

Data Analytics
with Spark Using

Python

T he Pearson Addison-Wesley Data and Analytics Series provides readers with
practical knowledge for solving problems and answering questions with data.
Titles in this series primarily focus on three areas:

1. Infrastructure: how to store, move, and manage data

2. Algorithms: how to mine intelligence or make predictions based on data

3. Visualizations: how to represent data and insights in a meaningful and
compelling way

The series aims to tie all three of these areas together to help the reader build
end-to-end systems for fighting spam; making recommendations; building
personalization; detecting trends, patterns, or problems; and gaining insight
from the data exhaust of systems and user interactions.

Visit informit.com/awdataseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Pearson Addison-Wesley
Data and Analytics Series

http://informit.com/awdataseries
http://informit.com/socialconnect

Data Analytics
with Spark Using

Python

Jeffrey Aven

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam
Cape Town • Dubai • London • Madrid • Milan • Munich • Paris
Montreal • Toronto • Delhi • Mexico City • São Paulo • Sydney

Hong Kong • Seoul • Singapore • Taipei • Tokyo

Editor-in-Chief

Greg Wiegand

Executive Editor

Trina MacDonald

Development Editor

Amanda Kaufmann

Managing Editor

Sandra Schroeder

Senior Project
Editor

Lori Lyons

Technical Editor

Yaniv Rodenski

Copy Editor

Catherine D.
Wilson

Project Manager

Dhayanidhi
Karunanidhi

Indexer

Erika Millen

Proofreader

Jeanine Furino

Cover Designer

Chuti Prasertsith

Compositor

codemantra

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2018938456

© 2018 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
 system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms, and the
 appropriate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearsoned.com/permissions/.

Microsoft and/or its respective suppliers make no representations about the suitability of
the information contained in the documents and related graphics published as part of the
services for any purpose. All such documents and related graphics are provided “as is”
without warranty of any kind. Microsoft and/ or its respective suppliers hereby disclaim
all warranties and conditions with regard to this information, including all warranties and
conditions of merchantability, whether express, implied or statutory, fitness for a particular
purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppli-
ers be liable for any special, indirect or consequential damages or any damages whatsoever
resulting from loss of use, data or profits, whether in an action of contract, negligence or
other tortious action, arising out of or in connection with the use or performance of informa-
tion available from the services. The documents and related graphics contained herein could
include technical inaccuracies or typographical errors. Changes are periodically added to
the information herein. Microsoft and/or its respective suppliers may make improvements
and/or changes in the product(s) and/or the program(s) described herein at any time. Partial
screenshots may be viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft
Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by
or affiliated with the Microsoft Corporation.

ISBN-13: 978-0-13-484601-9
ISBN-10: 0-13-484601-X

1 18

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

Contents at a Glance

Preface xi

Introduction 1

I: Spark Foundations

 1 Introducing Big Data, Hadoop, and Spark 5

 2 Deploying Spark 27

 3 Understanding the Spark Cluster Architecture 45

 4 Learning Spark Programming Basics 59

II: Beyond the Basics

 5 Advanced Programming Using the Spark Core API 111

 6 SQL and NoSQL Programming with Spark 161

 7 Stream Processing and Messaging Using Spark 209

 8 Introduction to Data Science and Machine Learning Using Spark 243

 Index 281

Table of Contents

 Preface xi

 Introduction 1

I: Spark Foundations

 1 Introducing Big Data, Hadoop, and Spark 5

Introduction to Big Data, Distributed Computing, and Hadoop 5

A Brief History of Big Data and Hadoop 6

Hadoop Explained 7

Introduction to Apache Spark 13

Apache Spark Background 13

Uses for Spark 14

Programming Interfaces to Spark 14

Submission Types for Spark Programs 14

Input/Output Types for Spark Applications 16

The Spark RDD 16

Spark and Hadoop 16

Functional Programming Using Python 17

Data Structures Used in Functional Python Programming 17

Python Object Serialization 20

Python Functional Programming Basics 23

Summary 25

 2 Deploying Spark 27

Spark Deployment Modes 27

Local Mode 28

Spark Standalone 28

Spark on YARN 29

Spark on Mesos 30

Preparing to Install Spark 30

Getting Spark 31

Installing Spark on Linux or Mac OS X 32

Installing Spark on Windows 34

Exploring the Spark Installation 36

Deploying a Multi-Node Spark Standalone Cluster 37

viiContents

Deploying Spark in the Cloud 39

Amazon Web Services (AWS) 39

Google Cloud Platform (GCP) 41

Databricks 42

Summary 43

 3 Understanding the Spark Cluster Architecture 45

Anatomy of a Spark Application 45

Spark Driver 46

Spark Workers and Executors 49

The Spark Master and Cluster Manager 51

Spark Applications Using the Standalone Scheduler 53

Spark Applications Running on YARN 53

Deployment Modes for Spark Applications Running on YARN 53

Client Mode 54

Cluster Mode 55

Local Mode Revisited 56

Summary 57

 4 Learning Spark Programming Basics 59

Introduction to RDDs 59

Loading Data into RDDs 61

Creating an RDD from a File or Files 61

Methods for Creating RDDs from a Text File or Files 63

Creating an RDD from an Object File 66

Creating an RDD from a Data Source 66

Creating RDDs from JSON Files 69

Creating an RDD Programmatically 71

Operations on RDDs 72

Key RDD Concepts 72

Basic RDD Transformations 77

Basic RDD Actions 81

Transformations on PairRDDs 85

MapReduce and Word Count Exercise 92

Join Transformations 95

Joining Datasets in Spark 100

Transformations on Sets 103

Transformations on Numeric RDDs 105

Summary 108

viii Contents

II: Beyond the Basics

 5 Advanced Programming Using the Spark Core API 111

Shared Variables in Spark 111

Broadcast Variables 112

Accumulators 116

Exercise: Using Broadcast Variables and Accumulators 119

Partitioning Data in Spark 120

Partitioning Overview 120

Controlling Partitions 121

Repartitioning Functions 123

Partition-Specific or Partition-Aware API Methods 125

RDD Storage Options 127

RDD Lineage Revisited 127

RDD Storage Options 128

RDD Caching 131

Persisting RDDs 131

Choosing When to Persist or Cache RDDs 134

Checkpointing RDDs 134

Exercise: Checkpointing RDDs 136

Processing RDDs with External Programs 138

Data Sampling with Spark 139

Understanding Spark Application and Cluster Configuration 141

Spark Environment Variables 141

Spark Configuration Properties 145

Optimizing Spark 148

Filter Early, Filter Often 149

Optimizing Associative Operations 149

Understanding the Impact of Functions and Closures 151

Considerations for Collecting Data 152

Configuration Parameters for Tuning and Optimizing Applications 152

Avoiding Inefficient Partitioning 153

Diagnosing Application Performance Issues 155

Summary 159

 6 SQL and NoSQL Programming with Spark 161

Introduction to Spark SQL 161

Introduction to Hive 162

Spark SQL Architecture 166

ixContents

Getting Started with DataFrames 168

Using DataFrames 179

Caching, Persisting, and Repartitioning DataFrames 187

Saving DataFrame Output 188

Accessing Spark SQL 191

Exercise: Using Spark SQL 194

Using Spark with NoSQL Systems 195

Introduction to NoSQL 196

Using Spark with HBase 197

Exercise: Using Spark with HBase 200

Using Spark with Cassandra 202

Using Spark with DynamoDB 204

Other NoSQL Platforms 206

Summary 206

 7 Stream Processing and Messaging Using Spark 209

Introducing Spark Streaming 209

Spark Streaming Architecture 210

Introduction to DStreams 211

Exercise: Getting Started with Spark Streaming 218

State Operations 219

Sliding Window Operations 221

Structured Streaming 223

Structured Streaming Data Sources 224

Structured Streaming Data Sinks 225

Output Modes 226

Structured Streaming Operations 227

Using Spark with Messaging Platforms 228

Apache Kafka 229

Exercise: Using Spark with Kafka 234

Amazon Kinesis 237

Summary 240

 8 Introduction to Data Science and Machine Learning Using Spark 243

Spark and R 243

Introduction to R 244

Using Spark with R 250

Exercise: Using RStudio with SparkR 257

x Contents

Machine Learning with Spark 259

Machine Learning Primer 259

Machine Learning Using Spark MLlib 262

Exercise: Implementing a Recommender Using Spark MLlib 267

Machine Learning Using Spark ML 271

Using Notebooks with Spark 275

Using Jupyter (IPython) Notebooks with Spark 275

Using Apache Zeppelin Notebooks with Spark 278

Summary 279

 Index 281

Preface

Spark is at the heart of the disruptive Big Data and open source software revolution. The interest
in and use of Spark have grown exponentially, with no signs of abating. This book will prepare
you, step by step, for a prosperous career in the Big Data analytics field.

Focus of the Book

This book focuses on the fundamentals of the Spark project, starting from the core and working
outward into Spark’s various extensions, related or subprojects, and the broader ecosystem of
open source technologies such as Hadoop, Kafka, Cassandra, and more.

Although the foundational understanding of Spark concepts covered in this book—including
the runtime, cluster and application architecture—are language independent and agnostic, the
majority of the programming examples and exercises in this book are written in Python. The
Python API for Spark (PySpark) provides an intuitive programming environment for data analysts,
data engineers, and data scientists alike, offering developers the flexibility and extensibility of
Python with the distributed processing power and scalability of Spark.

The scope of this book is quite broad, covering aspects of Spark from core Spark programming to
Spark SQL, Spark Streaming, machine learning, and more. This book provides a good introduction
and overview for each topic—enough of a platform for you to build upon any particular area or
discipline within the Spark project.

Who Should Read This Book

This book is intended for data analysts and engineers looking to enter the Big Data space or
consolidate their knowledge in this area. The demand for engineers with skills in Big Data and its
preeminent processing framework, Spark, is exceptionally high at present. This book aims to prepare
readers for this growing employment market and arm them with the skills employers are looking for.

Python experience is useful but not strictly necessary for readers of this book as Python is quite
intuitive for anyone with any programming experience whatsoever. A good working knowledge of
data analysis and manipulation would also be helpful. This book is especially well suited to data
warehouse professionals interested in expanding their careers into the Big Data area.

How to Use This Book

This book is structured into two parts and eight chapters. Part I, “Spark Foundations,” includes
four chapters designed to build a solid understanding of what Spark is, how to deploy Spark, and
how to use Spark for basic data processing operations:

 Chapter 1, “Introducing Big Data, Hadoop and Spark,” provides a good overview of the Big
Data ecosystem, including the genesis and evolution of the Spark project. Key properties of
the Spark project are discussed, including what Spark is and how it is used, as well as how
Spark relates to the Hadoop project.

 Chapter 2, “Deploying Spark,” demonstrates how to deploy a Spark cluster, including the
various Spark cluster deployment modes and the different ways you can leverage Spark.

 Chapter 3, “Understanding the Spark Cluster Architecture,” discusses how Spark clusters
and applications operate, providing a solid understanding of exactly how Spark works.

 Chapter 4, “Learning Spark Programming Basics,” focuses on the basic programming
building blocks of Spark using the Resilient Distributed Dataset (RDD) API.

Part II, “Beyond the Basics,” includes the final four chapters, which extend beyond the Spark
core into its uses with SQL and NoSQL systems, streaming applications, and data science and
machine learning:

 Chapter 5, “Advanced Programming Using the Spark Core API,” covers advanced constructs
used to extend, accelerate, and optimize Spark routines, including different shared variables
and RDD storage and partitioning concepts and implementations.

 Chapter 6, “SQL and NoSQL Programming with Spark,” discusses Spark’s integration into
the vast SQL landscape as well as its integration with non-relational stores.

