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Preface

Spark is at the heart of the disruptive Big Data and open source software revolution. The interest 
in and use of Spark have grown exponentially, with no signs of abating. This book will prepare 
you, step by step, for a prosperous career in the Big Data analytics field.

Focus of the Book

This book focuses on the fundamentals of the Spark project, starting from the core and working 
outward into Spark’s various extensions, related or subprojects, and the broader ecosystem of 
open source technologies such as Hadoop, Kafka, Cassandra, and more.

Although the foundational understanding of Spark concepts covered in this book—including 
the runtime, cluster and application architecture—are language independent and agnostic, the 
majority of the programming examples and exercises in this book are written in Python. The 
Python API for Spark (PySpark) provides an intuitive programming environment for data analysts, 
data engineers, and data scientists alike, offering developers the flexibility and extensibility of 
Python with the distributed processing power and scalability of Spark.

The scope of this book is quite broad, covering aspects of Spark from core Spark programming to 
Spark SQL, Spark Streaming, machine learning, and more. This book provides a good introduction 
and overview for each topic—enough of a platform for you to build upon any particular area or 
discipline within the Spark project.

Who Should Read This Book

This book is intended for data analysts and engineers looking to enter the Big Data space or 
consolidate their knowledge in this area. The demand for engineers with skills in Big Data and its 
preeminent processing framework, Spark, is exceptionally high at present. This book aims to prepare 
readers for this growing employment market and arm them with the skills employers are looking for.

Python experience is useful but not strictly necessary for readers of this book as Python is quite 
intuitive for anyone with any programming experience whatsoever. A good working knowledge of 
data analysis and manipulation would also be helpful. This book is especially well suited to data 
warehouse professionals interested in expanding their careers into the Big Data area.

How to Use This Book

This book is structured into two parts and eight chapters. Part I, “Spark Foundations,” includes 
four chapters designed to build a solid understanding of what Spark is, how to deploy Spark, and 
how to use Spark for basic data processing operations:

 Chapter 1, “Introducing Big Data, Hadoop and Spark,” provides a good overview of the Big 
Data ecosystem, including the genesis and evolution of the Spark project. Key properties of 
the Spark project are discussed, including what Spark is and how it is used, as well as how 
Spark relates to the Hadoop project.

 Chapter 2, “Deploying Spark,” demonstrates how to deploy a Spark cluster, including the 
various Spark cluster deployment modes and the different ways you can leverage Spark.



 Chapter 3, “Understanding the Spark Cluster Architecture,” discusses how Spark clusters 
and applications operate, providing a solid understanding of exactly how Spark works.

 Chapter 4, “Learning Spark Programming Basics,” focuses on the basic programming 
building blocks of Spark using the Resilient Distributed Dataset (RDD) API.

Part II, “Beyond the Basics,” includes the final four chapters, which extend beyond the Spark 
core into its uses with SQL and NoSQL systems, streaming applications, and data science and 
machine learning:

 Chapter 5, “Advanced Programming Using the Spark Core API,” covers advanced constructs 
used to extend, accelerate, and optimize Spark routines, including different shared variables 
and RDD storage and partitioning concepts and implementations.

 Chapter 6, “SQL and NoSQL Programming with Spark,” discusses Spark’s integration into 
the vast SQL landscape as well as its integration with non-relational stores.

 Chapter 7, “Stream Processing and Messaging Using Spark,” introduces the Spark streaming 
project and the fundamental DStream object. It also covers Spark’s use with popular 
messaging systems such as Apache Kafka.

 Chapter 8, “Introduction to Data Science and Machine Learning Using Spark,” provides 
an introduction to predictive modeling using Spark with R as well as the Spark MLlib 
subproject used to implement machine learning with Spark.

Book Conventions

Key terms or concepts are highlighted in italic. Code, object, and file references are displayed in a 
monospaced font.

Step-by-step exercises are provided to consolidate each topic.

Accompanying Code and Data for the Exercises

Sample data and source code for each of the exercises in this book is available at 
http://sparkusingpython.com. You can also view or clone the GitHub repository for this 
book at https://github.com/sparktraining/spark_using_python. 

Register This Book

Register your copy of Data Analytics with Spark Using Python on the InformIT site for conve-
nient access to updates and/or corrections as they become available. To start the registration 
process, go to informit.com/register and log in or create an account. Enter the product ISBN 
(9780134846019) and click Submit. Look on the Registered Products tab for an Access Bonus 
Content link next to this product, and follow that link to access any available bonus materi-
als. If you would like to be notified of exclusive offers on new editions and updates, please 
check the box to receive email from us. 

http://sparkusingpython.com
https://github.com/sparktraining/spark_using_python
http://informit.com/register
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3
Understanding the Spark 

Cluster Architecture

It is not the beauty of a building you should look at; it’s the construction 
of the foundation that will stand the test of time.

David Allan Coe, American songwriter

In This Chapter:

 Detailed overview of the Spark application and cluster components

 Spark resource schedulers and Cluster Managers

 How Spark applications are scheduled on YARN clusters

 Spark deployment modes

Before you begin your journey as a Spark programmer, you should have a solid understanding 
of the Spark application architecture and how applications are executed on a Spark cluster. This 
chapter closely examines the components of a Spark application, looks at how these components 
work together, and looks at how Spark applications run on Standalone and YARN clusters.

Anatomy of a Spark Application

A Spark application contains several components, all of which exist whether you’re running Spark 
on a single machine or across a cluster of hundreds or thousands of nodes.

Each component has a specific role in executing a Spark program. Some of these roles, such as the 
client components, are passive during execution; other roles are active in the execution of the 
program, including components executing computation functions.
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The components of a Spark application are the Driver, the Master, the Cluster Manager, and 
the Executor(s), which run on worker nodes, or Workers. Figure 3.1 shows all the Spark components 
in the context of a Spark Standalone application. You will learn more about each component and 
its function in more detail later in this chapter.

Figure 3.1 Spark Standalone cluster application components.

All Spark components, including the Driver, Master, and Executor processes, run in Java virtual 
machines (JVMs). A JVM is a cross-platform runtime engine that can execute instructions 
compiled into Java bytecode. Scala, which Spark is written in, compiles into bytecode and runs 
on JVMs.

It is important to distinguish between Spark’s runtime application components and the loca-
tions and node types on which they run. These components run in different places using differ-
ent deployment modes, so don’t think of these components in physical node or instance terms. 
For instance, when running Spark on YARN, there would be several variations of Figure 3.1. 
However, all the components pictured are still involved in the application and have the same roles.

Spark Driver

The life of a Spark application starts and finishes with the Spark Driver. The Driver is the process 
that clients use to submit applications in Spark. The Driver is also responsible for planning and 
coordinating the execution of the Spark program and returning status and/or results (data) to the 
client. The Driver can physically reside on a client or on a node in the cluster, as you will see later.

SparkSession

The Spark Driver is responsible for creating the SparkSession. The SparkSession object represents a 
connection to a Spark cluster. The SparkSession is instantiated at the beginning of a Spark applica-
tion, including the interactive shells, and is used for the entirety of the program.
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Prior to Spark 2.0, entry points for Spark applications included the SparkContext, used for Spark 
core applications; the SQLContext and HiveContext, used with Spark SQL applications; and the 
StreamingContext, used for Spark Streaming applications. The SparkSession object introduced 
in Spark 2.0 combines all these objects into a single entry point that can be used for all Spark 
applications.

Through its SparkContext and SparkConf child objects, the SparkSession object contains all the 
runtime configuration properties set by the user, including configuration properties such as the 
Master, application name, number of Executors, and more. Figure 3.2 shows the SparkSession 
object and some of its configuration properties within a pyspark shell.

