. Once a timeout has occurred, the client can issue a request again and,
depending on the routing mechanism used, assume it is routed to a different instance
of the service. In the case of multiple timeouts, the service is assumed to have failed
and an alternative means of achieving the desired goal can be attempted.

74  Part Two  The Deployment Pipeline	 4—Overall Architecture

Figure 4.3 shows a time line for a client attempting to access a failed service.
The client makes a request to the service, and it times out. The client repeats the
request, and it times out again. At this point, recognizing the failure has taken twice
the timeout interval. Having a short timeout interval (failing fast) will enable a
more rapid response to the client of the client requesting the service. A short time-
out interval may, however, introduce false positives in that the service instance may
just be slow for some reason. The result may be that both initial requests for service
actually deliver the service, just not in a timely fashion. Another result may be that
the alternative action is performed as well. Services should be designed so that
multiple invocations of the same service will not introduce an error. Idempotent
is the term for a service that can be repeatedly invoked with the same input and
always produces the same output—namely, no error is generated.

Another point highlighted in Figure 4.3 is that the service has an alterna-
tive action. That is, the client has an alternative action in case the service fails.
Figure 4.3 does not show what happens if there is no alternative action. In this
case, the service reports failure to its client together with context information—
namely, no response from the particular underlying service. We explore the topic
of reporting errors in more depth in Chapter 7.

Modifiability

Making a service modifiable comes down to making likely changes easy and
reducing the ripple effects of those changes. In both cases, a method for making
the service more modifiable is to encapsulate either the affected portions of a
likely change or the interactions that might cause ripple effects of a change.

Assume failure and
attempt alternative
action

Request

Service

Repeat Request

Client

Figure 4.3  Time line in recognizing failure of a dependent service [Notation:
UML Sequence Diagram]

4.4  Amazon’s Rules for Teams 75

Identifying Likely Changes
Some likely changes that come from the development process, rather than the
service being provided, are:

nn The environments within which a service executes. A module goes through
unit tests in one environment, integration tests in another, acceptance tests
in a third, and is in production in a fourth.

nn The state of other services with which your service interacts. If other
services are in the process of development, then the interfaces and
semantics of those services are likely to change relatively quickly. Since
you may not know the state of the external service, a safe practice is to
treat, as much as possible, all communication with external services as
likely to change.

nn The version of third-party software and libraries that are used by
your service. Third-party software and libraries can change arbitrarily,
sometimes in ways that are disruptive for your service. In one case we
heard, an external system removed an essential interface during the time the
deployment process was ongoing. Using the same VM image in different
environments will protect against those changes that are contained within
the VM but not against external system changes.

Reducing Ripple Effects
Once likely changes have been discovered, you should prevent these types of
changes from rippling through your service. This is typically done by introduc-
ing modules whose sole purpose is to localize and isolate changes to the envi-
ronment, to other services, or to third-party software or libraries. The remainder
of your service interacts with these changeable entities through the newly intro-
duced modules with stable interfaces.

Any interaction with other services, for example, is mediated by the special
module. Changes to the other services are reflected in the mediating module and
buffered from rippling to the remainder of your service. Semantic changes to
other services may, in fact, ripple, but the mediating module can absorb some of
the impact, thereby reducing this ripple effect.

4.4	 Amazon’s Rules for Teams

As we mentioned in Chapter 1, Amazon has a rule that no team should be larger
than can be fed with two pizzas; in the early years of this century they adopted
an internal microservice architecture. Associated with the adoption was a list of
rules to follow about how to use the services:

76  Part Two  The Deployment Pipeline	 4—Overall Architecture

nn “All teams will henceforth expose their data and functionality through
service interfaces.

nn Teams must communicate with each other through these interfaces.
nn There will be no other form of inter-service/team communication allowed:

no direct linking, no direct reads of another team’s datastore, no shared-
memory model, no backdoors whatsoever. The only communication
allowed is via service interface calls over the network.

nn It doesn’t matter what technology they [other services] use.
nn All service interfaces, without exception, must be designed from the ground

up to be externalizable. That is to say, the team must plan and design to be
able to expose the interface to developers in the outside world.”

Each team produces some number of services. Every service is totally encap-
sulated except for its public interface. If another team wishes to use a service, it must
discover the interface. The documentation for the interface must include enough
semantic information to enable the user of a service to determine appropriate defi-
nitions for items such as “customer” or “address.” These concepts can sometimes
have differing meanings within different portions of an organization. The seman-
tic information about an interface can be kept in the registry/load balancer that we
described earlier, assuming that the semantic information is machine interpretable.

By making every service potentially externally available, whether or not to
offer a service globally or keep it local becomes a business decision, not a tech-
nical one. External services can be hidden behind an application programming
interface (API) bound through a library, and so this requirement is not prejudging
the technology used for the interface.

A consequence of these rules is that Amazon has an extensive collection of
services. A web page from their sales business makes use of over 150 services.
Scalability is managed by each service individually and is included in its SLA in
the form of a guaranteed response time given a particular load. The contract covers
what the service promises against certain demand levels. The SLA binds both the
client side and the service side. If the client’s demand exceeds the load promised in
the SLA, then slow response times become the client’s problem, not the service’s.

4.5	 Microservice Adoption for Existing Systems

Although microservices reflect the small, independent team philosophy of
DevOps, most organizations have large mission-critical systems that are not
architected that way. These organizations need to decide whether to migrate
their architectures to microservice architectures, and which ones to migrate. We
discuss this migration somewhat in Chapter 10. Some of the things an architect
thinking of adopting a microservice architecture should ensure are the following:

4.6  Summary 77

nn Operational concerns are considered during requirements specification.
nn The overarching structure of the system being developed should be a

collection of small, independent services.
nn Each service should be distrustful of both clients and other required

services.
nn Team roles have been defined and are understood.
nn Services are required to be registered with a local registry/load balancer.
nn Services must renew their registration periodically.
nn Services must provide SLAs for their clients.
nn Services should aim to be stateless and be treated as transient.
nn If a service has to maintain state, it should be maintained in external

persistent storage.
nn Services have alternatives in case a service they depend on fails.
nn Services have defensive checks to intercept erroneous input from clients

and output from other services.
nn Uses of external services, environmental information, and third-party

software and libraries are localized (i.e., they require passage through
a module specific to that external service, environment information, or
external software or library).

However, adopting a microservice architecture will introduce new chal-
lenges. When an application is composed of a large number of network-connected
microservices, there can be latency and other performance issues. Authentication
and authorization between services need to be carefully designed so that they
do not add intolerable overhead. Monitoring, debugging, and distributed tracing
tools may need to be modified to suit microservices. As mentioned earlier, end-
to-end testing will be expensive. Rarely can you rebuild your application from
scratch without legacy components or existing data.

Migrating from your current architecture to a microservice architecture
incrementally without data loss and interruption is a challenge. You may need
to build interim solutions during this migration. We discuss these challenges
and some solutions in the Atlassian case study in Chapter 13, wherein Atlassian
describes the initial steps of their journey to a microservice architecture. An archi-
tect should have a checklist of things to consider when performing a migration.

4.6	 Summary

The DevOps goal of minimizing coordination among various teams can be achieved
by using a microservice architectural style where the coordination mechanism, the
resource management decisions, and the mapping of architectural elements are all
specified by the architecture and hence require minimal inter-team coordination.

78  Part Two  The Deployment Pipeline	 4—Overall Architecture

A collection of practices for development can be added to the microservice
architectural style to achieve dependability and modifiability, such as identifying
and isolating areas of likely change.

Adopting a microservice architectural style introduces additional challenges
in monitoring, debugging, performance management, and testing. Migrating
from an existing architecture to a microservice architectural style requires careful
planning and commitment.

4.7	 For Further Reading

For more information about software architecture, we recommend the following
books:

nn Documenting Software Architectures, 2nd Edition [Clements 10]
nn Software Architecture in Practice, 3rd Edition [Bass 13]

Service description, cataloguing, and management are discussed in detail in
the Handbook of Service Description [Barros 12]. This book describes services
that are externally visible, not microservices, but much of the discussion is rele-
vant to microservices as well.

