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Foreword

When we designed the .NET platform, we wanted it to be the most pro-

ductive platform for enterprise application development of the time. 

Twenty years ago, that meant client-server applications hosted on dedi-

cated hardware.

Today, we find ourselves in the midst of one of the biggest paradigm 

shifts in the industry: the move to cloud computing. Such transformations 

bring new opportunities for businesses but can be tricky for existing plat-

forms, as they need to adapt to often different requirements imposed by 

the new kinds of applications that developers want to write.

The .NET platform has transitioned quite successfully, and I think one 

of the main reasons is that we designed it carefully and deliberately, focus-

ing not only on productivity, consistency, and simplicity, but also on mak-

ing sure that it can evolve over time. .NET Core represents such evolution 

with advances important to cloud application developers: performance, 

resource utilization, container support, and others.

This third edition of Framework Design Guidelines adds guidelines 

related to changes that the .NET team adopted during transition from the 

world of client-server application to the world of the Cloud. 

—Scott Guthrie 

Redmond, WA 

January 2020
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Foreword to the Second Edition

When the .NET Framework was first published, I was fascinated by the 

technology. The benefits of the CLR (Common Language Runtime), its 

extensive APIs, and the C# language were immediately obvious. But 

underneath all the technology were a common design for the APIs and a 

set of conventions that were used everywhere. This was the .NET culture. 

Once you had learned a part of it, it was easy to translate this knowledge 

into other areas of the framework.

For the past 16 years, I have been working on open source software. 

Since contributors span not only multiple backgrounds but also multiple 

years, adhering to the same style and coding conventions has always been 

very important. Maintainers routinely rewrite or adapt contributions to 

software to ensure that code adheres to project coding standards and style. 

It is always better when contributors and people who join a software proj-

ect follow conventions used in an existing project. The more information 

that can be conveyed through practices and standards, the simpler it 

becomes for future contributors to get up-to-speed on a project. This helps 

the project converge code, both old and new.

As both the .NET Framework and its developer community have grown, 

new practices, patterns, and conventions have been identified. Brad and 

Krzysztof have become the curators who turned all of this new knowledge 

into the present-day guidelines. They typically blog about a new conven-

tion, solicit feedback from the community, and keep track of these 
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guidelines. In my opinion, their blogs are must-read documents for every-

one who is interested in getting the most out of the .NET Framework.

The first edition of Framework Design Guidelines became an instant clas-

sic in the Mono community for two valuable reasons. First, it provided us 

a means of understanding why and how the various .NET APIs had been 

implemented. Second, we appreciated it for its invaluable guidelines that 

we too strived to follow in our own programs and libraries. This new edi-

tion not only builds on the success of the first but has been updated with 

new lessons that have since been learned. The annotations to the guide-

lines are provided by some of the lead .NET architects and great program-

mers who have helped shape these conventions.

In conclusion, this text goes beyond guidelines. It is a book that you 

will cherish as the “classic” that helped you become a better programmer, 

and there are only a select few of those in our industry.

—Miguel de Icaza

Boston, MA

October 2008
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Foreword to the First Edition

In the early days of development of the .NET Framework, before it was 

even called that, I spent countless hours with members of the develop-

ment teams reviewing designs to ensure that the final result would be a 

coherent platform. I have always felt that a key characteristic of a frame-

work must be consistency. Once you understand one piece of the frame-

work, the other pieces should be immediately familiar.

As you might expect from a large team of smart people, we had many dif-

ferences of opinion—there is nothing like coding conventions to spark lively 

and heated debates. However, in the name of consistency, we gradually 

worked out our differences and codified the result into a common set of guide-

lines that allow programmers to understand and use the framework easily.

Brad Abrams, and later Krzysztof Cwalina, helped capture these guide-

lines in a living document that has been continuously updated and refined 

during the past six years. The book you are holding is the result of their work.

The guidelines have served us well through three versions of the .NET 

Framework and numerous smaller projects, and they are guiding the 

development of the next generation of APIs for the Microsoft Windows 

operating system.
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With this book, I hope and expect that you will also be successful in 

making your frameworks, class libraries, and components easy to under-

stand and use.

Good luck and happy designing.

—Anders Hejlsberg

Redmond, WA

June 2005
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Preface

This book, Framework Design Guidelines, presents best practices for design-

ing frameworks, which are reusable object-oriented libraries. The guide-

lines are applicable to frameworks in various sizes and scales of reuse, 

including the following:

• Large system frameworks, such as the core libraries in .NET, usually 

consisting of thousands of types and used by millions of developers.

• Medium-size reusable layers of large distributed applications or 

extensions to system frameworks, such as the Azure SDKs or a game 

engine.

• Small components shared among several applications, such as a grid 

control library.

It is worth noting that this book focuses on design issues that directly 

affect the programmability of a framework (publicly accessible APIs1). As 

a result, we generally do not cover much in terms of implementation 

details. Just as a user interface design book doesn’t cover the details of 

how to implement hit testing, this book does not describe how to 

implement a binary sort, for example. This scope allows us to provide a 

definitive guide for framework designers instead of being yet another 

1. This includes public types, and the public, protected, and explicitly implemented members 

of these types.
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book about programming. The book assumes the reader has basic familiar-

ity with programming in .NET already.

These guidelines were created in the early days of .NET Framework 

development. They started as a small set of naming and design conven-

tions but have been enhanced, scrutinized, and refined to a point where 

they are generally considered the canonical way to design frameworks at 

Microsoft. They carry the experience and cumulative wisdom of thou-

sands of developer hours over two decades of .NET. We tried to avoid bas-

ing the text purely on some idealistic design philosophies, and we think its 

day-to-day use by development teams at Microsoft has made it an intensely 

pragmatic book.

The book contains many annotations that explain trade-offs, explain 

history, amplify, or provide critiquing views on the guidelines. These 

annotations are written by experienced framework designers, industry 

experts, and users. They are the stories from the trenches that add color 

and setting for many of the guidelines presented.

To make them more easily distinguished in text, namespace names, 

classes, interfaces, methods, properties, and types are set in a monospace font.

Guideline Presentation

The guidelines are organized as simple recommendations using DO, 

CONSIDER, AVOID, and DO NOT. Each guideline describes either a 

good or bad practice, and all have a consistent presentation. Good prac-

tices have a  in front of them, and bad practices have an  in front of 

them. The wording of each guideline also indicates how strong the recom-

mendation is. For example, a DO guideline is one that should always2 be 

followed (all examples are from this book):

 DO name custom attribute classes with the suffix “Attribute.”

public class ObsoleteAttribute : Attribute { ... }

2. Always might be a bit too strong a word. There are guidelines that should literally be always 

followed, but they are extremely rare. In contrast, you probably need to have a really 

unusual case for breaking a DO guideline and still have it be beneficial to the users of the 

framework.
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On the other hand, CONSIDER guidelines should generally be fol-

lowed, but if you fully understand the reasoning behind a guideline and 

have a good reason to not follow it anyway, you should not feel bad about 

breaking the rules:

 CONSIDER defining a struct instead of a class if instances of the type are 

small and commonly short-lived or are commonly embedded in other 

objects.

Similarly, DO NOT guidelines indicate something you should almost 

never do:

 DO NOT provide set-only properties or properties with the setter having 

broader accessibility than the getter.

Less strong, AVOID guidelines indicate that something is generally not 

a good idea, but there are known cases where breaking the rule makes 

sense:

 AVOID using ICollection<T> or ICollection as a parameter just to 

access the Count property.

