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Preface

We have been investigating problems in operations for several years and have, 
naturally, been tracking the DevOps movement. It is moving up the Gartner Hype 
Curve and has a solid business reason for existing. We were able to find treatments 
from the IT manager’s perspective (e.g., the novel The Phoenix Project: A Novel 
about IT, DevOps, and Helping Your Business Win) and from the project manager’s 
perspective (e.g., Continuous Delivery: Reliable Software Releases Through Build, 
Test, and Deployment Automation). In addition, there is a raft of material about cul-
tural change and what it means to tear down barriers between organizational units.

What frustrated us is that there is very little material from the software archi-
tect’s perspective. Treating operations personnel as first-class stakeholders and 
listening to their requirements is certainly important. Using tools to support oper-
ations and project management is also important. Yet, we had the strong feeling 
that there was more to it than stakeholder management and the use of tools.

Indeed there is, and that is the gap that this book intends to fill. DevOps 
presents a fascinating interplay between design, process, tooling, and organiza-
tional structure. We try to answer two primary questions: What technical deci-
sions do I, as a software architect, have to make to achieve the DevOps goals? 
What impact do the other actors in the DevOps space have on me?

The answers are that achieving DevOps goals can involve fundamental 
changes in the architecture of your systems and in the roles and responsibilities 
required to get your systems into production and support them once they are there.

Just as software architects must understand the business context and goals 
for the systems they design and construct, understanding DevOps requires under-
standing organizational and business contexts, as well as technical and opera-
tional contexts. We explore all of these.

The primary audience for this book is practicing software architects who 
have been or expect to be asked, “Should this project or organization adopt 
DevOps practices?” Instead of being asked, the architect may be told. As with 
all books, we expect additional categories of readers. Students who are interested 
in learning more about the practice of software architecture should find interest-
ing material here. Researchers who wish to investigate DevOps topics can find 
important background material. Our primary focus, however, is on practicing 
architects.
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Previewing the Book

We begin the book by discussing the background for DevOps. Part One begins 
by delving into the goals of DevOps and the problems it is intended to solve. We 
touch on organizational and cultural issues, as well as the relationship of DevOps 
practices to agile methodologies.

In Chapter 2, we explore the cloud. DevOps practices have grown in tandem 
with the growth of the cloud as a platform. The two, in theory, are separable, 
but in practice virtualization and the cloud are important enablers for DevOps 
practices.

In our final background chapter, Chapter 3, we explore operations through 
the prism of the Information Technology Infrastructure Library (ITIL). ITIL is a 
system of organization of the most important functions of an operations group. 
Not all of operations are included in DevOps practices but understanding some-
thing of the responsibilities of an operations group provides important context, 
especially when it comes to understanding roles and responsibilities.

Part Two describes the deployment pipeline. We begin this part by exploring 
the microservice architectural style in Chapter 4. It is not mandatory that systems 
be architected in this style in order to apply DevOps practices but the microser-
vice architectural style is designed to solve many of the problems that motivated 
DevOps.

In Chapter 5, we hurry through the building and testing processes and tool 
chains. It is important to understand these but they are not our focus. We touch on 
the different environments used to get a system into production and the different 
sorts of tests run on these environments. Since many of the tools used in DevOps 
are used in the building and testing processes, we provide context for understand-
ing these tools and how to control them.

We conclude Part Two by discussing deployment. One of the goals of 
DevOps is to speed up deployments. A technique used to achieve this goal is 
to allow each development team to independently deploy their code when it is 
ready. Independent deployment introduces many issues of consistency. We dis-
cuss different deployment models, managing distinct versions of a system that 
are simultaneously in production, rolling back in the case of errors, and other 
topics having to do with actually placing your system in production.
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Part Two presents a functional perspective on deployment practices. Yet, 
just as with any other system, it is frequently the quality perspectives that control 
the design and the acceptance of the system. In Part Three, we focus on crosscut-
ting concerns. This begins with our discussion of monitoring and live testing in 
Chapter 7. Modern software testing practices do not end when a system is placed 
into production. First, systems are monitored extensively to detect problems, and 
secondly, testing continues in a variety of forms after a system has been placed 
into production.