The microservice architectural style is described in the book Building
Microservices: Designing Fine-Grained Systems [Newman 15].

Many organizations are already practicing a version of the microservice
architectural development and DevOps, and sharing their valuable experiences.

nn You can read more about the Amazon example here: http://apievangelist
.com/2012/01/12/the-secret-to-amazons-success-internal-apis/ and http://
www.zdnet.com/blog/storage/soa-done-right-the-amazon-strategy/152

nn Netflix points out some challenges in using microservice architecture at
scale [Tonse 14].

The Netflix implementation of Eureka—their open source internal load
balancer/registry—can be found at https://github.com/Netflix/eureka/wiki/
Eureka-at-a-glance

Consumer Driven Contracts (CDCs) are discussed in Martin Fowler’s blog
“Consumer-Driven Contracts: A Service Evolution Pattern,” [Fowler 06].

http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/
http://www.zdnet.com/blog/storage/soa-done-right-the-amazon-strategy/152
http://www.zdnet.com/blog/storage/soa-done-right-the-amazon-strategy/152
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

315

About the Authors

Len Bass is a senior principal researcher at National ICT Australia Ltd. (NICTA).
He joined NICTA in 2011 after 25 years at the Software Engineering Institute
(SEI) at Carnegie Mellon University. He is the coauthor of two award-winning
books in software architecture—Software Architecture in Practice, Third Edition
(Addison-Wesley 2013) and Documenting Software Architectures: Views and
Beyond, Second Edition (Addison-Wesley 2011)—as well as several other books
and numerous papers in computer science and software engineering on a wide
range of topics. Len has more than 50 years’ experience in software development
and research, which has resulted in papers on operating systems, database man-
agement systems, user interface software, software architecture, product line sys-
tems, and computer operations. He has worked or consulted in multiple domains,
including scientific analysis, embedded systems, and information and financial
systems.

Ingo Weber is a senior researcher in the Software Systems Research Group
at NICTA in Sydney, Australia, as well as an adjunct senior lecturer at CSE at
the University of New South Wales (UNSW). Prior to NICTA, Ingo held posi-
tions at UNSW and at SAP Research Karlsruhe, Germany. His research interests
include cloud computing, DevOps, business process management, and artificial
intelligence (AI). He has published over 60 peer-reviewed papers, and served as
a reviewer or program committee member for many prestigious scientific jour-
nals and conferences. Ingo holds a Ph.D. and a Diploma from the University of
Karlsruhe, and an MSc from the University of Massachusetts at Amherst.

Liming Zhu is a research group leader and principal researcher at NICTA. He
holds conjoint positions at the University of New South Wales (UNSW) and the
University of Sydney. Liming has published over 80 peer-reviewed papers. He
formerly worked in several technology lead positions in the software industry
before obtaining a Ph.D. in software engineering from UNSW. He is a committee
member of the Standards Australia IT-015 (system and software engineering),
contributing to ISO/SC7. Liming’s research interests include software architec-
ture and dependable systems.

This page intentionally left blank

317

Index
A/B testing

in deployment, 118
future of DevOps and, 307
introduction to, 96
user interactions and, 132–133

Access control
authentication for. See Authentication
boundary definition for, 170
encryption for, 171
introduction to, 169–170
isolation for, 170–171
outdated data in, 171
ownership/responsibility for, 172
prevention of access in, 170–172
in Sourced Group case study, 258
version updating in, 171–172
vulnerability patches in, 171–172

Access control lists (ACLs), 168
Address Resolution Protocol (ARP), 227
Adoption of DevOps

barriers to, generally, 20
department type and, 22
existing systems and, 76–77
organizational culture/type and, 20–22
personnel issues in, 23
silo mentality vs., 22–23
tool support and, 23

Advertising-based charging models, 303
Agent-based/agentless monitoring, 136–137
Agile, 12–13
Akamai CDN, 228, 230
Alarms

automating configuration of, 144
in CloudWatch, 250
false, 128
in intrusion detection, 134–135
in monitoring, generally, 135, 141–142

Alerts
automating configuration of, 144
in monitoring configurations, 139
in monitoring, generally, 141–142

ALIASes, 250–252
All-encompassing processes, 302
Allocation

in capacity planning, 132
CDC definition for, 73
Janitor Monkey and, 43
in microservice architecture, 72, 183
of responsibilities, 19
of shards, 224
of virtual machines, 104

Amazon
AMIs of. See Amazon Machine Images

(AMIs)
CloudFormation by. See CloudFormation (CF)
cross-team coordination by, 69
on datacenter failures, 35
DynamoDB by. See DynamoDB
EC2 by. See Elastic Compute Cloud (EC2)
future of DevOps and, 299
Glacier by, 139
long tails in, 37
RDS replicas and, 116
repeatability at, 184
shared microservices and, 283
Simple Queue Service by, 258
team rules of, 14, 75–76
version control and, 186
web services by. See Amazon Web Services

(AWS)
Amazon Machine Images (AMIs). See also Virtual

machines (VMs)
defined, 30
in deployment pipelines, 92
operations process and, 291
in Sourced Group case study, 245, 248–249

Amazon Web Services (AWS)
Asgard on, 289–295
in Atlassian case study, 264–265
autoscaling in. See Autoscaling groups

(ASGs)
BlobStore and, 268–271
CDP tooling and, 241
charging models and, 304
Cloud, 175
CloudFormation. See CloudFormation (CF)
CloudTrail, 292–295
CodeDeploy, 261
Direct Connect, 260, 264
introduction to, 237
load balancing in. See Elastic Load Balancing

(ELB)
native services in, 261

Ambler, Scott, 14
AMIs. See Amazon Machine Images (AMIs)
Apache Maven, 82
Apdex (Application Performance Index), 148
Application Performance Index (Apdex), 148
Application programming interfaces (APIs)

IaaS and, 30
immutable, 269
in microservice architecture, 76

318  Index	

Application Response Measurement (ARM), 137
Applications

adding, 217–218
code migration in, 278–279
degradation of, 84
design of, 175–176
Gartner Hype Cycle for, 3
logic of, 217
management of complex, 255–256

APRA (Australian Prudential Regulatory
Authority), 239

Architecture
allocation in, 72
Amazon teams and, 75–76
in BlobStore example, 269–272
coordination model of, 68–69
demand management in, 70–71
further reading on, 78
mapping in, 20, 71–72
microservice. See Microservice architecture
of Platformer.com, 149
requiring changes in, 65–66
resource management in, 69–71
structure of, 66–72
summary of, 77–78
VM provisioning/deprovisioning in, 70
work assignments in, 71–72

ARM (Application Response Measurement), 137
ARP (Address Resolution Protocol), 227
Asgard, 289–295
ASGs. See Autoscaling groups (ASGs)
Asynchronous coordination, 18
Atlassian

Bamboo by. See Bamboo
case study of. See Atlassian case study
Cloud by, 263
JIRA by, 241–242
Stash by, 241, 249

Atlassian case study
architecture in, 269–272
BlobStore example in, 268–273, 279–283
build and deployment pipeline in, 276–278
consumer applications in, 278–279
development process in, 273–279
further reading on, 284
“ilities” solutions in, 272–273
introduction to, 263–264
microservice deployment in, 265–268
path to production in, 278–279
safety/performance in, 269–272
summary of, 284
support in, 274–276

Audits for security. See Security audits
Australia

DNS servers in, 31
intrusion detection in, 133
Platformer.com in. See Platformer.com example
Sourced Group in. See Sourced Group case

study

Australian Prudential Regulatory Authority
(APRA), 239

Authentication
hardware for, 166
introduction to, 165–166
password controls in, 167–168
role-based, 166–167
software for, 166–167

Authorization, 155–156, 168–169
Automation

of acceptance tests, 95
of datacenter switches, 230–232
of error detection/recovery, 304, 308
introduction to, 11–12

Autoscaled VPCs (virtual private clouds). See also
Virtual private clouds (VPCs), 260

Autoscaling
in capacity planning, 51
groups. See Autoscaling groups (ASGs)
of microservice instances, 266–267
monitoring and, 57