Figure 3.2 SparkSession properties.

 

SparkSession Name

The object name for the SparkSession instance is arbitrary. By default, the SparkSession 
instantiation in the Spark interactive shells is named spark. For consistency, you always 
instantiate the SparkSession as spark; however, the name is up to the developer’s discretion.  

Listing 3.1 demonstrates how to create a SparkSession within a non-interactive Spark application, 
such as a program submitted using spark-submit.

Listing 3.1 Creating a SparkSession

from pyspark.sql import SparkSession
spark = SparkSession.builder \
    .master("spark://sparkmaster:7077") \
    .appName("My Spark Application") \
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    .config("spark.submit.deployMode", "client") \
    .getOrCreate()
numlines = spark.sparkContext.textFile("file:///opt/spark/licenses") \
    .count()
print("The total number of lines is " + str(numlines))

Application Planning

One of the main functions of the Driver is to plan the application. The Driver takes the applica-
tion processing input and plans the execution of the program. The Driver takes all the requested 
transformations (data manipulation operations) and actions (requests for output or prompts to 
execute programs) and creates a directed acyclic graph (DAG) of nodes, each representing a transfor-
mational or computational step. 

 

Directed Acyclic Graph (DAG)

A DAG is a mathematical construct that is commonly used in computer science to represent 
dataflows and their dependencies. DAGs contain vertices, or nodes, and edges. Vertices in a 
dataflow context are steps in the process flow. Edges in a DAG connect vertices to one another 
in a directed orientation and in such a way that it is impossible to have circular references.  

A Spark application DAG consists of tasks and stages. A task is the smallest unit of schedulable 
work in a Spark program. A stage is a set of tasks that can be run together. Stages are dependent 
upon one another; in other words, there are stage dependencies.

In a process scheduling sense, DAGs are not unique to Spark. For instance, they are used in other 
Big Data ecosystem projects, such as Tez, Drill, and Presto for scheduling. DAGs are fundamental 
to Spark, so it is worth being familiar with the concept.

Application Orchestration

The Driver also coordinates the running of stages and tasks defined in the DAG. Key driver activi-
ties involved in the scheduling and running of tasks include the following:

 Keeping track of available resources to execute tasks

 Scheduling tasks to run “close” to the data where possible (the concept of data locality)

Other Functions

In addition to planning and orchestrating the execution of a Spark program, the Driver is also 
responsible for returning the results from an application. These could be return codes or data 
in the case of an action that requests data to be returned to the client (for example, an interactive 
query).

The Driver also serves the application UI on port 4040, as shown in Figure 3.3. This UI is created 
automatically; it is independent of the code submitted or how it was submitted (that is, interac-
tive using pyspark or non-interactive using spark-submit).
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Figure 3.3 Spark application UI.

If subsequent applications launch on the same host, successive ports are used for the application 
UI (for example, 4041, 4042, and so on).

Spark Workers and Executors

Spark Executors are the processes on which Spark DAG tasks run. Executors reserve CPU and 
memory resources on slave nodes, or Workers, in a Spark cluster. An Executor is dedicated to a 
specific Spark application and terminated when the application completes. A Spark program 
normally consists of many Executors, often working in parallel.

Typically, a Worker node—which hosts the Executor process—has a finite or fixed number 
of Executors allocated at any point in time. Therefore, a cluster—being a known number of 
nodes—has a finite number of Executors available to run at any given time. If an application 
requires Executors in excess of the physical capacity of the cluster, they are scheduled to start 
as other Executors complete and release their resources.

As mentioned earlier in this chapter, JVMs host Spark Executors. The JVM for an Executor is 
allocated a heap, which is a dedicated memory space in which to store and manage objects. 
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The amount of memory committed to the JVM heap for an Executor is set by the property 
spark.executor.memory or as the --executor-memory argument to the pyspark, 
spark-shell, or spark-submit commands.

Executors store output data from tasks in memory or on disk. It is important to note that Workers 
and Executors are aware only of the tasks allocated to them, whereas the Driver is responsible 
for understanding the complete set of tasks and the respective dependencies that comprise an 
application.

By using the Spark application UI on port 404x of the Driver host, you can inspect Executors for 
the application, as shown in Figure 3.4.

Figure 3.4 Executors tab in the Spark application UI.

For Spark Standalone cluster deployments, a worker node exposes a user interface on port 8081, as 
shown in Figure 3.5.
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Figure 3.5 Spark Worker UI.

The Spark Master and Cluster Manager

The Spark Driver plans and coordinates the set of tasks required to run a Spark application. 
The tasks themselves run in Executors, which are hosted on Worker nodes.

The Master and the Cluster Manager are the central processes that monitor, reserve, and allo-
cate the distributed cluster resources (or containers, in the case of YARN or Mesos) on which 
the Executors run. The Master and the Cluster Manager can be separate processes, or they can 
combine into one process, as is the case when running Spark in Standalone mode.

Spark Master

The Spark Master is the process that requests resources in the cluster and makes them available 
to the Spark Driver. In all deployment modes, the Master negotiates resources or containers with 
Worker nodes or slave nodes and tracks their status and monitors their progress.

When running Spark in Standalone mode, the Spark Master process serves a web UI on port 8080 
on the Master host, as shown in Figure 3.6.
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Figure 3.6 Spark Master UI.

 

Spark Master Versus Spark Driver

It is important to distinguish the runtime functions of the Driver and the Master. The name 
Master may be inferred to mean that this process is governing the execution of the application—
but this is not the case. The Master simply requests resources and makes those resources avail-
able to the Driver. Although the Master monitors the status and health of these resources, it is 
not involved in the execution of the application and the coordination of its tasks and stages. That 
is the job of the Driver.  

Cluster Manager

The Cluster Manager is the process responsible for monitoring the Worker nodes and reserv-
ing resources on these nodes upon request by the Master. The Master then makes these cluster 
resources available to the Driver in the form of Executors.
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As discussed earlier, the Cluster Manager can be separate from the Master process. This is the case 
when running Spark on Mesos or YARN. In the case of Spark running in Standalone mode, the 
Master process also performs the functions of the Cluster Manager. Effectively, it acts as its own 
Cluster Manager.

A good example of the Cluster Manager function is the YARN ResourceManager process for Spark 
applications running on Hadoop clusters. The ResourceManager schedules, allocates, and moni-
tors the health of containers running on YARN NodeManagers. Spark applications then use these 
containers to host Executor processes, as well as the Master process if the application is running 
in cluster mode; we will look at this shortly.

Spark Applications Using the Standalone Scheduler

In Chapter 2, “Deploying Spark,” you learned about the Standalone scheduler as a deployment 
option for Spark. You also deployed a fully functional multi-node Spark Standalone cluster in one 
of the exercises in Chapter 2. As discussed earlier, in a Spark cluster running in Standalone mode, 
the Spark Master process performs the Cluster Manager function as well, governing available 
resources on the cluster and granting them to the Master process for use in a Spark application.

Spark Applications Running on YARN

As discussed previously, Hadoop is a very popular and common deployment platform for Spark. 
Some industry pundits believe that Spark will soon supplant MapReduce as the primary process-
ing platform for applications in Hadoop. Spark applications on YARN share the same runtime 
architecture but have some slight differences in implementation.

ResourceManager as the Cluster Manager

In contrast to the Standalone scheduler, the Cluster Manager in a YARN cluster is the YARN 
ResourceManager. The ResourceManager monitors resource usage and availability across all 
nodes in a cluster. Clients submit Spark applications to the YARN ResourceManager. The 
ResourceManager allocates the first container for the application, a special container called 
the ApplicationMaster.