Another crosscutting concern is security, which we cover in Chapter 8. We 
present the different types of security controls that exist in an environment, span-
ning those that are organization wide and those that are specific system wide. We 
discuss the different roles associated with achieving security and how these roles 
are evaluated in the case of a security audit.

Security is not the only quality of interest, and in Chapter 9 we discuss other 
qualities that are relevant to the practices associated with DevOps. We cover top-
ics such as performance, reliability, and modifiability of the deployment pipeline.

Finally, in Part Three we discuss business considerations in Chapter 10. 
Practices as broad as DevOps cannot be adopted without buy-in from man-
agement. A business plan is a typical means of acquiring this buy-in; thus, we 
present the elements of a business plan for DevOps adoption and discuss how the 
argument, rollout, and measurement should proceed.

In Part Four we present three case studies. Organizations that have imple-
mented DevOps practices tell us some of their tricks. Chapter 11 discusses how 
to maintain two datacenters for the purpose of business continuity; Chapter 
12 presents the specifics of a continuous deployment pipeline; and Chapter 13 
describes how one organization is migrating to a microservice architecture.

We close by speculating about the future in Part Five. Chapter 14 describes 
our research and how it is based on viewing operations as a series of processes, 
and Chapter 15 gives our prediction for how the next three to five years are going 
to evolve in terms of DevOps.
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Legend

We use four distinct legends for the figures. We have an architectural notation 
that identifies the key architectural concepts that we use; we use Business Process 
Model and Notation (BPMN) to describe some processes, Porter’s Value Notation 
to describe a few others, and UML sequence diagrams for interleaving sequences 
of activities. We do not show the UML sequence diagram notation here but the 
notation that we use from these other sources is:

Architecture

Person Group

FIGURE P.1  People, both individual and groups

Component Module
Data Flow

FIGURE P.2  Components (runtime entities), modules (code-time collections of 
entities), and data flow

Database

Data Object

VM
VM

Image
DNS Entry or
IP Address 

FIGURE P.3  Specialized entities
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BPMN

We use Business Process Model and Notation (BPMN) for describing events and 
activities [OMG 11].

Porter’s Value Chain

This notation is used to describe processes (which, in turn, have activities mod-
elled in BPMN).

Collection

FIGURE P.4  Collections of entities

Event (start) Event (end) Exclusive Gateway Repetition

FIGURE P.5  Event indications

Activity Sequential
Flow 

Conditional 
Flow

Default
Flow 

FIGURE P.6  Activities and sequences of activities

Phase in a
sequence of 
processes  

FIGURE P.7  Entry in a value chain
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4
Overall Architecture

A distributed system is one in which the failure of a computer  
you didn’t even know existed can render you own computer unusable.

—Leslie Lamport

In this chapter we begin to see the structural implications of the DevOps practices. 
These practices have implications with respect to both the overall structure of 
the system and techniques that should be used in the system’s elements. DevOps 
achieves its goals partially by replacing explicit coordination with implicit and 
often less coordination, and we will see how the architecture of the system being 
developed acts as the implicit coordination mechanism. We begin by discussing 
whether DevOps practices necessarily imply architectural change.

4.1	 Do DevOps Practices Require Architectural 
Change?

You may have a large investment in your current systems and your current 
architecture. If you must re-architect your systems in order to take advantage of 
DevOps, a legitimate question is “Is it worth it?” In this section we see that some 
DevOps practices are independent of architecture, whereas in order to get the full 
benefit of others, architectural refactoring may be necessary.

Recall from Chapter 1 that there are five categories of DevOps practices.

1.	 Treat Ops as first-class citizens from the point of view of requirements. 
Adding requirements to a system from Ops may require some architectural 
modification. In particular, the Ops requirements are likely to be in the 
area of logging, monitoring, and information to support incident handling. 
These requirements will be like other requirements for modifications to a 
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system: possibly requiring some minor modifications to the architecture 
but, typically, not drastic modifications.

