
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135896464
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135896464
https://plusone.google.com/share?url=http://www.informit.com/title/9780135896464
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135896464
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135896464/Free-Sample-Chapter

Framework Design Guidelines
Third Edition

This page intentionally left blank

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Framework
Design
Guidelines

Conventions, Idioms, and Patterns
for Reusable .NET Libraries

Third Edition

 Krzysztof Cwalina

 Jeremy Barton

 Brad Abrams

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and the publisher was aware of a trademark

claim, the designations have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States

and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trademarks

of Microsoft Corporation in the U.S.A. and/or other countries/regions.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied

warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-

dental or consequential damages in connection with or arising out of the use of the information or programs

contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may

include electronic versions; custom cover designs; and content particular to your business, training goals,

marketing focus, or branding interests), please contact our corporate sales department at corpsales@pear-

soned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2020935344

Copyright © 2020 Pearson Education, Inc.

Cover image: Jakub Krechowicz/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from

the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form

or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding

permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &

Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-589646-4

ISBN-10: 0-13-589646-0

ScoutAutomatedPrintCode

mailto:corpsales@pear-soned.com
mailto:corpsales@pear-soned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/

To my wife, Ela,
for her support throughout the long process of

writing this book, and to my parents, Jadwiga and Janusz,
for their encouragement.

—Krzysztof Cwalina

To my lovely wife, Janine.
I didn't fully appreciate before why authors always dedicate

books to their spouse, and now I do.
So, thank you. I'm sorry. I probably have time now for whatever those

things were that you wanted me to do while I was writing.
—Jeremy Barton

To my wife, Tamara:
Your love and patience strengthen me.

—Brad Abrams

This page intentionally left blank

vii

Contents

Figures xvii
Tables xix
Foreword xxi
Foreword to the Second Edition xxiii
Foreword to the First Edition xxv
Preface xxvii
Acknowledgments xxxiii
About the Authors xxxv
About the Annotators xxxvii

1 Introduction 1

1.1 Qualities of a Well-Designed Framework 3

1.1.1 Well-Designed Frameworks Are Simple 3

1.1.2 Well-Designed Frameworks Are Expensive to Design 4

1.1.3 Well-Designed Frameworks Are Full of Trade-Offs 6

1.1.4 Well-Designed Frameworks Borrow from the Past 6

1.1.5 Well-Designed Frameworks Are Designed to Evolve 7

1.1.6 Well-Designed Frameworks Are Integrated 7

1.1.7 Well-Designed Frameworks Are Consistent 7

2 Framework Design Fundamentals 9

2.1 Progressive Frameworks 12

2.2 Fundamental Principles of Framework Design 15

Contentsviii

2.2.1 The Principle of Scenario-Driven Design 16

2.2.2 The Principle of Low Barrier to Entry 23

2.2.3 The Principle of Self-Documenting Object Models 29

2.2.4 The Principle of Layered Architecture 36

3 Naming Guidelines 41

3.1 Capitalization Conventions 42

3.1.1 Capitalization Rules for Identifiers 42

3.1.2 Capitalizing Acronyms 45

3.1.3 Capitalizing Compound Words and Common Terms 48

3.1.4 Case Sensitivity 51

3.2 General Naming Conventions 52

3.2.1 Word Choice 52

3.2.2 Using Abbreviations and Acronyms 55

3.2.3 Avoiding Language-Specific Names 56

3.2.4 Naming New Versions of Existing APIs 58

3.3 Names of Assemblies, DLLs, and Packages 61

3.4 Names of Namespaces 63

3.4.1 Namespaces and Type Name Conf licts 65

3.5 Names of Classes, Structs, and Interfaces 67

3.5.1 Names of Generic Type Parameters 70

3.5.2 Names of Common Types 71

3.5.3 Naming Enumerations 72

3.6 Names of Type Members 74

3.6.1 Names of Methods 74

3.6.2 Names of Properties 75

3.6.3 Names of Events 77

3.6.4 Naming Fields 78

3.7 Naming Parameters 79

3.7.1 Naming Operator Overload Parameters 80

3.8 Naming Resources 81

4 Type Design Guidelines 83

4.1 Types and Namespaces 85

4.2 Choosing Between Class and Struct 89

4.3 Choosing Between Class and Interface 92

ixContents

4.4 Abstract Class Design 100

4.5 Static Class Design 102

4.6 Interface Design 104

4.7 Struct Design 106

4.8 Enum Design 111

4.8.1 Designing Flag Enums 119

4.8.2 Adding Values to Enums 123

4.9 Nested Types 124

4.10 Types and Assembly Metadata 127

4.11 Strongly Typed Strings 129

5 Member Design 135

5.1 General Member Design Guidelines 135

5.1.1 Member Overloading 136

5.1.2 Implementing Interface Members Explicitly 148

5.1.3 Choosing Between Properties and Methods 152

5.2 Property Design 158

5.2.1 Indexed Property Design 161

5.2.2 Property Change Notification Events 163

5.3 Constructor Design 165

5.3.1 Type Constructor Guidelines 172

5.4 Event Design 175

5.5 Field Design 180

5.6 Extension Methods 184

5.7 Operator Overloads 192

5.7.1 Overloading Operator == 198

5.7.2 Conversion Operators 198

5.7.3 Inequality Operators 200

5.8 Parameter Design 202

5.8.1 Choosing Between Enum and Boolean Parameters 205

5.8.2 Validating Arguments 207

5.8.3 Parameter Passing 210

5.8.4 Members with Variable Number of Parameters 214

5.8.5 Pointer Parameters 218

5.9 Using Tuples in Member Signatures 220

Contentsx

6 Designing for Extensibility 227

6.1 Extensibility Mechanisms 227

6.1.1 Unsealed Classes 228

6.1.2 Protected Members 230

6.1.3 Events and Callbacks 231

6.1.4 Virtual Members 237

6.1.5 Abstractions (Abstract Types and Interfaces) 239

6.2 Base Classes 242

6.3 Sealing 244

7 Exceptions 249

7.1 Exception Throwing 254

7.2 Choosing the Right Type of Exception to Throw 260

7.2.1 Error Message Design 264

7.2.2 Exception Handling 265

7.2.3 Wrapping Exceptions 271

7.3 Using Standard Exception Types 273

7.3.1 Exception and SystemException 274

7.3.2 ApplicationException 274

7.3.3 InvalidOperationException 274

7.3.4 ArgumentException, ArgumentNullException, and

ArgumentOutOfRangeException 275

7.3.5 NullReferenceException, IndexOutOfRangeException, and

AccessViolationException 276

7.3.6 StackOverflowException 276

7.3.7 OutOfMemoryException 277

7.3.8 ComException, SEHException, and

ExecutionEngineException 278

7.3.9 OperationCanceledException and

TaskCanceledException 278

7.3.10 FormatException 278

7.3.11 PlatformNotSupportedException 279

7.4 Designing Custom Exceptions 279

7.5 Exceptions and Performance 281

7.5.1 The Tester–Doer Pattern 281

7.5.2 The Try Pattern 282

xiContents

8 Usage Guidelines 287

8.1 Arrays 287

8.2 Attributes 291

8.3 Collections 294

8.3.1 Collection Parameters 296

8.3.2 Collection Properties and Return Values 298

8.3.3 Choosing Between Arrays and Collections 302

8.3.4 Implementing Custom Collections 303

8.4 DateTime and DateTimeOffset 306

8.5 ICloneable 308

8.6 IComparable<T> and IEquatable<T> 309

8.7 IDisposable 311

8.8 Nullable<T> 311

8.9 Object 312

8.9.1 Object.Equals 312

8.9.2 Object.GetHashCode 315

8.9.3 Object.ToString 316

8.10 Serialization 319

8.11 Uri 321

8.11.1 System.Uri Implementation Guidelines 322

8.12 System.Xml Usage 323

8.13 Equality Operators 324

8.13.1 Equality Operators on Value Types 327

8.13.2 Equality Operators on Reference Types 328

9 Common Design Patterns 329

9.1 Aggregate Components 329

9.1.1 Component-Oriented Design 331

9.1.2 Factored Types 334

9.1.3 Aggregate Component Guidelines 335

9.2 The Async Patterns 339

9.2.1 Choosing Between the Async Patterns 339

9.2.2 Task-Based Async Pattern 341

9.2.3 Async Method Return Types 348

Contentsxii

9.2.4 Making an Async Variant of an Existing Synchronous Method 351

9.2.5 Implementation Guidelines for Async Pattern Consistency 355

9.2.7 Classic Async Pattern 361

9.2.8 Event-Based Async Pattern 361

9.2.9 IAsyncDisposable 362

9.2.10 IAsyncEnumerable<T> 362

9.3 Dependency Properties 365

9.3.1 Dependency Property Design 366

9.3.2 Attached Dependency Property Design 369

9.3.3 Dependency Property Validation 370

9.3.4 Dependency Property Change Notifications 371

9.3.5 Dependency Property Value Coercion 371

9.4 Dispose Pattern 372

9.4.1 Basic Dispose Pattern 375

9.4.2 Finalizable Types 383

9.4.3 Scoped Operations 387

9.4.4 IAsyncDisposable 391

9.5 Factories 394

9.6 LINQ Support 400

9.6.1 Overview of LINQ 400

9.6.2 Ways of Implementing LINQ Support 402

9.6.3 Supporting LINQ through IEnumerable<T> 402

9.6.4 Supporting LINQ through IQueryable<T> 403

9.6.5 Supporting LINQ through the Query Pattern 404

9.7 Optional Feature Pattern 408

9.8 Covariance and Contravariance 412

9.8.1 Contravariance 415

9.8.2 Covariance 417

9.8.3 Simulated Covariance Pattern 420

9.9 Template Method 423

9.10 Timeouts 426

9.11 XAML Readable Types 427

xiiiContents

9.12 Operating on Buffers 430

9.12.1 Data Transformation Operations 445

9.12.2 Writing Fixed or Predetermined Sizes to a Buffer 451

9.12.3 Writing Values to Buffers with the Try-Write Pattern 452

9.12.4 Partial Writes to Buffers and OperationStatus 458

9.13 And in the End... 464

A C# Coding Style Conventions 465

A.1 General Style Conventions 466

A.1.1 Brace Usage 466

A.1.2 Space Usage 469

A.1.3 Indent Usage 470

A.1.4 Vertical Whitespace 472

A.1.5 Member Modifiers 473

A.1.6 Other 475

A.2 Naming Conventions 480

A.3 Comments 482

A.4 File Organization 483

B Obsolete Guidance 487

B.3 Obsolete Guidance from Naming Guidelines 488

B.3.8 Naming Resources 488

B.4 Obsolete Guidance from Type Design Guidelines 489

B.4.1 Types and Namespaces 489

B.5 Obsolete Guidance from Member Design 491

B.5.4 Event Design 491

B.7 Obsolete Guidance from Exceptions 492

B.7.4 Designing Custom Exceptions 492

B.8 Obsolete Guidance from Usage Guidelines 493

B.8.10 Serialization 493

B.9 Obsolete Guidance from Common Design Patterns 502

B.9.2 The Async Patterns 502

B.9.4 Dispose Pattern 517

Contentsxiv

C Sample API Specification 523

D Breaking Changes 529

D.1 Modifying Assemblies 530

D.1.1 Changing the Name of an Assembly 530

D.2 Adding Namespaces 531

D.2.1 Adding a Namespace That Conflicts with an Existing Type 531

D.3 Modifying Namespaces 532

D.3.1 Changing the Name or Casing of a Namespace 532

D.4 Moving Types 532

D.4.1 Moving a Type via [TypeForwardedTo] 532

D.4.2 Moving a Type Without [TypeForwardedTo] 533

D.5 Removing Types 533

D.5.1 Removing Types 533

D.6 Modifying Types 534

D.6.1 Sealing an Unsealed Type 534

D.6.2 Unsealing a Sealed Type 534

D.6.3 Changing the Case of a Type Name 534

D.6.4 Changing a Type Name 535

D.6.5 Changing the Namespace for a Type 535

D.6.6 Adding readonly on a struct 535

D.6.7 Removing readonly from a struct 535

D.6.8 Adding a Base Interface to an Existing Interface 536

D.6.9 Adding the Second Declaration of a Generic Interface 536

D.6.10 Changing a class to a struct 537

D.6.11 Changing a struct to a class 537

D.6.12 Changing a struct to a ref struct 538

D.6.13 Changing a ref struct to a (Non-ref) struct 538

D.7 Adding Members 539

D.7.1 Masking Base Members with new 539

D.7.2 Adding abstract Members 539

D.7.3 Adding Members to an Unsealed Type 539

D.7.4 Adding an override Member to an Unsealed Type 540

D.7.5 Adding the First Reference Type Field to a struct 540

D.7.6 Adding a Member to an Interface 541

xvContents

D.8 Moving Members 541

D.8.1 Moving Members to a Base Class 541

D.8.2 Moving Members to a Base Interface 541

D.8.3 Moving Members to a Derived Type 542

D.9 Removing Members 542

D.9.1 Removing a Finalizer from an Unsealed Type 542

D.9.2 Removing a Finalizer from a Sealed Type 542

D.9.3 Removing a Non-override Member 543

D.9.4 Removing an override of a virtual Member 543

D.9.5 Removing an override of an abstract Member 543

D.9.6 Removing or Renaming Private Fields on Serializable

Types 544

D.10 Overloading Members 544

D.10.1 Adding the First Overload of a Member 545

D.10.2 Adding Alternative-Parameter Overloads for a Reference

Type Parameter 545

D.11 Changing Member Signatures 545

D.11.1 Renaming a Method Parameter 545

D.11.2 Adding or Removing a Method Parameter 546

D.11.3 Changing a Method Parameter Type 546

D.11.4 Reordering Method Parameters of Differing Types 547

D.11.5 Reordering Method Parameters of The Same Type 547

D.11.6 Changing a Method Return Type 547

D.11.7 Changing the Type of a Property 548

D.11.8 Changing Member Visibility from public to Any Other

Visibility 548

D.11.9 Changing Member Visibility from protected to public 548

D.11.10 Changing a virtual (or abstract) Member from protected to

public 549

D.11.11 Adding or Removing the static Modifier 549

D.11.12 Changing to or from Passing a Parameter by

Reference 549

D.11.13 Changing By-Reference Parameter Styles 550

D.11.14 Adding the readonly Modifier to a struct Method 550

Contentsxvi

D.11.15 Removing the readonly Modifier from a struct

Method 551

D.11.16 Changing a Parameter from Required to Optional 551

D.11.17 Changing a Parameter from Optional to Required 551

D.11.18 Changing the Default Value for an Optional Parameter 552

D.11.19 Changing the Value of a const Field 552

D.11.20 Changing an abstract Member to virtual 553

D.11.21 Changing a virtual Member to abstract 553

D.11.22 Changing a Non-virtual Member to virtual 553

D.12 Changing Behavior 553

D.12.1 Changing Runtime Error Exceptions to Usage Error

Exceptions 553

D.12.2 Changing Usage Error Exceptions to Functioning

Behavior 554

D.12.3 Changing the Type of Values Returned from a Method 554

D.12.4 Throwing a New Type of Error Exception 555

D.12.5 Throwing a New Type of Exception, Derived from an Existing

Thrown Type 555

D.13 A Final Note 556

Glossary 557
Index 563

xvii

Figures

Figure 2-1: Learning curve of a multiframework platform 13

Figure 2-2: Learning curve of a progressive framework platform 14

Figure 4-1: The logical grouping of types 83

Figure 9-1: Query pattern method signatures 404

This page intentionally left blank

xix

Tables

Table 3-1: Capitalization Rules for Different Types of Identifiers 44

Table 3-2: Capitalization and Spelling for Common Compound Words and

Common Terms 49

Table 3-3: Alternative Spellings to Avoid Diacritical Marks 55

Table 3-4: CLR Type Names for Language-Specific Type Names 57

Table 3-5: Name Rules for Types Derived from or Implementing Certain

Core Types 71

Table 5-1: Operators and Corresponding Method Names 196

Table 8-1: .Net Serialization Technologies 493

This page intentionally left blank

xxi

Foreword

When we designed the .NET platform, we wanted it to be the most pro-

ductive platform for enterprise application development of the time.