ApplicationMaster as the Spark Master

The ApplicationMaster is the Spark Master process. As the Master process does in other cluster 
deployments, the ApplicationMaster negotiates resources between the application Driver and the 
Cluster Manager (or ResourceManager in this case); it then makes these resources (containers) 
available to the Driver for use as Executors to run tasks and store data for the application. 
The ApplicationMaster remains for the lifetime of the application.

Deployment Modes for Spark Applications Running 

on YARN

Two deployment modes can be used when submitting Spark applications to a YARN cluster: Client 
mode and Cluster mode. Let’s look at them now.
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Client Mode

In Client mode, the Driver process runs on the client submitting the application. It is essentially 
unmanaged; if the Driver host fails, the application fails. Client mode is supported for both 
interactive shell sessions (pyspark, spark-shell, and so on) and non-interactive application 
submission (spark-submit). Listing 3.2 shows how to start a pyspark session using the Client 
deployment mode.

Listing 3.2 YARN Client Deployment Mode

$SPARK_HOME/bin/pyspark \
--master yarn-client \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1
# OR
$SPARK_HOME/bin/pyspark \
--master yarn \
--deploy-mode client \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1

Figure 3.7 provides an overview of a Spark application running on YARN in Client mode.

Figure 3.7 Spark application running in YARN Client mode.
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The steps shown in Figure 3.7 are described here:

1. The client submits a Spark application to the Cluster Manager (the YARN ResourceManager). 
The Driver process, SparkSession, and SparkContext are created and run on the client.

2. The ResourceManager assigns an ApplicationMaster (the Spark Master) for the application.

3. The ApplicationMaster requests containers to be used for Executors from the 
ResourceManager. With the containers assigned, the Executors spawn.

4. The Driver, located on the client, then communicates with the Executors to marshal 
processing of tasks and stages of the Spark program. The Driver returns the progress, results, 
and status to the client.

The Client deployment mode is the simplest mode to use. However, it lacks the resiliency required 
for most production applications.

Cluster Mode

In contrast to the Client deployment mode, with a Spark application running in YARN Cluster 
mode, the Driver itself runs on the cluster as a subprocess of the ApplicationMaster. This provides 
resiliency: If the ApplicationMaster process hosting the Driver fails, it can be re-instantiated on 
another node in the cluster.

Listing 3.3 shows how to submit an application by using spark-submit and the YARN Cluster 
deployment mode. Because the Driver is an asynchronous process running in the cluster, Cluster 
mode is not supported for the interactive shell applications (pyspark and spark-shell).

Listing 3.3 YARN Cluster Deployment Mode

$SPARK_HOME/bin/spark-submit \
--master yarn-cluster \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1
$SPARK_HOME/examples/src/main/python/pi.py 10000
# OR
$SPARK_HOME/bin/spark-submit \
--master yarn \
--deploy-mode cluster \
--num-executors 1 \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores 1
$SPARK_HOME/examples/src/main/python/pi.py 10000



56 Chapter 3  Understanding the Spark Cluster Architecture

Figure 3.8 provides an overview of a Spark application running on YARN in Cluster mode.

Figure 3.8 Spark application running in YARN Cluster mode.

The steps shown in Figure 3.8 are described here:

1. The client, a user process that invokes spark-submit, submits a Spark application to the 
Cluster Manager (the YARN ResourceManager).

2. The ResourceManager assigns an ApplicationMaster (the Spark Master) for the application. 
The Driver process is created on the same cluster node.

3. The ApplicationMaster requests containers for Executors from the ResourceManager. 
Executors are spawned within the containers allocated to the ApplicationMaster by the 
ResourceManager. The Driver then communicates with the Executors to marshal processing 
of tasks and stages of the Spark program.

4. The Driver, running on a node in the cluster, returns progress, results, and status to the 
client.

The Spark application web UI, as shown previously, is available from the ApplicationMaster host 
in the cluster; a link to this user interface is available from the YARN ResourceManager UI.

Local Mode Revisited

In Local mode, the Driver, the Master, and the Executor all run in a single JVM. As discussed 
earlier in this chapter, this is useful for development, unit testing, and debugging, but it has 
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limited use for running production applications because it is not distributed and does not scale. 
Furthermore, failed tasks in a Spark application running in Local mode are not re-executed by 
default. You can override this behavior, however.

When running Spark in Local mode, the application UI is available at http://localhost:4040. 
The Master and Worker UIs are not available when running in Local mode.

Summary

In this chapter, you have learned about the Spark runtime application and cluster architecture, 
the components or a Spark application, and the functions of these components. The components 
of a Spark application include the Driver, Master, Cluster Manager, and Executors. The Driver is 
the process that the client interacts with when launching a Spark application, either through one 
of the interactive shells or through the spark-submit script. The Driver is responsible for creat-
ing the SparkSession object (the entry point for any Spark application) and planning an applica-
tion by creating a DAG consisting of tasks and stages. The Driver communicates with a Master, 
which in turn communicates with a Cluster Manager to allocate application runtime resources 
(containers) on which Executors will run. Executors are specific to a given application and run all 
tasks for the application; they also store output data from completed tasks. Spark’s runtime archi-
tecture is essentially the same regardless of the cluster resource scheduler used (Standalone, YARN, 
Mesos, and so on).

Now that we have explored Spark’s cluster architecture, it’s time to put the concepts into action 
starting in the next chapter.

http://localhost:4040
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unpersist(), 114–116, 132–134, 187
updateStateByKey(), 220–221
value(), 113, 117
values(), 20, 86
variance(), 107
wholeTextFiles(), 64–66, 76
window(), 222–223
writeStream(), 227
zero(), 118

G
Gaussian mixture model (GMM), 273

GCP (Google Cloud Platform), Spark deployment 

on, 41

generate_message function, 25

getCheckpointFile() method, 136

getStorageLevel() function, 130

GitHub folders

average-word-length, 120
checkpointing, 138
joining-datasets, 103
recommendation-engine, 269
streaming-wordcount, 219

glm() function, 255

glom() method, 126

GMM (Gaussian mixture model), 273

golf dataset, 262–263

Google Cloud Platform (GCP), Spark deployment 

on, 41

parallelize(), 71
parquet(), 173–174, 190–191, 253
partitionBy(), 123
persist(), 73–74, 132, 187, 215
pickleFile(), 22
pipe(), 138–139
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HaaS (Hadoop-as-a-Service), 40
HDFS (Hadoop Distributed File System)

blocks, 8–9
as data source for Spark, 17
defined, 7–8
metadata, 9
processes, 8–10
read operations, 9–10
write operations, 9–10

HDP (Hortonworks Data Platform), 32
HUE (Hadoop User Experience), 164
installation, 34
MapReduce, 13
schema-on-read system, 7
shared nothing approach, 7
YARN (Yet Another Resource Negotiator), 

7–8
application scheduling with, 10–13
ApplicationMaster, 11–12
NodeManagers, 10–12
as resource scheduler for Spark, 17
ResourceManager, 10–12
Spark jobs, submitting, 30
Spark on, 28–29

HADOOP_CONF_DIR environment variable, 142

HADOOP_HOME environment variable, 35, 142

hadoop.dll, 34
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Java Development Kit. See JDK 

(Java Development Kit), installing

Java Message Service (JMS), 228

java -version command, 33, 34

Java Virtual Machine (JVM), 13, 46

JAVA_HOME environment variable, 142

JavaScript Object Notation. See JSON 

(JavaScript Object Notation)