2.	 Make Dev more responsible for relevant incident handling. By itself, 
this change is just a process change and should require no architectural 
modifications. However, just as with the previous category, once 
Dev becomes aware of the requirements for incident handling, some 
architectural modifications may result.

3.	 Enforce deployment process used by all, including Dev and Ops personnel. 
In general, when a process becomes enforced, some individuals may 
be required to change their normal operating procedures and, possibly, 
the structure of the systems on which they work. One point where a 
deployment process could be enforced is in the initiation phase of each 
system. Each system, when it is initialized, verifies its pedigree. That is, it 
arrived at execution through a series of steps, each of which can be checked 
to have occurred. Furthermore, the systems on which it depends (e.g., 
operating systems or middleware) also have verifiable pedigrees.

4.	 Use continuous deployment. Continuous deployment is the practice that 
leads to the most far-reaching architectural modifications. On the one 
hand, an organization can introduce continuous deployment practices 
with no major architectural changes. See, for example, our case study in 
Chapter 12. On the other hand, organizations that have adopted continuous 
deployment practices frequently begin moving to a microservice-based 
architecture. See, for example, our case study in Chapter 13. We explore the 
reasons for the adoption of a microservice architecture in the remainder of 
this chapter

5.	 Develop infrastructure code with the same set of practices as application 
code. These practices will not affect the application code but may affect the 
architecture of the infrastructure code.

4.2	 Overall Architecture Structure

Before delving into the details of the overall structure, let us clarify how we use 
certain terminology. The terms module and component are frequently overloaded 
and used in different fashions in different writings. For us, a module is a code unit 
with coherent functionality. A component is an executable unit. A compiler or 
interpreter turns modules into binaries, and a builder turns the binaries into com-
ponents. The development team thus directly develops modules. Components are 
results of the modules developed by development teams, and so it is possible to 
speak of a team developing a component, but it should be clear that the develop-
ment of a component is an indirect activity of a development team.
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As we described in Chapter 1, development teams using DevOps pro-
cesses are usually small and should have limited inter-team coordination. Small 
teams imply that each team has a limited scope in terms of the components they 
develop. When a team deploys a component, it cannot go into production unless 
the component is compatible with other components with which it interacts. This 
compatibility can be ensured explicitly through multi-team coordination, or it can 
be ensured implicitly through the definition of the architecture.

An organization can introduce continuous deployment without major archi-
tectural modifications. For example, the case study in Chapter 12 is fundamen-
tally architecture-agnostic. Dramatically reducing the time required to place a 
component into production, however, requires architectural support:

nn Deploying without the necessity of explicit coordination with other teams 
reduces the time required to place a component into production.

nn Allowing for different versions of the same service to be simultaneously in 
production leads to different team members deploying without coordination 
with other members of their team.

nn Rolling back a deployment in the event of errors allows for various forms 
of live testing.

Microservice architecture is an architectural style that satisfies these 
requirements. This style is used in practice by organizations that have adopted or 
inspired many DevOps practices. Although project requirements may cause devi-
ations to this style, it remains a good general basis for projects that are adopting 
DevOps practices.

A microservice architecture consists of a collection of services where each 
service provides a small amount of functionality and the total functionality of the 
system is derived from composing multiple services. In Chapter 6, we also see 
that a microservice architecture, with some modifications, gives each team the 
ability to deploy their service independently from other teams, to have multiple 
versions of a service in production simultaneously, and to roll back to a prior 
version relatively easily.

Figure 4.1 describes the situation that results from using a microservice 
architecture. A user interacts with a single consumer-facing service. This service, 
in turn, utilizes a collection of other services. We use the terminology service to 
refer to a component that provides a service and client to refer to a component 
that requests a service. A single component can be a client in one interaction and 
a service in another. In a system such as LinkedIn, the service depth may reach as 
much as 70 for a single user request.

Having an architecture composed of small services is a response to having 
small teams. Now we look at the aspects of an architecture that can be specified 
globally as a response to the requirement that inter-team coordination be min-
imized. We discuss three categories of design decisions that can be made glob-
ally as a portion of the architecture design, thus removing the need for inter-team 
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coordination with respect to these decisions. The three categories are: the coordina-
tion model, management of resources, and mapping among architectural elements.