 Chapter 7, “Stream Processing and Messaging Using Spark,” introduces the Spark streaming
project and the fundamental DStream object. It also covers Spark’s use with popular
messaging systems such as Apache Kafka.

 Chapter 8, “Introduction to Data Science and Machine Learning Using Spark,” provides
an introduction to predictive modeling using Spark with R as well as the Spark MLlib
subproject used to implement machine learning with Spark.

Book Conventions

Key terms or concepts are highlighted in italic. Code, object, and file references are displayed in a
monospaced font.

Step-by-step exercises are provided to consolidate each topic.

Accompanying Code and Data for the Exercises

Sample data and source code for each of the exercises in this book is available at
http://sparkusingpython.com. You can also view or clone the GitHub repository for this
book at https://github.com/sparktraining/spark_using_python.

Register This Book

Register your copy of Data Analytics with Spark Using Python on the InformIT site for conve-
nient access to updates and/or corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account. Enter the product ISBN
(9780134846019) and click Submit. Look on the Registered Products tab for an Access Bonus
Content link next to this product, and follow that link to access any available bonus materi-
als. If you would like to be notified of exclusive offers on new editions and updates, please
check the box to receive email from us.

http://sparkusingpython.com
https://github.com/sparktraining/spark_using_python
http://informit.com/register

About the Author

Jeffrey Aven is an independent Big Data, open source software and cloud computing professional
based out of Melbourne, Australia. Jeffrey is a highly regarded consultant and instructor and has
authored several other books including Teach Yourself Apache Spark in 24 Hours and Teach Yourself
Hadoop in 24 Hours.

This page intentionally left blank

3
Understanding the Spark

Cluster Architecture

It is not the beauty of a building you should look at; it’s the construction
of the foundation that will stand the test of time.

David Allan Coe, American songwriter

In This Chapter:

 Detailed overview of the Spark application and cluster components

 Spark resource schedulers and Cluster Managers

 How Spark applications are scheduled on YARN clusters

 Spark deployment modes

Before you begin your journey as a Spark programmer, you should have a solid understanding
of the Spark application architecture and how applications are executed on a Spark cluster. This
chapter closely examines the components of a Spark application, looks at how these components
work together, and looks at how Spark applications run on Standalone and YARN clusters.

Anatomy of a Spark Application

A Spark application contains several components, all of which exist whether you’re running Spark
on a single machine or across a cluster of hundreds or thousands of nodes.

Each component has a specific role in executing a Spark program. Some of these roles, such as the
client components, are passive during execution; other roles are active in the execution of the
program, including components executing computation functions.

46 Chapter 3 Understanding the Spark Cluster Architecture

The components of a Spark application are the Driver, the Master, the Cluster Manager, and
the Executor(s), which run on worker nodes, or Workers. Figure 3.1 shows all the Spark components
in the context of a Spark Standalone application. You will learn more about each component and
its function in more detail later in this chapter.

Figure 3.1 Spark Standalone cluster application components.

All Spark components, including the Driver, Master, and Executor processes, run in Java virtual
machines (JVMs). A JVM is a cross-platform runtime engine that can execute instructions
compiled into Java bytecode. Scala, which Spark is written in, compiles into bytecode and runs
on JVMs.

It is important to distinguish between Spark’s runtime application components and the loca-
tions and node types on which they run. These components run in different places using differ-
ent deployment modes, so don’t think of these components in physical node or instance terms.
For instance, when running Spark on YARN, there would be several variations of Figure 3.1.
However, all the components pictured are still involved in the application and have the same roles.

Spark Driver

The life of a Spark application starts and finishes with the Spark Driver. The Driver is the process
that clients use to submit applications in Spark. The Driver is also responsible for planning and
coordinating the execution of the Spark program and returning status and/or results (data) to the
client. The Driver can physically reside on a client or on a node in the cluster, as you will see later.

SparkSession

The Spark Driver is responsible for creating the SparkSession. The SparkSession object represents a
connection to a Spark cluster. The SparkSession is instantiated at the beginning of a Spark applica-
tion, including the interactive shells, and is used for the entirety of the program.

47Anatomy of a Spark Application

Prior to Spark 2.0, entry points for Spark applications included the SparkContext, used for Spark
core applications; the SQLContext and HiveContext, used with Spark SQL applications; and the
StreamingContext, used for Spark Streaming applications. The SparkSession object introduced
in Spark 2.0 combines all these objects into a single entry point that can be used for all Spark
applications.

Through its SparkContext and SparkConf child objects, the SparkSession object contains all the
runtime configuration properties set by the user, including configuration properties such as the
Master, application name, number of Executors, and more. Figure 3.2 shows the SparkSession
object and some of its configuration properties within a pyspark shell.

Figure 3.2 SparkSession properties.

SparkSession Name

The object name for the SparkSession instance is arbitrary. By default, the SparkSession
instantiation in the Spark interactive shells is named spark. For consistency, you always
instantiate the SparkSession as spark; however, the name is up to the developer’s discretion.

Listing 3.1 demonstrates how to create a SparkSession within a non-interactive Spark application,
such as a program submitted using spark-submit.

Listing 3.1 Creating a SparkSession

from pyspark.sql import SparkSession
spark = SparkSession.builder \
 .master("spark://sparkmaster:7077") \
 .appName("My Spark Application") \

48 Chapter 3 Understanding the Spark Cluster Architecture

 .config("spark.submit.deployMode", "client") \
 .getOrCreate()
numlines = spark.sparkContext.textFile("file:///opt/spark/licenses") \
 .count()
print("The total number of lines is " + str(numlines))

Application Planning

One of the main functions of the Driver is to plan the application. The Driver takes the applica-
tion processing input and plans the execution of the program. The Driver takes all the requested
transformations (data manipulation operations) and actions (requests for output or prompts to
execute programs) and creates a directed acyclic graph (DAG) of nodes, each representing a transfor-
mational or computational step.

Directed Acyclic Graph (DAG)

A DAG is a mathematical construct that is commonly used in computer science to represent
dataflows and their dependencies. DAGs contain vertices, or nodes, and edges. Vertices in a
dataflow context are steps in the process flow. Edges in a DAG connect vertices to one another
in a directed orientation and in such a way that it is impossible to have circular references.

A Spark application DAG consists of tasks and stages. A task is the smallest unit of schedulable
work in a Spark program. A stage is a set of tasks that can be run together. Stages are dependent
upon one another; in other words, there are stage dependencies.

In a process scheduling sense, DAGs are not unique to Spark. For instance, they are used in other
Big Data ecosystem projects, such as Tez, Drill, and Presto for scheduling. DAGs are fundamental
to Spark, so it is worth being familiar with the concept.

Application Orchestration

The Driver also coordinates the running of stages and tasks defined in the DAG. Key driver activi-
ties involved in the scheduling and running of tasks include the following:

 Keeping track of available resources to execute tasks

 Scheduling tasks to run “close” to the data where possible (the concept of data locality)

Other Functions

In addition to planning and orchestrating the execution of a Spark program, the Driver is also
responsible for returning the results from an application. These could be return codes or data
in the case of an action that requests data to be returned to the client (for example, an interactive
query).

The Driver also serves the application UI on port 4040, as shown in Figure 3.3. This UI is created
automatically; it is independent of the code submitted or how it was submitted (that is, interac-
tive using pyspark or non-interactive using spark-submit).

49Anatomy of a Spark Application

Figure 3.3 Spark application UI.

If subsequent applications launch on the same host, successive ports are used for the application
UI (for example, 4041, 4042, and so on).

Spark Workers and Executors

Spark Executors are the processes on which Spark DAG tasks run. Executors reserve CPU and
memory resources on slave nodes, or Workers, in a Spark cluster. An Executor is dedicated to a
specific Spark application and terminated when the application completes. A Spark program
normally consists of many Executors, often working in parallel.

Typically, a Worker node—which hosts the Executor process—has a finite or fixed number
of Executors allocated at any point in time. Therefore, a cluster—being a known number of
nodes—has a finite number of Executors available to run at any given time. If an application
requires Executors in excess of the physical capacity of the cluster, they are scheduled to start
as other Executors complete and release their resources.

As mentioned earlier in this chapter, JVMs host Spark Executors. The JVM for an Executor is
allocated a heap, which is a dedicated memory space in which to store and manage objects.

50 Chapter 3 Understanding the Spark Cluster Architecture

The amount of memory committed to the JVM heap for an Executor is set by the property
spark.executor.memory or as the --executor-memory argument to the pyspark,
spark-shell, or spark-submit commands.

Executors store output data from tasks in memory or on disk. It is important to note that Workers
and Executors are aware only of the tasks allocated to them, whereas the Driver is responsible
for understanding the complete set of tasks and the respective dependencies that comprise an
application.

By using the Spark application UI on port 404x of the Driver host, you can inspect Executors for
the application, as shown in Figure 3.4.

Figure 3.4 Executors tab in the Spark application UI.

For Spark Standalone cluster deployments, a worker node exposes a user interface on port 8081, as
shown in Figure 3.5.

51Anatomy of a Spark Application

Figure 3.5 Spark Worker UI.

The Spark Master and Cluster Manager

The Spark Driver plans and coordinates the set of tasks required to run a Spark application.
The tasks themselves run in Executors, which are hosted on Worker nodes.

The Master and the Cluster Manager are the central processes that monitor, reserve, and allo-
cate the distributed cluster resources (or containers, in the case of YARN or Mesos) on which
the Executors run. The Master and the Cluster Manager can be separate processes, or they can
combine into one process, as is the case when running Spark in Standalone mode.

Spark Master

The Spark Master is the process that requests resources in the cluster and makes them available
to the Spark Driver. In all deployment modes, the Master negotiates resources or containers with
Worker nodes or slave nodes and tracks their status and monitors their progress.

When running Spark in Standalone mode, the Spark Master process serves a web UI on port 8080
on the Master host, as shown in Figure 3.6.

52 Chapter 3 Understanding the Spark Cluster Architecture

Figure 3.6 Spark Master UI.

Spark Master Versus Spark Driver

It is important to distinguish the runtime functions of the Driver and the Master. The name
Master may be inferred to mean that this process is governing the execution of the application—
but this is not the case. The Master simply requests resources and makes those resources avail-
able to the Driver. Although the Master monitors the status and health of these resources, it is
not involved in the execution of the application and the coordination of its tasks and stages. That
is the job of the Driver.

Cluster Manager

The Cluster Manager is the process responsible for monitoring the Worker nodes and reserv-
ing resources on these nodes upon request by the Master. The Master then makes these cluster
resources available to the Driver in the form of Executors.

53Deployment Modes for Spark Applications Running on YARN

As discussed earlier, the Cluster Manager can be separate from the Master process. This is the case
when running Spark on Mesos or YARN. In the case of Spark running in Standalone mode, the
Master process also performs the functions of the Cluster Manager. Effectively, it acts as its own
Cluster Manager.

A good example of the Cluster Manager function is the YARN ResourceManager process for Spark
applications running on Hadoop clusters. The ResourceManager schedules, allocates, and moni-
tors the health of containers running on YARN NodeManagers. Spark applications then use these
containers to host Executor processes, as well as the Master process if the application is running
in cluster mode; we will look at this shortly.

Spark Applications Using the Standalone Scheduler

In Chapter 2, “Deploying Spark,” you learned about the Standalone scheduler as a deployment
option for Spark. You also deployed a fully functional multi-node Spark Standalone cluster in one
of the exercises in Chapter 2. As discussed earlier, in a Spark cluster running in Standalone mode,
the Spark Master process performs the Cluster Manager function as well, governing available
resources on the cluster and granting them to the Master process for use in a Spark application.

Spark Applications Running on YARN

As discussed previously, Hadoop is a very popular and common deployment platform for Spark.
Some industry pundits believe that Spark will soon supplant MapReduce as the primary process-
ing platform for applications in Hadoop. Spark applications on YARN share the same runtime
architecture but have some slight differences in implementation.