Some more complex guidelines are followed by additional background 

information, illustrative code samples, and rationale:

 DO implement IEquatable<T> on value types.

The Object.Equals method on value types causes boxing and its default 

implementation is not very efficient because it uses reflection. 

IEquatable<T>.Equals can offer much better performance and can be 

implemented so it does not cause boxing.

public struct Int32 : IEquatable<Int32> {
   public bool Equals(Int32 other){ ... }
}

Language Choice and Code Examples

One of the goals of the Common Language Runtime (CLR) is to support a 

variety of programming languages: those with implementations provided 
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by Microsoft, such as C++, VB, C#, F#, IronPython, and PowerShell, as 

well as third-party languages such as Eiffel, COBOL, Fortran, and others. 

Therefore, this book was written to be applicable to a broad set of lan-

guages that can be used to develop and consume modern frameworks.

To reinforce the message of multilanguage framework design, we con-

sidered writing code examples using several different programming lan-

guages. However, we decided against this. We felt that using different 

languages would help to carry the philosophical message, but it could 

force readers to learn several new languages, which is not the objective of 

this book.

We decided to choose a single language that is most likely to be read-

able to the broadest range of developers. We picked C#, because it is a 

simple language from the C family of languages (C, C++, Java, and C#), a 

family with a rich history in framework development.

Choice of language is close to the hearts of many developers, and we 

offer apologies to those who are uncomfortable with our choice.

About This Book

This book offers guidelines for framework design from the top down.

Chapter 1, “Introduction,” is a brief orientation to the book, describing 

the general philosophy of framework design. This is the only chapter with-

out guidelines.

Chapter 2, “Framework Design Fundamentals,” offers principles and 

guidelines that are fundamental to overall framework design.

Chapter 3, “Naming Guidelines,” contains common design idioms and 

naming guidelines for various parts of a framework, such as namespaces, 

types, and members.

Chapter 4, “Type Design Guidelines,” provides guidelines for the gen-

eral design of types.

Chapter 5, “Member Design,” takes a further step and presents guide-

lines for the design of members of types.

Chapter 6, “Designing for Extensibility,” presents issues and guidelines 

that are important to ensure appropriate extensibility in your framework.
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Chapter 7, “Exceptions,” presents guidelines for working with excep-

tions, the preferred error reporting mechanisms.

Chapter 8, “Usage Guidelines,” contains guidelines for extending and 

using types that commonly appear in frameworks.

Chapter 9, “Common Design Patterns,” offers guidelines and examples 

of common framework design patterns.

Appendix A, “C# Coding Style Conventions,” describes coding con-

ventions used by the team that produces and maintains the core libraries 

in .NET.

Appendix B, “Obsolete Guidance,” contains guidance from previous 

editions of this book that applies to features or concepts that are no longer 

recommended.

Appendix C, “Sample API Specification,” is a sample of an API specifi-

cation that framework designers within Microsoft create when designing 

APIs.

Appendix D, “Breaking Changes,” explores various kinds of changes 

that can negatively impact your users from one version to the next.
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6 
Designing for Extensibility

One important aspect of designing a framework is making sure the 

extensibility of the framework has been carefully considered. This 

requires that you understand the costs and benefits associated with vari-

ous extensibility mechanisms. This chapter helps you decide which of the 

extensibility mechanisms—subclassing, events, virtual members, call-

backs, and so on—can best meet the requirements of your framework. This 

chapter does not cover the design details of these mechanisms. Such details 

are discussed in other parts of the book, and this chapter simply provides 

cross-references to sections that describe those details.

A good understanding of OOP is a necessary prerequisite to designing 

an effective framework and, in particular, to understanding the concepts 

discussed in this chapter. However, we do not cover the basics of object-

orientation in this book, because there are already excellent books entirely 

devoted to the topic.

6.1 Extensibility Mechanisms
There are many ways to allow extensibility in frameworks. They range 

from less powerful but less costly to very powerful but expensive. For any 

given extensibility requirement, you should choose the least costly exten-

sibility mechanism that meets the requirements. Keep in mind that it’s 
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usually possible to add more extensibility later, but you can never take it 

away without introducing breaking changes.

This section discusses some of the framework extensibility mechanisms 

in detail.

6.1.1 Unsealed Classes
Sealed classes cannot be inherited from, and they prevent extensibility. In 

contrast, classes that can be inherited from are called unsealed classes.

// string cannot be inherited from
public sealed class String { ... }
 
// TraceSource can be inherited from
public class TraceSource { ... }

Subclasses can add new members, apply attributes, and implement 

additional interfaces. Although subclasses can access protected members 

and override virtual members, these extensibility mechanisms result in 

significantly different costs and benefits. Subclasses are described in sec-

tions 6.1.2 and 6.1.4. Adding protected and virtual members to a class can 

have expensive ramifications if not done with care, so if you are looking 

for simple, inexpensive extensibility, an unsealed class that does not 

declare any virtual or protected members is a good way to do it.

 CONSIDER using unsealed classes with no added virtual or protected 

members as a great way to provide inexpensive yet much appreciated 

extensibility to a framework.

Developers often want to inherit from unsealed classes so as to add 

convenience members such as custom constructors, new methods, or 

method overloads.1 For example, System.Messaging.MessageQueue 

is unsealed and thus allows users to create custom queues that default 

to a particular queue path or to add custom methods that simplify the 

API for specific scenarios. In the following example, the scenario is for 

a method sending Order objects to the queue.

1. Some convenience methods can be added to sealed types as extension methods.
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public class OrdersQueue : MessageQueue {
   public OrdersQueue() : base(OrdersQueue.Path){
      this.Formatter = new BinaryMessageFormatter();
   }

   public void SendOrder(Order order){
     Send(order,order.Id);
   }
}

 

 PHIL HAACK Because test-driven development has caught fire in the 

.NET developer community, many developers want to inherit from unsealed 

classes (often dynamically using a mock framework) in order to substitute a 

test double in the place of the real implementation.

At the very least, if you’ve gone to the trouble of making your class 

unsealed, consider making key members virtual, perhaps via the Template 

Method Pattern, to provide more control.

Classes are unsealed by default in most programming languages, and 

this is also the recommended default for most classes in frameworks. 

The extensibility afforded by unsealed types is much appreciated by 

framework users and quite inexpensive to provide because of the rela-

tively low test costs associated with unsealed types.

 

 VANCE MORRISON The key word in this advice is “CONSIDER.” 

Keep in mind that you always have the option of unsealing a class in the 

future (it is not a breaking change); however, once unsealed, a class must 

remain unsealed. Also, unsealing does inhibit some optimizations [e.g., con-

verting virtual calls to more efficient nonvirtual calls (and then inlining)]. 

Finally, unsealing helps your users only if they control the creation of the 

class (sometimes true, sometimes not). In short, designs are only rarely use-

fully extensible “by accident.” Being unsealed is part of the contract of a 

class and its users, and like everything about the contract, it deserves to be a 

conscious, deliberate choice on the part of the designer.
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6.1.2 Protected Members
Protected members by themselves do not provide any extensibility, but 

they can make extensibility through subclassing more powerful. They can 

be used to expose advanced customization options without unnecessarily 

complicating the main public interface. For example, the SourceSwitch.
Value property is protected because it is intended for use only in advanced 

customization scenarios.

public class FlowSwitch : SourceSwitch {
   protected override void OnValueChanged() {
      switch (this.Value) {
        case "None" : Level = FlowSwitchSetting.None; break;
        case "Both" : Level = FlowSwitchSetting.Both; break;
        case "Entering": Level = FlowSwitchSetting.Entering; break;
        case "Exiting" : Level = FlowSwitchSetting.Exiting; break;
      }
   }
}

Framework designers need to be careful with protected members 

because the name “protected” can give a false sense of security. Anyone is 

able to subclass an unsealed class and access protected members, so all 

the same defensive coding practices used for public members apply to 

protected members.