JDBC (Java Database Connectivity), 43, 67

JDBC/ODBC interface, 192
JdbcRDD, 77

jdbc() method, 68–69

JDK (Java Development Kit), installing

on Linux or Mac OS X, 33
on Windows, 34

JMS (Java Message Service), 228

jobs (Spark), submitting

in Local mode, 28
to Mesos cluster, 30
to standalone cluster, 29
to YARN cluster, 30

join() function, 96–97, 185–186

join operations

Bay Area Bike Share exercise, 100–103
cartesian(), 99–100
cogroup(), 98–99
DataFrames, 185–186
defined, 95
fullOuterJoin(), 98
join(), 96–97, 185–186
leftOuterJoin(), 97
optimizing, 97
rightOuterJoin(), 97
types of, 95–96

joining-datasets folder (GitHub), 103

JSON (JavaScript Object Notation), 20–21

creating DataFrames from, 171–172
files, creating RDDs from, 69–70
json package, 20–21
Jupyter (IPython) notebooks, 275–277

json() method, 69–70, 171–172

Jupyter (IPython), 275–277

JVM (Java Virtual Machine), 13, 46

K
Kafka

architecture, 229–230
createDirectStream() method, 232–234

Hortonworks Data Platform (HDP), 32

HUE (Hadoop User Experience), 164

I
IaaS (Infrastructure-as-a-Service), 39

IaC (Infrastructure-as-Code), 39

IBM WebSphere MQ, 228

immutable lists. See tuples

indexes, secondary

Apache Cassandra, 202
DynamoDB, 204

inferring DataFrame schemas, 176

Infrastructure-as-a-Service (IaaS), 39

Infrastructure-as-Code (IaC), 39

ingestion, 8–9

initializing RDDs (Resilient Distributed 

Datasets), 61

inner joins, 96

Input Tables, 225

input/output types, 16

installation

Hadoop, 34
JDK (Java Development Kit)

on Linux or Mac OS X, 33
on Windows, 34

Python, 34
Spark. See Spark deployment

INT datatype, 165

Integer datatype, 245

IntegerType, 175

Interactive Computing Protocol, 277

interactive submission, 15

interpreters, Zeppelin, 279

intersect() function, 186

intersection() transformation, 104

IPv6, disabling, 35

IPython, 275–277

Iris Data dataset, 251

isCheckpointed() method, 136

items (DynamoDB), 204

J
jars/ directory, 37

Java, Spark support for, 14

Java Database Connectivity. See JDBC 

(Java Database Connectivity)
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libraries

boto3, 205
dbutils, 43
KCL (Kinesis Client Library), 238–239
KPL (Kinesis Producer Library), 238
LIBSVM (library for support vector 

machines), 274
NumPy, 264
Pandas, 264
R, 249

library() function, 249

LIBSVM (library for support vector machines), 

274

licenses, contributor, 6

licenses/ directory, 37

lineage

DStreams, 214–215
DStream.checkpoint() method, 215
StreamingContext.checkpoint() 

method, 215
RDDs (Resilient Distributed Datasets), 

74–75, 127–128
linear regression, SparkR and, 255–256

Linux, Spark installation on, 32–34

lists, 18, 19

load() function, 268

loading data into RDDs (Resilient Distributed 

Datasets), 61

Local deployment mode, 28, 56–57

local directive, 28

locality, data, 7, 62–63

log files, searching for errors, 61

log4j.properties file, 136

log4j.properties.erroronly file, 136

Logical datatype, 245

LongType, 175

longwords.collect() action, 128

longwords.count() action, 128

lookup() method, 126

looping_test.py file, 137

Lucene, 6

M
Mac OS X, Spark installation on, 32–34

machine learning, 259

classification
decision trees, 262–266, 271–272
defined, 259–260

KafkaUtils, 232
sample application, 234–237
Spark support for, 230–232

KafkaUtils class, 232

KCL (Kinesis Client Library), 238–239

kernels, Jupyter, 277

keyBy() function, 86–87

Keynes, John Maynard, 243

keys (Cassandra), 202

keys() function, 20, 86

keyspaces, 202

key/value stores, 19, 197

Kinesis, 237

Analytics, 237
documentation, 240
Firehose, 237
KCL (Kinesis Client Library), 238–239
KPL (Kinesis Producer Library), 238
Spark support for, 239
Streams

createStream() method, 239–240
defined, 237–238

k-means clustering

Spark ML, 273–274
Spark MLlib, 269–270

KMeans package, 270

KPL (Kinesis Producer Library), 238

L
LabeledPoint objects, 264–265

lambda syntax, 23–24

latent Dirichlet allocation (LDA), 273

lazy evaluation, 73

LDA (latent Dirichlet allocation), 273

learning

deep, 41
machine. See machine learning
supervised, 254
unsupervised, 254

left outer joins

defined, 96
leftOuterJoin() transformation, 97

leftOuterJoin() function, 97

len() method, 20

levels, storage

choosing, 131
table of, 128–129
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MEMORY_AND_DISK_SER constant, 130

MEMORY_AND_DISK_SER* constant, 129

MEMORY_AND_DISK_SER_2 constant, 130

MEMORY_ONLY constant, 129, 130

MEMORY_ONLY_2 constant, 130

MEMORY_ONLY_SER constant, 130

MEMORY_ONLY_SER* constant, 129

MEMORY_ONLY_SER_2 constant, 130

Mesos, 30

message-oriented middleware (MOM), 228

messaging systems, Spark with, 228

Amazon Kinesis, 237
Analytics, 237
createStream() method, 239–240
documentation, 240
Firehose, 237
KCL (Kinesis Client Library), 238–239
Kinesis Streams, 237–238
KPL (Kinesis Producer Library), 238
Spark support for, 239

Apache Kafka
architecture, 229–230
createDirectStream() method, 232–234
KafkaUtils, 232
sample application, 234–237
Spark support for, 230–232

MOM (message-oriented middleware), 
228

metadata, 9

columns() method, 179
dtypes() method, 179
operations, 179

metastores

configuration, 35
Hive, 163–164

methods. See functions and methods

Microsoft Message Queuing (MSMQ), 228

min() transformation, 105–106

MLlib

classification, 262
clustering, 269–270
collaborative filtering, 266–267
movie recommender application, 266–267

model.save() function, 268

modules

cPickle, 22
pickle, 22
urllib2, 119

Naive Bayes, 266
Spark ML, 271–273
Spark MLlib, 262

clustering, 260–261
k-means, 269–270, 273–274
Spark ML, 273–274

collaborative filtering
defined, 260
Spark MLlib, 266–267

feature extraction, 261
pipelines, 274–275
Spark ML

classification, 271–272
clustering, 273–274
collaborative filtering, 272–273
pipelines, 274–275

Spark MLlib
classification, 262
clustering, 269–270
collaborative filtering, 266–267
movie recommender application, 

266–267
MAP datatype, 165

map() function, 18, 24, 77–78, 182

mapPartitions() method, 126–127

MapR Converged Data Platform, 32

MapReduce

GCP (Google Cloud Platform), 41
Spark deployment on, 40–41
WordCount exercise, 92–95

“MapReduce: Simplified Data Processing on 

Large Clusters” (whitepaper), 6, 13

MapType, 176

mapValues() function, 87

Masters, 38, 51–52

master/slave model, 8

math functions, 184

matrices, 245–247

matrix command, 247

matrix factorization, 266

MatrixFactorizationModel.load() function, 268

max() transformation, 106

%md (Markdown) interpreter, 279

mean() transformation, 106

Memcached, 206

memory sinks, 226

MEMORY_AND_DISK constant, 129, 130

MEMORY_AND_DISK_2 constant, 130
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stdev(), 107
sum(), 107
variance(), 107