Twenty years ago, that meant client-server applications hosted on dedi-

cated hardware.

Today, we find ourselves in the midst of one of the biggest paradigm

shifts in the industry: the move to cloud computing. Such transformations

bring new opportunities for businesses but can be tricky for existing plat-

forms, as they need to adapt to often different requirements imposed by

the new kinds of applications that developers want to write.

The .NET platform has transitioned quite successfully, and I think one

of the main reasons is that we designed it carefully and deliberately, focus-

ing not only on productivity, consistency, and simplicity, but also on mak-

ing sure that it can evolve over time. .NET Core represents such evolution

with advances important to cloud application developers: performance,

resource utilization, container support, and others.

This third edition of Framework Design Guidelines adds guidelines

related to changes that the .NET team adopted during transition from the

world of client-server application to the world of the Cloud.

—Scott Guthrie

Redmond, WA

January 2020

This page intentionally left blank

xxiii

Foreword to the Second Edition

When the .NET Framework was first published, I was fascinated by the

technology. The benefits of the CLR (Common Language Runtime), its

extensive APIs, and the C# language were immediately obvious. But

underneath all the technology were a common design for the APIs and a

set of conventions that were used everywhere. This was the .NET culture.

Once you had learned a part of it, it was easy to translate this knowledge

into other areas of the framework.

For the past 16 years, I have been working on open source software.

Since contributors span not only multiple backgrounds but also multiple

years, adhering to the same style and coding conventions has always been

very important. Maintainers routinely rewrite or adapt contributions to

software to ensure that code adheres to project coding standards and style.

It is always better when contributors and people who join a software proj-

ect follow conventions used in an existing project. The more information

that can be conveyed through practices and standards, the simpler it

becomes for future contributors to get up-to-speed on a project. This helps

the project converge code, both old and new.

As both the .NET Framework and its developer community have grown,

new practices, patterns, and conventions have been identified. Brad and

Krzysztof have become the curators who turned all of this new knowledge

into the present-day guidelines. They typically blog about a new conven-

tion, solicit feedback from the community, and keep track of these

Foreword to the Second Editionxxiv

guidelines. In my opinion, their blogs are must-read documents for every-

one who is interested in getting the most out of the .NET Framework.

The first edition of Framework Design Guidelines became an instant clas-

sic in the Mono community for two valuable reasons. First, it provided us

a means of understanding why and how the various .NET APIs had been

implemented. Second, we appreciated it for its invaluable guidelines that

we too strived to follow in our own programs and libraries. This new edi-

tion not only builds on the success of the first but has been updated with

new lessons that have since been learned. The annotations to the guide-

lines are provided by some of the lead .NET architects and great program-

mers who have helped shape these conventions.

In conclusion, this text goes beyond guidelines. It is a book that you

will cherish as the “classic” that helped you become a better programmer,

and there are only a select few of those in our industry.

—Miguel de Icaza

Boston, MA

October 2008

xxv

Foreword to the First Edition

In the early days of development of the .NET Framework, before it was

even called that, I spent countless hours with members of the develop-

ment teams reviewing designs to ensure that the final result would be a

coherent platform. I have always felt that a key characteristic of a frame-

work must be consistency. Once you understand one piece of the frame-

work, the other pieces should be immediately familiar.

As you might expect from a large team of smart people, we had many dif-

ferences of opinion—there is nothing like coding conventions to spark lively

and heated debates. However, in the name of consistency, we gradually

worked out our differences and codified the result into a common set of guide-

lines that allow programmers to understand and use the framework easily.

Brad Abrams, and later Krzysztof Cwalina, helped capture these guide-

lines in a living document that has been continuously updated and refined

during the past six years. The book you are holding is the result of their work.

The guidelines have served us well through three versions of the .NET

Framework and numerous smaller projects, and they are guiding the

development of the next generation of APIs for the Microsoft Windows

operating system.

Foreword to the First Editionxxvi

With this book, I hope and expect that you will also be successful in

making your frameworks, class libraries, and components easy to under-

stand and use.

Good luck and happy designing.

—Anders Hejlsberg

Redmond, WA

June 2005

xxvii

Preface

This book, Framework Design Guidelines, presents best practices for design-

ing frameworks, which are reusable object-oriented libraries. The guide-

lines are applicable to frameworks in various sizes and scales of reuse,

including the following:

• Large system frameworks, such as the core libraries in .NET, usually

consisting of thousands of types and used by millions of developers.

• Medium-size reusable layers of large distributed applications or

extensions to system frameworks, such as the Azure SDKs or a game

engine.

• Small components shared among several applications, such as a grid

control library.

It is worth noting that this book focuses on design issues that directly

affect the programmability of a framework (publicly accessible APIs1). As

a result, we generally do not cover much in terms of implementation

details. Just as a user interface design book doesn’t cover the details of

how to implement hit testing, this book does not describe how to

implement a binary sort, for example. This scope allows us to provide a

definitive guide for framework designers instead of being yet another

1. This includes public types, and the public, protected, and explicitly implemented members

of these types.

Prefacexxviii

book about programming. The book assumes the reader has basic familiar-

ity with programming in .NET already.

These guidelines were created in the early days of .NET Framework

development. They started as a small set of naming and design conven-

tions but have been enhanced, scrutinized, and refined to a point where

they are generally considered the canonical way to design frameworks at

Microsoft. They carry the experience and cumulative wisdom of thou-

sands of developer hours over two decades of .NET. We tried to avoid bas-

ing the text purely on some idealistic design philosophies, and we think its

day-to-day use by development teams at Microsoft has made it an intensely

pragmatic book.

The book contains many annotations that explain trade-offs, explain

history, amplify, or provide critiquing views on the guidelines. These

annotations are written by experienced framework designers, industry

experts, and users. They are the stories from the trenches that add color

and setting for many of the guidelines presented.

To make them more easily distinguished in text, namespace names,

classes, interfaces, methods, properties, and types are set in a monospace font.

Guideline Presentation

The guidelines are organized as simple recommendations using DO,

CONSIDER, AVOID, and DO NOT. Each guideline describes either a

good or bad practice, and all have a consistent presentation. Good prac-

tices have a in front of them, and bad practices have an in front of

them. The wording of each guideline also indicates how strong the recom-

mendation is. For example, a DO guideline is one that should always2 be

followed (all examples are from this book):

 DO name custom attribute classes with the suffix “Attribute.”

public class ObsoleteAttribute : Attribute { ... }

2. Always might be a bit too strong a word. There are guidelines that should literally be always

followed, but they are extremely rare. In contrast, you probably need to have a really

unusual case for breaking a DO guideline and still have it be beneficial to the users of the

framework.

xxixPreface

On the other hand, CONSIDER guidelines should generally be fol-

lowed, but if you fully understand the reasoning behind a guideline and

have a good reason to not follow it anyway, you should not feel bad about

breaking the rules:

 CONSIDER defining a struct instead of a class if instances of the type are

small and commonly short-lived or are commonly embedded in other

objects.

Similarly, DO NOT guidelines indicate something you should almost

never do:

 DO NOT provide set-only properties or properties with the setter having

broader accessibility than the getter.

Less strong, AVOID guidelines indicate that something is generally not

a good idea, but there are known cases where breaking the rule makes

sense:

 AVOID using ICollection<T> or ICollection as a parameter just to

access the Count property.

Some more complex guidelines are followed by additional background

information, illustrative code samples, and rationale:

 DO implement IEquatable<T> on value types.

The Object.Equals method on value types causes boxing and its default

implementation is not very efficient because it uses reflection.

IEquatable<T>.Equals can offer much better performance and can be

implemented so it does not cause boxing.

public struct Int32 : IEquatable<Int32> {
 public bool Equals(Int32 other){ ... }
}

Language Choice and Code Examples

One of the goals of the Common Language Runtime (CLR) is to support a

variety of programming languages: those with implementations provided

Prefacexxx

by Microsoft, such as C++, VB, C#, F#, IronPython, and PowerShell, as

well as third-party languages such as Eiffel, COBOL, Fortran, and others.

Therefore, this book was written to be applicable to a broad set of lan-

guages that can be used to develop and consume modern frameworks.

To reinforce the message of multilanguage framework design, we con-

sidered writing code examples using several different programming lan-

guages. However, we decided against this. We felt that using different

languages would help to carry the philosophical message, but it could

force readers to learn several new languages, which is not the objective of

this book.

We decided to choose a single language that is most likely to be read-

able to the broadest range of developers. We picked C#, because it is a

simple language from the C family of languages (C, C++, Java, and C#), a

family with a rich history in framework development.

Choice of language is close to the hearts of many developers, and we

offer apologies to those who are uncomfortable with our choice.

About This Book

This book offers guidelines for framework design from the top down.

Chapter 1, “Introduction,” is a brief orientation to the book, describing

the general philosophy of framework design. This is the only chapter with-

out guidelines.

Chapter 2, “Framework Design Fundamentals,” offers principles and

guidelines that are fundamental to overall framework design.

Chapter 3, “Naming Guidelines,” contains common design idioms and

naming guidelines for various parts of a framework, such as namespaces,

types, and members.

Chapter 4, “Type Design Guidelines,” provides guidelines for the gen-

eral design of types.

Chapter 5, “Member Design,” takes a further step and presents guide-

lines for the design of members of types.

Chapter 6, “Designing for Extensibility,” presents issues and guidelines

that are important to ensure appropriate extensibility in your framework.

xxxiPreface

Chapter 7, “Exceptions,” presents guidelines for working with excep-

tions, the preferred error reporting mechanisms.

Chapter 8, “Usage Guidelines,” contains guidelines for extending and

using types that commonly appear in frameworks.

Chapter 9, “Common Design Patterns,” offers guidelines and examples

of common framework design patterns.

Appendix A, “C# Coding Style Conventions,” describes coding con-

ventions used by the team that produces and maintains the core libraries

in .NET.

Appendix B, “Obsolete Guidance,” contains guidance from previous

editions of this book that applies to features or concepts that are no longer

recommended.

Appendix C, “Sample API Specification,” is a sample of an API specifi-

cation that framework designers within Microsoft create when designing

APIs.

Appendix D, “Breaking Changes,” explores various kinds of changes

that can negatively impact your users from one version to the next.

This page intentionally left blank

xxxiii

Acknowledgments

This book, by its nature, is the collected wisdom of many hundreds of peo-

ple, and we are deeply grateful to all of them.

Many people within Microsoft have worked long and hard, over a

period of years, proposing, debating, and finally writing many of these

guidelines. Although it is impossible to name everyone who has been

involved, a few deserve special mention: Chris Anderson, Erik Christensen,

Jason Clark, Joe Duffy, Patrick Dussud, Anders Hejlsberg, Jim Miller,

Michael Murray, Lance Olson, Eric Gunnerson, Dare Obasanjo, Steve

Starck, Kit George, Mike Hillberg, Greg Schecter, Mark Boulter, Asad

Jawahar, Justin Van Patten, and Mircea Trofin.

We’d also like to thank the annotators: Mark Alcazar, Chris Anderson,

Christopher Brumme, Pablo Castro, Jason Clark, Steven Clarke, Joe Duffy,

Patrick Dussud, Kit George, Jan Gray, Brian Grunkemeyer, Eric

Gunnerson, Phil Haack, Anders Hejlsberg, Jan Kotas, Immo Landwerth,

Rico Mariani, Anthony Moore, Vance Morrison, Christophe Nasarre, Dare

Obasanjo, Brian Pepin, Jon Pincus, Jeff Prosise, Brent Rector, Jeffrey Richter,

Greg Schechter, Chris Sells, Steve Starck, Herb Sutter, Clemens Szyperski,

Stephen Toub, Mircea Trofin, and Paul Vick. Their insights provide much

needed commentary, color, humor, and history that add tremendous value

to this book.

Acknowledgmentsxxxiv

For all of the help, reviews, and support, both technical and moral, we

thank Martin Heller and Stephen Toub. And for their insightful and help-

ful comments, we appreciate Pierre Nallet, George Byrkit, Khristof Falk,

Paul Besley, Bill Wagner, and Peter Winkler.

We would also like to give special thanks to Susann Ragsdale, who

turned this book from a semi-random collection of disconnected thoughts

into seamlessly flowing prose. Her flawless writing, patience, and fabu-

lous sense of humor made the process of writing this book so much

easier.

xxxv

About the Authors

Krzysztof Cwalina is a software architect at Microsoft. He was a founding

member of the .NET Framework team and throughout his career has

designed many .NET APIs. He is currently working on helping various

teams across Microsoft design reusable APIs for many different program-

ming languages. Krzysztof graduated with a B.S. and an M.S. in computer

science from the University of Iowa.