Autoscaling groups (ASGs)
CloudFormation and, 257
CloudTrail and, 292–293
CloudWatch and, 70, 250
in deployment, 245
in operations process, 289
rolling upgrades and, 294

Availability
in Atlassian case study, 273
in CAP, 39
in CIA, 156–161

Availability zones (AZs), 265
AWS. See Amazon Web Services (AWS)

Background of DevOps
benefits of, 7–11
the cloud and. See Cloud platform
introduction to, 1
operations in. See Operations (Ops)
overview of. See DevOps overview

Backups, 52–53
Backward/forward compatibility, 107–111
Baking VM images

AMIs and, 245, 248–249
defined, 30–31
lightly vs. heavily, 92–93, 112–113

Bamboo
by Atlassian, 263
build and deployment pipeline in, 276
as continuous deployment system, 241–246
rollbacks in, 254
“Tasks for AWS” plug-in in, 249
teardown in, 255
“update stack if already exists” flag in, 251

Barriers to adoption. See Adoption of DevOps
Benefits of DevOps

in coordination, 7–10
generally, 7

Index 319

operations staff and, 10–11
in release process, 7–9

Beta releases, 96
BGP (Border Gateway Protocol), 257
Big flip deployment, 103
Binding time decisions, 20
BizOps, 301
BlobStore example

architecture in, 269–272
build and deployment pipeline in, 276–278
consumer applications in, 278–279
development process in, generally, 273–274
evolving BlobStore in, 279–283
“ilities” solutions in, 272–273
path to production in, 278–279
safety/performance in, 269–272
support in, 274–276

Blue/green deployment, 102–104, 306
BookRenter. See Rafter case study
Border Gateway Protocol (BGP), 257
Bottom-up vs. top-down monitoring, 145–146
Boundary definition, 170
Branching, 86–88, 276–278
“Breaking the build,” 94
Broad network access, 27
BrowserStack, 161
Build process

in Atlassian case study, 265–268
in BlobStore example, 276–278
for deployment pipelines. See Deployment

pipelines
integration testing environments and, 83
packaging in, 92–93
scripts for, 91–92
in Sourced Group case study, 245, 248–249
status in, 93–94

Business cases. See also Business considerations
costs in, 199
external stakeholders in, 201
internal stakeholders in, 200–201
introduction to, 197–198
organizational risks in, 201–202
problem solving issues in, 198–199
risk mitigation in, 201–203
rollout plans in, 203–205
stakeholder impact in, 200–201
success criteria in, 205
technical risks in, 202–203

Business considerations
business cases in. See Business cases
compliance, 207–208
continuity. See Business continuity
costs, 199
Dev/Ops interactions, 209–210
external stakeholders in, 201
further reading on, 211
in future of DevOps, 301
incident handling, 210
internal stakeholders, 200–201

introduction to, 197
licenses, 209–210
logic in. See Business logic
measuring success, 206–207
organizational risks, 201–202
problem solving issues, 198–199
risk mitigation, 201–203
rollout plans, 203–205
stakeholder impact, 200–201
stakeholder satisfaction, 208
success criteria, 205
summary of, 211
technical risks, 202–203

Business continuity
in deployment, 115–117
in DevOps, generally, 59–60
in operations services, 51–53, 59–60

Business logic
adding applications and, 217–218
application logic in, 217
infrastructure discovery in, 219–220
infrastructure in, generally, 217
in Rafter case study, generally, 216

CA Technologies example, 9
Canaries, defined, 15
Canary deployment, 307
Canary testing

in deployment, 117–118
introduction to, 96
monitoring configurations and, 139, 144
in production environments, 193

CAP (Consistency, Availability, Partition
Tolerance), 39

Capabilities, 168
Capability maturity models (CMMs), 184
Capacity planning

in DevOps, generally, 59
in monitoring, 131–132
in operations services, 51, 59

Case studies
of continuous deployment pipelines. See

Sourced Group case study
of migration to microservices. See Atlassian

case study
overview of, 213
of support for multiple datacenters. See Rafter

case study
Cases, business. See Business cases
CD. See Continuous deployment (CD)
CDC (Consumer Driven Contract), 72–73
CDN (content delivery network), 228, 230
CDPs. See Continuous deployment pipelines

(CDPs)
CF. See CloudFormation (CF)
cfn-init, 249
Change management, 171–172
Chaos Monkey, 97
Charging models, 303–304

320  Index	

Chef
console applications and, 232
declarative nature of, 194
in deployment, 121
infrastructure testing and, 233
monitoring resources with, 137
at Rafter, 217–220, 226, 228
testability and, 192–193
tool specification in, 12
traceability in, 85
uncontrolled switches and, 229–230

CI. See Continuous integration (CI)
CIA (confidentiality, integrity, and availability),

156–161
Clients, defined, 67
Closed-loop controls, 57
Cloud platform

consistency in, 39
data considerations in, 43–44
DevOps and, generally, 41–44
distributed environments in, 34–40
Domain Name System in, 31–33
elasticity in, 40
environments in, 41–43
failure in, 34–38
features of, generally, 29
further reading on, 45–46
HDFS in, 43–44
introduction to, 27–29
IP addresses in, generally, 31
long tails in, 37–38
monitoring in, 145–146
NoSQL databases in, 39–40
operational considerations in, 44
Platform as a Service in, 33–34
summary of, 44–45
time in, 34–35
virtualization in, generally, 29–30
VM creation in, 30, 43
VM failures in, 36–37
VM loading in, 30–31
waste reduction and, 188

CloudFormation (CF)
in Atlassian case study, 265
CFEngine in, 184
in deployment, 121
in release stage, 251
in Sourced Group case study, generally, 243–245
in teardown stage, 254–255
templates for, 249, 257–258
tool specification in, 12

CloudWatch
in Atlassian case study, 265
autoscaling groups and, 70
for monitoring, 148
in Sourced Group case study, 250

Clustrix
datacenter switches and, 227–228
switch prerequisites in, 231

transactional data in, 220–221
uncontrolled switches and, 229

CMDBs (configuration management databases).
See Configuration management databases
(CMDBs)

CMMs (capability maturity models), 184
CNAMEs, 251–252
Collation, 138
Collection, 137–139
Commit IDs, 85
Compatibility, 111
Compilation of source code, 91
Compliance issues, 207–208
Components, defined, 66
Computational resource protection. See also

Security, 160–161
Concurrent Versions System (CVS). See also

Version control, 86–88
Confidentiality, integrity, and availability (CIA),

156–161
Configuration management databases (CMDBs),

186, 195, 308
Configurations

of alarms, 144
of alerts, 144
of deployment pipelines, 89–90
launch. See Launch configurations (LCs)
of monitoring systems, 139

Conformance checking, 294
Conformity Monkey, 161
Consistency, Availability, Partition Tolerance

(CAP), 39
Consistency, in the cloud, 39
Construction phase, 13
Consumer applications, 278–279
Consumer Driven Contract (CDC), 72–73
Consumption-based charging models, 303
Containers

Atlassian and, 266
lightweight, 92
virtual machines vs., 188

Content delivery network (CDN), 228, 230
Context for collation, 138
Continual improvement, 58–59
Continuity. See Business continuity
Continuous change, 143–145
Continuous delivery, defined, 80
Continuous deployment (CD)

Bamboo for, 254–255
data models and, 192
definition of, 7, 80
engineering teams, 238
feature toggling in, 202
onboarding groups, 238
Rafter case study of. See Rafter case study

Continuous deployment pipelines (CDPs). See also
Deployment pipelines

business considerations and, 200
in future of DevOps, 306–309

in Sourced Group case study, 240–243
stakeholders and, 200
testing of, 233

Continuous integration (CI)
data models and, 192
defined, 80
in deployment pipelines, 93–94
servers, 91–94

Controlled switch steps, 225–229
Controls, open-loop vs. closed-loop, 57
Cookbooks. See also Chef, 194
Coordination

in architecture, 68–69
as benefit of DevOps, 7–10, 17
of code pieces, 19
cross-team, 19–20
definition of, 17–18
forms of, 18
in microservice architecture, 72–73
model of, 19, 68–69
of teams, 18–19