 CONSIDER using protected members for advanced customization.

Protected members are a great way to provide advanced customization 

without complicating the public interface.

 DO treat protected members in unsealed classes as public for the pur-

pose of security, documentation, and compatibility analysis.

Anyone can inherit from a class and access the protected members.

 

 BRAD ABRAMS Protected members are just as much a part of your 

publicly callable interface as public members. In designing the framework, 

we considered protected and public to be roughly equivalent. We generally 

did the same level of review and error checking in protected APIs as we did 

in public APIs because they can be called from any code that just happens to 

subclass.
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6.1.3 Events and Callbacks
Callbacks are extensibility points that allow a framework to call back into 

user code through a delegate. These delegates are usually passed to the 

framework through a parameter of a method.

List<string> cityNames = ...
cityNames.RemoveAll(delegate(string name) {
   return name.StartsWith("Seattle");
});

Events are a special case of callbacks that supports convenient and 

consistent syntax for supplying the delegate (an event handler). In addi-

tion, Visual Studio’s statement completion and designers provide help in 

using event-based APIs.

var timer = new Timer(1000);
timer.Elapsed += delegate {
   Console.WriteLine("Time is up!");
};
timerStart();

General event design is discussed in section 5.4.

Callbacks and events can be used to provide quite powerful extensi-

bility, comparable to virtual members. At the same time, callbacks—and 

even more so, events—are more approachable to a broader range of 

developers because they don’t require a thorough understanding of 

object-oriented design. Also, callbacks can provide extensibility at run-

time, whereas virtual members can be customized only at compile-time.

The main disadvantage of callbacks is that they are more heavyweight 

than virtual members. The performance when calling through a delegate 

is worse than it is when calling a virtual member. In addition, delegates 

are objects, so their use affects memory consumption.

You should also be aware that by accepting and calling a delegate, you 

are executing arbitrary code in the context of your framework. Therefore, a 

careful analysis of all such callback extensibility points from the security, 

correctness, and compatibility points of view is required.
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 CONSIDER using callbacks to allow users to provide custom code to be 

executed by the framework.

 CONSIDER using events, instead of virtual members, to allow users to 

customize the behavior of a framework without the need for under-

standing object-oriented design.

 CONSIDER using events instead of plain callbacks, because events are 

more familiar to a broader range of developers and are integrated with 

Visual Studio statement completion.

 AVOID using callbacks in performance-sensitive APIs.

 

 KRZYSZTOF CWALINA Delegate calls were made much faster in  

CLR 2.0, but they are still about two times slower than direct calls to virtual 

members. In addition, delegate-based APIs are generally less efficient in 

terms of memory usage. Having said that, the differences are relatively 

small and should only matter if the API is called very frequently.

 

 STEPHEN TOUB In a performance-critical method, you want to think 

about all forms of extensibility and what kind of impact they may have on 

throughput. This goes beyond delegates. In fact, in some situations it may 

actually be better for your common case to use delegates instead of virtual 

methods. For example, consider a design where you want a default behav-

ior that can then be potentially replaced if a delegate is provided. If you 

made the functionality virtual, you’d be paying for the virtual dispatch 

(unless the JIT could devirtualize the call) regardless of whether a replace-

ment was provided. But with a delegate, you could have a nonvirtual, 

inlineable implementation that just does a null check on the delegate 

instance and only pays the delegate invocation costs if there is something 

else to do instead of the default behavior.

 DO use the Func<...>, Action<...>, or Expression<...> types 

instead of custom delegates when possible, when defining APIs with 

callbacks.
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Func<...> and Action<...> represent generic delegates. The following 

is how .NET defines them:

public delegate void Action()
public delegate void Action<T1, T2>(T1 arg1, T2 arg2)
public delegate void Action<T1, T2, T3>(T1 arg1, T2 arg2, T3 arg3)
public delegate void Action<T1, T2, T3, T4>(T1 arg1, T2 arg2,  
  T3 arg3, T4 arg4)
public delegate TResult Func<TResult>()
public delegate TResult Func<T, TResult>(T arg)
public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2)
public delegate TResult Func<T1, T2, T3, TResult>(T1 arg1, T2 arg2,  
  T3 arg3)
public delegate TResult Func<T1, T2, T3, T4, TResult>(T1 arg1, T2 arg2,  
  T3 arg3, T4 arg4)

They can be used as follows:

Func<int,int,double> divide = (x,y)=>(double)x/(double)y;
Action<double> write = (d)=>Console.WriteLine(d);
write(divide(2,3));

Expression<...> represents function definitions that can be compiled 

and subsequently invoked at runtime but can also be serialized and 

passed to remote processes. Continuing with our example:

Expression<Func<int,int,double>> expression = 
  (x,y)=>(double)x/(double)y;
Func<int,int,double> divide2 = expression.Compile();
write(divide2(2,3));

Notice how the syntax for constructing an Expression<> object is 

very similar to that used to construct a Func<> object. In fact, the only 

difference is the static type declaration of the variable (Expression<> 

instead of Func<...>).
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 STEPHEN TOUB In general, if these generic delegate types can be used, 

they should be used. However, there are some relatively rare situations 

where these generic delegates can’t be used. One such category is when the 

types being passed as arguments or return values can’t be used as generic 

type parameters, such as pointer types or ref struct types. Another cat-

egory is when arguments or return values need to be passed as something 

other than by value—for example, when you want an argument to be ref. 

In such situations, you will need to find an existing delegate (generic or 

otherwise) that’s been declared with an appropriate signature, or else define 

a new one.

 

 JAN KOTAS The Action and Func delegates do not allow naming 

arguments. That makes it impractical to use these delegates for callbacks 

with more complex signatures where the meaning of the arguments is not 

obvious and it is important to name the arguments for clarity. For example, 

the System.Runtime.InteropServices.DllImportResolver delegate  

violates this rule for this reason.

 

 RICO MARIANI Most times you’re going to want Func or Action if all 

that needs to happen is to run some code. You need Expression when the 

code needs to be analyzed, serialized, or optimized before it is run. Expres-
sion is for thinking about code; Func/Action is for running it.

 DO measure and understand the performance implications of using 

Expression<...>, instead of using Func<...> and Action<...> 

delegates.

Expression<...> types are, in most cases, logically equivalent to 

Func<...> and Action<...> delegates. The main difference between 

them is that the delegates are intended to be used in local process sce-

narios; expressions are intended for cases where it’s beneficial and pos-

sible to evaluate the expression in a remote process or machine.
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 DO understand that by calling a delegate, you are executing arbitrary 

code, and that could have security, correctness, and compatibility 

repercussions.

 

 BRIAN PEPIN The Windows Forms team bumped up against this issue 

when writing some of the low-level code in SystemEvents. System
Events defines a static API and therefore needs to be threadsafe. Internally, 

it uses locks to ensure thread safety. Early code in SystemEvents would 

grab a lock and then raise an event. Here’s an example:

lock(someInternalLock) {
   if(eventHandler!=null) eventHandler(sender, EventArgs.Empty);
}

 RICO MARIANI The remoteness of the evaluation is sort of incidental. 