Jeremy Barton is an engineer on the .NET Core Libraries team. After a

decade of designing and developing small frameworks in C#, he joined

the .NET team in 2015 to help get the cryptography types working across

all platforms in the then-new .NET Core project. Jeremy graduated with a

B.S. in computer science and mathematics from Rose-Hulman Institute of

Technology.

Brad Abrams was a founding member of the Common Language Run-

time and .NET Framework teams at Microsoft Corporation. He has been

designing parts of the .NET Framework since 1998. Brad started his frame-

work design career building the Base Class Library (BCL) that ships as a

core part of the .NET Framework. Brad was also the lead editor on the

Common Language Specification (CLS), the .NET Framework Design

Guidelines, and the libraries in the ECMA\ISO CLI Standard. Brad has

authored and coauthored multiple publications, including Programming in
the .NET Environment and .NET Framework Standard Library Annotated

About the Authorsxxxvi

Reference, Volumes 1 and 2. Brad graduated from North Carolina State

University with a B.S. in computer science. You can find his most recent

musings on his blog at http://blogs.msdn.com/BradA. Brad is currently

Group Product Manager at Google where he is incubating new projects for

the Google Assistant.

http://blogs.msdn.com/BradA

xxxvii

About the Annotators

Mark Alcazar has been at Microsoft for the last 23 years, where he’s spent

most of his career on UI frameworks and angle-brackets. Mark has worked

on Internet Explorer, WPF, Silverlight, and the last several releases of the

Windows developer platform. Mark loves snowboarding, sailing, and

cooking. He has a B.S. from the University of the West Indies and an M.S.

from the University of Pennsylvania, and lives in Seattle with his wife and

two kids.

Chris Anderson worked at Microsoft for 22 years, on a variety of proj-

ects, but specialized in the design and architecture of .NET technologies

used to implement the next generation of applications and services. Chris

has written numerous articles and white papers, and he has presented and

been a keynote speaker at numerous conferences (e.g., Microsoft Profes-

sional Developers Conference, Microsoft TechEd, WinDev, DevCon)

worldwide. He has a very popular blog at www.simplegeek.com.

Christopher Brumme joined Microsoft in 1997, when the Common

Language Runtime (CLR) team was being formed. Since then, he has con-

tributed to the execution engine portions of the codebase and more broadly

to the design. He is currently focused on concurrency issues in managed

code. Prior to joining the CLR team, Chris was an architect at Borland and

Oracle.

Pablo Castro is a distinguished engineer at Microsoft. He’s currently

part of the Azure Data group, where he’s the director of engineering for

Azure Synapse/SQL and Azure Cognitive Search. Prior to his current role

http://www.simplegeek.com

About the Annotatorsxxxviii

Pablo was the director of engineering and data science for the Applied AI

group in Azure, and before that he worked on multiple products within

the database systems group, including SQL Server, .NET, Entity Frame-

work/LINQ, and OData.

Jason Clark works as a software architect for Microsoft. His Microsoft

software engineering credits include three versions of Windows, three

releases of the .NET Framework, and WCF. In 2000, he published his first

book on software development, and he continues to contribute to maga-

zines and other publications. He is currently responsible for the Visual

Studio Team System Database Edition. Jason’s only other passions are his

wife and kids, with whom he happily lives in the Seattle area.

Steven Clarke has been a user experience researcher in the Developer

Division at Microsoft since 1999. His main interests are observing, under-

standing, and modeling the experiences that developers have with APIs so

as to help design APIs that provide an optimal experience to their users.

Joe Duffy is the founder and CEO of Pulumi, a Seattle start-up giving

developers and infrastructure teams cloud superpowers. Prior to found-

ing Pulumi in 2017, Joe held leadership roles at Microsoft in the Developer

Division, Operating Systems Group, and Microsoft Research. Most recently

Joe was director for engineering and technical strategy for Microsoft’s

developer tools, leading key technical architecture initiatives, in addition

to managing the groups building the C#, C++, Visual Basic, and F# lan-

guages, as well as IoT and Visual Studio IDE, compiler, and static analysis

services. Joe was instrumental in Microsoft’s overall open source transfor-

mation and assembled the initial team who took .NET open source and to

new platforms. Joe has more than 20 years of professional software experi-

ence, has written two books, and still loves to code.

Patrick Dussud is a technical fellow at Microsoft, where he serves as

the chief architect of both the CLR and the .NET Framework architecture

groups. He works on .NET Framework issues across the company, helping

development teams best utilize the CLR. He specifically focuses on taking

advantage of the abstractions the CLR provides to optimize program

execution.

xxxixAbout the Annotators

Kit George is a program manager on the .NET Framework team at

Microsoft. He graduated in 1995 with a B.A. in psychology, philosophy,

and mathematics from Victoria University of Wellington (New Zealand).

Prior to joining Microsoft, he worked as a technical trainer, primarily in

Visual Basic. He participated in the design and implementation of the first

two releases of .NET Framework for the last two years.

Jan Gray is a software architect at Microsoft who now works on con-

currency programming models and infrastructure. He was previously a

CLR performance architect, and in the 1990s he helped write the early

MS C++ compilers (e.g., semantics, runtime object model, precompiled

headers, PDBs, incremental compilation, and linking) and Microsoft Trans-

action Server. Jan’s interests include building custom multiprocessors in

FPGAs.

Brian Grunkemeyer has been a software design engineer on the .NET

Framework team at Microsoft since 1998. He implemented a large portion

of the Framework Class Libraries and contributed to the details of the

classes in the ECMA/ISO CLI standard. Brian is currently working on

future versions of the .NET Framework, including areas such as generics,

managed code reliability, versioning, contracts in code, and improving the

developer experience. He has a B.S. in computer science with a double

major in cognitive science from Carnegie Mellon University.

Eric Gunnerson found himself at Microsoft in 1994 after working in the

aerospace and going-out-of-business industries. He has worked on the

C++ compiler team, as a member of the C# language design team, and as

an early thought follower on the DevDiv community effort. He worked on

the Windows DVD Maker UI during Vista and joined the Microsoft Health-

Vault team in early 2007. He spends his free time cycling, skiing, cracking

ribs, building decks, blogging, and writing about himself in the third

person.

Phil Haack is the founder of Haacked LLC, where he coaches software

organizations to become the best versions of themselves. To do this, Phil

draws upon his more than 20 years of experience in the software industry.

Most recently, he was a director of engineering at GitHub and helped make

GitHub friendly to developers on the Microsoft platform. Prior to his work

About the Annotatorsxl

at GitHub, he was a senior program manager at Microsoft responsible for

shipping ASP.NET MVC and NuGet, among other projects. These prod-

ucts had permissive open source licenses and ushered in Microsoft’s open

source era. Phil is a co-author of GitHub For Dummies as well as the popu-

lar Professional ASP.NET MVC series, and regularly speaks at conferences

around the world. He’s also made several appearances on technology

podcasts such as .NET Rocks, Hanselminutes, Herding Code, and The

Official jQuery Podcast. You can find him sharing his thoughts at https://

haacked.com or on Twitter, https://twitter.com/haacked.

Anders Hejlsberg is a technical fellow in the Developer Division at

Microsoft. He is the chief designer of the C# programming language and a

key participant in the development of the .NET Framework. Before joining

Microsoft in 1996, Anders was a principal engineer at Borland Interna-

tional. As one of the first employees of Borland, he was the original author

of Turbo Pascal and later worked as the chief architect of the Delphi prod-

uct line. Anders studied engineering at the Technical University of

Denmark.

Jan Kotas has worked on the .NET Runtime at Microsoft since 2001. He

has an eye on striking the right balance between productivity, perfor-

mance, security and reliability for the .NET platform. Over the years, he

has touched nearly all areas of the .NET runtime, including ports to new

architectures, ahead-of-time compilers, and many optimizations. He grad-

uated in 1998 with a master’s degree in computer science from Charles

University in Prague (Czech Republic).

Immo Landwerth is a program manager on the .NET Framework team

at Microsoft. He specializes in API design, the Base Class Libraries (BCL),

and open source in .NET. He tweets in GIFs.

Rico Mariani has been coding professionally since 1980 with experi-

ence in everything from real-time controllers to flagship development sys-

tems. Rico was at Microsoft from 1988 to 2017 working on language

products, online properties, operating systems, web browsers, and more.

In 2017, Rico joined Facebook to work on Facebook Messenger, bringing

his passion for high quality and performance with him. Rico’s interests

http://ASP.NET
http://ASP.NET
https://haacked.com
https://haacked.com
https://twitter.com/haacked

xliAbout the Annotators

include compilers and language theory, databases, 3D art, and good

fiction.

Anthony Moore is a development lead for the Connected Systems

Division. He was the development lead for the Base Class Libraries of the

CLR from 2001 to 2007, spanning FX V1.0 to FX 3.5. Anthony joined Micro-

soft in 1999 and initially worked on Visual Basic and ASP.NET. Before that,

he worked as a corporate developer for eight years in his native Australia,

including a three-year period working in the snack food industry.

Vance Morrison is a performance architect for the .NET Runtime at

Microsoft. He involves himself with most aspects of runtime performance,

with current attention devoted to improving start-up time. He has been

involved in designs of components of the .NET runtime since its inception.

He previously drove the design of the .NET Intermediate Language (IL)

and has been the development lead for the JIT compiler for the runtime.

Christophe Nasarre is a software engineer in the Performance team at

Criteo. During his spare time, Christophe writes .NET-related posts on

https://medium.com/@chnasarre and provides tools and code samples

from https://github.com/chrisnas. He is also a Microsoft MVP in Devel-

oper Technologies.

Dare Obasanjo is a program manager on the MSN Communication

Services Platform team at Microsoft. He brings his love of solving prob-

lems with XML to building the server infrastructure utilized by the MSN

Messenger, MSN Hotmail, and MSN Spaces teams. He was previously a

program manager on the XML team responsible for the core XML applica-

tion programming interfaces and W3C XML Schema-related technologies

in the .NET Framework.

Brian Pepin is a software developer at Microsoft and is currently work-

ing on the Xbox system software. He’s been involved in developer tools

and frameworks for 16 years and has provided input on the design of

Visual Basic 5, Visual J++, the .NET Framework, WPF, Silverlight, and

more than one unfortunate experiment that luckily never made it to

market.

http://ASP.NET
https://medium.com/@chnasarre
https://github.com/chrisnas

About the Annotatorsxlii

Jonathan Pincus was a senior researcher in the Systems and Network-

ing Group at Microsoft Research, where he focused on the security, pri-

vacy, and reliability of software and software-based systems. He was

previously founder and CTO of Intrinsa and worked in design automation

(placement and routing for ICs and CAD frameworks) at GE Calma and

EDA Systems.

Jeff Prosise is a co-founder of Wintellect who makes his living writing

software and helping others do the same. He has written nine books and

hundreds of magazine articles, trained thousands of developers at Micro-

soft, and spoken at some of the world’s largest software conferences. Jeff’s

passion is teaching software developers how to build cloud-based apps

with Microsoft Azure and introducing them to the wonders of AI and

machine learning. In his spare time, Jeff builds and flies large radio-

controlled jets and travels to development shops, universities, and research

institutions around the world educating them about Azure and AI.

Brent Rector is a program manager at Microsoft on a technical strategy

incubation effort. He has more than 30 years of experience in the software

development industry in the production of programming language com-

pilers, operating systems, ISV applications, and other products. Brent is

the author and coauthor of numerous Windows software development

books, including ATL Internals, Win32 Programming (both Addison-

Wesley), and Introducing WinFX (Microsoft Press). Prior to joining Micro-

soft, Brent was the president and founder of Wise Owl Consulting, Inc.,

and chief architect of its premier .NET obfuscator, Demeanor for .NET.

Jeffrey Richter is a Microsoft Azure software architect who is best

known as having authored the best-selling Windows via C/C++ and CLR via
C# books. Most recently, he’s produced the free Architecting Distributed

Cloud Applications video series available at http://aka.ms/RichterCloud

Apps and other videos available at http://WintellectNOW.com. Jeffrey

was a consultant and co-founder of Wintellect, a software consulting and

training company.

Greg Schechter is a Big Tech industry veteran, having worked at Sun

Microsystems from 1988 to 1994 and at Microsoft from 1994 to 2010, pri-

marily on API implementation and API design for more than 20 years. His

http://aka.ms/RichterCloud
http://WintellectNOW.com

xliiiAbout the Annotators

experience is mostly in the 2D and 3D graphics realm, but also in media,

imaging, general user interface systems, and asynchronous programming.

In 2011, Greg joined Facebook as one of the first dozen or so Seattle employ-

ees, and is currently at Facebook London working as a software engineer

in the Ads Infrastructure organization. Beyond all of that, Greg also loves

to write about himself in the third person.

Chris Sells, in his past life, was deeply involved in .NET since the beta

and has done much writing and speaking on the subject. Currently he is a

Google Product Manager on the Flutter development experience. He still

enjoys long walks on the beach and various technologies.

Steve Starck is a technical lead on the ADO.NET team at Microsoft,

where he has been developing and designing data access technologies,

including ODBC, OLE DB, and ADO.NET, for the past ten years.

Herb Sutter is a leading authority on software development. During

his career, Herb has been the creator and principal designer of several

major commercial technologies, including the PeerDirect peer replication

system for heterogeneous distributed databases, the C++/CLI language

extensions to C++ for .NET programming, and most recently the Concur

concurrent programming model. Currently a software architect at Micro-

soft, he also serves as chair of the ISO C++ standards committee and is the

author of four acclaimed books and hundreds of technical papers and arti-

cles on software development topics.