Coordination Model

If two services interact, the two development teams responsible for those services 
must coordinate in some fashion. Two details of the coordination model that can 
be included in the overall architecture are: how a client discovers a service that it 
wishes to use, and how the individual services communicate.

Figure 4.2 gives an overview of the interaction between a service and its 
client. The service registers with a registry. The registration includes a name for 
the service as well as information on how to invoke it, for example, an endpoint 
location as a URL or an IP address. A client can retrieve the information about 
the service from the registry and invoke the service using this information. If the 
registry provides IP addresses, it acts as a local DNS server—local, because typi-
cally, the registry is not open to the general Internet but is within the environment 
of the application. Netflix Eureka is an example of a cloud service registry that 
acts as a DNS server. The registry serves as a catalogue of available services, and 

Business Service

Microservice

Microservice

Microservice Microservice Microservice

Microservice Microservice Microservice

MicroserviceMicroservice Microservice

Figure 4.1  User interacting with a single service that, in turn, utilizes multiple 
other services [Notation: Architecture]
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can further be used to track aspects such as versioning, ownership, service level 
agreements (SLAs), etc., for the set of services in an organization. We discuss 
extensions to the registry further in Chapter 6.

There will typically be multiple instances of a service, both to support a 
load too heavy for a single instance and to guard against failure. The registry can 
rotate among the instances registered to balance the load. That is, the registry acts 
as a load balancer as well as a registry. Finally, consider the possibility that an 
instance of a service may fail. In this case, the registry should not direct the client 
to the failed instance. By requiring the service to periodically renew its registra-
tion or proactively checking the health of the service, a guard against failure is put 
in place. If the service fails to renew its registration within the specified period, it 
is removed from the registry. Multiple instances of the service typically exist, and 
so the failure of one instance does not remove the service. The above-mentioned 
Netflix Eureka is an example for a registry offering load balancing. Eureka sup-
ports the requirement that services periodically renew their registration.

The protocol used for communication between the client and the service can 
be any remote communication protocol, for example, HTTP, RPC, SOAP, etc. 
The service can provide a RESTful interface or not. The remote communication 
protocol should be the only means for communication among the services. The 
details of the interface provided by the service still require cross-team coordina-
tion. When we discuss the example of Amazon later, we will see one method of 
providing this coordination. We will also see an explicit requirement for restrict-
ing communication among services to the remote communication protocol.

Management of Resources

Two types of resource management decisions can be made globally and incor-
porated in the architecture—provisioning/deprovisioning VMs and managing 
variation in demand.

Instance of a 
Service

Registry /
Load Balancer

Client

QueryInvoke

Register

Figure 4.2  An instance of a service registers itself with the registry, the client 
queries the registry for the address of the service and invokes the service. 
[Notation: Architecture]
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Provisioning and Deprovisioning VMs
New VMs can be created in response to client demand or to failure. When the 
demand subsides, instances should be deprovisioned. If the instances are stateless 
(i.e., they do not retain any information between requests), a new instance can be 
placed into service as soon as it is provisioned. Similarly, if no state is kept in an 
instance, deprovisioning becomes relatively painless: After a cool-down period 
where the instance receives no new requests and responds to existing ones, the 
instance can be deprovisioned. The cool-down period should therefore be long 
enough for an instance to respond to all requests it received (i.e., the backlog). 
If you deprovision an instance due to reduced demand, the backlog should be 
fairly small—in any other case this action needs to be considered carefully. An 
additional advantage of a stateless service is that messages can be routed to any 
instance of that service, which facilitates load sharing among the instances.

This leads to a global decision to maintain state external to a service 
instance. As discussed in Chapter 2, large amounts of application state can be 
maintained in persistent storage, small amounts of application state can be main-
tained by tools such as ZooKeeper, and client state should not be maintained on 
the provider’s side anyway.

Determining which component controls the provisioning and deprovision-
ing of a new instance for a service is another important aspect. Three possibilities 
exist for the controlling component.