ResourceManager as the Cluster Manager

In contrast to the Standalone scheduler, the Cluster Manager in a YARN cluster is the YARN
ResourceManager. The ResourceManager monitors resource usage and availability across all
nodes in a cluster. Clients submit Spark applications to the YARN ResourceManager. The
ResourceManager allocates the first container for the application, a special container called
the ApplicationMaster.

ApplicationMaster as the Spark Master

The ApplicationMaster is the Spark Master process. As the Master process does in other cluster
deployments, the ApplicationMaster negotiates resources between the application Driver and the
Cluster Manager (or ResourceManager in this case); it then makes these resources (containers)
available to the Driver for use as Executors to run tasks and store data for the application.
The ApplicationMaster remains for the lifetime of the application.

Deployment Modes for Spark Applications Running

on YARN

Two deployment modes can be used when submitting Spark applications to a YARN cluster: Client
mode and Cluster mode. Let’s look at them now.

54 Chapter 3 Understanding the Spark Cluster Architecture

Client Mode

In Client mode, the Driver process runs on the client submitting the application. It is essentially
unmanaged; if the Driver host fails, the application fails. Client mode is supported for both
interactive shell sessions (pyspark, spark-shell, and so on) and non-interactive application
submission (spark-submit). Listing 3.2 shows how to start a pyspark session using the Client
deployment mode.

Listing 3.2 YARN Client Deployment Mode

$SPARK_HOME/bin/pyspark \
--master yarn-client \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1
OR
$SPARK_HOME/bin/pyspark \
--master yarn \
--deploy-mode client \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1

Figure 3.7 provides an overview of a Spark application running on YARN in Client mode.

Figure 3.7 Spark application running in YARN Client mode.

55Deployment Modes for Spark Applications Running on YARN

The steps shown in Figure 3.7 are described here:

1. The client submits a Spark application to the Cluster Manager (the YARN ResourceManager).
The Driver process, SparkSession, and SparkContext are created and run on the client.

2. The ResourceManager assigns an ApplicationMaster (the Spark Master) for the application.

3. The ApplicationMaster requests containers to be used for Executors from the
ResourceManager. With the containers assigned, the Executors spawn.

4. The Driver, located on the client, then communicates with the Executors to marshal
processing of tasks and stages of the Spark program. The Driver returns the progress, results,
and status to the client.

The Client deployment mode is the simplest mode to use. However, it lacks the resiliency required
for most production applications.

Cluster Mode

In contrast to the Client deployment mode, with a Spark application running in YARN Cluster
mode, the Driver itself runs on the cluster as a subprocess of the ApplicationMaster. This provides
resiliency: If the ApplicationMaster process hosting the Driver fails, it can be re-instantiated on
another node in the cluster.

Listing 3.3 shows how to submit an application by using spark-submit and the YARN Cluster
deployment mode. Because the Driver is an asynchronous process running in the cluster, Cluster
mode is not supported for the interactive shell applications (pyspark and spark-shell).

Listing 3.3 YARN Cluster Deployment Mode

$SPARK_HOME/bin/spark-submit \
--master yarn-cluster \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1
$SPARK_HOME/examples/src/main/python/pi.py 10000
OR
$SPARK_HOME/bin/spark-submit \
--master yarn \
--deploy-mode cluster \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1
$SPARK_HOME/examples/src/main/python/pi.py 10000

56 Chapter 3 Understanding the Spark Cluster Architecture

Figure 3.8 provides an overview of a Spark application running on YARN in Cluster mode.

Figure 3.8 Spark application running in YARN Cluster mode.

The steps shown in Figure 3.8 are described here:

1. The client, a user process that invokes spark-submit, submits a Spark application to the
Cluster Manager (the YARN ResourceManager).

2. The ResourceManager assigns an ApplicationMaster (the Spark Master) for the application.
The Driver process is created on the same cluster node.

3. The ApplicationMaster requests containers for Executors from the ResourceManager.
Executors are spawned within the containers allocated to the ApplicationMaster by the
ResourceManager. The Driver then communicates with the Executors to marshal processing
of tasks and stages of the Spark program.

4. The Driver, running on a node in the cluster, returns progress, results, and status to the
client.

The Spark application web UI, as shown previously, is available from the ApplicationMaster host
in the cluster; a link to this user interface is available from the YARN ResourceManager UI.

Local Mode Revisited

In Local mode, the Driver, the Master, and the Executor all run in a single JVM. As discussed
earlier in this chapter, this is useful for development, unit testing, and debugging, but it has

57Summary

limited use for running production applications because it is not distributed and does not scale.
Furthermore, failed tasks in a Spark application running in Local mode are not re-executed by
default. You can override this behavior, however.

When running Spark in Local mode, the application UI is available at http://localhost:4040.
The Master and Worker UIs are not available when running in Local mode.

Summary

In this chapter, you have learned about the Spark runtime application and cluster architecture,
the components or a Spark application, and the functions of these components. The components
of a Spark application include the Driver, Master, Cluster Manager, and Executors. The Driver is
the process that the client interacts with when launching a Spark application, either through one
of the interactive shells or through the spark-submit script. The Driver is responsible for creat-
ing the SparkSession object (the entry point for any Spark application) and planning an applica-
tion by creating a DAG consisting of tasks and stages. The Driver communicates with a Master,
which in turn communicates with a Cluster Manager to allocate application runtime resources
(containers) on which Executors will run. Executors are specific to a given application and run all
tasks for the application; they also store output data from completed tasks. Spark’s runtime archi-
tecture is essentially the same regardless of the cluster resource scheduler used (Standalone, YARN,
Mesos, and so on).

Now that we have explored Spark’s cluster architecture, it’s time to put the concepts into action
starting in the next chapter.

http://localhost:4040

This page intentionally left blank

Index

Symbols
<- (assignment) operator, 244

: (colon), 19

{ } (curly braces), 19

() (parentheses), 19

[] (square brackets), 19

0MQ (ZeroMQ), 228

7-Zip, 34

A
accumulator() method, 117

accumulators, 116–117

accumulator() method, 117
custom, 117–118
DStreams, 216
sample exercise, 119–120
uses for, 118
value() method, 117

actions, 48, 81

collect(), 82, 128, 152
count(), 81, 128
defined, 59, 60
example of, 72
first(), 83
fold(), 84–85
foreach(), 85
reduce(), 84
take(), 82, 152
takeSample(), 152
top(), 82–83

ActiveMQ, 228

addInPlace() function, 118

aggregateByKey() function, 150

algorithmic functions, 184

allocation, dynamic, 153

282 ALS (Alternating Least Squares) technique

ALS (Alternating Least Squares) technique

Spark ML, 272–273
Spark MLlib, 266

Amaterasu, 148

Amazon Kinesis, 237

Analytics, 237
documentation, 240
Firehose, 237
KCL (Kinesis Client Library), 238–239
KPL (Kinesis Producer Library), 238
Spark support for, 239
Streams

createStream() method, 239–240
defined, 237–238

Amazon Redshift, 237

Amazon S3, 237

Amazon Software License (ASL), 239

Amazon SQS (Simple Queue Service), 228

Amazon Web Services. See AWS (Amazon Web

Services), Spark deployment on

Ambari for Hortonworks, 148

Analytics, Amazon Kinesis, 237

Anderson, Edgar, 251

%angular (AngularJS) interpreter, 279

anonymous functions, 23–24

Apache Amaterasu, 148

Apache Cassandra, 201–204

Apache Hive, 8, 40

accessing, 164
CLI (command-line interface), 164
data model

complex types, 176
primitive types, 175–176

datatypes, 164–165
HCatalog, 164
HiveServer2, 164
metastore, 163–164
objects, 163–164
overview of, 162
tables

creating DataFrames from, 170–171
writing DataFrame output to, 188

Apache Kafka

architecture, 229–230
createDirectStream() method, 232–234
KafkaUtils, 232
sample application, 234–237
Spark support for, 230–232

Apache Lucene, 6

Apache Mesos, 30

Apache Parquet

file compression, 174
overview of, 173

Apache Pig, 8, 40, 164

Apache Software Foundation (ASF), 6

Apache Solr, 206

Apache Zeppelin

interpreters, 279
notebooks, 278–279

Apache ZooKeeper, 230, 234–237

APIs (application programming interfaces)

ConsumerConnector, 231
SimpleConsumer, 231

append output mode, 226

ApplicationMasters

overview of, 11–12
as Spark Master, 53

applications

application UI, 48–49
architecture, 45–46

Cluster Managers, 52–53
Driver, 46–49
Executors, 49–51
illustrated, 46
Masters, 51–52
Standalone scheduler, 53
Workers, 49–51
YARN (Yet Another Resource

Negotiator), 53–57
Bay Area Bike Share exercise,

100–103
checkpointing exercise, 136–138
external

accessing Spark SQL with, 194
processing RDDs with, 138–139

optimizing, 152–153
dynamic allocation, 153
parallelism, 152–153
performance issues, 155–159

orchestration, 48
planning, 48
scheduling, 10–13
Spark Streaming exercise,

218–219
Spark with Kafka exercise, 234–237
WordCount exercise, 92–95

283checkpointing

architecture

Apache Kafka, 229–230
Spark clusters, 45–46

Cluster Managers, 52–53
Driver, 46–48
Executors, 49–51
illustrated, 46
Masters, 51–52
Standalone scheduler, 53
Workers, 49–51
YARN (Yet Another Resource

Negotiator), 53–57
Spark SQL, 166–167

extensions, 166, 167
SparkSession entry point, 167–168

Spark Streaming, 210–211
ARRAY datatype, 165

arrays

Hive, 165
R language, 245
Spark primitive type, 176

ArrayType, 176

ASF (Apache Software Foundation), 6

ASL (Amazon Software License), 239

assignment operator (<-), 244

associative operations, optimizing, 149–150

average-word-length folder (GitHub), 120

Avro, 17, 229

awaitTermination() method, 211

AWS (Amazon Web Services), Spark deployment

on, 39

EC2 (Elastic Compute Cloud), 39
EMR (Elastic MapReduce), 40–41
GCP (Google Cloud Platform), 41

B
batch submissions, 16, 251

Bay Area Bike Share exercise, 100–103

Bayes’ theorem, 266

beeline shell

overview of, 193
sample exercise, 194–195

Beeswax, 164

Berners-Lee, Tim, 161

Big Data, history of, 6–7. See also Hadoop

BIGINT datatype, 165

bin/ directory, 36

BINARY datatype, 165

BinaryType, 176

bisecting k-means, 273

bloom filters, 199

BOOLEAN datatype, 165

Boolean types

DataFrame API, 176
Hive, 165

BooleanType, 176

boto3 library, 205

broadcast() method, 112–113

broadcast variables, 112

broadcast() method, 112–113
DStreams, 216
sample exercise, 119–120
unpersist() method, 114–116
value() method, 113

brokers (Kafka), 229

built-in DataFrame functions, 183–184

ByteType, 175

BZIP2 format, 62

C
c() function, 246

cache() method, 74, 187, 215

cacheTable() method, 187

caching

DataFrames, 187
DStreams, 215
RDDs (Resilient Distributed Datasets)

example of, 131
when to use, 134

Cafarella, Mike, 6

call_func function, 25

cartesian() function, 99–100

Cassandra, 7, 201–204

Cassandra Query Language (CQL), 202

CDH (Cloudera Distribution of Hadoop), 32

cell_contents function, 25

cells (HBase), updating, 199

Character datatype, 245

character functions, 249

checkpoint() method, 135, 215

checkpointing, 134–135

checkpoint() method, 135, 215
DStreams, 214–215
getCheckpointFile() method, 136

284 checkpointing

Executors, 49–51
illustrated, 46
k-means

Spark ML, 273–274
Spark MLlib, 269–270

Masters, 51–52
multi-node standalone clusters, 37–39
nodes, 8
Spark ML, 273–274
Standalone scheduler, 53
Workers, 49–51
YARN (Yet Another Resource Negotiator),