Clemens Szyperski joined Microsoft Research as a software architect

in 1999. He focuses on leveraging component software to effectively build

new kinds of software. Clemens is cofounder of Oberon Microsystems and

its spin-off Esmertec, and he was an associate professor at the School of

Computer Science, Queensland University of Technology, Australia, where

he retains an adjunct professorship. He is the author of the Jolt award-

winning Component Software (Addison-Wesley) and the coauthor of Soft-
ware Ecosystem (MIT Press). He has a Ph.D. in computer science from the

Swiss Federal Institute of Technology in Zurich and an M.S. in electrical

engineering/computer engineering from the Aachen University of

Technology.

http://ADO.NET
http://ADO.NET

About the Annotatorsxliv

Stephen Toub is a partner software engineer at Microsoft. He has com-

puter science degrees from Harvard University and New York University,

and has spent many years developing .NET, with a focus on its libraries,

and in particular with an eye toward performance, parallelism, and asyn-

chrony. He was instrumental in taking .NET open source and cross-

platform, and is thrilled by all the possibilities that .NET will enable in the

future.

Mircea Trofin is a software engineer at Google, working on compiler

optimization problems. He has previously worked at Microsoft as part of

the .NET team.

Paul Vick was the language architect for Visual Basic during the transi-

tion to .NET and led the language design team for the first several releases of

the language. Paul originally began his career working at Microsoft in 1992

on the Microsoft Access team, shipping versions 1.0 through 97 of Access. In

1998, he moved to the Visual Basic team, participating in the design and

implementation of the Visual Basic compiler and driving the redesign of the

language for the .NET Framework. He is the author of the Visual Basic .NET

Language Specification and the Addison-Wesley book The Visual Basic .NET
Language. His weblog can be found at www.panopticoncentral.net.

http://www.panopticoncentral.net

227

6
Designing for Extensibility

One important aspect of designing a framework is making sure the

extensibility of the framework has been carefully considered. This

requires that you understand the costs and benefits associated with vari-

ous extensibility mechanisms. This chapter helps you decide which of the

extensibility mechanisms—subclassing, events, virtual members, call-

backs, and so on—can best meet the requirements of your framework. This

chapter does not cover the design details of these mechanisms. Such details

are discussed in other parts of the book, and this chapter simply provides

cross-references to sections that describe those details.

A good understanding of OOP is a necessary prerequisite to designing

an effective framework and, in particular, to understanding the concepts

discussed in this chapter. However, we do not cover the basics of object-

orientation in this book, because there are already excellent books entirely

devoted to the topic.

6.1 Extensibility Mechanisms
There are many ways to allow extensibility in frameworks. They range

from less powerful but less costly to very powerful but expensive. For any

given extensibility requirement, you should choose the least costly exten-

sibility mechanism that meets the requirements. Keep in mind that it’s

Designing for Extensibility228

usually possible to add more extensibility later, but you can never take it

away without introducing breaking changes.

This section discusses some of the framework extensibility mechanisms

in detail.

6.1.1 Unsealed Classes
Sealed classes cannot be inherited from, and they prevent extensibility. In

contrast, classes that can be inherited from are called unsealed classes.

// string cannot be inherited from
public sealed class String { ... }

// TraceSource can be inherited from
public class TraceSource { ... }

Subclasses can add new members, apply attributes, and implement

additional interfaces. Although subclasses can access protected members

and override virtual members, these extensibility mechanisms result in

significantly different costs and benefits. Subclasses are described in sec-

tions 6.1.2 and 6.1.4. Adding protected and virtual members to a class can

have expensive ramifications if not done with care, so if you are looking

for simple, inexpensive extensibility, an unsealed class that does not

declare any virtual or protected members is a good way to do it.

 CONSIDER using unsealed classes with no added virtual or protected

members as a great way to provide inexpensive yet much appreciated

extensibility to a framework.

Developers often want to inherit from unsealed classes so as to add

convenience members such as custom constructors, new methods, or

method overloads.1 For example, System.Messaging.MessageQueue

is unsealed and thus allows users to create custom queues that default

to a particular queue path or to add custom methods that simplify the

API for specific scenarios. In the following example, the scenario is for

a method sending Order objects to the queue.

1. Some convenience methods can be added to sealed types as extension methods.

2296.1 Extensibility Mechanisms

public class OrdersQueue : MessageQueue {
 public OrdersQueue() : base(OrdersQueue.Path){
 this.Formatter = new BinaryMessageFormatter();
 }

 public void SendOrder(Order order){
 Send(order,order.Id);
 }
}

 PHIL HAACK Because test-driven development has caught fire in the

.NET developer community, many developers want to inherit from unsealed

classes (often dynamically using a mock framework) in order to substitute a

test double in the place of the real implementation.

At the very least, if you’ve gone to the trouble of making your class

unsealed, consider making key members virtual, perhaps via the Template

Method Pattern, to provide more control.

Classes are unsealed by default in most programming languages, and

this is also the recommended default for most classes in frameworks.

The extensibility afforded by unsealed types is much appreciated by

framework users and quite inexpensive to provide because of the rela-

tively low test costs associated with unsealed types.

 VANCE MORRISON The key word in this advice is “CONSIDER.”

Keep in mind that you always have the option of unsealing a class in the

future (it is not a breaking change); however, once unsealed, a class must

remain unsealed. Also, unsealing does inhibit some optimizations [e.g., con-

verting virtual calls to more efficient nonvirtual calls (and then inlining)].

Finally, unsealing helps your users only if they control the creation of the

class (sometimes true, sometimes not). In short, designs are only rarely use-

fully extensible “by accident.” Being unsealed is part of the contract of a

class and its users, and like everything about the contract, it deserves to be a

conscious, deliberate choice on the part of the designer.

Designing for Extensibility230

6.1.2 Protected Members
Protected members by themselves do not provide any extensibility, but

they can make extensibility through subclassing more powerful. They can

be used to expose advanced customization options without unnecessarily

complicating the main public interface. For example, the SourceSwitch.
Value property is protected because it is intended for use only in advanced

customization scenarios.

public class FlowSwitch : SourceSwitch {
 protected override void OnValueChanged() {
 switch (this.Value) {
 case "None" : Level = FlowSwitchSetting.None; break;
 case "Both" : Level = FlowSwitchSetting.Both; break;
 case "Entering": Level = FlowSwitchSetting.Entering; break;
 case "Exiting" : Level = FlowSwitchSetting.Exiting; break;
 }
 }
}

Framework designers need to be careful with protected members

because the name “protected” can give a false sense of security. Anyone is

able to subclass an unsealed class and access protected members, so all

the same defensive coding practices used for public members apply to

protected members.

 CONSIDER using protected members for advanced customization.

Protected members are a great way to provide advanced customization

without complicating the public interface.

 DO treat protected members in unsealed classes as public for the pur-

pose of security, documentation, and compatibility analysis.

Anyone can inherit from a class and access the protected members.

 BRAD ABRAMS Protected members are just as much a part of your

publicly callable interface as public members. In designing the framework,

we considered protected and public to be roughly equivalent. We generally

did the same level of review and error checking in protected APIs as we did

in public APIs because they can be called from any code that just happens to

subclass.

2316.1 Extensibility Mechanisms

6.1.3 Events and Callbacks
Callbacks are extensibility points that allow a framework to call back into

user code through a delegate. These delegates are usually passed to the

framework through a parameter of a method.

List<string> cityNames = ...
cityNames.RemoveAll(delegate(string name) {
 return name.StartsWith("Seattle");
});

Events are a special case of callbacks that supports convenient and

consistent syntax for supplying the delegate (an event handler). In addi-

tion, Visual Studio’s statement completion and designers provide help in

using event-based APIs.

var timer = new Timer(1000);
timer.Elapsed += delegate {
 Console.WriteLine("Time is up!");
};
timerStart();

General event design is discussed in section 5.4.

Callbacks and events can be used to provide quite powerful extensi-

bility, comparable to virtual members. At the same time, callbacks—and

even more so, events—are more approachable to a broader range of

developers because they don’t require a thorough understanding of

object-oriented design. Also, callbacks can provide extensibility at run-

time, whereas virtual members can be customized only at compile-time.

The main disadvantage of callbacks is that they are more heavyweight

than virtual members. The performance when calling through a delegate

is worse than it is when calling a virtual member. In addition, delegates

are objects, so their use affects memory consumption.

You should also be aware that by accepting and calling a delegate, you

are executing arbitrary code in the context of your framework. Therefore, a

careful analysis of all such callback extensibility points from the security,

correctness, and compatibility points of view is required.

Designing for Extensibility232

 CONSIDER using callbacks to allow users to provide custom code to be

executed by the framework.

 CONSIDER using events, instead of virtual members, to allow users to

customize the behavior of a framework without the need for under-

standing object-oriented design.

 CONSIDER using events instead of plain callbacks, because events are

more familiar to a broader range of developers and are integrated with

Visual Studio statement completion.

 AVOID using callbacks in performance-sensitive APIs.

 KRZYSZTOF CWALINA Delegate calls were made much faster in

CLR 2.0, but they are still about two times slower than direct calls to virtual

members. In addition, delegate-based APIs are generally less efficient in

terms of memory usage. Having said that, the differences are relatively

small and should only matter if the API is called very frequently.

 STEPHEN TOUB In a performance-critical method, you want to think

about all forms of extensibility and what kind of impact they may have on

throughput. This goes beyond delegates. In fact, in some situations it may

actually be better for your common case to use delegates instead of virtual

methods. For example, consider a design where you want a default behav-

ior that can then be potentially replaced if a delegate is provided. If you

made the functionality virtual, you’d be paying for the virtual dispatch

(unless the JIT could devirtualize the call) regardless of whether a replace-

ment was provided. But with a delegate, you could have a nonvirtual,

inlineable implementation that just does a null check on the delegate

instance and only pays the delegate invocation costs if there is something

else to do instead of the default behavior.

 DO use the Func<...>, Action<...>, or Expression<...> types

instead of custom delegates when possible, when defining APIs with

callbacks.

2336.1 Extensibility Mechanisms

Func<...> and Action<...> represent generic delegates. The following

is how .NET defines them:

public delegate void Action()
public delegate void Action<T1, T2>(T1 arg1, T2 arg2)
public delegate void Action<T1, T2, T3>(T1 arg1, T2 arg2, T3 arg3)
public delegate void Action<T1, T2, T3, T4>(T1 arg1, T2 arg2,
 T3 arg3, T4 arg4)
public delegate TResult Func<TResult>()
public delegate TResult Func<T, TResult>(T arg)
public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2)
public delegate TResult Func<T1, T2, T3, TResult>(T1 arg1, T2 arg2,
 T3 arg3)
public delegate TResult Func<T1, T2, T3, T4, TResult>(T1 arg1, T2 arg2,
 T3 arg3, T4 arg4)

They can be used as follows:

Func<int,int,double> divide = (x,y)=>(double)x/(double)y;
Action<double> write = (d)=>Console.WriteLine(d);
write(divide(2,3));

Expression<...> represents function definitions that can be compiled

and subsequently invoked at runtime but can also be serialized and

passed to remote processes. Continuing with our example:

Expression<Func<int,int,double>> expression =
 (x,y)=>(double)x/(double)y;
Func<int,int,double> divide2 = expression.Compile();
write(divide2(2,3));

Notice how the syntax for constructing an Expression<> object is

very similar to that used to construct a Func<> object. In fact, the only

difference is the static type declaration of the variable (Expression<>

instead of Func<...>).

Designing for Extensibility234

 STEPHEN TOUB In general, if these generic delegate types can be used,

they should be used. However, there are some relatively rare situations

where these generic delegates can’t be used. One such category is when the

types being passed as arguments or return values can’t be used as generic

type parameters, such as pointer types or ref struct types. Another cat-

egory is when arguments or return values need to be passed as something

other than by value—for example, when you want an argument to be ref.

In such situations, you will need to find an existing delegate (generic or

otherwise) that’s been declared with an appropriate signature, or else define

a new one.

 JAN KOTAS The Action and Func delegates do not allow naming

arguments. That makes it impractical to use these delegates for callbacks

with more complex signatures where the meaning of the arguments is not

obvious and it is important to name the arguments for clarity. For example,

the System.Runtime.InteropServices.DllImportResolver delegate

violates this rule for this reason.

 RICO MARIANI Most times you’re going to want Func or Action if all

that needs to happen is to run some code. You need Expression when the

code needs to be analyzed, serialized, or optimized before it is run. Expres-
sion is for thinking about code; Func/Action is for running it.

 DO measure and understand the performance implications of using

Expression<...>, instead of using Func<...> and Action<...>

delegates.

Expression<...> types are, in most cases, logically equivalent to

Func<...> and Action<...> delegates. The main difference between

them is that the delegates are intended to be used in local process sce-

narios; expressions are intended for cases where it’s beneficial and pos-

sible to evaluate the expression in a remote process or machine.

2356.1 Extensibility Mechanisms

 DO understand that by calling a delegate, you are executing arbitrary

code, and that could have security, correctness, and compatibility

repercussions.

 BRIAN PEPIN The Windows Forms team bumped up against this issue

when writing some of the low-level code in SystemEvents. System
Events defines a static API and therefore needs to be threadsafe. Internally,

it uses locks to ensure thread safety. Early code in SystemEvents would

grab a lock and then raise an event. Here’s an example:

lock(someInternalLock) {
 if(eventHandler!=null) eventHandler(sender, EventArgs.Empty);
}

 RICO MARIANI The remoteness of the evaluation is sort of incidental.

The main thing about Expressions is that you use them when you are

going to need to reason over the code to be executed, often over a composi-

tion of expressions such as in a LINQ query, and then, having considered the

whole and the execution options, you create some kind of optimized plan for

doing the work. This is how LINQ to SQL is able to create a single SQL

fragment from a composition of loose-looking expressions.

This plan could easily go wrong. You could do too much analysis of

expressions or too little. You could use up too much space holding expression

trees, or you could avoid all the trees but then find you have bad perfor-

mance because you have so many small anonymous delegates.

If you look at the patterns used in the LINQ implementations in .NET,

you’ll see several good ways to make use of these constructs:

• Use expressions only if you need to “think” about the code and not

just run it.

• Don’t blindly compose and run code that could be meaningfully

optimized if you “thought” about it before running it.

• Don’t create systems that optimize the code so much before running

it that it would have been faster to just run it directly without

optimizing.

• Optimization isn’t the only use for expression trees, but it is an

important one.

Designing for Extensibility236

This is bad because you have no idea what the user code in the event

handler is going to do. If the user code signals a thread and waits on its

own lock, you might have just introduced a deadlock. This would be bet-

ter code:

EventHandler localHandler = eventHandler;
if(localHandler != null) localHandler(sender, EventArgs.Empty);

This way, the user’s code will never deadlock due to your own internal

implementation. Note that because assignments in managed code are

atomic, I didn’t need a lock at all in this case. That won’t always be true.