NumPy, 264

Nutch, 6

O
object files

creating RDDs from, 66
defined, 66

objectFile() method, 66

objects. See also classes; DataFrames

DenseVector, 271
DStreams, 211–212

broadcast variables and accumulators, 
216

caching and persistence, 215
lineage and checkpointing, 214–215
output operations, 216–218
sources, 212–213
transformations, 213–214

Estimator, 274
HFile, 199
Hive, 163–164
HiveContext, 47
JSON (JavaScript Object Notation), 

 creating DataFrames from, 171–172
LabeledPoint, 264–265
Pipeline, 274
Row, 271
SparkConf, 47
SparkContext, 47, 211
SparkSession, 46–48, 211, 250
SparseVector, 271
SQLContext, 47
StreamingContext, 47, 211
StructField, 178
Transformer, 274

observations (R), 252

OFF_HEAP constant, 130

OFF_HEAP storage level, 129

operations. See also functions and methods

narrow, 74
wide, 75

operators, assignment (<-), 244

Optimized Row Columnar (ORC) files, 173

MOM (message-oriented middleware), 228

MongoDB, 206

movie recommender application, 266–267

Movielens dataset, 267–269

MSMQ (Microsoft Message Queuing), 228

mtcars dataset, 251–252

multi-node standalone clusters, 37–39

multiple DataFrames

grouping, 187
joining, 185–186
ordering, 186–187

N
Naive Bayes, 266

NaiveBayes package, 266

named functions, 23–24

NameNode process, 9

names, SparkSession, 47

narrow operations, 74

neural networks, 41

NewHadoopRDD, 76

NodeManagers, 10–12

nodes, 8

DAGs (directed acyclic graphs) of, 48
quorum of, 230

non-interactive submission, 16

non-splittable compression formats, 62

NoSQL systems, 7, 195–196

Apache Cassandra, 201–204
characteristics of, 196
DynamoDB, 204–206
HBase

defined, 197
HappyBase Python package, 200
overview of, 197–200
sample exercise, 200–201
Scala API, 200

types of, 196–197
notebooks, 275

Apache Zeppelin, 278–279
Jupyter (IPython), 275–277

Numeric datatype, 245

numeric value operations, 105–106, 249

max(), 106
mean(), 106
min(), 105–106
stats(), 108
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groupByKey(), 89
keyBy(), 86–87
keys(), 86
mapValues(), 87
reduceByKey(), 90
sortByKey(), 91–92
values(), 86

Pandas, 264

ParallelCollectionRDD, 77

parallelism, optimizing, 152–153

parallelize() method, 71

parent RDDs (Resilient Distributed Datasets), 

74–75

parentheses (), 19

Parquet

file compression, 174
overview of, 173

parquet() method, 173–174, 190–191

Partial DAG execution (PDE), 166

partitionBy() function, 123

PartitionPruningRDD, 77

partitions, 120

Apache Kafka, 229
API methods

foreachPartition(), 125–126
glom(), 126
lookup(), 126
mapPartitions(), 126–127

controlling, 121–122
keys, 202
optimal number of, 123
optimizing, 153–155
overview of, 120–121
repartitioning functions

coalesce(), 124
partitionBy(), 123
repartition(), 123–124
repartitionAndSortWithinPartitions(), 

124–125
statistics, 166

PDE (Partial DAG execution), 166

persist() method, 73–74, 132, 187, 215

persistence

DataFrames, 187
DStreams, 215
RDDs (Resilient Distributed Datasets), 

73–74, 131–132
persist() method, 132
unpersist() method, 132–134
when to use, 134

optimizing Spark, 148

applications, 152–153
dynamic allocation, 153
parallelism, 152–153
performance issues, 155–159

associative operations, 149–150
data collection, 152
filtering, 149
functions and closures, 151–152
join operations, 97
partitions, 153–155

ORC (Optimized Row Columnar) files, 173

orc() method, 174–175

ORCFile format, Spark support for, 17

orderBy() function, 186–187

outer joins

defined, 96
transformations

fullOuterJoin(), 98
leftOuterJoin(), 97
rightOuterJoin(), 97

output modes (Spark Streaming), 226–227

output operations, DStreams, 216–218

foreachRDD() method, 217–218
pprint() method, 216
saveAsTextFiles() method, 217

output sinks, 225

console sinks, 226
file sinks, 225–226
memory sinks, 226

outputMode() method, 227

P
PaaS (Platform-as-a-Service), 39

packages

datasets, 251
defined, 20–21
HappyBase, 200
json, 20–21
KMeans, 270
NaiveBayes, 266
pyspark-cassandra, 203
R language, 248–249

PairRDDs

defined, 76
transformations, 85–92

flatMapValues(), 87–89
foldByKey(), 91



297R/ directory

PySpark shell, 15, 53–54

PYSPARK_DRIVER_PYTHON environment 

variable, 142

PYSPARK_PYTHON environment variable, 142

pyspark-cassandra package, 203

pyspark.mllib.clustering.KMeans package.270

Python, 17. See also functions and methods

data structures
dicts, 19–20
lists, 18
sets, 18
tuples, 18–19

docstrings, 183
functions

anonymous functions, 23–24
closures, 24–25
higher-order functions, 24
lambda syntax, 23–24
named functions, 23–24

HappyBase package, 200
installation, 34
libraries

boto3, 205
NumPy, 264
Pandas, 264

modules
cPickle, 22
pickle, 22
urllib2, 119

PySpark shell, 15, 53–54
serialization

JSON (JavaScript Object Notation), 
20–21

Pickle, 22
python/ directory, 37

%python interpreter, 279

PythonRDD, 77

Q
quit() method, 36

quorum of nodes, 230

R
R CMD INSTALL command, 249

R/ directory, 37

Pi Estimator, 33, 38

Pickle, 22

pickleFile() method, 22

Pig, 8, 40, 164

pip command, 200

pipe() method, 138–139

pipelines, Spark ML, 274–275

planning applications, 48

Platform-as-a-Service (PaaS), 39

populating RDDs (Resilient Distributed 

Datasets), 61

pprint() method, 216

precedence, Spark configuration properties, 148

predict() function, 256, 266, 266

predictive analytics, SparkR and, 253–254

predictive modeling, SparkR and, 254–255

Presto, 40

primary keys, 202

primitive types, 175–176

printSchema() method, 176

probability functions, 249

processes

DataNode, 8–9
NameNode, 9

Producer Library (Kinesis), 238

producers (Kafka), 229

programming (Spark)

PySpark shell, 15
RDD (Resilient Distributed Dataset), 16
Scala shell, 15
Standalone scheduler

multi-node standalone clusters, 37–39
Standalone deployment mode, 28–29

submission types
interactive, 15
non-interactive, 16

Workers, 38
programming interfaces, 14

properties

RDDs (Resilient Distributed Datasets), 60
Spark configuration

configuration management, 148
precedence, 148
setting, 145–147
table of, 145

pyspark command, 30



298 R language

sample exercise, 136–138
setCheckpointDir() method, 135

converting DataFrames to, 175
creating

from data sources, 66–69
from files, 61–63
from JSON files, 69–70
from object files, 66
programmatically, 71–72
from text files, 63–66

data sampling, 139
sample() function, 140
takeSample() function, 140–141

DataFrames created from, 169
defined, 16
documentation for, 77
explained, 59–61
fault tolerance, 76
join operations

Bay Area Bike Share exercise, 100–103
cartesian(), 99–100
cogroup(), 98–99
defined, 95
fullOuterJoin(), 98
join(), 96–97
leftOuterJoin(), 97
optimizing, 97
rightOuterJoin(), 98
types of, 95–96

lazy evaluation, 73
lineage, 74–75, 127–128
loading data into, 61
MapReduce

GCP (Google Cloud Platform), 41
Spark deployment on, 40–41
WordCount exercise, 92–95

numeric value operations, 105–106
max(), 106
mean(), 106
min(), 105–106
stats(), 108
stdev(), 107
sum(), 107
variance(), 107