Costs, 199
Couchbase, 222–223
CPU utilization, 150–152
Crises, 208
Cronjobs, 218–219, 225–226
Crosscutting issues

in deployment pipelines, 84–86, 125
in environment teardowns, 85
in interoperability, 191–192
in modifiability, 194–195
in monitoring. See Monitoring
in negative tests, 84–85
in other “ilities” in, generally, 181–182
in performance, 186–188
in recoverability, 190–191
in regression testing, 84
in reliability, 188–190
in repeatability, 183–186
in small components, 85
in test harnesses, 84
in testability, 192–193
in traceability, 85

Cross-team coordination, 19–20
“Crossing the chasm,” 299–300
Culture of organizations, 20–22
Current state, 216
CVS (Concurrent Versions System). See also

Version control, 86–88

Daemons, 218, 225–226
Data

decommissioning of, 171–172
distributed, 146–147
immutable, 269
interpretation of, 139–143
migration of, 278–279
outdated, 171
tagging of, 186

transactional, 220–221
volume of, 138

Data models, 19, 192
Data schemas, 111
Data scientists, 301
Databases

in the cloud, generally, 43
compatibility of, 111
configuration management. See Configuration

management databases (CMDBs)
DynamoDB. See DynamoDB
infrastructure support in, 221–222
NoSQL, 39–40, 111
relational, 52, 111
Round-Robin, 138
session data in, 222–223
tiers in, 220–223
transactional data in, 220–221

Datacenters
access to private, 149
automating switches in, 230–232
controlled switching, 225–229
supporting multiple. See Rafter case study
switching, 225–233
testing switches in, 232–233
uncontrolled switches in, 229–230

Datamation 2012 IT salary guide, 23
DataNodes, 44
Dean, Jeff, 35
Debian, 92
Decommissioning data, 171–172
Deep-hierarchy systems, 146
Defense in depth, 156–157
Defensive programming, 303
Degraded applications, 84
Demand management, 70–71
Demilitarized Zone, 170
Deming, W. Edwards, 287
Denial-of-service (DoS) attacks, 161, 172–173
Dependability, 72–74
Deployment

A/B testing in, 118
backward/forward compatibility in, 108–111
blue/green, 103–104
business continuity in, 115–117
canary testing in, 117–118
compatibility in, 111
discovery in, 109–110
exploration in, 110
feature toggling in, 107–108
further reading on, 122–123
future of DevOps and, 306–307
introduction to, 101–102
logical consistency in, 105–111
management strategies for, 102–105
monitoring configurations and, 139
to multiple environments, 114–117
multiple service versions active in, 105–111
of operations services, 55–56

Index 321

322  Index	

Deployment, continued
packaging in, 111–114
partial, 117–118
pipelines. See Deployment pipelines
portability layers in, 110–111
private clouds in, 116–117
public clouds in, 115–116
rollbacks in, 118–120
rolling upgrades in, 104–105
stage of, 245, 249–250
summary of, 121–122
times in, 267
tools for management of, 121
version control and, 186

Deployment pipelines
architecture and. See Architecture
of BlobStore, 276–277
branching in, 86–88
build process and, 91–93
build scripts in, 91–92
build status in, 93–94
building/testing, generally, 79–81
configuration parameters in, 89–90
continuous. See Continuous deployment

pipelines (CDPs)
continuous integration in, 93–94
crosscutting in. See Crosscutting issues
defined, 80–81
deployment via. See Deployment
design of, 176–177
development of, generally, 86–91
early release testing and, 97
environment teardown in, 86
environments in, 82–84
error detection in, 97
feature toggles in, 88–89
further reading on, 99
incidents in, 98
integration testing in, 91, 94–95
live testing and, 97
moving systems through, 81–84
negative tests in, 84
overview of, 63
packaging in, 92–93
performance testing of, 95–96
pre-commit testing in, 86–91
production and, 96–97
regression testing in, 84–85
security in, generally, 155–156
small components in, 85
staging in, 95–96
summary of, 98–99
test harnesses in, 84
testing of, generally, 91
traceability in, 81–82, 85
UATs in, 95–96
version control in, 86–88

Design
of deployment pipelines, 176–177
of IT services, 54–55

of operations services, 54–55
of security applications, 175–176

Detection. See also Security
of errors. See Error detection
of failures, 130
of intrusions, 133–134
of performance degradation, 130–131
security audits for. See Security audits

“Developer on Support,” 275–276
Development (Dev)

in BlobStore example, 273–279
build and deployment pipelines in, 276–278
consumer applications in, 278–279
deployment pipelines and, 86–90
path to production in, 278–279
of security, 173–174
support in, 274–276
teams for. See Development teams

Development teams
coordination of, 18–19
cross-team coordination and, 19–20
gatekeepers in, 16–17
inter-team coordination of, 72–73
introduction to, 12
reliability engineers in, 15–16
roles in, 14–17
service owners in, 15
size of, 13–14
structure of, 13–16

DevOps overview
Agile in, 12–13
architecture change in, 65–66
automation in, 11–12
background of, 1
barriers to adoption in, 20–23
benefits, 7–11
cloud platform in. See Cloud platform
compliance in, 207–208
continuous deployment in, 7
coordination in, 7–10, 17–20
cross-team coordination in, 19–20
culture/type of organizations in, 20–22
definition of, 3–5
department types in, 22
development teams in. See Development teams
further reading on, 24–25
future and. See Future of DevOps
gatekeepers in, 16–17
IMVU, Inc. and, 7
introduction to, 3–7
monitoring in, 143
operations in. See Operations (Ops)
operations services in. See Operations services
personnel issues and, 23
perspective of, 11–12
practices in, generally, 5–6, 206–208
release process in, 7–9
reliability engineers in, 15–16
roles in, 14–17
service owners in, 15

Index 323

silo mentality in, 22–23
size of teams in, 13–14
stakeholder satisfaction in, 208
success in, 206–207
summary of, 23–24
team coordination in, 18–19
team structure in, 13–16
tool support and, 23
tradeoffs in, 24

DevOps-style activities, other groups with, 300–301
Diagnosis

of anomalies, 148–152
of errors in operations, 296
of monitoring results, 142–143

Dilbert cartoons, 22
Direct coordination, defined, 18
Disaster recovery. See also Error recovery, 200, 268
Disciplined Agile Delivery, 12–13
Disciplined Agile Delivery: A Practitioner’s

Approach, 12
Discovery, 109–110
Displaying results, 141
Distributed environments. See also Cloud platform

of the cloud, generally, 34–35
concerns in, generally, 45
consistency in, 39
elasticity in, 40
failures in, 34–38
large volumes of data in, 146–147
long tails in, 37–38
NoSQL databases in, 39–40
time in, 34–35
VM failures in, 36–37

DNS (Domain Name System). See Domain Name
System (DNS)

Docker, 121
Dogfooding, 268
Domain Name System (DNS)

in the cloud, generally, 31–33
datacenter switches and, 227–228
at Rafter, generally, 224
release stage and, 250–252

Domain-specific languages (DSLs), 225, 231
DoS (denial-of-service) attacks, 161, 172–173
Drift between production/non-production, 259
DSLs (Domain-specific languages), 225, 231
Duplication of effort, 20
DynamoDB

baking stage and, 249
BlobStore and, 271
complex applications and, 255–256
persistence and, 256
provider limitations and, 260

Early error detection/repair, 189–190
Early release testing, 97
Edwards, Damon, 143, 207
Elastic Compute Cloud (EC2)

AMIs and, generally, 30
in CDP baking process, 248–249

deploying to multiple environments and,
114–115

ELB and, 265
IAM roles and, 258
key pairs in, 175

Elastic Load Balancing (ELB)
in deploy stage, 249
microservice deployment and, 265–267
in release process, 251
in rolling upgrades, 104–105, 289–291,