For example, if your code needed to check more than one variable, you’d

still need a lock:

EventHandler localHandler = null;
lock(someInternalLock) {
 if (eventHandler != null && shouldRaiseEvents) {
 localHandler = eventHandler;
 }
}
if(localHandler!=null) localHandler(sender,EventArgs.Empty);

 JEREMY BARTON The null-conditional operator introduced in C# 6

can simplify the event invocation.

eventHandler?.Invoke(sender, EventArgs.Empty);

This has the same effect as Brian’s second example (invoking outside the

lock), including only ever reading from the “eventHandler” value once:

EventHandler localHandler = eventHandler;
if(localHandler != null) localHandler(sender, EventArgs.Empty);

 JOE DUFFY In addition to deadlock, invoking a callback under a lock

like this can cause reentrancy. Locks on the CLR support recursive acquires,

so if the callback somehow manages to call back into the same object that

initiated the callback, the results are often not good. Locks are typically

used to isolate invariants that are temporarily broken, yet this practice can

expose them at the reentrant boundary. Needless to say, this is apt to cause

weird exceptions and unexpected behavior.

2376.1 Extensibility Mechanisms

That said, sometimes this practice is necessary. If the callback is being

used to make a decision—as would be the case with a predicate—and that

decision needs to be made under a lock, you will have no choice. When

invoking a callback under a lock is unavoidable, be sure to carefully docu-

ment the restrictions (no inter-thread communication, no reentrancy). You

must also ensure that, should a developer violate these restrictions, the

result will not lead to security vulnerabilities. The risk here is usually

greater than the reward.

 STEPHEN TOUB From an API design perspective, this whole discus-

sion is really interesting as it applies to compatibility. You may find yourself

in a situation where you’ve invoked a user-supplied callback while holding

a lock, and you decide to “fix” it by employing approaches like that out-

lined. In doing so, however, you’re impacting potentially visible behaviors.

The invocation will no longer be synchronized with whatever else might be

using the same lock. It’s possible the user’s callback was actually relying on

that synchronization for safety, whether they knew it or not.

Extensibility is hard.

6.1.4 Virtual Members
Virtual members can be overridden, thereby changing the behavior of the

subclass. They are quite similar to callbacks in terms of the extensibility

they provide, but they are better in terms of execution performance and

memory consumption. Also, virtual members feel more natural in scenar-

ios that require creating a special kind of an existing type (specialization).

The main disadvantage of virtual members is that the behavior of a

virtual member can be modified only at the time of compilation. The

behavior of a callback can be modified at runtime.

Virtual members, like callbacks (and maybe more than callbacks), are

costly to design, test, and maintain because any call to a virtual member

can be overridden in unpredictable ways and can execute arbitrary code.

Also, much more effort is usually required to clearly define the contract of

virtual members, so the cost of designing and documenting them is higher.

Designing for Extensibility238

 KRZYSZTOF CWALINA A common question I get is whether documen-

tation for virtual members should say that the overrides must call the base

implementation. The answer is that overrides should preserve the contract

of the base class. They can do that by calling the base implementation or by

some other means. It is rare that a member can claim that the only way to

preserve its contract (in the override) is to call it. In a lot of cases, calling the

base might be the easiest way to preserve the contract (and documentation

should point that out), but it’s rarely absolutely required.

Because of the risks and costs, limiting extensibility of virtual members

should be considered. Extensibility through virtual members today should

be limited to those areas that have a clear scenario requiring extensibility.

This section presents guidelines for when to allow it and when and how to

limit it.

 DO NOT make members virtual unless you have a good reason to do so

and you are aware of all the costs related to designing, testing, and

maintaining virtual members.

Virtual members are less forgiving in terms of changes that can be made

to them without breaking compatibility. Also, they are slower than

nonvirtual members, mostly because calls to virtual members are not

inlined.

 RICO MARIANI Be sure you understand your extensibility require-

ments completely before you make decisions in the name of extensibility. A

common mistake is sprinkling classes with virtual methods and properties,

only to find that the needed extensibility still can’t be realized and every-

thing is now (and forever) slower.

 JAN GRAY The peril: If you ship types with virtual members, you are

promising to forever abide by subtle and complex observable behaviors

and subclass interactions. I think framework designers underestimate

their peril. For example, we found that ArrayList item enumeration calls

several virtual methods for each MoveNext and Current. Fixing those

performance problems could (but probably doesn’t) break user-defined

implementations of virtual members on the ArrayList class that are

dependent on virtual method call order and frequency.

2396.1 Extensibility Mechanisms

 CONSIDER limiting extensibility to only what is absolutely necessary

through the use of the Template Method Pattern, described in

section 9.9.

 DO prefer protected accessibility over public accessibility for virtual

members. Public members should provide extensibility (if required) by

calling into a protected virtual member.

The public members of a class should provide the right set of function-

ality for direct consumers of that class. Virtual members are designed

to be overridden in subclasses, and protected accessibility is a great

way to scope all virtual extensibility points to where they can be used.

public Control{
 public void SetBounds(...){
 ...
 SetBoundsCore (...);
 }

 protected virtual void SetBoundsCore(...){
 // Do the real work here.
 }
}

Section 9.9 provides more insight into this subject.

 JEFFREY RICHTER It is common for a type to define multiple over-

loaded methods for caller convenience. These methods typically allow the

caller to pass fewer arguments to the method and then, internally, the

method calls a more complex method, passing additional arguments with

good default values. If your type offers convenience methods, these meth-

ods should not be virtual, but internally they should call the one virtual

method that contains the actual implementation of the method (which can

be overridden).

6.1.5 Abstractions (Abstract Types and Interfaces)
An abstraction is a type that describes a contract but does not provide a

full implementation of that contract. Abstractions are usually implemented

as abstract classes or interfaces, and they come with a well-defined set of

reference documentation describing the required semantics of the types

Designing for Extensibility240

implementing the contract. Some of the most important abstractions in

.NET include Stream, IEnumerable<T>, and Object. Section 4.3 discusses

how to choose between an interface and a class when designing an

abstraction.

You can extend frameworks by implementing a concrete type that

supports the contract of an abstraction and then using this concrete type

with framework APIs consuming (operating on) the abstraction.

A meaningful and useful abstraction that is able to withstand the test

of time is very difficult to design. The main difficulty is getting the right

set of members—no more and no fewer. If an abstraction has too many

members, it becomes difficult or even impossible to implement. If it has

too few members for the promised functionality, it becomes useless in

many interesting scenarios. Also, abstractions without first-class docu-

mentation that clearly spells out all the pre- and post-conditions often end

up being failures in the long term. Because of this, abstractions have a

very high design cost.

 JEFFREY RICHTER The ICloneable interface is an example of very

simple abstraction with a contract that was never explicitly documented.

Some types that implement this interface’s Clone method implement it so

that it performs a shallow copy of the object, whereas some implementa-

tions perform a deep-copy. Because what this interface’s Clone method

should do was never fully documented, when using an object with a type

that implements ICloneable, you never know what you’re going to get.

This makes the interface useless.

Too many abstractions in a framework also negatively affect usability

of the framework. It is often quite difficult to understand an abstraction

without understanding how it fits into the larger picture of the concrete

implementations and the APIs operating on the abstraction. Also, names

of abstractions and their members are necessarily abstract, which often

makes them cryptic and unapproachable without first understanding the

broader context of their usage.

2416.1 Extensibility Mechanisms

However, abstractions provide extremely powerful extensibility that

the other extensibility mechanisms cannot often match. They are at the

core of many architectural patterns, such as plug-ins, inversion of control

(IoC), pipelines, and so on. They are also extremely important for testabil-

ity of frameworks. Good abstractions make it possible to stub out heavy

dependencies for the purpose of unit testing. In summary, abstractions are

responsible for the sought-after richness of the modern object-oriented

frameworks.

 DO NOT provide abstractions unless they are tested by developing sev-

eral concrete implementations and APIs consuming the abstractions.

 DO choose carefully between an abstract class and an interface when

designing an abstraction. See section 4.3 for more details on this

subject.

 CONSIDER providing reference tests for concrete implementations of

abstractions. Such tests should allow users to test whether their imple-

mentations correctly implement the contract.

 JEFFREY RICHTER I like what the Windows Forms team did: They

defined an interface called System.ComponentModel.IComponent. Of

course, any type can implement this interface. But the Windows Forms

team also provided a System.ComponentModel.Component class that

implements the IComponent interface. So a type could choose to derive

from Component and get the implementation for free, or the type could

derive from a different base class and then manually implement the

IComponent interface. By having available an interface and a base class,

developers get to choose whichever works best for them.

 STEPHEN TOUB Before shipping an abstraction, you should plan to

validate it by building at least two or three distinct implementations and by

using the abstraction in at least two or three distinct consumers. Those tests

will provide you with a lot more confidence that you’ve built something

that will actually be usable, and in my experience, will most likely help you

to find issues that need to be addressed before you ship.

Designing for Extensibility242

6.2 Base Classes
Strictly speaking, a class becomes a base class when another class is

derived from it. For the purpose of this section, however, a base class is

defined as a class designed mainly to provide a common abstraction or for

other classes to reuse some default implementation though inheritance.

Base classes usually sit in the middle of inheritance hierarchies, between

an abstraction at the root of a hierarchy and several custom implementa-

tions at the bottom.

Base classes serve as implementation helpers for implementing abstrac-

tions. For example, one of the abstractions for ordered collections of items

in .NET is the IList<T> interface. Implementing IList<T> is not trivial,

so the framework provides several base classes, such as Collection<T>

and KeyedCollection<TKey,TItem>, that serve as helpers for imple-

menting custom collections.

public class OrderCollection : Collection<Order> {
 protected override void SetItem(int index, Order item) {
 if(item==null) throw new ArgumentNullException(...);
 base.SetItem(index,item);
 }
}

Base classes are usually not suited to serve as abstractions by them-

selves because they tend to contain too much implementation. For exam-

ple, the Collection<T> base class contains lots of implementation related

to the fact that it implements the non-generic IList interface (to integrate

better with non-generic collections) and to the fact that it is a collection of

items stored in memory in one of its fields.

 KRZYSZTOF CWALINA Collection<T> can also be used directly,

without the need to create subclasses, but its main purpose is to provide an

easy way to implement custom collections.

As previously discussed, base classes can provide invaluable help for

users who need to implement abstractions, but at the same time they can

be a significant liability. They add surface area and increase the depth of

2436.2 Base Classes

inheritance hierarchies, thereby conceptually complicating the frame-

work. For this reason, base classes should be used only if they provide

significant value to the users of the framework. They should be avoided if

they provide value only to the implementers of the framework, in which

case delegation to an internal implementation instead of inheritance from

a base class should be strongly considered.

 CONSIDER making base classes abstract even if they don’t contain any

abstract members. This clearly communicates to the users that the class

is designed solely to be inherited from.

 JEREMY BARTON My interpretation of this guideline is that it’s OK to

declare the class abstract even if there are no abstract members, but you still

need a reason why. If the class works fine on its own, it should probably be

instantiable.

 CONSIDER placing base classes in a separate namespace from the main-

line scenario types. By definition, base classes are intended for advanced

extensibility scenarios and are not interesting to the majority of users.

See section 2.2.4 for details.

 AVOID naming base classes with a “Base” suffix if the class is intended

for use in public APIs.

For example, despite the fact that Collection<T> is designed to be

inherited from, many frameworks expose APIs typed as the base class,

not as its subclasses, mainly because of the cost associated with a new

public type.

public Directory {
 public Collection<string> GetFilenames(){
 return new FilenameCollection(this);
 }

 private class FilenameCollection : Collection<string> {
 ...
 }
}

Designing for Extensibility244

The fact that Collection<T> is a base class is irrelevant for the user of

the GetFilename method, so the “Base” suffix would simply create an

unnecessary distraction for the user of the method.

6.3 Sealing
One of the features of object-oriented frameworks is that developers can

extend and customize them in ways unanticipated by the framework

designers. This is both the power and the danger of extensible design.

When you design your framework, it is very important to carefully design

for extensibility when it is desired, and to limit extensibility when it is

dangerous.

 KRZYSZTOF CWALINA Sometimes framework designers want to limit

the extensibility of a type hierarchy to a fixed set of classes. For example,

let’s say you want to create a hierarchy of living organisms that is split into

two and only two subgroups: animals and plants. One way to do so is to

make the constructor of LivingOrganism internal, and then provide two

subclasses (Plant and Animal) in the same assembly and give them

protected constructors. Because the constructor of LivingOrganism is

internal, third parties can extend Animal and Plant, but not

LivingOrganism.

public class LivingOrganism {
 internal LivingOrganism(){}
 ...
}
public class Animal : LivingOrganism {
 protected Animal() {}
 ...
}
public class Plant : LivingOrganism {
 protected Plant() {}
 ...
}

Sealing is a powerful mechanism that prevents extensibility. You can

seal either the class or individual members. Sealing a class prevents users

2456.3 Sealing

from inheriting from the class. Sealing a member prevents users from

overriding a particular member.

public class NonNullCollection<T> : Collection<T> {
 protected sealed override void SetItem(int index, T item) {
 if(item==null) throw new ArgumentNullException();
 base.SetItem(index,item);
 }
}

Because one of the key differentiating points of frameworks is that they

offer some degree of extensibility, sealing classes and members will likely

feel very abrasive to developers using your framework. Therefore, you

should seal only when you have good reasons to do so.

 DO NOT seal classes without having a good reason to do so.

Sealing a class because you cannot think of an extensibility scenario is

not a good reason. Framework users like to inherit from classes for var-

ious nonobvious reasons, such as adding convenience members. See

section 6.1.1 for examples of nonobvious reasons users want to inherit

from a type.

Good reasons for sealing a class include the following:

• The class is a static class. For more information on static classes, see

section 4.5.

• The class inherits many virtual members, and the cost of sealing

them individually would outweigh the benefits of leaving the class

unsealed.

• The class is an attribute that requires very fast runtime look-up.

Sealed attributes have slightly higher performance levels than

unsealed ones. For more information on attribute design,

see section 8.2.

Designing for Extensibility246

 BRAD ABRAMS Having classes that are open to some level of cus-

tomization is one of the core differences between a framework and a

library. With an API library (such as the Win32 API), you basically get

what you get. It is very difficult to extend the data structures and APIs.