PairRDDs
defined, 76
transformations, 85–92

R language, 244. See also functions and 

methods; methods

batch mode, 251
data frames

creating, 247–248, 251–253
defined, 245

data structures, 245–247
datasets

golf/weather, 262–263
Movielens, 267–269
mtcars, 251–252
splitting, 263–264

datatypes, 245
functions, 248–249
history of, 244
packages, 248–249, 251
SparkR, 243

accessing, 250–251
data frames, 251–253
data mining, 254–255
documentation, 250
linear regression, 255–256
predictive analytics, 253–254
predictive modeling, 254–255
RStudio with, 257–258

RabbitMQ, 228

randomSplit() function, 263–264

range() method, 71–72

rdd() method, 175

RDDs (Resilient Distributed Datasets), 111

actions, 81
collect(), 82
count(), 81
defined, 59, 60
example of, 72
first(), 83
fold(), 84–85
foreach(), 85
reduce(), 84
take(), 82
top(), 82–83

caching
example of, 131
when to use, 134

checkpointing, 134–135
checkpoint() method, 135
getCheckpointFile() method, 136
isCheckpointed() method, 136
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example of, 72
filter(), 79
fine-grained, 72
flatMap(), 78
flatMapValues(), 87–89
foldByKey(), 91
fullOuterJoin(), 98
groupBy(), 80
groupByKey(), 89
intersection(), 104
join(), 96–97
keyBy(), 86–87
keys(), 86
leftOuterJoin(), 97
map(), 77–78
mapValues(), 87
max(), 106
mean(), 106
min(), 105–106
reduceByKey(), 90
rightOuterJoin(), 97
sortBy(), 81
sortByKey(), 91–92
stats(), 108
stdev(), 107
subtract(), 104–105
subtractByKey(), 105
sum(), 107
union(), 104
values(), 86
variance(), 107

types of, 76–77
read command, 248

read.csv(), 248
read.df(), 252
read.fwf(), 248
read.jdbc(), 68–69
read.json(), 69–70, 171–172, 253
read.parquet(), 253
read.table(), 248

read() method, 67

read operations (HDFS), 9–10

readStream() method, 224

receivers (Kafka), 231

recommendation-engine folder (GitHub), 269

recommender application, 266–267

Redis, 206

parent/child, 74–75
partitions, 120

controlling, 121–122
foreachPartition() method, 125–126
glom() method, 126
lookup() method, 126
mapPartitions() method, 126–127
optimal number of, 123
optimizing, 153–155
overview of, 120–121
statistics, 166

performing functions on, 217–218
persistence, 73–74, 131–132

persist() method, 132
unpersist() method, 132–134
when to use, 134

processing with external programs, 138
pipe() method, 138–139
potential problems with, 138

properties of, 60
repartitioning functions

coalesce(), 124
partitionBy(), 123
repartition(), 123–124
repartitionAndSortWithinPartitions(), 

124–125
reuse, 73–74
saving as text files, 217
set operations, 103

intersection(), 104
subtract(), 104–105
subtractByKey(), 105
union(), 104

shared variables
accumulators, 116–119
broadcast variables, 112–116
sample exercise, 119–120

storage options
getStorageLevel() function, 130
storage levels, 128–129
storage-level flags, 129–130

transformations, 77
cartesian(), 99–100
coarse-grained, 72
cogroup(), 98–99
defined, 59
distinct(), 79–80
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sbin/ directory, 37

Scala, 13, 14, 15, 31, 200

scanning HBase tables, 198

scheduler. See Standalone scheduler

scheduling applications, 10–13

schema-on-read systems, 7

schema-on-write systems, 7

SchemaRDD, 76

schemas, DataFrame, 252–253

defining, 178
inferring, 176

schemes, filesystem, 63

Scikit-learn project, 274

searching, log files for errors, 61

secondary indexes

Apache Cassandra, 202
DynamoDB, 204

select() method, 180–181, 183

sequenceFile() method, 66

SequenceFileRDD, 76

serialization

JSON (JavaScript Object Notation), 20–21
Pickle, 22

servers

region servers, 199
Spark History Server, 158–159
Thrift JDBC/ODBC, 192, 194–195

session() function, 253

set operations, 103

intersection(), 104
subtract(), 104–105
subtractByKey(), 105
union(), 104

setCheckpointDir() method, 135

%sh (Shell commands) interpreter, 279

Shakespeare text-streaming application, 218–219

shared nothing operations, 7, 77

shared variables, 111

accumulators, 116–117
accumulator() method, 117
custom, 117–118
uses for, 118
value() method, 117

broadcast variables, 112
broadcast() method, 112–113
unpersist() method, 114–116
value() method, 113

sample exercise, 119–120

Redshift, 237

reduce() action, 84

reduceByKey() function, 24, 90, 149–150

reduceByKeyAndWindow() method, 223

reflection, 176

region servers, 199

regions, 199

regression, linear, 255–256

repartition() method, 123–124, 154

repartitionAndSortWithinPartitions() method, 

124–125

repartitioning

DataFrames, 187
RDDs (Resilient Distributed Datasets)

coalesce(), 124
partitionBy(), 123
repartition(), 123–124
repartitionAndSortWithinPartitions(), 

124–125
Resilient Distributed Datasets. See RDDs 

(Resilient Distributed Datasets)

ResourceManagers, 10–12, 53

Result Tables, 225

ret_message() function, 25

Riak, 206

right outer joins

defined, 96
rightOuterJoin() transformation, 97

rightOuterJoin() function, 97

Row objects, 271

RStudio, SparkR and, 257–258

S
S3, 237

SaaS (Software-as-a-Service), 39

sample() function, 140, 183

sampleBy() function, 183

sampling data, 139

sample() function, 140
takeSample() function, 140–141

save() function, 268

saveAsPickleFile() method, 22

saveAsTable() method, 188

saveAsTextFile() function, 17

saveAsTextFiles() method, 217

saving DataFrame output

to files, 188–191
to Hive tables, 188
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Executors, 49–51
illustrated, 46
Masters, 51–52
Standalone scheduler, 53
Workers, 49–51
YARN (Yet Another Resource Negotiator), 

53–57
Spark configuration

environment variables, 141–142
defaults, 147
HADOOP_CONF_DIR, 142
HADOOP_HOME, 142
HIVE_CONF_DIR, 143
JAVA_HOME, 142
PYSPARK_DRIVER_PYTHON, 142
PYSPARK_PYTHON, 142
SPARK_CLASSPATH, 144
SPARK_DAEMON_MEMORY, 144
SPARK_DRIVER_MEMORY, 143
SPARK_EXECUTOR_CORES, 143
SPARK_EXECUTOR_INSTANCES, 143
SPARK_EXECUTOR_MEMORY, 143
SPARK_HOME, 142
SPARK_LOCAL_IP, 144
SPARK_MASTER_IP, 144
SPARK_MASTER_OPTS, 144
SPARK_MASTER_PORT, 144
SPARK_MASTER_WEBUI_PORT, 144
SPARK_PUBLIC_DNS, 144
SPARK_WORKER_CORES, 144
SPARK_WORKER_DIR, 144
SPARK_WORKER_INSTANCES, 144
SPARK_WORKER_MEMORY, 144
SPARK_WORKER_OPTS, 144
SPARK_WORKER_PORT, 144
SPARK_WORKER_WEBUI_PORT, 144
SPARK_YARN_APP_NAME, 143
SPARK_YARN_DIST_ARCHIVES, 143
SPARK_YARN_DIST_FILES, 143
SPARK_YARN_QUEUE, 143
SPARKR_DRIVER_R, 142
YARN_CONF_DIR, 142