53–57
Cluster deployment mode, 28–29, 55–56,

143–144

Cluster Managers, 52–53, 142

cmp() method, 20

coalesce() method, 124, 154

coarse-grained transformations, 72

Coe, David Allan, 45

cogroup() function, 98–99

CoGroupedRDD, 76

collaborative filtering

defined, 260
Spark ML, 272–273
Spark MLlib, 266–267

collect() action, 82, 128, 152

collection of data, optimizing, 152

collections, 157–158, 202

colon (:), 19

columnar storage, 166, 173

columns() method, 179

combineByKey() function, 150

combiners, 150

commands

cqlsh, 202
easy_install, 200
java -version, 33, 34
library, 249
matrix, 247
pip, 200
pyspark, 30
R CMD INSTALL, 249
read, 248
sparkR, 250
spark-shell, 30
spark-submit, 16, 30, 55–56, 192
wget, 33

isCheckpointed() method, 136
sample exercise, 136–138
setCheckpointDir() method, 135

checkpointing folder (GitHub), 138

child RDDs (Resilient Distributed Datasets),

74–75

CLA (contributor license agreement), 6

classes. See also objects

CoGroupedRDD, 76
DataFrameReader, 224
DataFrames, 76
DoubleRDD, 76
HadoopRDD, 76
HashPartitioner, 121
JdbcRDD, 77
KafkaUtils, 232
NewHadoopRDD, 76
PairRDD, 76
PartitionPruningRDD, 77
SchemaRDD, 76
SequenceFileRDD, 76
ShuffledRDD, 77
SparkSession, 167–168
UnionRDD, 77

classification

decision trees, 262–266, 271–272
defined, 259–260
Naive Bayes, 266
Spark ML, 271–272
Spark MLlib, 262

clearCache() method, 187

Client deployment mode, 28–29, 53–55

Client Library (Kinesis), 238–239

closures, 24–25, 151–152

cloud, Spark deployment in, 39

AWS (Amazon Web Services), 39–41
Databricks, 42–43

Cloud Dataproc, 41

Cloudera Distribution of Hadoop (CDH), 32

Cloudera Manager, 148

cluster architecture, 8, 45–46

application clustering, 260–261
Cluster deployment mode, 28–29, 55–56,

143–144
Cluster Managers, 52–53
clustering keys, 202
Driver, 46–49

285DataFrames

data mining, SparkR and, 254–255

data model (Hive)

complex types, 176
primitive types, 175–176

data sampling, 139

sample() function, 140
takeSample() function, 140–141

data science, with R language, 14, 244.

See also machine learning

data frames, creating, 247–248, 251–253
data structures, 245–247
datatypes, 245
functions, 248–249
packages, 248–249
SparkR, 243

accessing, 250–251
data frames, 251–253
data mining, 254–255
documentation, 250
linear regression, 255–256
predictive analytics, 253–254
predictive modeling, 254–255
RStudio with, 257–258

data sinks, 225

console sinks, 226
file sinks, 225–226
memory sinks, 226

data sources

creating RDDs from, 66–69
Structured Streaming, 224

file sources, 224–225
socket sources, 225

data structures

Python
dicts, 19–20
lists, 18
sets, 18
tuples, 18–19

R language, 245–247
Databricks, Spark deployment on, 42–43

Databricks File System (DBFS), 43

DataFrameReader, 224, 274

DataFrames, 76

caching, 187
complex types, 176
converting to RDDs, 175
creating

from existing RDDs, 169

comma-separated value files. See CSV

(comma-separated value) files

complete output mode, 227

complex types, 176

compression, file, 61

conf/ directory, 37

configuration, Spark. See Spark configuration

console sinks, 226

ConsumerConnector API, 231

consumers (Kafka), 229

containers, 11

contributor license agreement (CLA), 6

Core API. See RDDs (Resilient Distributed

Datasets)

Couchbase, 206

CouchDB, 206

count() action, 81, 128

cPickle module, 22

CQL (Cassandra Query Language), 202

cqlsh utility, 202

CRAN, 249

CREATE TABLE statement, 165

createDataFrame() method, 169, 252

createDirectStream() method, 232–234

createRDD() method, 233

createStream() method, 239–240

cross joins, 99–100

CSV (comma-separated value) files

creating data frames from, 252
writing DataFrame output to, 188–191

csv() method, 189–190

curly braces ({}), 19

custom accumulators, 117–118

Cutting, Doug, 6

D
daemon environment variables, 144

DAGs (directed acyclic graphs), 48, 127

data collection, optimizing, 152

data/ directory, 37

data frames (R), 247–248. See also

DataFrames

creating, 251–253
defined, 245

data locality, 7, 62–63

Data Manipulation Language (DML), 161

286 DataFrames

primitive types, 175–176
repartitioning, 187
schemas

defining, 178
inferring, 176

DataFrameWriter, 274

DataNode process, 8–9

datasets. See also RDDs (Resilient Distributed

Datasets)

datasets package, 251
golf/weather, 262–263
Movielens, 267–269
mtcars, 251–252
splitting, 263–264

DataStax Enterprise, 203

datatypes

DataFrame data model
complex types, 176
primitive types, 175–176

Hive, 164–165
R language, 245

DATE datatype, 165

date datatypes

Hive, 165
Spark primitive, 176

date functions, 184

DateType, 176

DBFS (Databricks File System), 43

dbutils library, 43

decision trees, 262–266, 271–272

DecisionTree.trainClassifier() function, 265

declarative referential integrity (DRI), 163

deep learning, 41

def keyword, 23

DEFLATE compression method, 62

DenseVector object, 271

dependencies, stage, 48

deployment, Spark. See Spark deployment

deployment modes

Client, 28–29, 53–55
Cluster, 28–29, 55–56
Local, 28, 56–57
on Mesos, 30
Spark Standalone, 28–29

diagrams, Venn, 103

dicts (dictionaries), 19–20

from flat files, 172–175
from Hive tables, 170–171
from JSON objects, 171–172

defined, 168–169
metadata, 179
multiple

grouping, 187
joining, 185–186
ordering, 186–187

operations
built-in functions, 183–184
cache(), 187
cacheTable(), 187
clearCache(), 187
columns(), 179
createDataFrame(), 169
csv(), 189–190
distinct(), 182–183
drop(), 181
dtypes(), 179
explain(), 183
filter(), 181
groupBy(), 187
intersect(), 186
join(), 185–186
json(), 171–172
orc(), 174–175
orderBy(), 186–187
parquet(), 173–174, 190–191
persist(), 187
printSchema(), 176
rdd(), 175
sample(), 183
sampleBy(), 183
saveAsTable(), 188
select(), 180–181
show(), 180
sql(), 170
subtract(), 186
table(), 170–171
text(), 173
udf(), 184–185
unpersist(), 187

output, saving
to files, 188–191
to Hive tables, 188

persistence, 187

287environment variables

dtypes() method, 179

dynamic allocation, 153

DynamoDB, 204–206

E
easy_install command, 200

EC2 (Elastic Compute Cloud), Spark deployment

on, 39

Edison, Thomas, 27

Elastic MapReduce. See EMR (Elastic

MapReduce)

Elasticsearch, 206

EMR (Elastic MapReduce)

GCP (Google Cloud Platform), 41
Spark deployment on, 40–41

EMS (Enterprise Message Service),228

ensembles, 230

environment variables, 141–142

defaults, 147
HADOOP_CONF_DIR, 142
HADOOP_HOME, 35, 142
HIVE_CONF_DIR, 143
JAVA_HOME, 142
PYSPARK_DRIVER_PYTHON, 142
PYSPARK_PYTHON, 142
SPARK_CLASSPATH, 144
SPARK_DAEMON_MEMORY, 144
SPARK_DRIVER_MEMORY, 143
SPARK_EXECUTOR_CORES, 143
SPARK_EXECUTOR_INSTANCES, 143
SPARK_EXECUTOR_MEMORY, 143
SPARK_HOME, 33, 142
SPARK_LOCAL_IP, 144
SPARK_MASTER_IP, 144
SPARK_MASTER_OPTS, 144
SPARK_MASTER_PORT, 144
SPARK_MASTER_WEBUI_PORT, 144
SPARK_PUBLIC_DNS, 144
SPARK_WORKER_CORES, 144
SPARK_WORKER_DIR, 144
SPARK_WORKER_INSTANCES, 144
SPARK_WORKER_MEMORY, 144
SPARK_WORKER_OPTS, 144
SPARK_WORKER_PORT, 144
SPARK_WORKER_WEBUI_PORT, 144
SPARK_YARN_APP_NAME, 143
SPARK_YARN_DIST_ARCHIVES, 143

Direct Stream Access, 231

directed acyclic graphs (DAGs), 48, 127

directives, local, 28

directories, Spark installation, 36–37

disabling IPv6, 35

discretized streams. See DStreams

DISK_ONLY constant, 129, 130

DISK_ONLY_2 constant, 130

distinct() method, 79–80, 182–183

DML (Data Manipulation Language), 161

docstrings, 183

document stores, 197

documentation

Amazon Kinesis, 240
RDDs (Resilient Distributed Datasets), 77
SparkR, 250

DOUBLE datatype, 165

double datatypes

Hive, 165
Spark primitive type, 176

DoubleRDD, 76

DoubleType, 176

downloading Spark, 31–32

DRI (declarative referential integrity), 163

Drivers, 46

application orchestration, 48
application planning, 48
application UI, 48–49
SparkSession, 46–48

drop() method, 181

DROP TABLE statement, 165

drop_duplicates() method, 182

DStreams, 211–212

broadcast variables and accumulators, 216
caching and persistence, 215
lineage and checkpointing, 214–215

DStream.checkpoint() method, 215
StreamingContext.checkpoint()

method, 215
output operations, 216–218

foreachRDD() method, 217–218
pprint() method, 216
saveAsTextFiles() method, 217

sources, 212
socketTextStream() method,

212–213
textFileStream() method, 213

transformations, 213–214

288 environment variables

file compression, 61
JSON files, 69–70
object files, 66
text files, 63–66

hadoop.dll, 34
log, searching, 61
log4j.properties, 136
log4j.properties.erroronly, 136
looping_test.py, 137
ORC (Optimized Row

Columnar), 173
saving RDDs as, 217
shakespeare.txt, 219
spark-defaults.conf, 38
spark-env.sh, 38
spark-streaming-kafka-assembly.jar file,