1.	 A service itself can be responsible for (de)provisioning additional instances. 
A service can know its own queue lengths and its own performance in 
response to requests. It can compare these metrics to thresholds and (de)
provision an instance itself if the threshold is crossed. Assuming that the 
distribution of requests is fair, in some sense, across all instances of the 
service, one particular instance (e.g., the oldest one) of the service can 
make the decision when to provision or deprovision instances. Thus, the 
service is allowed to expand or shrink capacity to meet demand.

2.	 A client or a component in the client chain can be responsible for (de)
provisioning instances of a service. For instance, the client, based on the 
demands on it, may be aware that it will shortly be making demands on 
the service that exceed a given threshold and provisions new instances of 
the service.

3.	 An external component monitors the performance of service instances (e.g., 
their CPU load) and (de)provisions an instance when the load reaches a 
given threshold. Amazon’s autoscaling groups provide this capability, in 
collaboration with the CloudWatch monitoring system.

Managing Demand
The number of instances of an individual service that exist should reflect the 
demand on the service from client requests. We just discussed several different 
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methods for provisioning and deprovisioning instances, and these methods make 
different assumptions about how demand is managed.

nn One method for managing demand is to monitor performance. Other 
decisions to be made include determining how to implement monitoring 
(e.g., whether done internally by running a monitoring agent inside 
each service instance or externally by a specialized component). That 
is, when demand grows that needs to be detected, a new instance can be 
provisioned. It takes time to provision a new instance, so it is important that 
the indicators are timely and even predictive to accommodate for that time. 
We discuss more details about monitoring in Chapter 7.

nn Another possible technique is to use SLAs to control the number of 
instances. Each instance of the service guarantees through its SLAs that it 
is able to handle a certain number of requests with a specified latency. The 
clients of that service then know how many requests they can send and still 
receive a response within the specified latency. This technique has several 
constraints. First, it is likely that the requirements that a client imposes 
on your service will depend on the requirements imposed on the client, so 
there is a cascading effect up through the demand chain. This cascading 
will cause uncertainty in both the specification and the realization of the 
SLAs. A second constraint of the SLA technique is that each instance of 
your service may know how many requests it can handle, but the client 
has multiple available instances of your service. Thus, the provisioning 
component has to know how many instances currently exist of your service.

Mapping Among Architectural Elements

The final type of coordination decision that can be specified in the architecture 
is the mapping among architectural elements. We discuss two different types of 
mappings—work assignments and allocation. Both of these are decisions that are 
made globally.

nn Work assignments. A single team may work on multiple modules, but 
having multiple development teams work on the same module requires 
a great deal of coordination among those development teams. Since 
coordination takes time, an easier structure is to package the work of a 
single team into modules and develop interfaces among the modules to 
allow modules developed by different teams to interoperate. In fact, the 
original definition of a module by David Parnas in the 1970s was as a work 
assignment of a team. Although not required, it is reasonable that each 
component (i.e., microservice) is the responsibility of a single development 
team. That is, the set of modules that, when linked, constitute a component 
are the output of a single development team. This does not preclude a 
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single development team from being responsible for multiple components 
but it means that any coordination involving a component is settled within 
a single development team, and that any coordination involving multiple 
development teams goes across components. Given the set of constraints 
on the architecture we are describing, cross-team coordination requirements 
are limited.

nn Allocation. Each component (i.e., microservice) will exist as an 
independent deployable unit. This allows each component to be allocated 
to a single (virtual) machine or container, or it allows multiple components 
to be allocated to a single (virtual) machine. The redeployment or upgrade 
of one microservice will not affect any other microservices. We explore this 
choice in Chapter 6.

4.3	 Quality Discussion of Microservice Architecture

We have described an architectural style—microservice architecture—that reduces 
the necessity for inter-team coordination by making global architectural choices. 
The style provides some support for the qualities of dependability (stateless ser-
vices) and modifiability (small services), but there are additional practices that a 
team should use to improve both dependability and modifiability of their services.

Dependability

Three sources for dependability problems are: the small amount of inter-team 
coordination, correctness of environment, and the possibility that an instance of 
a service can fail.