295–296
Elasticity, defined, 40
Elasticsearch, 223–224
Ellison, Larry, 27
Empowerment vs. control, 302
Encryption, 171, 279
England, Rob, 47
Enterprise Resource Planning (ERP), 21
Environments

in the cloud, generally, 41–43
crosscutting in, 86
definition of, 243–245
deploying to multiple, 114–117
in deployment pipelines, generally,

82–84
distributed. See Distributed environments
future of DevOps and, 305–306
integrated development, 163, 184
in microservice architecture, 73
pre-commit, 82–83
teardown in, 86

Ephemeral coordination, 18
Erl, Thomas, 54
ERP (Enterprise Resource Planning), 21
Error detection

automation of, 304, 308
in deployment pipelines, 97
early, 189–190
in future of DevOps, 309
in operations process, 294–295

Error diagnosis, 296
Error recovery. See also Disaster recovery

automation of, 304, 308
in future of DevOps, 309
in operations process, 295–296

Eureka, 68–69
Eventual consistency, 39
Exception handling, 190
Existing system adoption, 76–77
Expiration of licenses, 209
Exploration, 110
Extensibility, 273
External stakeholders, 201

Failures
in the cloud, generally, 34–38
detection of, 130
“failing gracefully,” 84
instance, 73–74
of virtual machines, 36–38

324  Index	

Fanout systems, 146
Fault trees, 296–297
Feature flags. See Flags
Feature toggling

in deployment, generally, 107–108
in deployment pipelines, 88–89
future of DevOps and, 307
for mixed-version race conditions, 107
removing from source code, 208
rollbacks and, 119
supporting continuous deployment with, 202

Finagle RPC, 269
Financial attacks, 159
First-class stakeholders, 200, 204
Flags

feature toggling and, 108
for features, generally, 88
“update stack if already exists,” 251

Floating licenses, 209
Flume, 148
Fu, Min, 287
Future of DevOps

charging models in, 303–304
continuous deployment pipelines in,

306–309
empowerment vs. control in, 302
error reporting/repair in, 309
final words on, 310
further reading on, 310
implementation in, 309
introduction to, 299–300
operations as process in. See Operations

process
organizational issues in, 300–302
other groups with DevOps-style activities,

300–301
overview of, 285
ownership and reorganizations in, 301–302
process issues in, 302–305
standards in, 303
technology issues in, 305–309
velocity of changes in, 304–305
vendor lock-in in, 303

Ganglia, 147
Gartner Hype Cycle for Application Development,

3
Gatekeepers, 16–17
Gates, 204–205
Gem repository servers, 223–224
Gibbons, Barry, 197
Git

AMIs and, 248
Atlassian Stash and, 276
interoperability and, 191
introduction to, 86–88

GitHub
in deployment pipelines, 88
Enterprise version of, 241
in Rafter case study, 218–219

Go software, 192
Goldman Sachs, 9
Google

Analytics by, 150
on build errors, 187, 190
on datacenter failures, 35
future of DevOps and, 299
shared microservices and, 283
on site reliability engineers, 15
trunk-based development, 87

Graphs, 141
Graylog 2, 147

Hackett, Buddy, 181
Hadoop Distributed File System (HDFS)

in the cloud, 43–44
introduction to, 37
retention policies and, 139
RPOs in, 52

Hammant, Paul, 87
Hamming, Richard, 127
Hand, Daniel, 213, 237
Hardware, 59, 166
Hardware provisioning, 48–49, 59
Hawking, Stephen, 3
HDFS. See Hadoop Distributed File System

(HDFS)
Health Insurance Portability and Accountability

Act (HIPAA), 164
Heavily baked deployment, 121
Heavily baked VM images

in build process, 92–93
defined, 30–31
in deployment, 112–113

HIPAA (Health Insurance Portability and
Accountability Act), 164

HTTP Status Code 7XX: Developer Errors, 101
HTTPS, 172
Hypervisors, 30, 92

IaaS. See Infrastructure as a Service (IaaS)
IBM, 12
Idempotent, defined, 74
Identity and Access Management (IAM), 175, 250,

257–258
Identity management

authentication for. See Authentication
authorization for, 155–156, 168–169
generally, 165
hardware for, 166
introduction to, 165
password controls in, 167–168
roles in, 166–167
software for, 166–167
in Sourced Group case study, 258

IDEs (integrated development environments), 163,
184

Ilities
appropriate levels in, 183–185
availability. See Availability

Index 325

in BlobStore example, 272–273
data models in, 192
dependability, 72–74
early error detection/repair in, 189–190
extensibility, 273
interfaces in, 191
interoperability, 191–192
maintainability, 273
modifiability. See Modifiability
overview of, 181–182
performance in, 186–188
recoverability, 190–191
reliability. See Reliability
repeatability, 183–186
resource utilization and, 187–188
scalability, 272
service characteristics in, 189
summary of, 194–195
testability, 192–193
tool interactions in, 195
traceability. See Traceability
version control in, 185–186

Images. See Amazon Machine Images (AMIs);
Virtual machines (VMs)

Immutability, 93, 269
Implementation, 309
Improvement, continual, 58–59
IMVU, Inc., 7
Incentives, 22
Inception phase, 12–13
Incident management

in business considerations, 210
in deployment pipelines, 98
in operations services, 56
stakeholders in, 200, 204

Incinga, 147
Inconsistencies, 106–111
Indirect coordination, defined, 18
Individual hardware, 48–49
Information

at rest, 159
security of, 51–53, 59–60, 159
technology for. See IT (information

technology)
in transit, 160
in use, 159–160

Information technology. See IT (information
technology)

Information Technology Infrastructure Library
(ITIL)

change models and, 56
continual service improvement and,

58–59
DevOps and, generally, 59
events and, 56
incident management and, 56–57
introduction to, 47–48
service design and, 54–55
service strategies and, 53–54
service transitions and, 55–56, 60–61

Infrastructure
Atlassian and, 267
code as. See Infrastructure-as-code
discovering, 219–220
ITIL for. See Information Technology

Infrastructure Library (ITIL)
in Rafter case study, 217
as services. See Infrastructure as a Service

(IaaS)
supporting in database tiers, 221–222
testing of, 233
tools for, 223–224

Infrastructure as a Service (IaaS)
defined, 29
IP management in, 30–33
PhotoPNP and, 150
vendor lock-in and, 260–261
virtualization in, 29–30

Infrastructure-as-code
in microservice architecture, 73, 81
security and, 155–156
testability and, 192–193

Instance, defined, 30
Instance failures, 73–74
Integrated development environments (IDEs), 163,

184
Integration

continuous, 91–94, 192
environments for testing, 83
executing, 94–95
scripts, 305
testing, generally, 91–94

Intellectual property attacks, 159
Inter-team coordination, 72–73
Interactions between Dev/Ops, 209–210
Interfaces, 191
Internal stakeholders, 200–201
International Organization for Standardization/

International Electrotechnical Commission
(ISO/IEC) 27001, 163

Interoperability, 191–192
Interpretation of data, 139–143
Intrusion detection, 133–134
IP address management

in the cloud, generally, 31
DNS in. See Domain Name System (DNS)
persistence in, 33

IPsec/VPN, 257
ISO/IEC (International Organization for

Standardization/International
Electrotechnical Commission) 27001, 163

Isolation, 170–171
IT (information technology)

day-to-day provisioning of, 50
in operations services, 50, 59
professionals in, generally, 6
salaries in, 23
security and, 162

ITIL. See Information Technology Infrastructure
Library (ITIL)

326  Index	

Janitor Monkey, 43, 161
Java, 34
Java archives, 92
Java virtual machine (JVM), 280
JavaScript Object Notation (JSON), 217–219
Jenkins tools, 169, 303
JIRA, 274–275
Joomla, 150
JSON (JavaScript Object Notation) files,

217–219
JVM (Java virtual machine), 280

Kafka, 148
Kerberos, 167, 281
Key performance indicators (KPIs), 202
Keys, 160–161, 269–271
Kibana, 266–267
Knight Capital, 9, 89
KPIs (key performance indicators), 202