232
stop-word-list.csv, 119
winutils.exe, 34
writing DataFrame output to, 188–191

filter() function, 24, 79, 122, 153, 181

filtering

bloom filters, 199
collaborative

defined, 260
Spark ML, 272–273
Spark MLlib, 266–267

DataFrames, 181
optimization and, 149

fine-grained transformations, 72

Firehose, Amazon Kinesis, 237

first() action, 83

fit() method, 274

flags, storage-level, 129–130

flat files, DataFrames created from, 172–175

orc() method, 174–175
parquet() method, 173–174
text() method, 173

flatMap() function, 24, 78, 182

flatMapValues() function, 87–89

FLOAT datatype, 165

FloatType, 176

Flume, 8

fold() action, 84–85

foldByKey() function, 91, 150

folders, GitHub

average-word-length, 120
checkpointing, 138

SPARK_YARN_DIST_FILES, 143
SPARK_YARN_QUEUE, 143
SPARKR_DRIVER_R, 142
YARN_CONF_DIR, 142

errors, searching log files for, 61

Estimator objects, 274

evaluation, lazy, 73

event processing. See Spark Streaming

examples/ directory, 37

execution, lazy, 73

Executors (Spark), 49–51

explain() function, 183

extensions, Spark SQL, 166

external applications, accessing Spark SQL with,

194

external programs, processing RDDs with, 138

pipe() method, 138–139
potential problems with, 138

extraction, features, 261

F
fault tolerance, RDDs (Resilient Distributed

Datasets), 76

features

defined, 261
extraction, 261

file sinks, 225–226

file sources (Structured Streaming),

224–225

file systems

DBFS (Databricks File System), 43
HDFS (Hadoop Distributed File System),

7–8. See also HBase
blocks, 8–9
as data source for Spark, 17
defined, 7–8
metadata, 9
processes, 8–9
read operations, 9–10
write operations, 9–10

schemes and URI structures, 63
FileNotFoundException, 63

files

compression, 61
creating data frames from, 172–175, 252
creating RDDs from, 61

data locality, 62–63

289functions and methods

dtypes(), 179
explain(), 183
filter(), 24, 79, 122, 153, 181
first(), 83
fit(), 274
flatMap(), 24, 78, 182
flatMapValues(), 87–89
fold(), 84–85
foldByKey(), 91, 150
foreach(), 85
foreachRDD(), 217–218
format(), 224, 225
frame(), 247–248
fullOuterJoin(), 98
fwf(), 248
generate_message, 25
getCheckpointFile(), 136
getStorageLevel(), 130
glm(), 255
groupBy(), 80, 187
groupByKey(), 89, 149
hadoopFile(), 66
higher-order functions, 24
intersect(), 186
intersection(), 104
isCheckpointed(), 136
jdbc(), 68–69
join(), 96–97, 185–186
json(), 69–70, 171–172, 253
keyBy(), 86–87
keys(), 20, 86
lambda syntax, 23–24
leftOuterJoin(), 97
len(), 20
library(), 249
load(), 268
map(), 18, 24, 77–78, 182
mapValues(), 87
max(), 106
mean(), 106
min(), 105–106
named, 23–24
objectFile(), 66
optimizing, 151–152
orc(), 174–175
orderBy(), 186–187
outputMode(), 227

joining-datasets, 103
recommendation-engine, 269
streaming-wordcount, 219

followers (Kafka), 230

foreach() action, 85

foreachPartition() method, 125–126

foreachRDD() method, 217–218

format() method, 224, 225

frame() function, 247–248

Franklin, Benjamin, 209

full outer joins

defined, 96
fullOuterJoin() transformation, 98

fullOuterJoin() function, 98

functions and methods

accumulator(), 117
addInPlace(), 118
aggregateByKey(), 150
anonymous, 23–24
awaitTermination(), 211
broadcast(), 112–113
built-in, 183–184
c(), 246
cache(), 74, 187, 215
cacheTable(), 187
call_func, 25
cartesian(), 99–100
cell_contents, 25
checkpoint(), 135, 215
clearCache(), 187
closures, 24–25
cmp(), 20
coalesce(), 124, 154
cogroup(), 98–99
collect(), 82, 128, 152
columns(), 179
combineByKey(), 150
count(), 81, 128
createDataFrame(), 169, 252
createDirectStream(), 232–234
createRDD(), 233
createStream(), 239–240
csv(), 189–190, 248
df(), 252
distinct(), 79–80, 182–183
drop(), 181
drop_duplicates(), 182

290 functions and methods

summary(), 255–256
table(), 170–171, 248
take(), 82, 152
takeSample(), 140–141, 152
text(), 173
textFile(), 17, 63–64
textFileStream(), 213
toDebugString(), 128
top(), 82–83
train(), 266
trainClassifier(), 265
transform(), 274
treeAggregate(), 150
treeReduce(), 150
tuple(), 19
udf(), 184–185
union(), 104
unpersist(), 114–116, 132–134, 187
updateStateByKey(), 220–221
value(), 113, 117
values(), 20, 86
variance(), 107
wholeTextFiles(), 64–66, 76
window(), 222–223
writeStream(), 227
zero(), 118

G
Gaussian mixture model (GMM), 273

GCP (Google Cloud Platform), Spark deployment

on, 41

generate_message function, 25

getCheckpointFile() method, 136

getStorageLevel() function, 130

GitHub folders

average-word-length, 120
checkpointing, 138
joining-datasets, 103
recommendation-engine, 269
streaming-wordcount, 219

glm() function, 255

glom() method, 126

GMM (Gaussian mixture model), 273

golf dataset, 262–263

Google Cloud Platform (GCP), Spark deployment

on, 41

parallelize(), 71
parquet(), 173–174, 190–191, 253
partitionBy(), 123
persist(), 73–74, 132, 187, 215
pickleFile(), 22
pipe(), 138–139
pprint(), 216
predict(), 256, 266, 266
printSchema(), 176
quit(), 36
randomSplit(), 263–264
range(), 71–72
rdd(), 175
read(), 67
readStream(), 224
reduce(), 84
reduceByKey(), 24, 90, 149–150
reduceByKeyAndWindow(), 223
repartition(), 123–124, 154
repartitionAndSortWithinPartitions(),

124–125
ret_message(), 25
rightOuterJoin(), 97
sample(), 140, 183
sampleBy(), 183
save(), 268
saveAsPickleFile(), 22
saveAsTable(), 188
saveAsTextFile(), 17
saveAsTextFiles(), 217
select(), 180–181, 183
sequenceFile(), 66
session(), 253
setCheckpointDir(), 135
show(), 180
socketTextStream(), 212–213, 225
sortBy(), 81
sortByKey(), 91–92
sql(), 170, 253
start(), 211
stats(), 108
stdev(), 107
stop(), 211
subtract(), 104–105, 186
subtractByKey(), 105
sum(), 107

291Hopper, Grace Murray

hadoopFile() method, 66

HadoopRDD, 76

HappyBase Python package, 200

hashing functions, 184

HashPartitioner class, 121

HBase

defined, 197
HappyBase Python package, 200
HFile objects, 199
overview of, 7, 197–200
sample exercise, 200–201
Scala API, 200
sparsity, 199
tables, scanning, 198

HCatalog, 164

HDFS (Hadoop Distributed File System).

See also HBase

blocks, 8–9
as data source for Spark, 17
defined, 7–8
metadata, 9
processes

DataNode, 8–9
NameNode, 9

read operations, 9–10
write operations, 9–10

HDP (Hortonworks Data Platform), 32

HFile objects, 199

higher-order functions, 24

Hive

accessing, 164
CLI (command-line interface), 164
data model

complex types, 176
primitive types, 175–176

datatypes, 164–165
HCatalog, 164
HiveServer2, 164
metastore, 163–164
objects, 163–164
overview of, 8, 40, 162
tables

creating data frames from, 170–171,
253

writing DataFrame output to, 188
HIVE_CONF_DIR environment variable, 143

HiveContext, 47

Hopper, Grace Murray, 5

Google whitepapers

“The Google File System”, 6
“MapReduce: Simplified Data Processing

on Large Clusters”, 6, 13
graph stores, 197

groupBy() function, 80, 187

groupByKey() function, 89, 149

grouping DataFrames, 187

GZIP format, 62

H
HaaS (Hadoop-as-a-Service), 40

Hadoop, 7. See also HBase

CDH (Cloudera Distribution of
Hadoop), 32

core components of, 7–8
data locality, 7
development of, 6–7
“ecosystem” projects, 8
environment variables, 142–143
HaaS (Hadoop-as-a-Service), 40
HDFS (Hadoop Distributed File System)

blocks, 8–9
as data source for Spark, 17
defined, 7–8
metadata, 9
processes, 8–10
read operations, 9–10
write operations, 9–10

HDP (Hortonworks Data Platform), 32
HUE (Hadoop User Experience), 164
installation, 34
MapReduce, 13
schema-on-read system, 7
shared nothing approach, 7
YARN (Yet Another Resource Negotiator),

7–8
application scheduling with, 10–13
ApplicationMaster, 11–12
NodeManagers, 10–12
as resource scheduler for Spark, 17
ResourceManager, 10–12
Spark jobs, submitting, 30
Spark on, 28–29

HADOOP_CONF_DIR environment variable, 142

HADOOP_HOME environment variable, 35, 142

hadoop.dll, 34

292 Hortonworks Data Platform (HDP)

Java Development Kit. See JDK

(Java Development Kit), installing

Java Message Service (JMS), 228

java -version command, 33, 34

Java Virtual Machine (JVM), 13, 46

JAVA_HOME environment variable, 142

JavaScript Object Notation. See JSON

(JavaScript Object Notation)

JDBC (Java Database Connectivity), 43, 67

JDBC/ODBC interface, 192
JdbcRDD, 77

jdbc() method, 68–69

JDK (Java Development Kit), installing

on Linux or Mac OS X, 33
on Windows, 34

JMS (Java Message Service), 228

jobs (Spark), submitting

in Local mode, 28
to Mesos cluster, 30
to standalone cluster, 29
to YARN cluster, 30

join() function, 96–97, 185–186

join operations

Bay Area Bike Share exercise, 100–103
cartesian(), 99–100
cogroup(), 98–99
DataFrames, 185–186
defined, 95
fullOuterJoin(), 98
join(), 96–97, 185–186
leftOuterJoin(), 97
optimizing, 97
rightOuterJoin(), 97
types of, 95–96

joining-datasets folder (GitHub), 103

JSON (JavaScript Object Notation), 20–21

creating DataFrames from, 171–172
files, creating RDDs from, 69–70
json package, 20–21
Jupyter (IPython) notebooks, 275–277

json() method, 69–70, 171–172

Jupyter (IPython), 275–277

JVM (Java Virtual Machine), 13, 46

K
Kafka

architecture, 229–230
createDirectStream() method, 232–234

Hortonworks Data Platform (HDP), 32

HUE (Hadoop User Experience), 164

I
IaaS (Infrastructure-as-a-Service), 39

IaC (Infrastructure-as-Code), 39

IBM WebSphere MQ, 228

immutable lists. See tuples

indexes, secondary

Apache Cassandra, 202
DynamoDB, 204

inferring DataFrame schemas, 176

Infrastructure-as-a-Service (IaaS), 39

Infrastructure-as-Code (IaC), 39

ingestion, 8–9

initializing RDDs (Resilient Distributed

Datasets), 61

inner joins, 96

Input Tables, 225

input/output types, 16

installation

Hadoop, 34
JDK (Java Development Kit)

on Linux or Mac OS X, 33
on Windows, 34

Python, 34
Spark. See Spark deployment

INT datatype, 165

Integer datatype, 245

IntegerType, 175

Interactive Computing Protocol, 277

interactive submission, 15

interpreters, Zeppelin, 279

intersect() function, 186

intersection() transformation, 104

IPv6, disabling, 35

IPython, 275–277

Iris Data dataset, 251

isCheckpointed() method, 136

items (DynamoDB), 204

J
jars/ directory, 37

Java, Spark support for, 14

Java Database Connectivity. See JDBC

(Java Database Connectivity)