Small Amount of Inter-team Coordination
The limited amount of inter-team coordination may cause misunderstandings 
between the team developing a client and the team developing a service in terms 
of the semantics of an interface. In particular, unexpected input to a service or 
unexpected output from a service can happen. There are several options. First, 
a team should practice defensive programming and not assume that the input or 
the results of a service invocation are correct. Checking values for reasonable-
ness will help detect errors early. Providing a rich collection of exceptions will 
enable faster determination of the cause of an error. Second, integration and end-
to-end testing with all or most microservices should be done judiciously. It can 
be expensive to run these tests frequently due to the involvement of a potentially 
large number of microservices and realistic external resources. A testing practice 
called Consumer Driven Contract (CDC) can be used to alleviate the problem. 
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That is, the test cases for testing a microservice are decided and even co-owned 
by all the consumers of that microservice. Any changes to the CDC test cases 
need to be agreed on by both the consumers and the developers of the microser-
vice. Running the CDC test cases, as a form of integration testing, is less expen-
sive than running end-to-end test cases. If CDC is practiced properly, confidence 
in the microservice can be high without running many end-to-end test cases.

CDC serves as a method of coordination and has implications on how user 
stories of a microservice should be made up and evolve over time. Consumers 
and microservice developers collectively make up and own the user stories. 
CDC definition becomes a function of the allocation of functionality to the 
microservice, is managed by the service owner as a portion of the coordination 
that defines the next iteration, and, consequently, does not delay the progress of 
the current iteration.

Correctness of Environment
A service will operate in multiple different environments during the passage from 
unit test to post-production. Each environment is provisioned and maintained 
through code and a collection of configuration parameters. Errors in code and 
configuration parameters are quite common. Inconsistent configuration parame-
ters are also possible. Due to a degree of uncertainty in cloud-based infrastruc-
ture, even executing the correct code and configuration may lead to an incorrect 
environment. Thus, the initialization portion of a service should test its current 
environment to determine whether it is as expected. It should also test the config-
uration parameters to detect, as far as possible, unexpected inconsistencies from 
different environments. If the behavior of the service depends on its environment 
(e.g., certain actions are performed during unit test but not during production), 
then the initialization should determine the environment and provide the settings 
for turning on or off the behavior. An important trend in DevOps is to manage all 
the code and parameters for setting up an environment just as you manage your 
application code, with proper version control and testing. This is an example of 
“infrastructure-as-code” as defined in Chapter 1 and discussed in more detail in 
Chapter 5. The testing of infrastructure code is a particularly challenging issue. 
We discuss the issues in Chapters 7 and 9.

Failure of an Instance
Failure is always a possibility for instances. An instance is deployed onto a physical 
machine, either directly or through the use of virtualization, and in large datacenters, 
the failure of a physical machine is common. The standard method through which 
a client detects the failure of an instance of a service is through the timeout of a 
request. Once a timeout has occurred, the client can issue a request again and, 
depending on the routing mechanism used, assume it is routed to a different instance 
of the service. In the case of multiple timeouts, the service is assumed to have failed 
and an alternative means of achieving the desired goal can be attempted.
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Figure 4.3 shows a time line for a client attempting to access a failed service. 
The client makes a request to the service, and it times out. The client repeats the 
request, and it times out again. At this point, recognizing the failure has taken twice 
the timeout interval. Having a short timeout interval (failing fast) will enable a 
more rapid response to the client of the client requesting the service. A short time-
out interval may, however, introduce false positives in that the service instance may 
just be slow for some reason. The result may be that both initial requests for service 
actually deliver the service, just not in a timely fashion. Another result may be that 
the alternative action is performed as well. Services should be designed so that 
multiple invocations of the same service will not introduce an error. Idempotent 
is the term for a service that can be repeatedly invoked with the same input and 
always produces the same output—namely, no error is generated.