Lamport, Leslie, 66
Latency

business continuity and, 116
monitoring and, 130–131
of user requests, 132

Latency Monkey, 97
Launch configurations (LCs), 249, 289,

292–295
Lead times, 208
Levels, 183–185
Library usage, 82
Licenses, 209–210
Life cycles

of applications, 245–248
introduction to, 6
of services, 48

Lightly baked VM images
in build process, 92–93
defined, 30–31
in deployment, 112, 121

Lightweight containers, 92
Likely changes, 75
Lincoln, Abraham, 299
Live testing, 97
Load balancing

distributed environments and, 40
DNS and, 32–33
ELB for. See Elastic Load Balancing (ELB)

Local mirrors, 189
Logic, business. See Business logic
Logical consistency

backward/forward compatibility in, 108–111
compatibility of data in, 111
in deployment, generally, 105–106
discovery in, 109–110
exploration in, 110
feature toggling in, 107–108
multiple service versions in, 105–111
portability layers in, 110–111

Logs
in microservice deployment, 267
of monitoring results, 140
operations process and, 289–295

Logstash, 147, 291
Long tails, 37–38
Long-term capacity planning, 132
LoudCloud, 184

Maintainability, 273
Man-in-the-middle attacks, 166
Mapping, 71–72, 269–271
Market-based charging models, 303
Masters

in controlled switches, 226–227
in database replication, 221–222
in uncontrolled switches, 229

Maturity model, 203
Maven, 82
Measured service, 27–28
Memcached, 36–37, 222–223
Metrics, 133
Microservice architecture. See also Architecture

definition of, 67–68
dependability of, 72–74
environments in, 73
existing system adoption in, 76–77
instance failures in, 73–74
inter-team coordination in, 72–73
introduction to, 67–68
likely changes in, 75
modifiability of, 74–75
monitoring of, 146
quality of, generally, 72
ripple effect reduction in, 75
security in, generally, 155

Microservice deployment, 101–102
Migration

of code, 278–279
of data, 278
future of DevOps and, 303
to microservices. See Atlassian case study

Mining techniques, 291
Mixed-version race condition, 106–107
Modifiability

as ility, generally, 194
of microservice architecture, 74–75
single tools for, 194–195
tool interactions in, 195

Modules, defined, 66
Monitoring

agent-based/agentless, 136–137
alarms and. See Alarms
alerts and, 139–144
bottom-up vs. top-down, 145–146
capacity planning in, 131–132
challenges in, 143–147
in the cloud, 145–146
collection and, 137–139

Index 327

under continuous changes, 143–145
defined, 128
for demand management, 71
of DevOps processes, 143
diagnosis from results of, 142–143
diagnosis of anomalies from, 148–152
displaying results of, 141
elasticity and, 40
failure detection in, 130
further reading on, 153
future of DevOps and, 307
graphs of results of, 141
interpretation of data from, 139–143
introduction to, 127–129
intrusion detection in, 133–134
latency in, 130–131
logs of results of, 140
of microservice architecture, 146
of operations, 137, 296–298
of performance degradation, 130–131
Platformer.com example of. See Platformer

.com example
procedures for, 134–139
reaction to results of, 142–143
as service operation, 57–58
solutions for various platforms, 151
storage and, 137–139
subjects of, 129–134
summary of, 152
throughput in, 131
times to change configuration of, 139
tools for, 147–148
user interactions in, 132–133
utilization in, 131

Moore, Geoffrey, 299
Motivation, 288–289
Mozilla, 17
Multiple environments, 114–117
Multiple versions of services, 105–111

Nagios, 147
NameNodes, 44
National Institute of Standards and Technology

(NIST)
“800-53” by, 162–168, 171–173
“AC-3, Access Enforcement” by, 168
on charging models, 132
on the cloud, 27–29
on development, 173
on elasticity, 40
on encryption, 171
on PaaS, 34
on security, 162–165, 167

Negative tests, 84–85
Netflix

Archaius tool of, 108
Asgard, 121
Conformity and Security Monkeys, 176
Edda, 186

error detection at, 97
Eureka, 68–69
future of DevOps and, 299, 301
gatekeepers at, 16
shared microservices and, 283
Simian Army, 97, 167, 309

Nexus, 276
NIST. See National Institute of Standards and

Technology (NIST)
No-downtime paths, 278–279
Nonfunctional tests, 96
NoSQL databases

in the cloud, 39–40
data schemas in, 111
DynamoDB. See DynamoDB

Offline activities, 289–293
On-demand self-service, 27
Online activities, 294–296
Open-loop controls, 57
OpenVZ, 263
Operating system packages, 92
Operations (Ops)

in the cloud, generally, 44
monitoring of, 137
personnel for, 6, 10–11
as process. See Operations process
responsibilities of staff for, 10–11
services and. See Operations services

Operations process
error detection in, 294–295
error diagnosis in, 296
error recovery in, 295–296
further reading on, 298
introduction to, 287–288
monitoring in, 296–298
motivation and, 288–289
offline activities in, 289–293
online activities in, 294–296
overview of, 288–289
summary of, 298

Operations services
business continuity in, 51–53, 59–60
capacity planning in, 51, 59
continual improvement of, 58–59
deployment of, 55–56
design of, 54–55
DevOps and, generally, 59–61
hardware provisioning, 48–49, 59
IT functions in, 50, 59
overview of, 47–48
security in, 51–53, 59–60
service level agreements for, 50–51, 59
service operations in, 56–58
software provisioning, 49–50, 59
strategy planning for, 53–54
transitions to, 55–56

Operators, defined, 6
Ops (operations). See Operations (Ops)

328  Index	

Opsware, 184
Organization-wide hardware, 49
Organizational issues

in business cases, 201–202
culture/type of organizations, 20–22
empowerment vs. control, 302
in future of DevOps, 300–302
other groups with DevOps-style activities,

300–301
ownership, 301–302
regulations, 21
in Sourced Group case study, 238–240

OSGi, 282
Outages, 208
Outdated data, 171
“Outside of channels” controls, 164
Ownership, 172, 301–302
Oxford English Dictionary, 17

PaaS. See Platform as a Service (PaaS)
Packaging

in deployment, generally, 111–114
in deployment pipelines, 92–93
of files, 91

PagerDuty, 274
Painter, John, 213, 237
Parnas, David, 71
Partial deployment, 117–118
Passwords, 160–161, 167–168
Patching, 171–172
Paxos, 107
Payment Card Industry (PCI), 164, 239
Performance

Apdex on, 148
of deployment pipelines, 95–96
detecting degradation of, 130–131
DNS and, 32
as ility, generally, 186
measurement of, 187
resource utilization and, 187–188
of security audits, 174–175
testing, 83

Persistence
coordination, 18
of IP addresses, 33
in Sourced Group case study, 256–257
in virtual machines, 36–37

Personnel issues, 23
Perspective of DevOps, 11–12
PhotoPNP, 150–152
Physical distance, 201–202
Physical hardware, 48–49
Pipeline state, 255–256
Platform as a Service (PaaS)

Atlassian and. See Atlassian case study
in the cloud, generally, 33–34
defined, 29
Platformer.com as. See Platformer.com

example
vendor lock-in and, 261

Platform providers, 162, 172
Platform, the cloud as. See Cloud platform
Platformer.com example

anomaly detection in, 150
conclusions about, 150–152
context of, 148–150
data collection in, 150
monitoring in, generally, 148

Portability layers, 110–111
Pre-commit environments, 82–83
Pre-commit testing, 86–91
Private clouds, 116–117, 149
Private datacenters, 149
Problem-solving issues, 198–199
Process issues

charging models, 303–304
in future of DevOps, generally, 302
standards, 303
velocity of changes, 304–305
vendor lock-in, 303

Process models. See Operations process
Production

canary testing and, 193
deployment pipelines and, 96–97
environments, 41–43, 83
non-production environments and, 259
path to, 278–279

Products vs. processes, 182
Programming for safety/performance, 269–272
Project hardware, 49
ProM, 291
Provider limitations, 260
Provisioning

of hardware, 48–49, 59
of IT, 50
of software, 49–50, 59
of virtual machines, 70

Public clouds, 115–116
Puppet, 121, 194
Push/pull commands, 86–87

Quality assurance (QA), 169, 273
Quality issues. See also Ilities, 72
Questionnaires, 208