With a framework such as MFC or AWT, clients can extend and customize

the classes. The productivity boost from this flexibility is obvious.

 KRZYSZTOF CWALINA People often ask about the cost of sealing indi-

vidual members. This cost is relatively small, but it is nonzero and should

be taken into account. There is development cost (typing in the overrides),

testing cost (have you called the base class from the override?), assembly

size cost (new overrides), and working set cost (if both the overrides and

the base implementation are ever called).

 DO NOT declare protected or virtual members on sealed types.

By definition, sealed types cannot be inherited from. This means that

protected members on sealed types cannot be called, and virtual meth-

ods on sealed types cannot be overridden.

 CONSIDER sealing members that you override.

public class FlowSwitch : SourceSwitch {
 protected sealed override void OnValueChanged() {
 ...
 }
}

Problems that can result from introducing virtual members (discussed

in section 6.1.4) apply to overrides as well, although to a slightly lesser

degree. Sealing an override shields you from these problems starting

from that point in the inheritance hierarchy.

In short, part of designing for extensibility is knowing when to limit it,

and sealed types are one of the mechanisms by which you do that.

2476.3 Sealing

SUMMARY

Designing for extensibility is a critical aspect of designing frameworks.

Understanding the costs and benefits provided by various extensibility

mechanisms permits the design of frameworks that are flexible while

avoiding many of the pitfalls that could lead to trouble later.

This page intentionally left blank

563

Index

Symbols
{ } (braces), C# style conventions, 466–469

, (comma), C# style conventions, 475–476

- (hyphens), naming conventions, 53

(/* . */), multiline syntax, comments, 482

(// .), single line syntax, comments, 482

[TypeForwardedTo], moving types, 532–533

_ (underscore), naming conventions, 53,

481–482

A
abbreviations, naming conventions, 55–56

abstract classes, type design guidelines,

98–102

abstract members

adding, 539

changing

to virtual members, 553

virtual members to, 553

override members, removing an override

of an abstract member, 543–544

abstractions

designing frameworks, 34–36

extensibility, 239–241

self-documenting object models, principle

of, 34–36

AccessViolationException, 276

acronyms

capitalization, 45–48

naming conventions, 55–56

adding

abstract members, 539

base interfaces to interfaces, 536

members

to interfaces, 541

to unsealed types, 539–540

method parameters, 546

readonly modifier to structs, 535, 550

reference type fields to structs, 540

second declaration to generic interfaces,

536–537

static modifiers, 549

aggregate components

component-oriented design, 331–334

design patterns, 329–338

designing, 335–338

factored types, 334–335

alphanumeric characters, naming conven-

tions, 53

API (Application Programming Interface)