Another point highlighted in Figure 4.3 is that the service has an alterna-
tive action. That is, the client has an alternative action in case the service fails. 
Figure 4.3 does not show what happens if there is no alternative action. In this 
case, the service reports failure to its client together with context information—
namely, no response from the particular underlying service. We explore the topic 
of reporting errors in more depth in Chapter 7.

Modifiability

Making a service modifiable comes down to making likely changes easy and 
reducing the ripple effects of those changes. In both cases, a method for making 
the service more modifiable is to encapsulate either the affected portions of a 
likely change or the interactions that might cause ripple effects of a change.

Assume failure and 
attempt alternative 
action

Request

Service

Repeat Request

Client

Figure 4.3  Time line in recognizing failure of a dependent service [Notation: 
UML Sequence Diagram]
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Identifying Likely Changes
Some likely changes that come from the development process, rather than the 
service being provided, are:

nn The environments within which a service executes. A module goes through 
unit tests in one environment, integration tests in another, acceptance tests 
in a third, and is in production in a fourth.

nn The state of other services with which your service interacts. If other 
services are in the process of development, then the interfaces and 
semantics of those services are likely to change relatively quickly. Since 
you may not know the state of the external service, a safe practice is to 
treat, as much as possible, all communication with external services as 
likely to change.

nn The version of third-party software and libraries that are used by 
your service. Third-party software and libraries can change arbitrarily, 
sometimes in ways that are disruptive for your service. In one case we 
heard, an external system removed an essential interface during the time the 
deployment process was ongoing. Using the same VM image in different 
environments will protect against those changes that are contained within 
the VM but not against external system changes.

Reducing Ripple Effects
Once likely changes have been discovered, you should prevent these types of 
changes from rippling through your service. This is typically done by introduc-
ing modules whose sole purpose is to localize and isolate changes to the envi-
ronment, to other services, or to third-party software or libraries. The remainder 
of your service interacts with these changeable entities through the newly intro-
duced modules with stable interfaces.

Any interaction with other services, for example, is mediated by the special 
module. Changes to the other services are reflected in the mediating module and 
buffered from rippling to the remainder of your service. Semantic changes to 
other services may, in fact, ripple, but the mediating module can absorb some of 
the impact, thereby reducing this ripple effect.

4.4	 Amazon’s Rules for Teams

As we mentioned in Chapter 1, Amazon has a rule that no team should be larger 
than can be fed with two pizzas; in the early years of this century they adopted 
an internal microservice architecture. Associated with the adoption was a list of 
rules to follow about how to use the services:
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nn “All teams will henceforth expose their data and functionality through 
service interfaces.

nn Teams must communicate with each other through these interfaces.
nn There will be no other form of inter-service/team communication allowed: 

no direct linking, no direct reads of another team’s datastore, no shared-
memory model, no backdoors whatsoever. The only communication 
allowed is via service interface calls over the network.

nn It doesn’t matter what technology they [other services] use.
nn All service interfaces, without exception, must be designed from the ground 

up to be externalizable. That is to say, the team must plan and design to be 
able to expose the interface to developers in the outside world.”

Each team produces some number of services. Every service is totally encap-
sulated except for its public interface. If another team wishes to use a service, it must 
discover the interface. The documentation for the interface must include enough 
semantic information to enable the user of a service to determine appropriate defi-
nitions for items such as “customer” or “address.” These concepts can sometimes 
have differing meanings within different portions of an organization. The seman-
tic information about an interface can be kept in the registry/load balancer that we 
described earlier, assuming that the semantic information is machine interpretable.

By making every service potentially externally available, whether or not to 
offer a service globally or keep it local becomes a business decision, not a tech-
nical one. External services can be hidden behind an application programming 
interface (API) bound through a library, and so this requirement is not prejudging 
the technology used for the interface.

A consequence of these rules is that Amazon has an extensive collection of 
services. A web page from their sales business makes use of over 150 services. 
Scalability is managed by each service individually and is included in its SLA in 
the form of a guaranteed response time given a particular load. The contract covers 
what the service promises against certain demand levels. The SLA binds both the 
client side and the service side. If the client’s demand exceeds the load promised in 
the SLA, then slow response times become the client’s problem, not the service’s.