Race conditions, 112
Rafter case study

adding applications in, 217–218
application logic in, 217
business logic in, 216–220
continuous deployment pipeline in, 233
controlled switch steps in, 225–229
current state of, 216
database tiers in, 220–223
datacenter switches in, 225–232
defining/automating switch steps in, 230–232
DNS in, 224
Elasticsearch in, 224
further reading on, 234–235
gem repository servers in, 223–224

Index 329

infrastructure discovery in, 219–220
infrastructure in, generally, 217
infrastructure support in, 221–222
infrastructure testing in, 233
infrastructure tools in, 223–224
introduction to, 215–216
session data in, 222–223
summary of, 233–234
testing in, 232–233
transactional data in, 220–221
uncontrolled switches in, 229–230
web tiers in, 216–220

Rapid elasticity, 27–28
RBA (role-based authentication), 167
RBAC (role-based access control), 168–169
RDBMSs (relational database management

systems), 52, 111
Reaction to results, 142–143
Real user monitoring (RUM), 133
Recoverability, 190–191
Recovery

from disasters, 200, 268
from errors, 304, 308

Recovery point objectives (RPOs), 51–53
Recovery time objectives (RTOs), 51–53
Red/black deployment, 103, 306
Red Hat, 92, 161
Redis

datacenter switches and, 226–227
supporting database tiers, 221–222
uncontrolled switches and, 229

Regression testing, 84–85
Regulated organizations, 21
Relational database management systems

(RDBMSs), 52, 111
Release packages, 60–61
Release process

beta releases, 96
early release testing, 97
overview of, 7–9
planning steps for, 8
release stage in, 245–247, 250–254

Reliability
DNS and, 32
early error detection/repair in, 189–190
of services, 189
user interactions and, 132

Reliability engineers, 15–16, 275
Repeatability

at appropriate levels, 183–185
as ility, generally, 183
version control in, 185–186

Replication, 307
Repudiation, 173
Resource management

access control in, 168
in architecture, 69–71
in Atlassian case study, 266–267
in ilities, 187–188
introduction to, 20

pooling resources in, 27–28
security in, 159–161

Retention policies, 138
Revision control. See Version control
Ripple effect reduction, 75
Risk mitigation, 201–203
Role-based access control (RBAC), 168–169
Role-based authentication (RBA), 167
Roles, 14–17, 162–164
Rollbacks

definition of, 8
in deployment, 118–120
future of DevOps and, 307
in Sourced Group case study, 254

Rolling upgrades
in deployment, 102–107
future of DevOps and, 307
monitoring configurations and, 139
operations and, 289–295

Rollout plans, 203–205
Root passwords, 169
Round-Robin Database (RRD), 138
Route 53, 250–254, 265
RPOs (recovery point objectives), 51–53
RRD (Round-Robin Database), 138
RSpec, 232–233
RTOs (recovery time objectives), 51–53
Ruby

Gems, 217, 228, 309
on Rails, 216–218
switch steps in, 230

RUM (real user monitoring), 133
Runtime-specific packages, 92
Rutan, Burt, 79

S3. See Simple Storage Service (S3)
S4 stream processing tool, 148
SaaS (Software as a Service), 29, 261
Sabotage, 159
Salary guides, 23
SAP Business Suite, 90
Sarbanes-Oxley, 301
Scalability, 40, 272
Schemas, 111
Scout, 225, 229
Scripts

build, 91–92
defined, 81
integration, 305
version control and, 185

SDNs (software-defined networks), 162
SecOps (security operations), 239–240
Secure Shell (SSH), 136, 258
Security. See also specific attack types

access control for. See Access control
activities in, 162–164
application design and, 175–176
architects, 162, 172
auditing for. See Security audits
authentication for. See Authentication

330  Index	

Security, continued
authorization for, 155–156, 168–169
BlobStore and, 273
boundary definition for, 170
definition of, 156–159
denial-of-service attacks and, 161, 172–173
deployment pipeline design and, 176–177
detection for, 172–173
development of, 173–174
encryption for, 171
further reading on, 178–179
future of DevOps and, 301, 306
hardware for, 166
identity management for, 165–169
introduction to, 155–156
isolation for, 170–171
in operations services, 51–53, 59–60
outdated data in, 171
ownership/responsibility for, 172
passwords for, 167–168
personnel for, 162–164
resource protection in, 159–161, 168
role-based access control in, 168–169
role-based authentication for, 167
software for, 166–167
in Sourced Group case study, 257–258
summary of, 177–178
threats to. See Threats to security
version updating in, 171–172
vulnerability patches in, 171–172

Security audits
audit trails vs. logs, 173
introduction to, 155–156, 164
overview of, 172–173
performance of, 174–175

Security Monkey, 161, 167
Security operations (SecOps), 239–240
SEI (Software Engineering Institute), 158–159
Sensu, 147
Serverspec, 193
Service level agreements (SLAs)

Amazon and, 76
for demand management, 71
future of DevOps and, 307–308
for operations services, 47, 50–51, 59

Services
agreements at level of. See Service level

agreements (SLAs)
AWS. See Amazon Web Services (AWS)
characteristics of, 189
defined, 67
deployment of. See Deployment
desk operations of, 50
life cycles of, 48
operations and. See Operations services
owners of, 15
S3. See Simple Storage Service (S3)
SNS, 265
software as, 29, 261

Session data, 222–223
SHA-1 hash, 269–271
Shard allocation, 183
Shek, Sidney, 213, 261
Shellshock, 161
Short-term capacity planning, 132
Silo mentality, 22–23
Simian Army, 97, 167, 309
Simple Queue Service (SQS), 258
Simple Network Management Protocol (SNMP),

136
Simple Notification Service (SNS), 265
Simple Storage Service (S3)

in Atlassian case study, 279
in Sourced Group case study, 245, 250,

254–258
Single sign-ons, 166–167
Site Reliability Engineers, 15
Size of teams, 13–14
SLAs. See Service level agreements (SLAs)
Slaves

in controlled switches, 226–227
in database replication, 221–222
in uncontrolled switches, 229

Slow-moving organizations, 21
Small components, 85
Smoke tests, 91, 95, 278
Snapshots, 259
SNMP (Simple Network Management Protocol),

136
SNS (Simple Notification Service), 265
Software

audits, 210
for authentication, 166–167
provisioning, 49–50, 59
third-party, 75

Software as a Service (SaaS), 29, 261
Software-defined networks (SDNs), 162
Software Engineering Institute (SEI), 158–159
Solution architects, 162, 172
Source code revision systems, 241
Source control. See Version control
Sourced Group case study

access management in, 258
advanced concepts in, generally, 259
AWS native services in, 261
build and test stage in, 248–249
CloudFormation in, 243–245, 257–258
complex applications in, 255–256
continuous deployment pipeline in, 240–243,

258–260
deploy stage in, 249–250
drift between production/non-production in,

259
environment definition in, 243–245
further reading on, 262
identity management in, 258
introduction to, 237–238
organizational context in, 238–240

Index 331

persistence in, 256–257
provider limitations in, 260
release stage in, 250–254
rollbacks in, 254
security in, 257–258
standardized application life cycle in, 245–248
summary of, 261
teardown stage in, 254–255
traffic matching in, 253
vendor lock-in in, 260–261

Spacewalk, 161
Spencer, Rob, 60
Splunk, 147
Spoofing, tampering, repudiation, information

disclosure, denial-of-service, elevation of
privilege (STRIDE), 157–158, 173

Sprint methodology, 247
SQS (Simple Queue Service), 258
SSH (Secure Shell), 136, 258
Staging

environment of, 83
introduction to, 80–81
testing in, 95–96

Stakeholders
external, 201
first-class, 200, 204
impact on, 200–201
internal, 200–201
satisfaction of, 208