The main thing about Expressions is that you use them when you are 

going to need to reason over the code to be executed, often over a composi-

tion of expressions such as in a LINQ query, and then, having considered the 

whole and the execution options, you create some kind of optimized plan for 

doing the work. This is how LINQ to SQL is able to create a single SQL 

fragment from a composition of loose-looking expressions.

This plan could easily go wrong. You could do too much analysis of 

expressions or too little. You could use up too much space holding expression 

trees, or you could avoid all the trees but then find you have bad perfor-

mance because you have so many small anonymous delegates.

If you look at the patterns used in the LINQ implementations in .NET, 

you’ll see several good ways to make use of these constructs:

• Use expressions only if you need to “think” about the code and not 

just run it.

• Don’t blindly compose and run code that could be meaningfully 

optimized if you “thought” about it before running it.

• Don’t create systems that optimize the code so much before running  

it that it would have been faster to just run it directly without 

optimizing.

• Optimization isn’t the only use for expression trees, but it is an 

important one.
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This is bad because you have no idea what the user code in the event 

handler is going to do. If the user code signals a thread and waits on its 

own lock, you might have just introduced a deadlock. This would be bet-

ter code:

EventHandler localHandler = eventHandler;
if(localHandler != null) localHandler(sender, EventArgs.Empty);

This way, the user’s code will never deadlock due to your own internal 

implementation. Note that because assignments in managed code are 

atomic, I didn’t need a lock at all in this case. That won’t always be true. 

For example, if your code needed to check more than one variable, you’d 

still need a lock:

EventHandler localHandler = null;
lock(someInternalLock) {
   if (eventHandler != null && shouldRaiseEvents) {
       localHandler = eventHandler;
    }
}
if(localHandler!=null) localHandler(sender,EventArgs.Empty);

 

 JEREMY BARTON The null-conditional operator introduced in C# 6 

can simplify the event invocation.

eventHandler?.Invoke(sender, EventArgs.Empty);

This has the same effect as Brian’s second example (invoking outside the 

lock), including only ever reading from the “eventHandler” value once:

EventHandler localHandler = eventHandler;
if(localHandler != null) localHandler(sender, EventArgs.Empty);

 

 JOE DUFFY In addition to deadlock, invoking a callback under a lock 

like this can cause reentrancy. Locks on the CLR support recursive acquires, 

so if the callback somehow manages to call back into the same object that 

initiated the callback, the results are often not good. Locks are typically 

used to isolate invariants that are temporarily broken, yet this practice can 

expose them at the reentrant boundary. Needless to say, this is apt to cause 

weird exceptions and unexpected behavior.
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That said, sometimes this practice is necessary. If the callback is being 

used to make a decision—as would be the case with a predicate—and that 

decision needs to be made under a lock, you will have no choice. When 

invoking a callback under a lock is unavoidable, be sure to carefully docu-

ment the restrictions (no inter-thread communication, no reentrancy). You 

must also ensure that, should a developer violate these restrictions, the 

result will not lead to security vulnerabilities. The risk here is usually 

greater than the reward.

 

 STEPHEN TOUB From an API design perspective, this whole discus-

sion is really interesting as it applies to compatibility. You may find yourself 

in a situation where you’ve invoked a user-supplied callback while holding 

a lock, and you decide to “fix” it by employing approaches like that out-

lined. In doing so, however, you’re impacting potentially visible behaviors. 

The invocation will no longer be synchronized with whatever else might be 

using the same lock. It’s possible the user’s callback was actually relying on 

that synchronization for safety, whether they knew it or not.

Extensibility is hard.

6.1.4 Virtual Members
Virtual members can be overridden, thereby changing the behavior of the 

subclass. They are quite similar to callbacks in terms of the extensibility 

they provide, but they are better in terms of execution performance and 

memory consumption. Also, virtual members feel more natural in scenar-

ios that require creating a special kind of an existing type (specialization).

The main disadvantage of virtual members is that the behavior of a 

virtual member can be modified only at the time of compilation. The 

behavior of a callback can be modified at runtime.

Virtual members, like callbacks (and maybe more than callbacks), are 

costly to design, test, and maintain because any call to a virtual member 

can be overridden in unpredictable ways and can execute arbitrary code. 

Also, much more effort is usually required to clearly define the contract of 

virtual members, so the cost of designing and documenting them is higher.
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 KRZYSZTOF CWALINA A common question I get is whether documen-

tation for virtual members should say that the overrides must call the base 

implementation. The answer is that overrides should preserve the contract 

of the base class. They can do that by calling the base implementation or by 

some other means. It is rare that a member can claim that the only way to 

preserve its contract (in the override) is to call it. In a lot of cases, calling the 

base might be the easiest way to preserve the contract (and documentation 

should point that out), but it’s rarely absolutely required.

Because of the risks and costs, limiting extensibility of virtual members 

should be considered. Extensibility through virtual members today should 

be limited to those areas that have a clear scenario requiring extensibility. 

This section presents guidelines for when to allow it and when and how to 

limit it.

 DO NOT make members virtual unless you have a good reason to do so 

and you are aware of all the costs related to designing, testing, and 

maintaining virtual members.

Virtual members are less forgiving in terms of changes that can be made 

to them without breaking compatibility. Also, they are slower than 

nonvirtual members, mostly because calls to virtual members are not 

inlined.

 

 RICO MARIANI Be sure you understand your extensibility require-

ments completely before you make decisions in the name of extensibility. A 

common mistake is sprinkling classes with virtual methods and properties, 

only to find that the needed extensibility still can’t be realized and every-

thing is now (and forever) slower.

 

 JAN GRAY The peril: If you ship types with virtual members, you are 

promising to forever abide by subtle and complex observable behaviors 

and subclass interactions. I think framework designers underestimate 

their peril. For example, we found that ArrayList item enumeration calls 

several virtual methods for each MoveNext and Current. Fixing those 

performance problems could (but probably doesn’t) break user-defined 

implementations of virtual members on the ArrayList class that are 

dependent on virtual method call order and frequency.
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 CONSIDER limiting extensibility to only what is absolutely necessary 

through the use of the Template Method Pattern, described in 

section 9.9.

 DO prefer protected accessibility over public accessibility for virtual 

members. Public members should provide extensibility (if required) by 

calling into a protected virtual member.

The public members of a class should provide the right set of function-

ality for direct consumers of that class. Virtual members are designed 

to be overridden in subclasses, and protected accessibility is a great 

way to scope all virtual extensibility points to where they can be used.

public Control{
   public void SetBounds(...){
     ...
     SetBoundsCore (...);
   }
 
   protected virtual void SetBoundsCore(...){
     // Do the real work here.
   }
}

Section 9.9 provides more insight into this subject.

 

 JEFFREY RICHTER It is common for a type to define multiple over-

loaded methods for caller convenience. These methods typically allow the 

caller to pass fewer arguments to the method and then, internally, the 

method calls a more complex method, passing additional arguments with 

good default values. If your type offers convenience methods, these meth-

ods should not be virtual, but internally they should call the one virtual 

method that contains the actual implementation of the method (which can 

be overridden).

6.1.5 Abstractions (Abstract Types and Interfaces)
An abstraction is a type that describes a contract but does not provide a 

full implementation of that contract. Abstractions are usually implemented 

as abstract classes or interfaces, and they come with a well-defined set of 

reference documentation describing the required semantics of the types 
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implementing the contract. Some of the most important abstractions in 

.NET include Stream, IEnumerable<T>, and Object. Section 4.3 discusses 

how to choose between an interface and a class when designing an 

abstraction.

You can extend frameworks by implementing a concrete type that 

supports the contract of an abstraction and then using this concrete type 

with framework APIs consuming (operating on) the abstraction.