availability, 13–14

consistency, 34

designing frameworks

low barrier to entry, principle of, 23–29

scenario-driven framework design,

16–23

self-documenting object models,

principle of, 29–36

exceptions and API consistency, 250

heavy API design processes, 2

intuitive API, 33–34

layered architecture, principle of, 36–39

naming new versions of existing API,

58–61

sample specification, 523–528

Stopwatch specification, 524–528

strong typing, 33–34

unification, 13–14

well-designed frameworks, qualities of, 3

backward compatibility, 2

borrowing from existing proven

designs, 6–7

Index564

consistency, 7–8

evolution, 7

expense, 4–5

integration, 7

OO design, 2

prototyping, 2

simplicity, 3–4

trade-offs, 6

ApplicationException, 274

applications

models, namespaces, 65–66

RAD, progressive frameworks, 13

architectures (layered), principle of, 36–39

ArgumentException, 275–276

ArgumentNullException, 275–276

ArgumentOutOfRangeException, 275–276

arguments, validation, 207–210, 480

arrays

collections versus, 302–303

design patterns, 430–433

usage guidelines, 287–291

ASCII characters

code restrictions, 479

naming conventions, 54

Unicode escape sequences (uXXXX), 479

assemblies

naming conventions, 61–62

renaming, 530–531

types and assembly metadata, 127–129

assignment-expression-throw, C# style

conventions, 480

Async Patterns, 502

Async method return types, 348–351

Async variants of existing

synchronous methods, 353–354

await foreach, 363–365

cancellation, 512–513

choosing, 339–341, 503–504

Classic Async Patterns, 361, 503–509

consistency, 355–361

context, 357–358

deadlock, 358

design patterns, 339–365

Event-Based Async Patterns, 361–362,

510–512

exceptions to Async methods, 359–361

IAsyncDisposable interface, 362

IAsyncEnumerable<T> interface, 362–365

implementation guidelines, 355–361

incremental results, 516

Out parameters, 512

progress reporting, 513–516

Ref parameters, 512

Task-Based Aync Pattern, 341–347

Task.Status consistency, 355–357

ValueTask structs, 358–359

ValueTask<TResult> structs, 358–359

attached DP design, 369–370

attributes, usage guidelines, 291–294

auto-implemented properties, C# style

conventions, 479

await foreach, Async Patterns, 363–365

await using, Dispose Patterns, 393–394

B
backward compatibility, well-designed

frameworks, qualities of, 2

base classes

extensibility, 242–244

moving members to, 541

base interfaces

adding to interfaces, 536

moving members to, 541

base members, masking, 539

BCL type names, C# style conventions, 476

behaviors, changing, 553–555

Binary serialization, 493

boolean parameters, choosing, 205–207

borrowing from existing proven designs,

well-designed frameworks, 6–7

braces ({ }), C# style conventions, 466–469

breaking changes, 529

assemblies, renaming, 530–531

behaviors, changing, 553–555

classes

changing structs to, 537–538

changing to structs, 537

moving members to base classes, 541

compilation breaks, 530

finalizers, removing from

sealed types, 542

unsealed types, 542

interfaces

adding a second declaration to

interfaces, 536–537

adding base interfaces to interfaces,

536

adding members to, 541

moving members to base interfaces,

541

members

adding abstract members, 539

adding to interfaces, 541

adding to unsealed types, 539–540

changing member signatures, 545–553

masking base members, 539

moving to base classes, 541

moving to base interfaces, 541

565Index

moving to derived types, 542

overloading, 544–545

override members, 540

removing an override of a virtual

member, 543

removing an override of an abstract

member, 543–544

removing non-override members, 543

namespaces, adding namespaces that

conflict with existing types, 531–532

private fields

removing from serializable

types, 544

renaming on serializable types, 544

recompile breaks, 530

reflection breaks, 530

runtime breaks, 529

structs

adding first reference type

field to, 540

adding readonly modifier to structs,

535–536

changing classes to, 537

changing to classes, 537–538

ref structs, 538

types

changing namespaces, 535

moving, 532–533

moving members to derived

types, 542

names, case sensitivity, 534

removing, 533

removing finalizers from sealed types,

542

removing finalizers from unsealed

types, 542

removing private fields on serializable

types, 544

renaming private fields on serializable

types, 544

sealing unsealed types, 534

unsealing sealed types, 534

brevity, naming conventions, 52

buffer operators

arrays, 430–433

data transformation operations, 445–451

design patterns, 430–445

fixed sizes, 451–452

OperationStatus value, 458–463

partial writes to buffers, 458–463

predetermined sizes, 451–452

Spans, 431–445

Try-Write Pattern, 452–458

C
C#

coding style conventions, 465–466

ASCII characters, code restrictions, 479

assignment-expression-throw, 480

auto-implemented properties, 479

BCL type names, 476

braces ({ }), 466–469

collection initializers, 478

commas (,), 475–476

comments, 482–483

expression-bodied members, 478–479

file organization, 483–485

if.throw, 480

indents, 465–466

language keywords, 476

member modifiers, 473–475

nameof (.) syntax, 479

naming conventions, 480–482

object initializers, 477–478

readonly modifiers, 479

spaces, 469–470

this.476

Unicode escape sequences (uXXXX),

479

var keyword, 476–477

vertical whitespace, 472–473

language-specific names, naming

conventions, 57

C++, language-specific names, naming

conventions, 57

callbacks, extensibility, 231–237

camelCasing, 43

C# style conventions, 481–482

naming conventions, 481–482

parameter names, 79

cancellation, Async Patterns, 512–513

capitalization, 42

acronyms, 45–48

case sensitivity, 51–52

compound words, 48–51

identifiers, 42–44

camelCasing, 43

PascalCasing, 42–44

case sensitivity

capitalization, 51–52

type names, 534

change notification events, DP, 371

changing

abstract members to virtual members, 553

behaviors, 553–555

classes to structs, 537

constant field values, 552

Index566

default values, in optional parameters, 552

member

signatures, 545–553

visibility, 548–549

method

parameters types, 546

return types, 547–548

non-virtual members to virtual members,

553

notification events in properties, 163–165

optional parameters to required, 551–552

property types, 548

reference parameters, 549–550

required parameters to optional, 551

runtime error exceptions to usage error

exceptions, 553–554

structs to classes, 537–538

type names

case sensitivity, 534

changing namespaces, 535

usage error exceptions to functioning

behavior, 554

values returned type, from a method,

554–555

virtual members to abstract members, 553

choosing

boolean parameters, 205–207

enum parameters, 205–207

exceptions for throwing, 260–264

member

methods, 152–158

properties, 152–158

classes

abstract classes, type design guidelines,

98–102

base classes

extensibility, 242–244

moving members to, 541

changing

classes to structs, 537

structs to classes, 537–538

defined, 84

members, moving to base classes, 541

naming conventions, 67–70

common types, 71

enumerations, 72–74

generic type parameters, 70–71

static classes

defined, 84

type design guidelines, 102–104

type design guidelines, 89–100, 102–104

unsealed classes, extensibility, 228–229

Classic Async Patterns, 361, 503–509

Close() method, Dispose Patterns, 382–383

CLR (Common Language Runtime),

language-specific names and naming

conventions, 57

collections

arrays versus, 302–303

custom collections, 302–303

initializers, C# style conventions, 478

live collections, 301–302

parameters, 296–297

properties, 298–302

return values, 298–302

snapshot collections, 301–302

usage guidelines, 294–296

arrays versus collections, 302–303

collection properties, 298–302

custom collections, 302–303

live collections, 301–302

parameters, 296–297

return values, 298–302

snapshot collections, 301–302

ComException, 278

commas (,), C# style conventions, 475–476

comments

C# style conventions, 482–483

“I” usage, 483

multiline syntax (/* . */), 482

passive voice, 483

personification, 483

single-line syntax (// .), 482

“we” usage, 483

common names, naming conventions, 57–58

compatibility (backward), well-designed

frameworks, 2

compilation breaks, 530

component-oriented design, 331–334

compound words, capitalization, 48–51

ConfigureAwait modifier, await using,

393–394

consistency

Async Patterns, 355–361

self-documenting object models, principle

of, 34

Task.Status, 355–357

well-designed frameworks, qualities of,

7–8

constant field values, changing, 552

constructors

designing, 165–172

type constructors, 172–175

contravariance, design patterns, 412–417

conversion operators, 198-C05.1827

core namespaces, 66

567Index

costs, well-designed frameworks, 4–5

covariance, design patterns, 412–415, 417–423

customizing

collections, 303–305

event handlers, obsolete guidance,

491–492

exceptions

designing, 279–280

obsolete guidance, 492–493

D
Data Contract serialization, 493, 495–499

data transformation operations, 445–451

DateTime struct, usage guidelines, 306–308

DateTimeOffset struct, usage guidelines,

306–308

deadlock, Async Patterns, 358

declarations, adding to interfaces, 536–537

default values, changing in optional param-

eters, 552

derived types, moving members to, 542

design patterns

aggregate components, 329–338

arrays, 430–433

Async Patterns, 339–365, 502

cancellation, 512–513

choosing between Async Patterns,

503–504

Classic Async Patterns, 503–509

Event-Based Async Patterns, 503–504,

510–512

incremental results, 516

Out parameters, 512

progress reporting, 513–516

Ref parameters, 512

buffer operators, 430–445

arrays, 430–433

fixed sizes, 451–452

OperationStatus value, 458–463

partial writes to buffers, 458–463

predetermined sizes, 451–452

Spans, 431–445

Try-Write Pattern, 452–458

contravariance, 412–417

covariance, 412–415, 417–423

Dispose Patterns, 372–394, 511–517

DP, 366–372

factories, 394–399

LINQ, 400–408

optional features, 408–411

Spans, 431–445

Template Method Pattern,

423–425

timeouts, 426–427

Try-Write Pattern, 452–458

XAML readable types, 427–430

.Design subnamespaces, 489

designing

aggregate components, 335–338

component-oriented design,

331–334

constructors, 165–175

custom exceptions, 279–280

error messages, 264–265

events, 175–180

extensibility, 227–228

abstractions, 239–241

base classes, 242–244

callbacks, 231–237

events, 231–237

limiting, 244–246

protected members, 230

sealing, 244–246

unsealed classes, 228–229

virtual members, 237–239

fields, 180–183

frameworks, 3, 9–11, 15–16

abstractions, 34–36

backward compatibility, 2

consistency, 7–8

evolution, 7

existing proven designs, borrowing

from, 6–7

expense, 4–5

integration, 7

low barrier to entry, principle of, 23–29

multiframework platforms, 12–13

OO design, 2

programming languages, 11–12

progressive frameworks, 12–15

prototyping, 2

scenario-driven framework design,

16–23

self-documenting object models,

principle of, 29–39

simplicity, 3–4

trade-offs, 6

members

boolean parameters, 205–207

choosing methods, 152–158

choosing properties, 152–158

conversion operators, 198-C05.1827

enum parameters, 205–207

explicit implementation of interface

members, 148–152

extension methods, 184–192

Index568

fields, 180–183

inequality operators, 200–202

members with variable number of

parameters, 214–218

operator overloads, 192–198

overloading members, 136–148

parameter argument validation,

207–210

parameter passing, 210–214

parameters, 202–204

pointer parameters, 218–219

tuples in member signatures, 220–226

parameters, 202–204

argument validation, 207–210

boolean parameters, 205–207

enum parameters, 205–207

members with variable number of

parameters, 214–218

passing, 210–214

properties, 158–160

change notification events,

163–165

indexed properties, 161–163

types, 84–85

assembly metadata and types, 127–129

classes, 89–104

constructors, 172–175

enums, 111–124

interfaces, 92–100, 104–106

namespaces, 85–88

nested types, 124–127

strings, 129–133

structs, 89–92, 106–111

diacritical marks, naming

conventions, 55

Dispose (bool) method, Dispose

Patterns, 376–380

Dispose (true) method, Dispose Patterns,

377–378

Dispose Patterns

await using, 393–394

basic Dispose Patterns, 375–383

Close() method, 382–383

ConfigureAwait modifier, 393–394

design patterns, 372–394

Dispose (bool) method, 376–380

Dispose (true) method, 377–378

finalizable types, 383–387,

511–517

IAsyncDisposable interface, 391–392

IDisposable method, 382–383

rehydration, 381–382

scoped operations, 387–391

SuppressFinalize method, 378

DLL (Dyanmic-Link Libraries), naming

conventions, 61–62

DP (Dependency Properties), 365–366

attached DP design, 369–370

change notification events, 371

design patterns, 366–372

validation, 370

value coercion, 371–372

E
enums

adding values to, 123–124

defined, 84

flag enums, type design guidelines,

119–123

naming conventions, 72–74

parameters, choosing, 205–207

type design guidelines, 111–118

equality operators

reference types, 328

usage guidelines, 324–328

value types, 327

error exceptions

runtime error exceptions, changing to

usage error exceptions, 553–554

throwing new types of, 555

usage error exceptions, changing

to functioning behavior, 554

runtime error exceptions to, 553–554

error handling, exceptions and,

250–252

error messages, designing, 264–265

event handlers (custom), obsolete guidance,

491–492

Event-Based Async Patterns, 361–362,

503–504, 510–512

events

change notification events, DP, 371

custom event handlers, obsolete guidance,

491–492

designing, 175–180

extensibility, 231–237

naming conventions, 77–78

notification events, changing in properties,

163–165

evolution of well-designed frameworks,

qualities of, 7

exceptions

AccessViolationException, 276

API consistency, 250

ApplicationException, 274

ArgumentException, 275–276

ArgumentNullException, 275–276

ArgumentOutOfRangeException, 275–276

569Index

Async methods, 359–361

ComException, 278

custom exceptions

designing, 279–280

obsolete guidance, 492–493

error exceptions, throwing new types of,

555

error handling, 250–252

error messages, 264–265

ExecutionEngineException, 278

FormatException, 278–279

handling, 249–254, 265–271

IndexOutOfRangeException, 276

instrumentation and, 254

InvalidOperationException, 274–275

NullReferenceException, 276

object-oriented languages, 249–250

OperationCanceledException, 278

OutOfMemoryException,

277–278

performance and, 281

Tester-Doer Pattern, 281–282

Try Pattern, 282–286

PlatformNotSupportedException, 279

runtime error exceptions, changing to

usage error exceptions, 553–554

SEHException, 278

self-documenting object models, 33

StackOverflowException, 276–277

SystemException, 274

TaskCanceledException, 278

throwing, 254–260

choosing exceptions, 260–264

error messages, 264–265

from existing thrown types, 555

new types of error exceptions, 555

types, 273–279

unhandled exception handlers, 253

usage error exceptions

changing runtime error exceptions to,

553–554

changing to functioning behavior, 554

wrapping, 271–273

ExecutionEngineException, 278

existing proven designs (well-designed

frameworks), qualities of, 6–7

expense, well-designed frameworks, 4–5

explicit implementation of interface members,

148–152

exposing layers

in the same namespace, 38–39

in separate namespaces, 38

expression-bodied members, C# style

conventions, 478–479

expression-throw, C# style conventions, 480

extensibility, 227–228

abstractions, 239–241

base classes, 242–244

callbacks, 231–237

events, 231–237

limiting, 244–246

protected members, 230

sealing, 244–246

unsealed classes, 228–229

virtual members, 237–239

extension methods, 184–192

F
factored types, aggregate components,

334–335

factories, design patterns,

394–399

features (optional), design patterns, 408–411

fields

designing, 180–183

naming conventions, 78–79

private fields

removing from serializable types, 544

renaming private fields on serializable

types, 544

file organization, C# style conventions,

483–485

finalizable types, Dispose Patterns, 383–387,

511–517

Finalize method, Dispose Patterns, 378

finalizers, removing

sealed types, 542

from unsealed types, 542

first reference type field, adding to structs,

540

fixed buffer sizes, 451–452

flag enums, type design guidelines, 119–123

FormatException, 278–279

Framework Design Guidelines, naming

conventions, 480

frameworks

designing, 3, 9–11, 15–16

abstractions, 34–36

backward compatibility, 2

borrowing from existing proven

designs, 6–7

consistency, 7–8

evolution, 7

expense, 4–5

integration, 7

low barrier to entry, principle of, 23–29

multiframework platforms, 12–13

naming conventions, 480

Index570

OO design, 2

programming languages, 11–12

progressive frameworks, 12–15

prototyping, 2

scenario-driven framework design,

16–23

self-documenting object models,

principle of, 29–36

simplicity, 3–4

trade-offs, 6

development of, 1–3

multiframework platforms, 12–13

progressive frameworks, 12–15

usability studies, scenario-driven

framework design, 21–23

well-designed frameworks, qualities of, 3

backward compatibility, 2

borrowing from existing proven

designs, 6–7

consistency, 7–8

evolution, 7

expense, 4–5

integration, 7

OO design, 2

prototyping, 2

simplicity, 3–4

trade-offs, 6

G
generic interfaces, adding a second declara-

tion to, 536–537

generic type parameters, naming conventions,

70–71

guidance (obsolete), 487–488

Async Patterns, 502

cancellation, 512–513

choosing between Async Patterns,

503–504

Classic Async Patterns, 503–509

Event-Based Async Patterns, 503–504,

510–512

incremental results, 516

Out parameters, 512

progress reporting, 513–516

Ref parameters, 512

custom event handlers, 491–492

custom exceptions, 492–493

Dispose Patterns, finalizable types,

511–517

namespaces, 489–490

.Interop subnamespaces, 490

.Permissions subnamespaces, 489–490

naming conventions, 488

serialization, 493

.NET serialization technologies, 493

usage guidelines, 493–502

H
heavy API design processes, 2

Hungarian notation

C# style conventions, 482

naming conventions, 53, 482

hyphens (-), naming conventions, 53

I
“I” in comments, 483

IAsyncDisposable interface

Async Patterns, 362

Dispose Patterns, 391–392

IAsyncEnumerable<T> interface, Async

Patterns, 362–365

ICloneable struct, usage guidelines, 308–309

IComparable<T> struct, usage guidelines,

309–311

identifiers

capitalization, 42, 44

camelCasing, 43

PascalCasing, 42–44

naming conventions, 54

type parameters (generic), naming

conventions, 70–71

IDisposable method, Dispose Patterns, 377,

382–383

IEnumerable<T> method, LINQ support,

402–403

if.throw, C# style conventions, 480

implementation

Async Patterns, 355–361

auto-implemented properties, 479

expression-bodied members, 478–479

interface members, explicit implementa-

tion of, 148–152

System.Uri, 322–323

incremental results, Async Patterns, 516

indents, C# style conventions, 471–472

indexed properties, designing, 161–163

IndexOutOfRangeException, 276

inequality operators, 200–202

infrastructure namespaces, 66

initializers, C# style conventions

collection initializers, 478

object initializers, 477–478

instrumentation, exceptions and, 254

integration (well-designed frameworks),

qualities of, 7

interfaces

571Index

abstractions, extensibility, 239–241

adding, members, 541

base interfaces

adding to interfaces, 536

moving members to, 541

defined, 84

generic interfaces, adding a second

declaration to, 536–537

members

adding, 541

adding to interfaces, 541

implementing explicitly, 148–152

moving to base interfaces, 541

naming conventions, 67–70

common types, 71

enumerations, 72–74

generic type parameters, 70–71

type design guidelines, 92–100, 104–106

.Interop subnamespaces, 490

intuitive API, 33–34

InvalidOperationException, 274–275

IQueryable<T> method, LINQ support,

403–404

J - K
keywords (language)

C# style conventions, 476

var, C# style conventions, 476–477

L
language keywords, C# style conventions, 476

languages (programming), framework design,

11–12

language-specific names, naming conven-

tions, 56–58

layered architecture, principle of, 36–39

limiting, extensibility, 244–246

LINQ (Language-Integrated Queries)