optimizing, 148
applications, 152–153, 155–159
associative operations, 149–150
data collection, 152
filtering, 149
functions and closures, 151–152
partitions, 153–155

shells

beeline
overview of, 193
sample exercise, 194–195

PySpark, 15, 53–54
Scala, 15
sparkR, 250
spark-sql, 191

ShortType, 175

show() method, 180

ShuffledRDD, 77

shuffling, 73, 156–157

Simple Queue Service (SQS), 228

SimpleConsumer API, 231

sinks, data, 225

console sinks, 226
file sinks, 225–226
memory sinks, 226

sliding window operations, 221

reduceByKeyAndWindow() method, 223
window() method, 222–223

SMALLINT datatype, 165

Snappy, 62

socket sources (Structured Streaming), 225

socketTextStream() method, 212–213, 225

Software-as-a-Service (SaaS), 39

Solr, 206

sortBy() function, 81

sortByKey() function, 91–92

sources

DStream, 212, 213
socketTextStream() method, 212–213
textFileStream() method, 213

Structured Streaming, 224
file sources, 224–225
socket sources, 225

Spark, overview of, 13, 257–258

Hadoop and
HDFS (Hadoop Distributed File 

System), 17
YARN (Yet Another Resource 

Negotiator), 17
history of, 13
input/output types, 16
programming interfaces, 14
uses for, 14

Spark cluster architecture, 45–46

Cluster Managers, 52–53
Driver, 46–49
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HBase
HFile objects, 199
sparsity, 199

Hive
accessing, 164
CLI (command-line interface), 164
datatypes, 164–165
HCatalog, 164
HiveServer2, 164
metastore, 163–164
objects, 163–164
overview of, 162
writing DataFrame output to, 188

NoSQL systems, 195–196
Apache Cassandra, 201–204
characteristics of, 196
DynamoDB, 204–206
HBase, 196–201
types of, 196–197

reflection, 176
Spark Streaming, 209–210

architecture, 210–211
DataFrames

basic operations, 180–183
metadata operations, 179

DStreams, 211–212
broadcast variables and accumulators, 

216
caching and persistence, 215
lineage and checkpointing, 214–215
output operations, 216–218
sources, 212–213
transformations, 213–214

goals of, 210
messaging systems, 228

Amazon Kinesis, 237–240
Apache Kafka, 229–237

output modes, 226–227
sample application, 218–219
sliding window operations, 221

reduceByKeyAndWindow() method, 
223

window() method, 222–223
state operations, 219–221
Structured Streaming, 223–224

data sinks, 225–226
data sources, 224–225

structured streaming operations, 227–228

properties
configuration management, 148
precedence, 148
setting, 145–147
table of, 145

Spark Core API. See RDDs (Resilient Distributed 

Datasets)

Spark deployment, 27

in the cloud, 39
AWS (Amazon Web Services), 39–41
Databricks, 42–43

installation directory contents, 36–37
on Linux or Mac OS X, 32–34
Masters, 38
modes

Client, 28–29, 53–55
Cluster, 28–29, 55–56
Local, 28, 56–57
on Mesos, 30
Spark Standalone, 28–29

multi-node standalone clusters, 37–39
preparation for, 30–31
releases, downloading, 31–32
requirements for, 31
on Windows, 34–36

Spark History Server, 158–159

%spark interpreter, 279

Spark ML

classification, 271–272
clustering, 273–274
collaborative filtering, 272–273
pipelines, 274–275

Spark MLlib

classification, 262
clustering, 269–270
collaborative filtering, 266–267
movie recommender application, 266–267

Spark SQL, 161. See also DataFrames

accessing, 191
beeline shell, 193, 194–195
external applications, 194
sample exercise, 194–195
spark-sql shell, 191
Thrift JDBC/ODBC server, 192, 

194–195
architecture, 166–167

extensions, 166
high-level architecture, 167
SparkSession entry point, 167–168
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spark.driver.extraClassPath property, 145–147

spark.driver.extraJavaOptions property, 145–147

spark.driver.memory property, 145–147

spark.dynamicAllocation.enabled property, 

145–147

spark-env.sh file, 38

spark.executor.cores property, 145–147

spark.executor.extraClassPath property, 

145–147

spark.executor.extraJavaOptions property, 

145–147

spark.executor.memory property, 145–147

spark-hbase-connector, 201

spark.master property, 145–147

%spark.pyspark interpreter, 279

SparkR, 243, 250

accessing, 250–251
data frames, creating, 251–253
data mining, 254–255
documentation, 250
linear regression, 255–256
predictive analytics, 253–254
predictive modeling, 254–255
RStudio and, 257–258

SPARKR_DRIVER_R environment variable, 142

sparkR.session() function, 253

SparkSession, 46–48, 167–168, 211, 250

spark-shell command, 30

spark.shuffle.service.enabled property, 145–147

%spark.sql interpreter, 279

spark-sql shell, 191

spark-streaming-kafka-assembly.jar file, 232

spark-submit command, 16, 30, 55–56, 192

SparseVector object, 271

sparsity, HBase support for, 199

splittable compression formats, 62

splitting datasets, 263–264

SQL (Structured Query Language). 

See Spark SQL

sql() function, 170, 253

SQLContext, 47

Sqoop, 8

SQS (Simple Queue Service), 228

square brackets ([ ]), 19

stages

defined, 48
dependencies, 48

Standalone deployment mode (Spark), 28–29

SPARK_CLASSPATH environment variable, 144

SPARK_DAEMON_MEMORY environment 

variable, 144

SPARK_DRIVER_MEMORY environment variable, 

143

SPARK_EXECUTOR_CORES environment 

variable, 143

SPARK_EXECUTOR_INSTANCES environment 

variable, 143

SPARK_EXECUTOR_MEMORY environment 

variable, 143

SPARK_HOME directory, 36–37

SPARK_HOME environment variable, 33, 142

SPARK_LOCAL_IP environment variable, 144

SPARK_MASTER_IP environment variable, 144

SPARK_MASTER_OPTS environment variable, 

144

SPARK_MASTER_PORT environment variable, 

144

SPARK_MASTER_WEBUI_PORT environment 

variable, 144

SPARK_PUBLIC_DNS environment variable, 144

SPARK_WORKER_CORES environment 

variable, 144

SPARK_WORKER_DIR environment 

variable, 144

SPARK_WORKER_INSTANCES environment 

variable, 144

SPARK_WORKER_MEMORY environment 

variable, 144

SPARK_WORKER_OPTS environment 

variable, 144

SPARK_WORKER_PORT environment 

variable, 144

SPARK_WORKER_WEBUI_PORT environment 

variable, 144

SPARK_YARN_APP_NAME environment 

variable, 143

SPARK_YARN_DIST_ARCHIVES environment 

variable, 143

SPARK_YARN_DIST_FILES environment variable, 

143

SPARK_YARN_QUEUE environment variable, 143

spark.broadcast.blockSize option, 114

spark.broadcast.compress option, 114

spark.broadcast.factory option, 114

spark.broadcast.port option, 114

SparkConf, 47

SparkContext, 47, 211

spark.default.parallelism property, 121

spark-defaults.conf file, 38
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data sources, 224
file sources, 224–225
socket sources, 225

operations, 227–228
structures, data. See data structures

submitting Spark jobs

interactive, 15
in Local mode, 28
to Mesos cluster, 30
non-interactive, 16
to standalone cluster, 29
to YARN cluster, 30