A meaningful and useful abstraction that is able to withstand the test 

of time is very difficult to design. The main difficulty is getting the right 

set of members—no more and no fewer. If an abstraction has too many 

members, it becomes difficult or even impossible to implement. If it has 

too few members for the promised functionality, it becomes useless in 

many interesting scenarios. Also, abstractions without first-class docu-

mentation that clearly spells out all the pre- and post-conditions often end 

up being failures in the long term. Because of this, abstractions have a 

very high design cost.

 

 JEFFREY RICHTER The ICloneable interface is an example of very 

simple abstraction with a contract that was never explicitly documented. 

Some types that implement this interface’s Clone method implement it so 

that it performs a shallow copy of the object, whereas some implementa-

tions perform a deep-copy. Because what this interface’s Clone method 

should do was never fully documented, when using an object with a type 

that implements ICloneable, you never know what you’re going to get. 

This makes the interface useless.

Too many abstractions in a framework also negatively affect usability 

of the framework. It is often quite difficult to understand an abstraction 

without understanding how it fits into the larger picture of the concrete 

implementations and the APIs operating on the abstraction. Also, names 

of abstractions and their members are necessarily abstract, which often 

makes them cryptic and unapproachable without first understanding the 

broader context of their usage.
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However, abstractions provide extremely powerful extensibility that 

the other extensibility mechanisms cannot often match. They are at the 

core of many architectural patterns, such as plug-ins, inversion of control 

(IoC), pipelines, and so on. They are also extremely important for testabil-

ity of frameworks. Good abstractions make it possible to stub out heavy 

dependencies for the purpose of unit testing. In summary, abstractions are 

responsible for the sought-after richness of the modern object-oriented 

frameworks.

 DO NOT provide abstractions unless they are tested by developing sev-

eral concrete implementations and APIs consuming the abstractions.

 DO choose carefully between an abstract class and an interface when 

designing an abstraction. See section 4.3 for more details on this 

subject.

 CONSIDER providing reference tests for concrete implementations of 

abstractions. Such tests should allow users to test whether their imple-

mentations correctly implement the contract.

 

 JEFFREY RICHTER I like what the Windows Forms team did: They 

defined an interface called System.ComponentModel.IComponent. Of 

course, any type can implement this interface. But the Windows Forms 

team also provided a System.ComponentModel.Component class that 

implements the IComponent interface. So a type could choose to derive 

from Component and get the implementation for free, or the type could 

derive from a different base class and then manually implement the 

IComponent interface. By having available an interface and a base class, 

developers get to choose whichever works best for them.

 

 STEPHEN TOUB Before shipping an abstraction, you should plan to 

validate it by building at least two or three distinct implementations and by 

using the abstraction in at least two or three distinct consumers. Those tests 

will provide you with a lot more confidence that you’ve built something 

that will actually be usable, and in my experience, will most likely help you 

to find issues that need to be addressed before you ship.
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6.2 Base Classes
Strictly speaking, a class becomes a base class when another class is 

derived from it. For the purpose of this section, however, a base class is 

defined as a class designed mainly to provide a common abstraction or for 

other classes to reuse some default implementation though inheritance. 

Base classes usually sit in the middle of inheritance hierarchies, between 

an abstraction at the root of a hierarchy and several custom implementa-

tions at the bottom.

Base classes serve as implementation helpers for implementing abstrac-

tions. For example, one of the abstractions for ordered collections of items 

in .NET is the IList<T> interface. Implementing IList<T> is not trivial, 

so the framework provides several base classes, such as Collection<T> 

and KeyedCollection<TKey,TItem>, that serve as helpers for imple-

menting custom collections.

public class OrderCollection : Collection<Order> {
   protected override void SetItem(int index, Order item) {
     if(item==null) throw new ArgumentNullException(...);
     base.SetItem(index,item);
   }
}

Base classes are usually not suited to serve as abstractions by them-

selves because they tend to contain too much implementation. For exam-

ple, the Collection<T> base class contains lots of implementation related 

to the fact that it implements the non-generic IList interface (to integrate 

better with non-generic collections) and to the fact that it is a collection of 

items stored in memory in one of its fields.

 

 KRZYSZTOF CWALINA Collection<T> can also be used directly, 

without the need to create subclasses, but its main purpose is to provide an 

easy way to implement custom collections.

As previously discussed, base classes can provide invaluable help for 

users who need to implement abstractions, but at the same time they can 

be a significant liability. They add surface area and increase the depth of 
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inheritance hierarchies, thereby conceptually complicating the frame-

work. For this reason, base classes should be used only if they provide 

significant value to the users of the framework. They should be avoided if 

they provide value only to the implementers of the framework, in which 

case delegation to an internal implementation instead of inheritance from 

a base class should be strongly considered.

 CONSIDER making base classes abstract even if they don’t contain any 

abstract members. This clearly communicates to the users that the class 

is designed solely to be inherited from.

 

 JEREMY BARTON My interpretation of this guideline is that it’s OK to 

declare the class abstract even if there are no abstract members, but you still 

need a reason why. If the class works fine on its own, it should probably be 

instantiable.

 CONSIDER placing base classes in a separate namespace from the main-

line scenario types. By definition, base classes are intended for advanced 

extensibility scenarios and are not interesting to the majority of users. 

See section 2.2.4 for details.

 AVOID naming base classes with a “Base” suffix if the class is intended 

for use in public APIs.

For example, despite the fact that Collection<T> is designed to be 

inherited from, many frameworks expose APIs typed as the base class, 

not as its subclasses, mainly because of the cost associated with a new 

public type.

public Directory {
   public Collection<string> GetFilenames(){
       return new FilenameCollection(this);
       }
 
   private class FilenameCollection : Collection<string> {
      ...
   }
}
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The fact that Collection<T> is a base class is irrelevant for the user of 

the GetFilename method, so the “Base” suffix would simply create an 

unnecessary distraction for the user of the method.

6.3 Sealing
One of the features of object-oriented frameworks is that developers can 

extend and customize them in ways unanticipated by the framework 

designers. This is both the power and the danger of extensible design. 

When you design your framework, it is very important to carefully design 

for extensibility when it is desired, and to limit extensibility when it is 

dangerous.

 

 KRZYSZTOF CWALINA Sometimes framework designers want to limit 

the extensibility of a type hierarchy to a fixed set of classes. For example, 

let’s say you want to create a hierarchy of living organisms that is split into 

two and only two subgroups: animals and plants. One way to do so is to 

make the constructor of LivingOrganism internal, and then provide two 

subclasses (Plant and Animal) in the same assembly and give them  

protected constructors. Because the constructor of LivingOrganism is 

internal, third parties can extend Animal and Plant, but not 

LivingOrganism.

public class LivingOrganism {
   internal LivingOrganism(){}
   ...
}
public class Animal : LivingOrganism {
   protected Animal() {}
   ...
}
public class Plant : LivingOrganism {
   protected Plant() {}
   ...
}

Sealing is a powerful mechanism that prevents extensibility. You can 

seal either the class or individual members. Sealing a class prevents users 
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from inheriting from the class. Sealing a member prevents users from 

overriding a particular member.

public class NonNullCollection<T> : Collection<T> {
    protected sealed override void SetItem(int index, T item) {
      if(item==null) throw new ArgumentNullException();
       base.SetItem(index,item);
   }
}

Because one of the key differentiating points of frameworks is that they 

offer some degree of extensibility, sealing classes and members will likely 

feel very abrasive to developers using your framework. Therefore, you 

should seal only when you have good reasons to do so.