Standardized application life cycles, 245–248
Standards, 303
State management, 115–116, 202
Storage, 137–139
Storm, 148
Strategic planning, 53–54, 301
Stream processing tools, 148
STRIDE (spoofing, tampering, repudiation,

information disclosure, denial-of-service,
elevation of privilege), 157–158, 173

Structure of architecture. See also Architecture,
66–72

Subnets, 170
Subscription-based charging models, 303
Subversion (SVN). See also Version control, 86–88
Success criteria, 205
Support

in Atlassian case study, 274–276
of continuous deployment, 202
of infrastructure, 221–222
of tools, 23

SVN (Subversion). See also Version control,
86–88

Switches
controlled, 225–229
defining/automating, 230–232
in deployment pipelines, generally, 88
uncontrolled, 229–230

Synchronization, 18, 107
Synthetic monitoring, 133

“System and Communications Protection,” 167
System-managed credentials, 166–167

Tagging data items, 186
Tampering, 169–170
TeamCity, 233
Teams. See Development teams
Teardown stage

future of DevOps and, 307
in Sourced Group case study, 245–246, 254–255

Technical controls, 164
Technical risks, 202–203
Technology experts, 50
Technology issues

continuous deployment pipeline concepts in,
306–308

continuous deployment pipeline quality in,
308–309

error reporting/repair in, 309
in future of DevOps, generally, 305–306
implementation in, 309

Test-driven development, 91
Test Kitchen, 121, 193
Testability, 192–193
Testing

of continuous deployment pipelines, 233
of datacenter switch applications, 232–233
deployment pipelines and. See Deployment

pipelines
DNS and, 32
environments for, 41–43
harnesses in, 84
of infrastructures, 233
integration, 91
in Rafter case study, generally, 232–233

Third parties, 75, 149
Threats to security. See also Security

denial-of-service attacks, 161, 172–173
financial attacks, 159
intellectual property attacks, 159
man-in-the-middle attacks, 166
overview of, 156–159

Throughput, 131
Ticketing systems, 241–242
Time

in the cloud, 34–35
collating related items by, 138
between commit/deployment, 206–207
between error discovery/repair, 207
in operations process, 289
prediction of, 308–309

Time to live (TTL), 31–32, 224
Toggling. See Feature toggling
Tools. See also specific tools

for continuous deployment pipelines, 241
for deployment management,

generally, 121
for infrastructure, 223–224
interactions of, 195

332  Index	

Tools, continued
for monitoring, 147–148
specifications for, 12
for stream processing, 148
support for, 23

Top-down monitoring, 145–146
Traceability

crosscutting and, 85
in deployment pipelines, 81–82
in future of DevOps, 305

Traffic matching, 253
Transactional data, 220–221
Transitions, 13, 55–56
Trunk-based development, 87–88
TTL (time to live), 31–32, 224
Twain, Mark, 127
Twitter, 269
Two-pizza rule, 14, 75
Type of departments/organizations, 20–22

Uncontrolled switches, 229–230
Unit tests, 91
URLs, 31–33
User acceptance tests (UATs)

in deployment pipelines, 80–81, 95–96
environment of, 83
in Sourced Group case study, 246–248

User interactions, 132–133
Utilization, 131

Vagrant, 121
Varnish, 271
Velocity of changes, 304–305
Vendor lock-in, 260–261, 303
Verizon, 158–159
Version control

in deployment pipelines, 86–88
in ilities, 185–186
for mixed-version race conditions, 107
in security, 171–172

Virtual hardware, 49
Virtual machines (VMs)

AMIs and. See Amazon Machine Images
(AMIs)

application state in, 36
baking images in. See Baking VM images
charging models and, 304
client state in, 36
consistency in, 39
creation of, 30, 43
deployment of. See Deployment pipelines
DNS in, 31–33
elasticity in, 40
failure of, 36–38
image sprawl in, 43
images in, 30–31, 92–93, 161
introduction to, 29–30
IP address management and, 31–33

in Java, 280
launching, 207
loading, 30–31
long tails and, 37–38
NoSQL databases in, 39–40
in operations process, 289
persistent state in, 33, 36–37
provisioning/deprovisioning, 70
sprawl in, 161
stateless, 36

Virtual private clouds (VPCs)
CloudFormation and, 257
number of security groups per, 260
as virtual private networks, 244

Virtual private networks (VPNs), 244, 264
Virtualization, defined. See also Virtual machines

(VMs), 29–30
VM instance, defined, 30
VMs. See Virtual machines (VMs)
VMware, 114, 184, 216
VPCs. See Virtual private clouds (VPCs)
VPNs (virtual private networks), 244, 264
Vulnerability patches, 171–172

Web tiers
adding applications in, 217–218
application logic in, 217
infrastructure discovery in, 219–220
infrastructure in, generally, 217
in Rafter case study, generally, 216

Wikipedia
on DevOps, 4–5, 18
on environments, 83–84
on operations staff responsibilities, 10–11
on regression testing, 84
on release planning steps, 8

Williams, Chris, 213, 215
Windows Management Instrumentation (WMI), 136
“Within channels” controls, 164
WMI (Windows Management Instrumentation),

136
Work assignments, 71–72
Workload/application behavior changes, 304–305
World Wide Web, 31
Wrappers, 189
www.atlassian.com/company, 263
www.rafter.com/about-rafter, 215
www.sourcedgroup.com.au, 237

XebiaLabs example, 9
Xu, Xiwei, 287

ZAB algorithms, 107
ZooKeeper

distributed environments and, 36
feature toggling in, 107–108
state management and, 202
VM provisioning/deprovisioning in, 70

Big Data: Architectures
and Technologies
About the Course
Scalable “big data” systems are
significant long-term investments that
must scale to handle ever-increasing
data volumes, and therefore represent
high-risk applications in which the
software and data architecture are
fundamental components of ensuring
success. This course is designed for
architects and technical stakeholders
such as product managers, development
managers, and systems engineers
who are involved in the development
of big-data applications. It focuses on
the relationships among application
software, data models, and deployment
architectures, and how specific
technology selection relates to all
of these. While the course touches
briefly on data analytics, it focuses on
distributed data storage and access
infrastructure, and the architecture
tradeoffs needed to achieve scalability,
consistency, availability, and performance.
We illustrate these architecture
principles with examples from selected
NoSQL product implementations.

Who Should Attend?
• Architects
• Technical stakeholders involved in the

development of big data applications
• Product managers, development

managers, and systems engineers

Topics
• The major elements of big data

software architectures
• The different types and major

features of NoSQL databases
• Patterns for designing data models that

support high performance and scalability
• Distributed data processing frameworks

Three Ways to Attend
• Public instructor-led offering at

an SEI office
• Private, instructor-led training

at customer sites
• eLearning

For More Information
To learn more and to register for the course,
visit www.sei.cmu.edu/go/big-data

http://www.sei.cmu.edu/go/big-data

To see complete coverage and check out sample content
visit informit.com.

eBook and print formats available.

ISBN-13: 978-0-321-55268-6

Documenting Software Architectures,
Second Edition, provides the most
complete and current guidance,
independent of language or notation,
on how to capture an architecture
in a commonly understandable
form. Drawing on their extensive
experience, the authors fi rst help
you decide what information to
document, and then, with guidelines
and examples (in various notations,
including UML), show you how to
express an architecture so that
others can successfully build, use,
and maintain a system from it.

In a real-world setting, Software
Architecture in Practice, Third Edition
introduces the concepts and best
practices of software architecture—
how a software system is structured
and how that system’s elements
are meant to interact. This guide
is structured around the concept of
architecture infl uence cycles and
each cycle shows how architecture
infl uences, and is infl uenced by,
a particular context in which
architecture plays a critical roleISBN-13: 978-0-321-81573-6

More Software
Architecture Guidance from

Len Bass

9780134049847_Bass_BoBad.indd 1 3/6/15 10:26 AM

	Contents
	Preface
	Previewing the Book
	Acknowledgments
	Legend
	CHAPTER 4 Overall Architecture
	4.1 Do DevOps Practices Require Architectural Change?
	4.2 Overall Architecture Structure
	4.3 Quality Discussion of Microservice Architecture
	4.4 Amazon’s Rules for Teams
	4.5 Microservice Adoption for Existing Systems
	4.6 Summary
	4.7 For Further Reading

	About the Authors
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