subtract() function, 104–105, 186

subtractByKey() transformation, 105

sum() transformation, 107

summary() function, 255–256

supervised learning, 254

T
table() function, 170–171

tables

Cassandra, 202
DynamoDB, 204
HBase, 198
Hive

creating data frames from, 170–171, 253
writing DataFrame output to, 188

tablets, 199

take() action, 82, 152

takeSample() function, 140–141, 152

tasks

defined, 48
optimizing execution of, 156–157

Tensor Processing Units (TPUs), 41

TensorFlow, 41

Term Frequency-Inverse Document Frequency 

(TF-IDF), 92, 261

testing

multi-node standalone clusters, 38
Spark installation

on Linux or Mac OS X, 33
on Windows, 35

text files

creating RDDs from, 63
textFile() method, 63–64
wholeTextFiles() method, 64–66

saving RDDs as, 217

Standalone scheduler, 53

daemon environment variables, 144
multi-node standalone clusters, 37–39
Standalone deployment mode, 28–29

start() method, 211

state operations (Spark Streaming), 219–221

statements

CREATE TABLE, 165
def, 23
DROP TABLE, 165
UPDATE, 163

statistical functions, 184, 249

statistics, partition, 166

stats() transformation, 108

stdev() transformation, 107

stop() method, 211

stop-word-list.csv file, 119

storage, 173

columnar, 166
getStorageLevel() function, 130
storage levels

choosing, 131
table of, 128–129

storage-level flags, 129–130
StorageClass constructor, 129

storage-level flags, 129–130

stream processing. See Spark Streaming

StreamingContext, 47, 211, 215

streaming-wordcount folder, 219

STRING datatype, 165

string datatypes

Hive, 165
Spark primitive type, 176

string functions, 184

StringType, 176

STRUCT datatype, 165

struct datatypes

Hive, 165
Spark primitive type, 176

StructField objects, 178

StructType, 176, 178

Structured Query Language. See Spark SQL

Structured Streaming, 223–224

data sinks, 225
console sinks, 226
file sinks, 225–226
memory sinks, 226
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reduceByKey(), 90
rightOuterJoin(), 97
sortBy(), 81
sortByKey(), 91–92
stats(), 108
stdev(), 107
subtract(), 104–105
subtractByKey(), 105
sum(), 107
union(), 104
values(), 86
variance(), 107

Transformer objects, 274

treeAggregate() function, 150

treeReduce() function, 150

tuple() function, 19

tuples, 18–19

U
udf() method, 184–185

UDFs (user-defined functions), 184–185

union() transformation, 104

UnionRDD, 77

unpersist() method, 114–116, 132–134, 187

unsupervised learning, 254

update output mode, 227

UPDATE statement, 163

updateStateByKey() method, 220–221

URI structures, 63

urllib2 Python module, 119

user-defined functions (UDFs), 184–185

V
value() method, 113, 117

values() method, 20, 86

var structure, 245–246

variables

environment, 141–142
defaults, 147
HADOOP_CONF_DIR, 142
HADOOP_HOME, 35, 142
HIVE_CONF_DIR, 143
JAVA_HOME, 142
PYSPARK_DRIVER_PYTHON, 142
PYSPARK_PYTHON, 142
SPARK_CLASSPATH, 144
SPARK_DAEMON_MEMORY, 144

text() method, 173

textFile() method, 17, 63–64

Tez, 173

TF-IDF (Term Frequency-Inverse Document 

Frequency), 92, 261

Thrift JDBC/ODBC server

overview of, 192
sample exercise, 194–195

TIBCO EMS (Enterprise Message Service), 228

TIMESTAMP datatype, 165

timestamp types

Hive, 165
Spark primitive, 176

TimestampType, 176

TINYINT datatype, 165

toDebugString() function, 128

Toffler, Alvin, 111

top() action, 82–83

Torvalds, Linus, 59

TPUs (Tensor Processing Units), 41

train() method, 266

trainClassifier() function, 265

transform() method, 274

transformations, 48, 77

cartesian(), 99–100
coarse-grained, 72
cogroup(), 98–99
defined, 59
distinct(), 79–80
DStreams, 213–214
example of, 72
filter(), 79
fine-grained, 72
flatMap(), 78
flatMapValues(), 87–89
foldByKey(), 91
fullOuterJoin(), 98
groupBy(), 80
groupByKey(), 89
intersection(), 104
join(), 96–97
keyBy(), 86–87
keys(), 86
leftOuterJoin(), 97
map(), 77–78
mapValues(), 87
max(), 106
mean(), 106
min(), 105–106
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windowing functions, 184

windows, sliding window operations, 221

reduceByKeyAndWindow() method, 223
window() method, 222–223

Windows, Spark installation on, 34–36

winutils.exe, 34

WordCount exercise, 92–95

Workers, 38, 49–51

write operations (HDFS), 9–10

write-ahead logs (WALs), 229

write.csv() method, 189–190

write.parquet() method, 190–191

writeStream() method, 227

writing DataFrame output

to files, 188–191
to Hive tables, 188

X-Y
Yahoo!, 6

YARN (Yet Another Resource Negotiator), 7–8

application scheduling with, 10–13
ApplicationMaster, 11–12
applications running on, 53–57

ApplicationMaster, 53
deployment modes, 53–57
ResourceManager, 53

environment variables, 143
NodeManagers, 10–12
as resource scheduler for Spark, 17
ResourceManager, 10–12
Spark jobs, submitting, 30
Spark on, 28–29

yarn/ directory, 37

YARN_CONF_DIR environment variable, 142

Yet Another Resource Negotiator. See YARN 

(Yet Another Resource Negotiator)

Z
Zaharia, Matei, 13

Zeppelin, 40–41

interpreters, 279
notebooks, 278–279

zero() function, 118

ZeroMQ (ØMQ), 228

ZIP format, 62

ZooKeeper, 230, 234–237

SPARK_DRIVER_MEMORY, 143
SPARK_EXECUTOR_CORES, 143
SPARK_EXECUTOR_INSTANCES, 143
SPARK_EXECUTOR_MEMORY, 143
SPARK_HOME, 33, 142
SPARK_LOCAL_IP, 144
SPARK_MASTER_IP, 144
SPARK_MASTER_OPTS, 144
SPARK_MASTER_PORT, 144
SPARK_MASTER_WEBUI_PORT, 144
SPARK_PUBLIC_DNS, 144
SPARK_WORKER_CORES, 144
SPARK_WORKER_DIR, 144
SPARK_WORKER_INSTANCES, 144
SPARK_WORKER_MEMORY, 144
SPARK_WORKER_OPTS, 144
SPARK_WORKER_PORT, 144
SPARK_WORKER_WEBUI_PORT, 144
SPARK_YARN_APP_NAME, 143
SPARK_YARN_DIST_ARCHIVES, 143
SPARK_YARN_DIST_FILES, 143
SPARK_YARN_QUEUE, 143
SPARKR_DRIVER_R, 142
YARN_CONF_DIR, 142

R, 252
shared, 111

accumulators, 116–119
broadcast variables, 112–116
sample exercise, 119–120

variance() transformation, 107

vectors, 245–246

Venn diagrams, 103

Virtual Private Cloud (VPC), 39

VPC (Virtual Private Cloud), 39

W
Waikato Environment for Knowledge Analysis 

(WEKA), 263

WALs (write-ahead logs), 229

weather dataset, 262–263

WEKA (Waikato Environment for Knowledge 

Analysis), 263

wget command, 33

wholeTextFiles() method, 64–66, 76

wide operations, 75

window() method, 222–223
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