 DO NOT seal classes without having a good reason to do so.

Sealing a class because you cannot think of an extensibility scenario is 

not a good reason. Framework users like to inherit from classes for var-

ious nonobvious reasons, such as adding convenience members. See 

section 6.1.1 for examples of nonobvious reasons users want to inherit 

from a type.

Good reasons for sealing a class include the following:

• The class is a static class. For more information on static classes, see 

section 4.5.

• The class inherits many virtual members, and the cost of sealing 

them individually would outweigh the benefits of leaving the class 

unsealed.

• The class is an attribute that requires very fast runtime look-up. 

Sealed attributes have slightly higher performance levels than 

unsealed ones. For more information on attribute design, 

see section 8.2.
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 BRAD ABRAMS Having classes that are open to some level of cus-

tomization is one of the core differences between a framework and a 

library. With an API library (such as the Win32 API), you basically get 

what you get. It is very difficult to extend the data structures and APIs. 

With a framework such as MFC or AWT, clients can extend and customize 

the classes. The productivity boost from this flexibility is obvious.

 

 KRZYSZTOF CWALINA People often ask about the cost of sealing indi-

vidual members. This cost is relatively small, but it is nonzero and should 

be taken into account. There is development cost (typing in the overrides), 

testing cost (have you called the base class from the override?), assembly 

size cost (new overrides), and working set cost (if both the overrides and 

the base implementation are ever called).

 DO NOT declare protected or virtual members on sealed types.

By definition, sealed types cannot be inherited from. This means that 

protected members on sealed types cannot be called, and virtual meth-

ods on sealed types cannot be overridden.

 CONSIDER sealing members that you override.

public class FlowSwitch : SourceSwitch {
   protected sealed override void OnValueChanged() {
      ...
   }
}

Problems that can result from introducing virtual members (discussed 

in section 6.1.4) apply to overrides as well, although to a slightly lesser 

degree. Sealing an override shields you from these problems starting 

from that point in the inheritance hierarchy.

In short, part of designing for extensibility is knowing when to limit it, 

and sealed types are one of the mechanisms by which you do that.
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SUMMARY

Designing for extensibility is a critical aspect of designing frameworks. 

Understanding the costs and benefits provided by various extensibility 

mechanisms permits the design of frameworks that are flexible while 

avoiding many of the pitfalls that could lead to trouble later.
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assignment-expression-throw, 480

auto-implemented properties, 479

BCL type names, 476

braces ({ }), 466–469

collection initializers, 478

commas ( , ), 475–476

comments, 482–483

expression-bodied members, 478–479

file organization, 483–485

if.throw, 480

indents, 465–466

language keywords, 476

member modifiers, 473–475

nameof (.) syntax, 479

naming conventions, 480–482

object initializers, 477–478

readonly modifiers, 479

spaces, 469–470

this.476

Unicode escape sequences (uXXXX), 

479

var keyword, 476–477

vertical whitespace, 472–473

language-specific names, naming 

conventions, 57

C++, language-specific names, naming 

conventions, 57

callbacks, extensibility, 231–237

camelCasing, 43

C# style conventions, 481–482

naming conventions, 481–482

parameter names, 79

cancellation, Async Patterns, 512–513

capitalization, 42

acronyms, 45–48

case sensitivity, 51–52

compound words, 48–51

identifiers, 42–44

camelCasing, 43

PascalCasing, 42–44

case sensitivity

capitalization, 51–52

type names, 534

change notification events, DP, 371

changing

abstract members to virtual members, 553

behaviors, 553–555

classes to structs, 537

constant field values, 552
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default values, in optional parameters, 552

member

signatures, 545–553

visibility, 548–549

method

parameters types, 546

return types, 547–548

non-virtual members to virtual members, 

553

notification events in properties, 163–165

optional parameters to required, 551–552

property types, 548

reference parameters, 549–550

required parameters to optional, 551

runtime error exceptions to usage error 

exceptions, 553–554

structs to classes, 537–538

type names

case sensitivity, 534

changing namespaces, 535

usage error exceptions to functioning 

behavior, 554

values returned type, from a method, 

554–555

virtual members to abstract members, 553

choosing

boolean parameters, 205–207

enum parameters, 205–207

exceptions for throwing, 260–264

member

methods, 152–158

properties, 152–158

classes

abstract classes, type design guidelines, 

98–102

base classes

extensibility, 242–244

moving members to, 541

changing

classes to structs, 537

structs to classes, 537–538

defined, 84

members, moving to base classes, 541

naming conventions, 67–70

common types, 71

enumerations, 72–74

generic type parameters, 70–71

static classes

defined, 84

type design guidelines, 102–104

type design guidelines, 89–100, 102–104

unsealed classes, extensibility, 228–229

Classic Async Patterns, 361, 503–509

Close() method, Dispose Patterns, 382–383

CLR (Common Language Runtime), 

language-specific names and naming 

conventions, 57

collections

arrays versus, 302–303

custom collections, 302–303

initializers, C# style conventions, 478

live collections, 301–302

parameters, 296–297

properties, 298–302

return values, 298–302

snapshot collections, 301–302

usage guidelines, 294–296

arrays versus collections, 302–303

collection properties, 298–302

custom collections, 302–303

live collections, 301–302

parameters, 296–297

return values, 298–302

snapshot collections, 301–302

ComException, 278

commas ( , ), C# style conventions, 475–476

comments

C# style conventions, 482–483

“I” usage, 483

multiline syntax (/* . */), 482

passive voice, 483

personification, 483

single-line syntax (// .), 482

“we” usage, 483

common names, naming conventions, 57–58

compatibility (backward), well-designed 

frameworks, 2

compilation breaks, 530

component-oriented design, 331–334

compound words, capitalization, 48–51

ConfigureAwait modifier, await using, 

393–394

consistency

Async Patterns, 355–361

self-documenting object models, principle 

of, 34

Task.Status, 355–357

well-designed frameworks, qualities of, 

7–8

constant field values, changing, 552

constructors

designing, 165–172

type constructors, 172–175

contravariance, design patterns, 412–417

conversion operators, 198-C05.1827

core namespaces, 66
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costs, well-designed frameworks, 4–5