design patterns, 400–408

overview of, 400–401

support

IEnumerable<T> method, 402–403

implementation, 402

IQueryable<T> method, 403–404

query patterns, 404–408

live collections, 301–302

low barrier to entry, principle of, 23–29

M
masking base members, 539

members

abstract members

adding, 539

changing to virtual members, 553

changing virtual members to, 553

removing an override of an abstract

member, 543–544

base members, masking, 539

changing, member signatures, 545–553

constructors

designing, 165–172

type constructors, 172–175

designing

boolean parameters, 205–207

conversion operators, 198-C05.1827

enum parameters, 205–207

events, 175–180

extension methods, 184–192

fields, 180–183

inequality operators, 200–202

members with variable number of

parameters, 214–218

operator overloads, 192–198

parameter argument validation,

207–210

parameter passing, 210–214

parameters, 202–204

pointer parameters, 218–219

tuples in member signatures, 220–226

events, designing, 175–180

expression-bodied members, 478–479

interface members, implementing

explicitly, 148–152

masking base members, 539

methods, choosing, 152–158

modifiers, C# style conventions, 473–475

moving to

base classes, 541

base interfaces, 541

derived types, 542

non-override members, removing, 543

non-virtual members, changing to virtual

members, 553

overloading, 136–148, 544–545

override members, 540

removing an override of a virtual

member, 543

removing an override of an abstract

member, 543–544

parameters, designing, 202–204

properties

change notification events, 163–165

choosing, 152–158

designing, 158–160

indexed properties, 161–163

protected members, extensibility, 230

Index572

signatures

changing, 545–553

tuples in, 220–226

unsealed types, adding members to,

539–540

virtual members

changing abstract members to, 553

changing to abstract members, 553

extensibility, 237–239

removing an override of a virtual

member, 543

visibility, changing, 548–549

metadata, assembly metadata and types,

127–129

methods

Async methods

exceptions to, 359–361

return types, 348–351

Close() method, 382–383

Dispose (bool) method, 376–380

Dispose (true) method, 377–378

extension methods, 184–192

IDisposable method, Dispose Patterns,

377, 382–383

IEnumerable<T> method, LINQ support,

402–403

IQueryable<T> method, IQueryable<T>

method, 403–404

member methods, choosing, 152–158

naming conventions, 74–75, 196–197

operators and method names,

196–197

parameters

adding, 546

changing types, 546

removing, 546

renaming, 545

reordering parameters by the same

type, 547

reordering parameters of differing

types, 547

return types, changing, 547–548

static TryParse methods, 286

struct methods

adding readonly modifiers, 550

removing readonly modifiers, 551

SuppressFinalize method, 378

synchronous methods, Async variants of,

353–354

Try methods, value-producing Try

methods, 284–285

values returned type, changing from a

method, 554–555

modifiers

member modifiers, C# style conventions,

473–475

readonly modifiers

adding to struct methods,

550

C# style conventions, 479

removing from struct methods, 551

static modifiers, adding/removing, 549

moving

members to

base classes, 541

base interfaces, 541

derived types, 542

types

via [TypeForwardedTo], 532–533

without [TypeForwardedTo], 533

multiframework platforms, 12–13

multiline syntax (/* . */), comments, 482

N
nameof (.) syntax, C# style conventions, 479

namespaces

adding namespaces that conflict with

existing types, 531–532

application models, 65–66

core namespaces, 66

infrastructure namespaces, 66

naming conventions, 63–67

obsolete guidance, 489–490

subnamespaces

.Design subnamespaces, 489

.Interop subnamespaces, 490

.Permissions subnamespaces, 489–490

naming conventions, 489–490

technology namespace groups, 66–67

type design guidelines, 85–88

type names, changing, 535

type names, conflicts, 65

application models, 65–66

core namespaces, 66

infrastructure namespaces, 66

technology namespace groups, 66–67

naming conventions, 41–42

abbreviations, 55–56

acronyms, 55–56

alphanumeric characters, 53

API, naming new versions of existing API,

58–61

ASCII characters, 54

assemblies, 61–62

brevity, 52

C# style conventions, 480–482

573Index

camelCasing, 481, 482

capitalization, 42

acronyms, 45–48

case sensitivity, 51–52

compound words, 48–51

identifiers, 42–44

classes, 67–70

common types, 71

enumerations, 72–74

generic type parameters, 70–71

common names, 57–58

custom collections, 305

diacritical marks, 55

DLL, 61–62

enumerations, 72–74

events, 77–78

fields, 78–79

Framework Design Guidelines, 480

Hungarian notation, 53

hyphens (-), 53

identifiers, 54

capitalization, 42–44

type parameters (generic), 70–71

interfaces, 67–70

common types, 71

enumerations, 72–74

generic type parameters, 70–71

language-specific names, 56–58

methods, 74–75, 196–197

namespaces, 63–67

obsolete guidance, 488

operators, 196–197

overload operator parameters, 80

packages, 61–62

parameters, 79–80

PascalCasing, 480–481

properties, 75–76

readability, 52

resources, 81

self-documenting object models, 30–32

structs, 67–70

common types, 71

enumerations, 72–74

generic type parameters, 70–71

subnamespaces, 489–490

type members, 74

events, 77–78

fields, 78–79

methods, 74–75

properties, 75–76

types (common), 71

underscores (_), 53, 481–482

word choice, 52–55

nested types, design guidelines, 124–127

.NET serialization technologies, 493

non-override members, removing, 543

non-virtual members, changing to virtual

members, 553

notification events, changing in properties,

163–165

Nullable<T> struct, usage guidelines, 311–312

NullReferenceException, 276

O
object initializers, C# style conventions,

477–478

object models (self-documenting), principle

of, 29–30

abstractions, 34–36

consistency, 34

exceptions, 33

naming, 30–32

strong typing, 33–34

Object.Equals, usage guidelines, 312–314

reference types, 314

value types, 314

Object.GetHashCode, usage guidelines,

315–316

object-oriented design, 2

object-oriented languages, exceptions and,

249–250

Object-Oriented Programming, 2

objects, usage guidelines, 312

Object.Equals, 312–314

Object.GetHashCode, 315–316

Object.ToString, 316–318

obsolete guidance, 487–488

Async Patterns, 502

cancellation, 512–513

choosing between Async Patterns,

503–504

Classic Async Patterns, 503–509

Event-Based Async Patterns, 503–504,

510–512

incremental results, 516

Out parameters, 512

progress reporting, 513–516

Ref parameters, 512

custom event handlers, 491–492

custom exceptions, 492–493

Dispose Patterns, finalizable types,

511–517

namespaces, 489–490

.Design subnamespaces, 489

.Interop subnamespaces, 490

.Permissions subnamespaces, 489–490

Index574

naming conventions, 488

serialization, 493

usage guidelines, serialization, 493–502

OO (Object-Oriented) design, 2

OOP (Object-Oriented Programming), 2

OperationCanceledException, 278

operations (scoped), Dispose Patterns,

387–391

OperationStatus value, buffer operators,

458–463

operators

conversion operators, 198-C05.1827

equality operators

reference types, 328

usage guidelines, 324–328

value types, 327

inequality operators, 200–202

method names and, 196–197

overloading, 192–198

optional features, design patterns, 408–411

optional parameters, changing

default values, 552

to required, 551–552

required parameters to optional, 551

organization (files), C# style conventions,

483–485

Out parameters, 512

OutOfMemoryException, 277–278

overload operator parameters, naming

conventions, 80

overloading

members, 136–148, 544–545

operators, 192–198

override members

adding to unsealed types, 540

removing

removing an override of a virtual

member, 543

removing an override of an abstract

member, 543–544

P
packages, naming conventions, 61–62

parameters

argument validation, 207–210

boolean parameters, choosing, 205–207

collection parameters, 296–297

designing, 202–204

enum parameters, choosing, 205–207

members with variable number of

parameters, 214–218

method parameters

adding, 546

changing types, 546

removing, 546

renaming, 545

reordering parameters by the same

type, 547

reordering parameters of differing

types, 547

naming conventions, 79–80

optional parameters, changing

default values, 552

required parameters to optional, 551

to required, 551–552

Out parameters, 512

overload operator parameters, naming

conventions, 80

passing, 210–214, 549–550

pointer parameters, 218–219

Ref parameters, 512

reference parameters

Async variants of existing

synchronous methods, 352–353

changing, 549–550

required parameters, changing

optional parameters to, 551–552

to optional, 551

Pareto principle, 10

partial writes to buffers, 458–463

PascalCasing, 42–44

C# style conventions, 480–481

naming conventions, 480–481

passing parameters, 210–214

passive voice, comments, 483

performance, exceptions, 281

Tester-Doer Pattern, 281–282

Try Pattern, 282–286

.Permissions subnamespaces, 489–490

personification, comments, 483

PlatformNotSupportedException, 279

pointer parameters, 218–219

predetermined buffer sizes, 451–452

private fields

removing, on serializable types, 544

renaming, in serializable types, 544

programming

languages, framework design, 11–12

OOP, 7–8

progress reporting, Async Patterns,

513–516

progressive frameworks, 12–15

properties

auto-implemented properties, 479

change notification events, 163–165

designing, 158–160

575Index

change notification events, 163–165

indexed properties, 161–163

indexed properties, designing, 161–163

member properties, choosing, 152–158

naming conventions, 75–76

events, 77–78

fields, 78–79

methods, 74–75

properties, 75–76

types, changing, 548

protected members, extensibility, 230

prototyping, well-designed

frameworks, 2

Q - R
query patterns, LINQ support, 404–408

RAD (Rapid Application Development),

progressive frameworks, 13

readability, naming conventions, 52

readonly modifiers

C# style conventions, 479

structs

adding to, 535, 550

removing from, 535–536, 551

recompile breaks, 530

Ref parameters, 512

ref structs, 538

reference parameters

Async variants of existing synchronous

methods, 352–353

changing, 549–550

reference types

equality operators, 328

fields, adding to structs, 540

Object.Equals, 314

reflection breaks, 530

rehydration, Dispose Patterns, 381–382

removing

finalizers

from sealed types, 542

from unsealed types, 542

method parameters, 546

non-override members, 543

override members

removing an override of a virtual

member, 543

removing an override of an abstract

member, 543–544

private fields, on serializable types, 544

readonly modifiers from structs, 535–536,

551

static modifiers, 549

types, 533

renaming

assemblies, 530–531

method parameters, 545

private fields in serializable types, 544

reordering method parameters

of differing types, 547

by the same type, 547

reporting (progress), Async Patterns, 513–516

required parameters, changing

to optional, 551

optional parameters to, 551–552

return types

Async methods, 348–351

method return types, changing, 547–548

return values in collections, 298–302

runtime breaks, 529

runtime error exceptions, changing to usage

error exceptions, 553–554

runtime serialization, 493, 500–502

S
scenario-driven framework design, 16–23

scoped operations, Dispose Patterns, 387–391

sealed types

removing finalizers from, 542

unsealing, 534

sealing,

extensibility, 244–246

unsealed types, 534

SEHException, 278

self-documenting object models, principle of,

29–30

abstractions, 34–36

consistency, 34

exceptions, 33

layered architecture, principle of, 36–37

naming, 30–32

strong typing, 33–34

serializable types, private fields, 544

serialization

Binary serialization, 493

Data Contract serialization, 493, 495–499

.NET serialization technologies, 493

obsolete guidance, 493–502

runtime serialization, 493, 500–502

SOAP serialization, 493

usage guidelines, 319–321

XML serialization, 493, 499–500

signatures (member)

changing, 545–553

tuples in, 220–226

simplicity, well-designed frameworks, 3–4

single-line syntax (// .), comments, 482

snapshot collections, 301–302

SOAP serialization, 493

Index576

source-breaking changes

compilation breaks, 530

recompile breaks, 530

spaces, C# style conventions, 469–470

Spans, 11–12, 431–445

specifications

sample specification, 523–528

Stopwatch specification, 524–528

StackOverflowException, 276–277

static classes

defined, 84

type design guidelines, 102–104

static modifiers, adding/removing, 549

static TryParse methods, 286

Stopwatch specification, 524–528

strings (strongly typed), 129–133

strong typing, self-documenting object

models (principle of), 33–34

structs

adding first reference type field to, 540

changing

changing classes to, 537

to classes, 537–538

DateTime struct, 306–308

DateTimeOffset struct, 306–308

defined, 84

ICloneable struct, 308–309

IComparable<T> struct, 309–311

naming conventions, 67–70

common types, 71

enumerations, 72–74

generic type parameters, 70–71

Nullable<T> struct, 311–312

readonly modifiers

adding to structs, 535, 550

removing from structs, 535–536, 551

ref structs, 538

type design guidelines, 89–92, 106–111

usage guidelines

DateTime struct, 306–308

DateTimeOffset struct, 306–308

ICloneable struct, 308–309

IComparable<T> struct, 309–311

Nullable<T> struct, 311–312

ValueTask structs, Async Patterns, 358–359

ValueTask<TResult> structs, Async

Patterns, 358–359

style conventions, C#465–466

ASCII characters, code restrictions, 479

assignment-expression-throw, 480

auto-implemented properties, 479

BCL type names, 476

braces ({ }), 466–469

collection initializers, 478

commas (,), 475–476

comments, 482–483

expression-bodied members, 478–479

file organization, 483–485

if.throw, 480

indents, 465–466

language keywords, 476

member modifiers, 473–475

nameof (.) syntax, 479

naming conventions, 480–482

object initializers, 477–478

readonly modifiers, 479

spaces, 469–470

this.476

Unicode escape sequences (uXXXX), 479

var keyword, 476–477

vertical whitespace, 472–473

subclassing, 13

subnamespaces

.Design subnamespaces, 489

.Interop subnamespaces, 490

naming conventions, 489–490

.Permissions subnamespaces, 489–490

SuppressFinalize method, Dispose Patterns,

378

synchronous methods, Async variants of,

353–354

SystemException, 274

System.Object, usage guidelines, 312

Object.Equals, 312–314

Object.GetHashCode, 315–316

Object.ToString, 316–318

System.Uri

implementation guidelines, 322–323

usage guidelines, 321–323

System.Xml, usage guidelines, 323–324

T
Task-Based Aync Pattern, 341–347

TaskCanceledException, 278

Task.Status, consistency, 355–357

technology namespace groups, 66–67

Template Method Pattern, 423–425

Tester-Doer Pattern, exceptions and perfor-

mance, 281–282

this., C# style conventions, 476

throwing exceptions, 254–260

choosing exceptions, 260–264

error messages, 264–265

from existing thrown types, 555

new types of error exceptions, 555

timeouts, 426–427

trade-offs, well-designed frameworks, 6

Try Pattern, exceptions and performance,

282–284

577Index

static TryParse methods, 286

value-producing Try methods, 284–285

Try-Write Pattern, 452–458

tuples in member signatures, 220–226

types

abstractions, extensibility, 239–241

assemblies

metadata and types, 127–129

renaming, 530–531

classes

abstract classes, 98–102

defined, 84

static classes, 102–104

type design guidelines, 89–104

common types, naming conventions, 71

constructors, 172–175

derived types, moving members to, 542

design guidelines, 84–85

assembly metadata and types, 127–129

classes, 89–104

enums, 111–124

interfaces, 92–100, 104–106

namespaces, 85–88

nested types, 124–127

strongly typed strings, 129–133

structs, 89–92, 106–111

enums

adding values to, 123–124

defined, 84

flag enums, 119–123

type design guidelines, 111–124

exception types, 273–279

factored types, aggregate components,

334–335

finalizable types, Dispose Patterns,

383–387, 511–517

interfaces

defined, 84

type design guidelines, 92–100,

104–106

logical groupings, 83

members

moving to derived types, 542

naming conventions, 79

method parameter types

changing, 546

reordering parameters of differing

types, 547

moving

via [TypeForwardedTo], 532–533

without [TypeForwardedTo], 533

names

case sensitivity, 534

changing namespaces, 535

namespaces

adding namespaces that conflict with

existing types, 531–532

name conflicts, 65–67

obsolete guidance, 489–490

type design guidelines, 85–88

nested types, design guidelines, 124–127

parameters (generic), naming conventions,

70–71

property types, changing, 548

reference types

equality operators, 328

Object.Equals, 314

removing, 533

return types

Async methods, 348–351

changing method return types, 547–548

sealed types

removing finalizers from, 542

unsealing, 534

sealing unsealed types, 534

serializable types, private fields

removing, 544

renaming, 544

static classes, defined, 84

strings (strongly typed), 129–133

structs

defined, 84

type design guidelines, 89–92, 106–111

unsealed types

adding members to, 539–540

removing finalizers from, 542

value types, 99

equality operators, 327

Object.Equals, 314

values returned type, changing from a

method, 554–555

typing (strong), self-documenting object

models, 33–34

U
underscores (_), naming conventions, 53,

481–482

unhandled exception handlers, 253

Unicode escape sequences (uXXXX), C# style

conventions, 479

unsealed classes, extensibility, 228–229

unsealed types

adding members to, 539–540

removing finalizers from, 542

sealing, 534

Uri

implementation guidelines, 322–323

usage guidelines, 321–323

Index578

usability studies, designing frameworks,

scenario-driven framework design,

21–23

usage error exceptions, changing

to functioning behavior, 554

runtime error exceptions to, 553–554

usage guidelines

arrays, 287–291

attributes, 291–294

collections, 294–296

arrays versus collections, 302–303

custom collections, 302–303

live collections, 301–302

parameters, 296–297

properties, 298–302

return values, 298–302

snapshot collections, 301–302

DateTime struct, 306–308

DateTimeOffset struct, 306–308

equality operators, 324–328

ICloneable struct, 308–309

IComparable<T> struct, 309–311

Nullable<T> struct, 311–312

Object.Equals, 312–314

reference types, 314

value types, 314

Object.GetHashCode, 315–316

objects, 312

Object.Equals, 312–314

Object.GetHashCode, 315–316

Object.ToString, 316–318

Object.ToString, 316–318

serialization, 319–321, 493–502

structs

DateTime struct, 306–308

DateTimeOffset struct, 306–308

ICloneable struct, 308–309

IComparable<T> struct, 309–311

Nullable<T> struct, 311–312

System.Object, 312

Object.Equals, 312–314

Object.GetHashCode, 315–316

Object.ToString, 316–318

System.Uri, 321–323

System.Xml, 323–324

Uri, 321–323

uXXXX (Unicode escape sequences), C# style

conventions, 479

V
validation

arguments, 207–210, 480

assignment-expression-throw, 480

DP, 370

value coercion, DP, 371–372

value types, 99

equality operators, 327

Object.Equals, 314

value-producing Try methods, 284–285

values

constant field values, changing, 552

default values, changing in optional

parameters, 552

values returned type, changing from a

method, 554–555

ValueTask structs, Async Patterns, 358–359

ValueTask<TResult> structs, 358–359

var keyword, C# style conventions, 476–477

vertical whitespace, C# style conventions,

472–473

virtual members

abstract members, changing to virtual

members, 553

changing

to abstract members, 553

non-virtual members to, 553

extensibility, 237–239

override members, removing an override

of a virtual member, 543

visibility of members, changing, 548–549

Visual Basic, language-specific names, 57

W
“we” in comments, 483

well-designed frameworks,

qualities of, 3

backward compatibility, 2

consistency, 7–8

evolution, 7

existing proven designs, borrowing

from, 6–7

expense, 4–5

integration, 7

OO design, 2

prototyping, 2

simplicity, 3–4

trade-offs, 6

whitespace (vertical), C# style conventions,

472–473

word choice, naming conventions, 52–55

wrapping exceptions, 271–273

X - Y - Z
XAML readable types, 427–430

XML serialization, 493, 499–500

	Cover
	Half Title
	Title page
	Copyright Page
	Dedication
	Contents
	Figures
	Tables
	Foreword
	Foreword to the Second Edition
	Foreword to the First Edition
	Preface
	Acknowledgments
	About the Authors
	About the Annotators
	6 Designing for Extensibility
	6.1 Extensibility Mechanisms
	6.1.1 Unsealed Classes
	6.1.2 Protected Members
	6.1.3 Events and Callbacks
	6.1.4 Virtual Members
	6.1.5 Abstractions (Abstract Types and Interfaces)

	6.2 Base Classes
	6.3 Sealing

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