293machine learning

libraries

boto3, 205
dbutils, 43
KCL (Kinesis Client Library), 238–239
KPL (Kinesis Producer Library), 238
LIBSVM (library for support vector

machines), 274
NumPy, 264
Pandas, 264
R, 249

library() function, 249

LIBSVM (library for support vector machines),

274

licenses, contributor, 6

licenses/ directory, 37

lineage

DStreams, 214–215
DStream.checkpoint() method, 215
StreamingContext.checkpoint()

method, 215
RDDs (Resilient Distributed Datasets),

74–75, 127–128
linear regression, SparkR and, 255–256

Linux, Spark installation on, 32–34

lists, 18, 19

load() function, 268

loading data into RDDs (Resilient Distributed

Datasets), 61

Local deployment mode, 28, 56–57

local directive, 28

locality, data, 7, 62–63

log files, searching for errors, 61

log4j.properties file, 136

log4j.properties.erroronly file, 136

Logical datatype, 245

LongType, 175

longwords.collect() action, 128

longwords.count() action, 128

lookup() method, 126

looping_test.py file, 137

Lucene, 6

M
Mac OS X, Spark installation on, 32–34

machine learning, 259

classification
decision trees, 262–266, 271–272
defined, 259–260

KafkaUtils, 232
sample application, 234–237
Spark support for, 230–232

KafkaUtils class, 232

KCL (Kinesis Client Library), 238–239

kernels, Jupyter, 277

keyBy() function, 86–87

Keynes, John Maynard, 243

keys (Cassandra), 202

keys() function, 20, 86

keyspaces, 202

key/value stores, 19, 197

Kinesis, 237

Analytics, 237
documentation, 240
Firehose, 237
KCL (Kinesis Client Library), 238–239
KPL (Kinesis Producer Library), 238
Spark support for, 239
Streams

createStream() method, 239–240
defined, 237–238

k-means clustering

Spark ML, 273–274
Spark MLlib, 269–270

KMeans package, 270

KPL (Kinesis Producer Library), 238

L
LabeledPoint objects, 264–265

lambda syntax, 23–24

latent Dirichlet allocation (LDA), 273

lazy evaluation, 73

LDA (latent Dirichlet allocation), 273

learning

deep, 41
machine. See machine learning
supervised, 254
unsupervised, 254

left outer joins

defined, 96
leftOuterJoin() transformation, 97

leftOuterJoin() function, 97

len() method, 20

levels, storage

choosing, 131
table of, 128–129

294 machine learning

MEMORY_AND_DISK_SER constant, 130

MEMORY_AND_DISK_SER* constant, 129

MEMORY_AND_DISK_SER_2 constant, 130

MEMORY_ONLY constant, 129, 130

MEMORY_ONLY_2 constant, 130

MEMORY_ONLY_SER constant, 130

MEMORY_ONLY_SER* constant, 129

MEMORY_ONLY_SER_2 constant, 130

Mesos, 30

message-oriented middleware (MOM), 228

messaging systems, Spark with, 228

Amazon Kinesis, 237
Analytics, 237
createStream() method, 239–240
documentation, 240
Firehose, 237
KCL (Kinesis Client Library), 238–239
Kinesis Streams, 237–238
KPL (Kinesis Producer Library), 238
Spark support for, 239

Apache Kafka
architecture, 229–230
createDirectStream() method, 232–234
KafkaUtils, 232
sample application, 234–237
Spark support for, 230–232

MOM (message-oriented middleware),
228

metadata, 9

columns() method, 179
dtypes() method, 179
operations, 179

metastores

configuration, 35
Hive, 163–164

methods. See functions and methods

Microsoft Message Queuing (MSMQ), 228

min() transformation, 105–106

MLlib

classification, 262
clustering, 269–270
collaborative filtering, 266–267
movie recommender application, 266–267

model.save() function, 268

modules

cPickle, 22
pickle, 22
urllib2, 119

Naive Bayes, 266
Spark ML, 271–273
Spark MLlib, 262

clustering, 260–261
k-means, 269–270, 273–274
Spark ML, 273–274

collaborative filtering
defined, 260
Spark MLlib, 266–267

feature extraction, 261
pipelines, 274–275
Spark ML

classification, 271–272
clustering, 273–274
collaborative filtering, 272–273
pipelines, 274–275

Spark MLlib
classification, 262
clustering, 269–270
collaborative filtering, 266–267
movie recommender application,

266–267
MAP datatype, 165

map() function, 18, 24, 77–78, 182

mapPartitions() method, 126–127

MapR Converged Data Platform, 32

MapReduce

GCP (Google Cloud Platform), 41
Spark deployment on, 40–41
WordCount exercise, 92–95

“MapReduce: Simplified Data Processing on

Large Clusters” (whitepaper), 6, 13

MapType, 176

mapValues() function, 87

Masters, 38, 51–52

master/slave model, 8

math functions, 184

matrices, 245–247

matrix command, 247

matrix factorization, 266

MatrixFactorizationModel.load() function, 268

max() transformation, 106

%md (Markdown) interpreter, 279

mean() transformation, 106

Memcached, 206

memory sinks, 226

MEMORY_AND_DISK constant, 129, 130

MEMORY_AND_DISK_2 constant, 130

295Optimized Row Columnar (ORC) files

stdev(), 107
sum(), 107
variance(), 107

NumPy, 264

Nutch, 6

O
object files

creating RDDs from, 66
defined, 66

objectFile() method, 66

objects. See also classes; DataFrames

DenseVector, 271
DStreams, 211–212

broadcast variables and accumulators,
216

caching and persistence, 215
lineage and checkpointing, 214–215
output operations, 216–218
sources, 212–213
transformations, 213–214

Estimator, 274
HFile, 199
Hive, 163–164
HiveContext, 47
JSON (JavaScript Object Notation),

 creating DataFrames from, 171–172
LabeledPoint, 264–265
Pipeline, 274
Row, 271
SparkConf, 47
SparkContext, 47, 211
SparkSession, 46–48, 211, 250
SparseVector, 271
SQLContext, 47
StreamingContext, 47, 211
StructField, 178
Transformer, 274

observations (R), 252

OFF_HEAP constant, 130

OFF_HEAP storage level, 129

operations. See also functions and methods

narrow, 74
wide, 75

operators, assignment (<-), 244

Optimized Row Columnar (ORC) files, 173

MOM (message-oriented middleware), 228

MongoDB, 206

movie recommender application, 266–267

Movielens dataset, 267–269

MSMQ (Microsoft Message Queuing), 228

mtcars dataset, 251–252

multi-node standalone clusters, 37–39

multiple DataFrames

grouping, 187
joining, 185–186
ordering, 186–187

N
Naive Bayes, 266

NaiveBayes package, 266

named functions, 23–24

NameNode process, 9

names, SparkSession, 47

narrow operations, 74

neural networks, 41

NewHadoopRDD, 76

NodeManagers, 10–12

nodes, 8

DAGs (directed acyclic graphs) of, 48
quorum of, 230

non-interactive submission, 16

non-splittable compression formats, 62

NoSQL systems, 7, 195–196

Apache Cassandra, 201–204
characteristics of, 196
DynamoDB, 204–206
HBase

defined, 197
HappyBase Python package, 200
overview of, 197–200
sample exercise, 200–201
Scala API, 200

types of, 196–197
notebooks, 275

Apache Zeppelin, 278–279
Jupyter (IPython), 275–277

Numeric datatype, 245

numeric value operations, 105–106, 249

max(), 106
mean(), 106
min(), 105–106
stats(), 108

296 optimizing Spark

groupByKey(), 89
keyBy(), 86–87
keys(), 86
mapValues(), 87
reduceByKey(), 90
sortByKey(), 91–92
values(), 86

Pandas, 264

ParallelCollectionRDD, 77

parallelism, optimizing, 152–153

parallelize() method, 71

parent RDDs (Resilient Distributed Datasets),

74–75

parentheses (), 19

Parquet

file compression, 174
overview of, 173

parquet() method, 173–174, 190–191

Partial DAG execution (PDE), 166

partitionBy() function, 123

PartitionPruningRDD, 77

partitions, 120

Apache Kafka, 229
API methods

foreachPartition(), 125–126
glom(), 126
lookup(), 126
mapPartitions(), 126–127

controlling, 121–122
keys, 202
optimal number of, 123
optimizing, 153–155
overview of, 120–121
repartitioning functions

coalesce(), 124
partitionBy(), 123
repartition(), 123–124
repartitionAndSortWithinPartitions(),

124–125
statistics, 166

PDE (Partial DAG execution), 166

persist() method, 73–74, 132, 187, 215

persistence

DataFrames, 187
DStreams, 215
RDDs (Resilient Distributed Datasets),

73–74, 131–132
persist() method, 132
unpersist() method, 132–134
when to use, 134

optimizing Spark, 148

applications, 152–153
dynamic allocation, 153
parallelism, 152–153
performance issues, 155–159

associative operations, 149–150
data collection, 152
filtering, 149
functions and closures, 151–152
join operations, 97
partitions, 153–155

ORC (Optimized Row Columnar) files, 173

orc() method, 174–175

ORCFile format, Spark support for, 17

orderBy() function, 186–187

outer joins

defined, 96
transformations

fullOuterJoin(), 98
leftOuterJoin(), 97
rightOuterJoin(), 97

output modes (Spark Streaming), 226–227

output operations, DStreams, 216–218

foreachRDD() method, 217–218
pprint() method, 216
saveAsTextFiles() method, 217

output sinks, 225

console sinks, 226
file sinks, 225–226
memory sinks, 226

outputMode() method, 227

P
PaaS (Platform-as-a-Service), 39

packages

datasets, 251
defined, 20–21
HappyBase, 200
json, 20–21
KMeans, 270
NaiveBayes, 266
pyspark-cassandra, 203
R language, 248–249

PairRDDs

defined, 76
transformations, 85–92

flatMapValues(), 87–89
foldByKey(), 91

297R/ directory

PySpark shell, 15, 53–54

PYSPARK_DRIVER_PYTHON environment

variable, 142

PYSPARK_PYTHON environment variable, 142

pyspark-cassandra package, 203

pyspark.mllib.clustering.KMeans package.270

Python, 17. See also functions and methods

data structures
dicts, 19–20
lists, 18
sets, 18
tuples, 18–19

docstrings, 183
functions

anonymous functions, 23–24
closures, 24–25
higher-order functions, 24
lambda syntax, 23–24
named functions, 23–24

HappyBase package, 200
installation, 34
libraries

boto3, 205
NumPy, 264
Pandas, 264

modules
cPickle, 22
pickle, 22
urllib2, 119

PySpark shell, 15, 53–54
serialization

JSON (JavaScript Object Notation),
20–21

Pickle, 22
python/ directory, 37

%python interpreter, 279

PythonRDD, 77

Q
quit() method, 36

quorum of nodes, 230

R
R CMD INSTALL command, 249

R/ directory, 37

Pi Estimator, 33, 38

Pickle, 22

pickleFile() method, 22

Pig, 8, 40, 164

pip command, 200

pipe() method, 138–139

pipelines, Spark ML, 274–275

planning applications, 48

Platform-as-a-Service (PaaS), 39

populating RDDs (Resilient Distributed

Datasets), 61

pprint() method, 216

precedence, Spark configuration properties, 148

predict() function, 256, 266, 266

predictive analytics, SparkR and, 253–254

predictive modeling, SparkR and, 254–255

Presto, 40

primary keys, 202

primitive types, 175–176

printSchema() method, 176

probability functions, 249

processes

DataNode, 8–9
NameNode, 9

Producer Library (Kinesis), 238

producers (Kafka), 229

programming (Spark)

PySpark shell, 15
RDD (Resilient Distributed Dataset), 16
Scala shell, 15
Standalone scheduler

multi-node standalone clusters, 37–39
Standalone deployment mode, 28–29

submission types
interactive, 15
non-interactive, 16

Workers, 38
programming interfaces, 14

properties

RDDs (Resilient Distributed Datasets), 60
Spark configuration

configuration management, 148
precedence, 148
setting, 145–147
table of, 145

pyspark command, 30

298 R language

sample exercise, 136–138
setCheckpointDir() method, 135

converting DataFrames to, 175
creating

from data sources, 66–69
from files, 61–63
from JSON files, 69–70
from object files, 66
programmatically, 71–72
from text files, 63–66

data sampling, 139
sample() function, 140
takeSample() function, 140–141

DataFrames created from, 169
defined, 16
documentation for, 77
explained, 59–61
fault tolerance, 76
join operations