covariance, design patterns, 412–415, 417–423

customizing

collections, 303–305

event handlers, obsolete guidance, 

491–492

exceptions

designing, 279–280

obsolete guidance, 492–493

D
Data Contract serialization, 493, 495–499

data transformation operations, 445–451

DateTime struct, usage guidelines, 306–308

DateTimeOffset struct, usage guidelines, 

306–308

deadlock, Async Patterns, 358

declarations, adding to interfaces, 536–537

default values, changing in optional param-

eters, 552

derived types, moving members to, 542

design patterns

aggregate components, 329–338

arrays, 430–433

Async Patterns, 339–365, 502

cancellation, 512–513

choosing between Async Patterns, 

503–504

Classic Async Patterns, 503–509

Event-Based Async Patterns, 503–504, 

510–512

incremental results, 516

Out parameters, 512

progress reporting, 513–516

Ref parameters, 512

buffer operators, 430–445

arrays, 430–433

fixed sizes, 451–452

OperationStatus value, 458–463

partial writes to buffers, 458–463

predetermined sizes, 451–452

Spans, 431–445

Try-Write Pattern, 452–458

contravariance, 412–417

covariance, 412–415, 417–423

Dispose Patterns, 372–394, 511–517

DP, 366–372

factories, 394–399

LINQ, 400–408

optional features, 408–411

Spans, 431–445

Template Method Pattern,  

423–425

timeouts, 426–427

Try-Write Pattern, 452–458

XAML readable types, 427–430

.Design subnamespaces, 489

designing

aggregate components, 335–338

component-oriented design,  

331–334

constructors, 165–175

custom exceptions, 279–280

error messages, 264–265

events, 175–180

extensibility, 227–228

abstractions, 239–241

base classes, 242–244

callbacks, 231–237

events, 231–237

limiting, 244–246

protected members, 230

sealing, 244–246

unsealed classes, 228–229

virtual members, 237–239

fields, 180–183

frameworks, 3, 9–11, 15–16

abstractions, 34–36

backward compatibility, 2

consistency, 7–8

evolution, 7

existing proven designs, borrowing 

from, 6–7

expense, 4–5

integration, 7

low barrier to entry, principle of, 23–29

multiframework platforms, 12–13

OO design, 2

programming languages, 11–12

progressive frameworks, 12–15

prototyping, 2

scenario-driven framework design, 

16–23

self-documenting object models, 

principle of, 29–39

simplicity, 3–4

trade-offs, 6

members

boolean parameters, 205–207

choosing methods, 152–158

choosing properties, 152–158

conversion operators, 198-C05.1827

enum parameters, 205–207

explicit implementation of interface 

members, 148–152

extension methods, 184–192
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fields, 180–183

inequality operators, 200–202

members with variable number of 

parameters, 214–218

operator overloads, 192–198

overloading members, 136–148

parameter argument validation, 

207–210

parameter passing, 210–214

parameters, 202–204

pointer parameters, 218–219

tuples in member signatures, 220–226

parameters, 202–204

argument validation, 207–210

boolean parameters, 205–207

enum parameters, 205–207

members with variable number of 

parameters, 214–218

passing, 210–214

properties, 158–160

change notification events,  

163–165

indexed properties, 161–163

types, 84–85

assembly metadata and types, 127–129

classes, 89–104

constructors, 172–175

enums, 111–124

interfaces, 92–100, 104–106

namespaces, 85–88

nested types, 124–127

strings, 129–133

structs, 89–92, 106–111

diacritical marks, naming  

conventions, 55

Dispose (bool) method, Dispose  

Patterns, 376–380

Dispose (true) method, Dispose Patterns, 

377–378

Dispose Patterns

await using, 393–394

basic Dispose Patterns, 375–383

Close() method, 382–383

ConfigureAwait modifier, 393–394

design patterns, 372–394

Dispose (bool) method, 376–380

Dispose (true) method, 377–378

finalizable types, 383–387,  

511–517

IAsyncDisposable interface, 391–392

IDisposable method, 382–383

rehydration, 381–382

scoped operations, 387–391

SuppressFinalize method, 378

DLL (Dyanmic-Link Libraries), naming 

conventions, 61–62

DP (Dependency Properties), 365–366

attached DP design, 369–370

change notification events, 371

design patterns, 366–372

validation, 370

value coercion, 371–372

E
enums

adding values to, 123–124

defined, 84

flag enums, type design guidelines, 

119–123

naming conventions, 72–74

parameters, choosing, 205–207

type design guidelines, 111–118

equality operators

reference types, 328

usage guidelines, 324–328

value types, 327

error exceptions

runtime error exceptions, changing to 

usage error exceptions, 553–554

throwing new types of, 555

usage error exceptions, changing

to functioning behavior, 554

runtime error exceptions to, 553–554

error handling, exceptions and,  

250–252

error messages, designing, 264–265

event handlers (custom), obsolete guidance, 

491–492

Event-Based Async Patterns, 361–362, 

503–504, 510–512

events

change notification events, DP, 371

custom event handlers, obsolete guidance, 

491–492

designing, 175–180

extensibility, 231–237

naming conventions, 77–78

notification events, changing in properties, 

163–165

evolution of well-designed frameworks, 

qualities of, 7

exceptions

AccessViolationException, 276

API consistency, 250

ApplicationException, 274

ArgumentException, 275–276

ArgumentNullException, 275–276

ArgumentOutOfRangeException, 275–276
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Async methods, 359–361

ComException, 278

custom exceptions

designing, 279–280

obsolete guidance, 492–493

error exceptions, throwing new types of, 

555

error handling, 250–252

error messages, 264–265

ExecutionEngineException, 278

FormatException, 278–279

handling, 249–254, 265–271

IndexOutOfRangeException, 276

instrumentation and, 254

InvalidOperationException, 274–275

NullReferenceException, 276

object-oriented languages, 249–250

OperationCanceledException, 278

OutOfMemoryException,  

277–278

performance and, 281

Tester-Doer Pattern, 281–282

Try Pattern, 282–286

PlatformNotSupportedException, 279

runtime error exceptions, changing to 

usage error exceptions, 553–554

SEHException, 278

self-documenting object models, 33

StackOverflowException, 276–277

SystemException, 274

TaskCanceledException, 278

throwing, 254–260

choosing exceptions, 260–264

error messages, 264–265

from existing thrown types, 555

new types of error exceptions, 555

types, 273–279

unhandled exception handlers, 253

usage error exceptions

changing runtime error exceptions to, 

553–554

changing to functioning behavior, 554

wrapping, 271–273

ExecutionEngineException, 278

existing proven designs (well-designed 

frameworks), qualities of, 6–7

expense, well-designed frameworks, 4–5

explicit implementation of interface members, 

148–152

exposing layers

in the same namespace, 38–39

in separate namespaces, 38

expression-bodied members, C# style 

conventions, 478–479

expression-throw, C# style conventions, 480

extensibility, 227–228

abstractions, 239–241

base classes, 242–244

callbacks, 231–237

events, 231–237

limiting, 244–246

protected members, 230

sealing, 244–246

unsealed classes, 228–229

virtual members, 237–239

extension methods, 184–192

F
factored types, aggregate components, 

334–335

factories, design patterns,  

394–399

features (optional), design patterns, 408–411

fields

designing, 180–183

naming conventions, 78–79

private fields

removing from serializable types, 544

renaming private fields on serializable 

types, 544

file organization, C# style conventions, 

483–485

finalizable types, Dispose Patterns, 383–387, 

511–517

Finalize method, Dispose Patterns, 378

finalizers, removing

sealed types, 542

from unsealed types, 542

first reference type field, adding to structs, 

540

fixed buffer sizes, 451–452

flag enums, type design guidelines, 119–123

FormatException, 278–279

Framework Design Guidelines, naming 

conventions, 480

frameworks

designing, 3, 9–11, 15–16

abstractions, 34–36

backward compatibility, 2

borrowing from existing proven 

designs, 6–7

consistency, 7–8

evolution, 7

expense, 4–5

integration, 7

low barrier to entry, principle of, 23–29

multiframework platforms, 12–13

naming conventions, 480
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OO design, 2