4.5	 Microservice Adoption for Existing Systems

Although microservices reflect the small, independent team philosophy of 
DevOps, most organizations have large mission-critical systems that are not 
architected that way. These organizations need to decide whether to migrate 
their architectures to microservice architectures, and which ones to migrate. We 
discuss this migration somewhat in Chapter 10. Some of the things an architect 
thinking of adopting a microservice architecture should ensure are the following:
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nn Operational concerns are considered during requirements specification.
nn The overarching structure of the system being developed should be a 

collection of small, independent services.
nn Each service should be distrustful of both clients and other required 

services.
nn Team roles have been defined and are understood.
nn Services are required to be registered with a local registry/load balancer.
nn Services must renew their registration periodically.
nn Services must provide SLAs for their clients.
nn Services should aim to be stateless and be treated as transient.
nn If a service has to maintain state, it should be maintained in external 

persistent storage.
nn Services have alternatives in case a service they depend on fails.
nn Services have defensive checks to intercept erroneous input from clients 

and output from other services.
nn Uses of external services, environmental information, and third-party 

software and libraries are localized (i.e., they require passage through 
a module specific to that external service, environment information, or 
external software or library).

However, adopting a microservice architecture will introduce new chal-
lenges. When an application is composed of a large number of network-connected 
microservices, there can be latency and other performance issues. Authentication 
and authorization between services need to be carefully designed so that they 
do not add intolerable overhead. Monitoring, debugging, and distributed tracing 
tools may need to be modified to suit microservices. As mentioned earlier, end-
to-end testing will be expensive. Rarely can you rebuild your application from 
scratch without legacy components or existing data.

Migrating from your current architecture to a microservice architecture 
incrementally without data loss and interruption is a challenge. You may need 
to build interim solutions during this migration. We discuss these challenges 
and some solutions in the Atlassian case study in Chapter 13, wherein Atlassian 
describes the initial steps of their journey to a microservice architecture. An archi-
tect should have a checklist of things to consider when performing a migration.

4.6	 Summary

The DevOps goal of minimizing coordination among various teams can be achieved 
by using a microservice architectural style where the coordination mechanism, the 
resource management decisions, and the mapping of architectural elements are all 
specified by the architecture and hence require minimal inter-team coordination.
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A collection of practices for development can be added to the microservice 
architectural style to achieve dependability and modifiability, such as identifying 
and isolating areas of likely change.

Adopting a microservice architectural style introduces additional challenges 
in monitoring, debugging, performance management, and testing. Migrating 
from an existing architecture to a microservice architectural style requires careful 
planning and commitment.

4.7	 For Further Reading

For more information about software architecture, we recommend the following 
books:

nn Documenting Software Architectures, 2nd Edition [Clements 10]
nn Software Architecture in Practice, 3rd Edition [Bass 13]

Service description, cataloguing, and management are discussed in detail in 
the Handbook of Service Description [Barros 12]. This book describes services 
that are externally visible, not microservices, but much of the discussion is rele-
vant to microservices as well.

The microservice architectural style is described in the book Building 
Microservices: Designing Fine-Grained Systems [Newman 15].

Many organizations are already practicing a version of the microservice 
architectural development and DevOps, and sharing their valuable experiences.

nn You can read more about the Amazon example here: http://apievangelist 
.com/2012/01/12/the-secret-to-amazons-success-internal-apis/ and http://
www.zdnet.com/blog/storage/soa-done-right-the-amazon-strategy/152

nn Netflix points out some challenges in using microservice architecture at 
scale [Tonse 14].

The Netflix implementation of Eureka—their open source internal load 
balancer/registry—can be found at https://github.com/Netflix/eureka/wiki/
Eureka-at-a-glance

Consumer Driven Contracts (CDCs) are discussed in Martin Fowler’s blog 
“Consumer-Driven Contracts: A Service Evolution Pattern,” [Fowler 06].

http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/
http://www.zdnet.com/blog/storage/soa-done-right-the-amazon-strategy/152
http://www.zdnet.com/blog/storage/soa-done-right-the-amazon-strategy/152
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
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