Bay Area Bike Share exercise, 100–103
cartesian(), 99–100
cogroup(), 98–99
defined, 95
fullOuterJoin(), 98
join(), 96–97
leftOuterJoin(), 97
optimizing, 97
rightOuterJoin(), 98
types of, 95–96

lazy evaluation, 73
lineage, 74–75, 127–128
loading data into, 61
MapReduce

GCP (Google Cloud Platform), 41
Spark deployment on, 40–41
WordCount exercise, 92–95

numeric value operations, 105–106
max(), 106
mean(), 106
min(), 105–106
stats(), 108
stdev(), 107
sum(), 107
variance(), 107

PairRDDs
defined, 76
transformations, 85–92

R language, 244. See also functions and

methods; methods

batch mode, 251
data frames

creating, 247–248, 251–253
defined, 245

data structures, 245–247
datasets

golf/weather, 262–263
Movielens, 267–269
mtcars, 251–252
splitting, 263–264

datatypes, 245
functions, 248–249
history of, 244
packages, 248–249, 251
SparkR, 243

accessing, 250–251
data frames, 251–253
data mining, 254–255
documentation, 250
linear regression, 255–256
predictive analytics, 253–254
predictive modeling, 254–255
RStudio with, 257–258

RabbitMQ, 228

randomSplit() function, 263–264

range() method, 71–72

rdd() method, 175

RDDs (Resilient Distributed Datasets), 111

actions, 81
collect(), 82
count(), 81
defined, 59, 60
example of, 72
first(), 83
fold(), 84–85
foreach(), 85
reduce(), 84
take(), 82
top(), 82–83

caching
example of, 131
when to use, 134

checkpointing, 134–135
checkpoint() method, 135
getCheckpointFile() method, 136
isCheckpointed() method, 136

299Redis

example of, 72
filter(), 79
fine-grained, 72
flatMap(), 78
flatMapValues(), 87–89
foldByKey(), 91
fullOuterJoin(), 98
groupBy(), 80
groupByKey(), 89
intersection(), 104
join(), 96–97
keyBy(), 86–87
keys(), 86
leftOuterJoin(), 97
map(), 77–78
mapValues(), 87
max(), 106
mean(), 106
min(), 105–106
reduceByKey(), 90
rightOuterJoin(), 97
sortBy(), 81
sortByKey(), 91–92
stats(), 108
stdev(), 107
subtract(), 104–105
subtractByKey(), 105
sum(), 107
union(), 104
values(), 86
variance(), 107

types of, 76–77
read command, 248

read.csv(), 248
read.df(), 252
read.fwf(), 248
read.jdbc(), 68–69
read.json(), 69–70, 171–172, 253
read.parquet(), 253
read.table(), 248

read() method, 67

read operations (HDFS), 9–10

readStream() method, 224

receivers (Kafka), 231

recommendation-engine folder (GitHub), 269

recommender application, 266–267

Redis, 206

parent/child, 74–75
partitions, 120

controlling, 121–122
foreachPartition() method, 125–126
glom() method, 126
lookup() method, 126
mapPartitions() method, 126–127
optimal number of, 123
optimizing, 153–155
overview of, 120–121
statistics, 166

performing functions on, 217–218
persistence, 73–74, 131–132

persist() method, 132
unpersist() method, 132–134
when to use, 134

processing with external programs, 138
pipe() method, 138–139
potential problems with, 138

properties of, 60
repartitioning functions

coalesce(), 124
partitionBy(), 123
repartition(), 123–124
repartitionAndSortWithinPartitions(),

124–125
reuse, 73–74
saving as text files, 217
set operations, 103

intersection(), 104
subtract(), 104–105
subtractByKey(), 105
union(), 104

shared variables
accumulators, 116–119
broadcast variables, 112–116
sample exercise, 119–120

storage options
getStorageLevel() function, 130
storage levels, 128–129
storage-level flags, 129–130

transformations, 77
cartesian(), 99–100
coarse-grained, 72
cogroup(), 98–99
defined, 59
distinct(), 79–80

300 Redshift

sbin/ directory, 37

Scala, 13, 14, 15, 31, 200

scanning HBase tables, 198

scheduler. See Standalone scheduler

scheduling applications, 10–13

schema-on-read systems, 7

schema-on-write systems, 7

SchemaRDD, 76

schemas, DataFrame, 252–253

defining, 178
inferring, 176

schemes, filesystem, 63

Scikit-learn project, 274

searching, log files for errors, 61

secondary indexes

Apache Cassandra, 202
DynamoDB, 204

select() method, 180–181, 183

sequenceFile() method, 66

SequenceFileRDD, 76

serialization

JSON (JavaScript Object Notation), 20–21
Pickle, 22

servers

region servers, 199
Spark History Server, 158–159
Thrift JDBC/ODBC, 192, 194–195

session() function, 253

set operations, 103

intersection(), 104
subtract(), 104–105
subtractByKey(), 105
union(), 104

setCheckpointDir() method, 135

%sh (Shell commands) interpreter, 279

Shakespeare text-streaming application, 218–219

shared nothing operations, 7, 77

shared variables, 111

accumulators, 116–117
accumulator() method, 117
custom, 117–118
uses for, 118
value() method, 117

broadcast variables, 112
broadcast() method, 112–113
unpersist() method, 114–116
value() method, 113

sample exercise, 119–120

Redshift, 237

reduce() action, 84

reduceByKey() function, 24, 90, 149–150

reduceByKeyAndWindow() method, 223

reflection, 176

region servers, 199

regions, 199

regression, linear, 255–256

repartition() method, 123–124, 154

repartitionAndSortWithinPartitions() method,

124–125

repartitioning

DataFrames, 187
RDDs (Resilient Distributed Datasets)

coalesce(), 124
partitionBy(), 123
repartition(), 123–124
repartitionAndSortWithinPartitions(),

124–125
Resilient Distributed Datasets. See RDDs

(Resilient Distributed Datasets)

ResourceManagers, 10–12, 53

Result Tables, 225

ret_message() function, 25

Riak, 206

right outer joins

defined, 96
rightOuterJoin() transformation, 97

rightOuterJoin() function, 97

Row objects, 271

RStudio, SparkR and, 257–258

S
S3, 237

SaaS (Software-as-a-Service), 39

sample() function, 140, 183

sampleBy() function, 183

sampling data, 139

sample() function, 140
takeSample() function, 140–141

save() function, 268

saveAsPickleFile() method, 22

saveAsTable() method, 188

saveAsTextFile() function, 17

saveAsTextFiles() method, 217

saving DataFrame output

to files, 188–191
to Hive tables, 188

301Spark configuration

Executors, 49–51
illustrated, 46
Masters, 51–52
Standalone scheduler, 53
Workers, 49–51
YARN (Yet Another Resource Negotiator),

53–57
Spark configuration

environment variables, 141–142
defaults, 147
HADOOP_CONF_DIR, 142
HADOOP_HOME, 142
HIVE_CONF_DIR, 143
JAVA_HOME, 142
PYSPARK_DRIVER_PYTHON, 142
PYSPARK_PYTHON, 142
SPARK_CLASSPATH, 144
SPARK_DAEMON_MEMORY, 144
SPARK_DRIVER_MEMORY, 143
SPARK_EXECUTOR_CORES, 143
SPARK_EXECUTOR_INSTANCES, 143
SPARK_EXECUTOR_MEMORY, 143
SPARK_HOME, 142
SPARK_LOCAL_IP, 144
SPARK_MASTER_IP, 144
SPARK_MASTER_OPTS, 144
SPARK_MASTER_PORT, 144
SPARK_MASTER_WEBUI_PORT, 144
SPARK_PUBLIC_DNS, 144
SPARK_WORKER_CORES, 144
SPARK_WORKER_DIR, 144
SPARK_WORKER_INSTANCES, 144
SPARK_WORKER_MEMORY, 144
SPARK_WORKER_OPTS, 144
SPARK_WORKER_PORT, 144
SPARK_WORKER_WEBUI_PORT, 144
SPARK_YARN_APP_NAME, 143
SPARK_YARN_DIST_ARCHIVES, 143
SPARK_YARN_DIST_FILES, 143
SPARK_YARN_QUEUE, 143
SPARKR_DRIVER_R, 142
YARN_CONF_DIR, 142

optimizing, 148
applications, 152–153, 155–159
associative operations, 149–150
data collection, 152
filtering, 149
functions and closures, 151–152
partitions, 153–155

shells

beeline
overview of, 193
sample exercise, 194–195

PySpark, 15, 53–54
Scala, 15
sparkR, 250
spark-sql, 191

ShortType, 175

show() method, 180

ShuffledRDD, 77

shuffling, 73, 156–157

Simple Queue Service (SQS), 228

SimpleConsumer API, 231

sinks, data, 225

console sinks, 226
file sinks, 225–226
memory sinks, 226

sliding window operations, 221

reduceByKeyAndWindow() method, 223
window() method, 222–223

SMALLINT datatype, 165

Snappy, 62

socket sources (Structured Streaming), 225

socketTextStream() method, 212–213, 225

Software-as-a-Service (SaaS), 39

Solr, 206

sortBy() function, 81

sortByKey() function, 91–92

sources

DStream, 212, 213
socketTextStream() method, 212–213
textFileStream() method, 213

Structured Streaming, 224
file sources, 224–225
socket sources, 225

Spark, overview of, 13, 257–258

Hadoop and
HDFS (Hadoop Distributed File

System), 17
YARN (Yet Another Resource

Negotiator), 17
history of, 13
input/output types, 16
programming interfaces, 14
uses for, 14

Spark cluster architecture, 45–46

Cluster Managers, 52–53
Driver, 46–49

302 Spark configuration

HBase
HFile objects, 199
sparsity, 199

Hive
accessing, 164
CLI (command-line interface), 164
datatypes, 164–165
HCatalog, 164
HiveServer2, 164
metastore, 163–164
objects, 163–164
overview of, 162
writing DataFrame output to, 188

NoSQL systems, 195–196
Apache Cassandra, 201–204
characteristics of, 196
DynamoDB, 204–206
HBase, 196–201
types of, 196–197

reflection, 176
Spark Streaming, 209–210

architecture, 210–211
DataFrames

basic operations, 180–183
metadata operations, 179

DStreams, 211–212
broadcast variables and accumulators,

216
caching and persistence, 215
lineage and checkpointing, 214–215
output operations, 216–218
sources, 212–213
transformations, 213–214

goals of, 210
messaging systems, 228

Amazon Kinesis, 237–240
Apache Kafka, 229–237

output modes, 226–227
sample application, 218–219
sliding window operations, 221

reduceByKeyAndWindow() method,
223

window() method, 222–223
state operations, 219–221
Structured Streaming, 223–224

data sinks, 225–226
data sources, 224–225

structured streaming operations, 227–228

properties
configuration management, 148
precedence, 148
setting, 145–147
table of, 145

Spark Core API. See RDDs (Resilient Distributed

Datasets)

Spark deployment, 27

in the cloud, 39
AWS (Amazon Web Services), 39–41
Databricks, 42–43

installation directory contents, 36–37
on Linux or Mac OS X, 32–34
Masters, 38
modes

Client, 28–29, 53–55
Cluster, 28–29, 55–56
Local, 28, 56–57
on Mesos, 30
Spark Standalone, 28–29

multi-node standalone clusters, 37–39
preparation for, 30–31
releases, downloading, 31–32
requirements for, 31
on Windows, 34–36

Spark History Server, 158–159

%spark interpreter, 279

Spark ML

classification, 271–272
clustering, 273–274
collaborative filtering, 272–273
pipelines, 274–275

Spark MLlib

classification, 262
clustering, 269–270
collaborative filtering, 266–267
movie recommender application, 266–267

Spark SQL, 161. See also DataFrames

accessing, 191
beeline shell, 193, 194–195
external applications, 194
sample exercise, 194–195
spark-sql shell, 191
Thrift JDBC/ODBC server, 192,

194–195
architecture, 166–167

extensions, 166
high-level architecture, 167
SparkSession entry point, 167–168

303Standalone deployment mode (Spark)

spark.driver.extraClassPath property, 145–147

spark.driver.extraJavaOptions property, 145–147

spark.driver.memory property, 145–147

spark.dynamicAllocation.enabled property,

145–147

spark-env.sh file, 38

spark.executor.cores property, 145–147

spark.executor.extraClassPath property,

145–147

spark.executor.extraJavaOptions property,

145–147

spark.executor.memory property, 145–147

spark-hbase-connector, 201

spark.master property, 145–147

%spark.pyspark interpreter, 279

SparkR, 243, 250

accessing, 250–251
data frames, creating, 251–253
data mining, 254–255
documentation, 250
linear regression, 255–256
predictive analytics, 253–254
predictive modeling, 254–255
RStudio and, 257–258

SPARKR_DRIVER_R environment variable, 142

sparkR.session() function, 253

SparkSession, 46–48, 167–168, 211, 250

spark-shell command, 30

spark.shuffle.service.enabled property, 145–147

%spark.sql interpreter, 279

spark-sql shell, 191

spark-streaming-kafka-assembly.jar file, 232

spark-submit command, 16, 30, 55–56, 192

SparseVector object, 271

sparsity, HBase support for, 199

splittable compression formats, 62

splitting datasets, 263–264

SQL (Structured Query Language).

See Spark SQL

sql() function, 170, 253

SQLContext, 47

Sqoop, 8

SQS (Simple Queue Service), 228

square brackets ([]), 19

stages

defined, 48
dependencies, 48

Standalone deployment mode (Spark), 28–29

SPARK_CLASSPATH environment variable, 144

SPARK_DAEMON_MEMORY environment

variable, 144

SPARK_DRIVER_MEMORY environment variable,

143

SPARK_EXECUTOR_CORES environment

variable, 143

SPARK_EXECUTOR_INSTANCES environment

variable, 143

SPARK_EXECUTOR_MEMORY environment

variable, 143

SPARK_HOME directory, 36–37

SPARK_HOME environment variable, 33, 142

SPARK_LOCAL_IP environment variable, 144

SPARK_MASTER_IP environment variable, 144

SPARK_MASTER_OPTS environment variable,

144

SPARK_MASTER_PORT environment variable,

144

SPARK_MASTER_WEBUI_PORT environment

variable, 144

SPARK_PUBLIC_DNS environment variable, 144

SPARK_WORKER_CORES environment

variable, 144

SPARK_WORKER_DIR environment

variable, 144

SPARK_WORKER_INSTANCES environment

variable, 144

SPARK_WORKER_MEMORY environment

variable, 144

SPARK_WORKER_OPTS environment

variable, 144

SPARK_WORKER_PORT environment

variable, 144

SPARK_WORKER_WEBUI_PORT environment

variable, 144

SPARK_YARN_APP_NAME environment

variable, 143

SPARK_YARN_DIST_ARCHIVES environment

variable, 143

SPARK_YARN_DIST_FILES environment variable,

143

SPARK_YARN_QUEUE environment variable, 143

spark.broadcast.blockSize option, 114

spark.broadcast.compress option, 114

spark.broadcast.factory option, 114

spark.broadcast.port option, 114

SparkConf, 47

SparkContext, 47, 211

spark.default.parallelism property, 121

spark-defaults.conf file, 38

304 Standalone scheduler

data sources, 224
file sources, 224–225
socket sources, 225

operations, 227–228
structures, data. See data structures

submitting Spark jobs

interactive, 15
in Local mode, 28
to Mesos cluster, 30
non-interactive, 16
to standalone cluster, 29
to YARN cluster, 30

subtract() function, 104–105, 186

subtractByKey() transformation, 105

sum() transformation, 107

summary() function, 255–256

supervised learning, 254

T
table() function, 170–171

tables

Cassandra, 202
DynamoDB, 204
HBase, 198
Hive

creating data frames from, 170–171, 253
writing DataFrame output to, 188

tablets, 199

take() action, 82, 152

takeSample() function, 140–141, 152

tasks

defined, 48
optimizing execution of, 156–157

Tensor Processing Units (TPUs), 41

TensorFlow, 41

Term Frequency-Inverse Document Frequency

(TF-IDF), 92, 261

testing

multi-node standalone clusters, 38
Spark installation

on Linux or Mac OS X, 33
on Windows, 35

text files

creating RDDs from, 63
textFile() method, 63–64
wholeTextFiles() method, 64–66

saving RDDs as, 217

Standalone scheduler, 53

daemon environment variables, 144
multi-node standalone clusters, 37–39
Standalone deployment mode, 28–29

start() method, 211

state operations (Spark Streaming), 219–221

statements

CREATE TABLE, 165
def, 23
DROP TABLE, 165
UPDATE, 163

statistical functions, 184, 249

statistics, partition, 166

stats() transformation, 108

stdev() transformation, 107

stop() method, 211

stop-word-list.csv file, 119

storage, 173

columnar, 166
getStorageLevel() function, 130
storage levels

choosing, 131
table of, 128–129

storage-level flags, 129–130
StorageClass constructor, 129

storage-level flags, 129–130

stream processing. See Spark Streaming

StreamingContext, 47, 211, 215

streaming-wordcount folder, 219

STRING datatype, 165

string datatypes

Hive, 165
Spark primitive type, 176

string functions, 184

StringType, 176

STRUCT datatype, 165

struct datatypes

Hive, 165
Spark primitive type, 176

StructField objects, 178

StructType, 176, 178

Structured Query Language. See Spark SQL

Structured Streaming, 223–224

data sinks, 225
console sinks, 226
file sinks, 225–226
memory sinks, 226

305variables

reduceByKey(), 90
rightOuterJoin(), 97
sortBy(), 81
sortByKey(), 91–92
stats(), 108
stdev(), 107
subtract(), 104–105
subtractByKey(), 105
sum(), 107
union(), 104
values(), 86
variance(), 107

Transformer objects, 274

treeAggregate() function, 150

treeReduce() function, 150

tuple() function, 19

tuples, 18–19

U
udf() method, 184–185

UDFs (user-defined functions), 184–185

union() transformation, 104

UnionRDD, 77

unpersist() method, 114–116, 132–134, 187

unsupervised learning, 254

update output mode, 227

UPDATE statement, 163

updateStateByKey() method, 220–221

URI structures, 63

urllib2 Python module, 119

user-defined functions (UDFs), 184–185

V
value() method, 113, 117

values() method, 20, 86

var structure, 245–246

variables

environment, 141–142
defaults, 147
HADOOP_CONF_DIR, 142
HADOOP_HOME, 35, 142
HIVE_CONF_DIR, 143
JAVA_HOME, 142
PYSPARK_DRIVER_PYTHON, 142
PYSPARK_PYTHON, 142
SPARK_CLASSPATH, 144
SPARK_DAEMON_MEMORY, 144

text() method, 173

textFile() method, 17, 63–64

Tez, 173

TF-IDF (Term Frequency-Inverse Document

Frequency), 92, 261

Thrift JDBC/ODBC server

overview of, 192
sample exercise, 194–195

TIBCO EMS (Enterprise Message Service), 228

TIMESTAMP datatype, 165

timestamp types

Hive, 165
Spark primitive, 176

TimestampType, 176

TINYINT datatype, 165

toDebugString() function, 128

Toffler, Alvin, 111

top() action, 82–83

Torvalds, Linus, 59

TPUs (Tensor Processing Units), 41

train() method, 266

trainClassifier() function, 265

transform() method, 274

transformations, 48, 77

cartesian(), 99–100
coarse-grained, 72
cogroup(), 98–99
defined, 59
distinct(), 79–80
DStreams, 213–214
example of, 72
filter(), 79
fine-grained, 72
flatMap(), 78
flatMapValues(), 87–89
foldByKey(), 91
fullOuterJoin(), 98
groupBy(), 80
groupByKey(), 89
intersection(), 104
join(), 96–97
keyBy(), 86–87
keys(), 86
leftOuterJoin(), 97
map(), 77–78
mapValues(), 87
max(), 106
mean(), 106
min(), 105–106

306 variables

windowing functions, 184

windows, sliding window operations, 221

reduceByKeyAndWindow() method, 223
window() method, 222–223

Windows, Spark installation on, 34–36

winutils.exe, 34

WordCount exercise, 92–95

Workers, 38, 49–51

write operations (HDFS), 9–10

write-ahead logs (WALs), 229

write.csv() method, 189–190

write.parquet() method, 190–191

writeStream() method, 227

writing DataFrame output

to files, 188–191
to Hive tables, 188

X-Y
Yahoo!, 6

YARN (Yet Another Resource Negotiator), 7–8

application scheduling with, 10–13
ApplicationMaster, 11–12
applications running on, 53–57

ApplicationMaster, 53
deployment modes, 53–57
ResourceManager, 53

environment variables, 143
NodeManagers, 10–12
as resource scheduler for Spark, 17
ResourceManager, 10–12
Spark jobs, submitting, 30
Spark on, 28–29

yarn/ directory, 37

YARN_CONF_DIR environment variable, 142

Yet Another Resource Negotiator. See YARN

(Yet Another Resource Negotiator)

Z
Zaharia, Matei, 13

Zeppelin, 40–41

interpreters, 279
notebooks, 278–279

zero() function, 118

ZeroMQ (ØMQ), 228

ZIP format, 62

ZooKeeper, 230, 234–237

SPARK_DRIVER_MEMORY, 143
SPARK_EXECUTOR_CORES, 143
SPARK_EXECUTOR_INSTANCES, 143
SPARK_EXECUTOR_MEMORY, 143
SPARK_HOME, 33, 142
SPARK_LOCAL_IP, 144
SPARK_MASTER_IP, 144
SPARK_MASTER_OPTS, 144
SPARK_MASTER_PORT, 144
SPARK_MASTER_WEBUI_PORT, 144
SPARK_PUBLIC_DNS, 144
SPARK_WORKER_CORES, 144
SPARK_WORKER_DIR, 144
SPARK_WORKER_INSTANCES, 144
SPARK_WORKER_MEMORY, 144
SPARK_WORKER_OPTS, 144
SPARK_WORKER_PORT, 144
SPARK_WORKER_WEBUI_PORT, 144
SPARK_YARN_APP_NAME, 143
SPARK_YARN_DIST_ARCHIVES, 143
SPARK_YARN_DIST_FILES, 143
SPARK_YARN_QUEUE, 143
SPARKR_DRIVER_R, 142
YARN_CONF_DIR, 142

R, 252
shared, 111

accumulators, 116–119
broadcast variables, 112–116
sample exercise, 119–120

variance() transformation, 107

vectors, 245–246

Venn diagrams, 103

Virtual Private Cloud (VPC), 39

VPC (Virtual Private Cloud), 39

W
Waikato Environment for Knowledge Analysis

(WEKA), 263

WALs (write-ahead logs), 229

weather dataset, 262–263

WEKA (Waikato Environment for Knowledge

Analysis), 263

wget command, 33

wholeTextFiles() method, 64–66, 76

wide operations, 75

window() method, 222–223

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Introduction
	3 Understanding the Spark Cluster Architecture
	Anatomy of a Spark Application
	Spark Driver
	Spark Workers and Executors
	The Spark Master and Cluster Manager

	Spark Applications Using the Standalone Scheduler
	Spark Applications Running on YARN

	Deployment Modes for Spark Applications Running on YARN
	Client Mode
	Cluster Mode
	Local Mode Revisited

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (LSC Communication Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 0
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