programming languages, 11–12

progressive frameworks, 12–15

prototyping, 2

scenario-driven framework design, 

16–23

self-documenting object models, 

principle of, 29–36

simplicity, 3–4

trade-offs, 6

development of, 1–3

multiframework platforms, 12–13

progressive frameworks, 12–15

usability studies, scenario-driven 

framework design, 21–23

well-designed frameworks, qualities of, 3

backward compatibility, 2

borrowing from existing proven 

designs, 6–7

consistency, 7–8

evolution, 7

expense, 4–5

integration, 7

OO design, 2

prototyping, 2

simplicity, 3–4

trade-offs, 6

G
generic interfaces, adding a second declara-

tion to, 536–537

generic type parameters, naming conventions, 

70–71

guidance (obsolete), 487–488

Async Patterns, 502

cancellation, 512–513

choosing between Async Patterns, 

503–504

Classic Async Patterns, 503–509

Event-Based Async Patterns, 503–504, 

510–512

incremental results, 516

Out parameters, 512

progress reporting, 513–516

Ref parameters, 512

custom event handlers, 491–492

custom exceptions, 492–493

Dispose Patterns, finalizable types, 

511–517

namespaces, 489–490

.Interop subnamespaces, 490

.Permissions subnamespaces, 489–490

naming conventions, 488

serialization, 493

.NET serialization technologies, 493

usage guidelines, 493–502

H
heavy API design processes, 2

Hungarian notation

C# style conventions, 482

naming conventions, 53, 482

hyphens (-), naming conventions, 53

I
“I” in comments, 483

IAsyncDisposable interface

Async Patterns, 362

Dispose Patterns, 391–392

IAsyncEnumerable<T> interface, Async 

Patterns, 362–365

ICloneable struct, usage guidelines, 308–309

IComparable<T> struct, usage guidelines, 

309–311

identifiers

capitalization, 42, 44

camelCasing, 43

PascalCasing, 42–44

naming conventions, 54

type parameters (generic), naming 

conventions, 70–71

IDisposable method, Dispose Patterns, 377, 

382–383

IEnumerable<T> method, LINQ support, 

402–403

if.throw, C# style conventions, 480

implementation

Async Patterns, 355–361

auto-implemented properties, 479

expression-bodied members, 478–479

interface members, explicit implementa-

tion of, 148–152

System.Uri, 322–323

incremental results, Async Patterns, 516

indents, C# style conventions, 471–472

indexed properties, designing, 161–163

IndexOutOfRangeException, 276

inequality operators, 200–202

infrastructure namespaces, 66

initializers, C# style conventions

collection initializers, 478

object initializers, 477–478

instrumentation, exceptions and, 254

integration (well-designed frameworks), 

qualities of, 7

interfaces
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abstractions, extensibility, 239–241

adding, members, 541

base interfaces

adding to interfaces, 536

moving members to, 541

defined, 84

generic interfaces, adding a second 

declaration to, 536–537

members

adding, 541

adding to interfaces, 541

implementing explicitly, 148–152

moving to base interfaces, 541

naming conventions, 67–70

common types, 71

enumerations, 72–74

generic type parameters, 70–71

type design guidelines, 92–100, 104–106

.Interop subnamespaces, 490

intuitive API, 33–34

InvalidOperationException, 274–275

IQueryable<T> method, LINQ support, 

403–404

J - K
keywords (language)

C# style conventions, 476

var, C# style conventions, 476–477

L
language keywords, C# style conventions, 476

languages (programming), framework design, 

11–12

language-specific names, naming conven-

tions, 56–58

layered architecture, principle of, 36–39

limiting, extensibility, 244–246

LINQ (Language-Integrated Queries)

design patterns, 400–408

overview of, 400–401

support

IEnumerable<T> method, 402–403

implementation, 402

IQueryable<T> method, 403–404

query patterns, 404–408

live collections, 301–302

low barrier to entry, principle of, 23–29

M
masking base members, 539

members

abstract members

adding, 539

changing to virtual members, 553

changing virtual members to, 553

removing an override of an abstract 

member, 543–544

base members, masking, 539

changing, member signatures, 545–553

constructors

designing, 165–172

type constructors, 172–175

designing

boolean parameters, 205–207

conversion operators, 198-C05.1827

enum parameters, 205–207

events, 175–180

extension methods, 184–192

fields, 180–183

inequality operators, 200–202

members with variable number of 

parameters, 214–218

operator overloads, 192–198

parameter argument validation, 

207–210

parameter passing, 210–214

parameters, 202–204

pointer parameters, 218–219

tuples in member signatures, 220–226

events, designing, 175–180

expression-bodied members, 478–479

interface members, implementing 

explicitly, 148–152

masking base members, 539

methods, choosing, 152–158

modifiers, C# style conventions, 473–475

moving to

base classes, 541

base interfaces, 541

derived types, 542

non-override members, removing, 543

non-virtual members, changing to virtual 

members, 553

overloading, 136–148, 544–545

override members, 540

removing an override of a virtual 

member, 543

removing an override of an abstract 

member, 543–544

parameters, designing, 202–204

properties

change notification events, 163–165

choosing, 152–158

designing, 158–160

indexed properties, 161–163

protected members, extensibility, 230
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signatures

changing, 545–553

tuples in, 220–226

unsealed types, adding members to, 

539–540

virtual members

changing abstract members to, 553

changing to abstract members, 553

extensibility, 237–239

removing an override of a virtual 

member, 543

visibility, changing, 548–549

metadata, assembly metadata and types, 

127–129

methods

Async methods

exceptions to, 359–361

return types, 348–351

Close() method, 382–383

Dispose (bool) method, 376–380

Dispose (true) method, 377–378

extension methods, 184–192

IDisposable method, Dispose Patterns, 

377, 382–383

IEnumerable<T> method, LINQ support, 

402–403

IQueryable<T> method, IQueryable<T> 

method, 403–404

member methods, choosing, 152–158

naming conventions, 74–75, 196–197

operators and method names,  

196–197

parameters

adding, 546

changing types, 546

removing, 546

renaming, 545

reordering parameters by the same 

type, 547

reordering parameters of differing 

types, 547

return types, changing, 547–548

static TryParse methods, 286

struct methods

adding readonly modifiers, 550

removing readonly modifiers, 551

SuppressFinalize method, 378

synchronous methods, Async variants of, 

353–354

Try methods, value-producing Try 

methods, 284–285

values returned type, changing from a 

method, 554–555

modifiers

member modifiers, C# style conventions, 

473–475

readonly modifiers

adding to struct methods,  

550

C# style conventions, 479

removing from struct methods, 551

static modifiers, adding/removing, 549

moving

members to

base classes, 541

base interfaces, 541

derived types, 542

types

via [TypeForwardedTo], 532–533

without [TypeForwardedTo], 533

multiframework platforms, 12–13

multiline syntax (/* . */), comments, 482

N
nameof (.) syntax, C# style conventions, 479

namespaces

adding namespaces that conflict with 

existing types, 531–532

application models, 65–66

core namespaces, 66

infrastructure namespaces, 66

naming conventions, 63–67

obsolete guidance, 489–490

subnamespaces

.Design subnamespaces, 489

.Interop subnamespaces, 490

.Permissions subnamespaces, 489–490

naming conventions, 489–490

technology namespace groups, 66–67

type design guidelines, 85–88

type names, changing, 535

type names, conflicts, 65

application models, 65–66

core namespaces, 66

infrastructure namespaces, 66

technology namespace groups, 66–67

naming conventions, 41–42

abbreviations, 55–56

acronyms, 55–56

alphanumeric characters, 53

API, naming new versions of existing API, 

58–61

ASCII characters, 54

assemblies, 61–62

brevity, 52

C# style conventions, 480–482
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camelCasing, 481, 482

capitalization, 42

acronyms, 45–48

case sensitivity, 51–52

compound words, 48–51

identifiers, 42–44

classes, 67–70

common types, 71

enumerations, 72–74

generic type parameters, 70–71

common names, 57–58

custom collections, 305

diacritical marks, 55

DLL, 61–62

enumerations, 72–74

events, 77–78

fields, 78–79

Framework Design Guidelines, 480

Hungarian notation, 53

hyphens (-), 53

identifiers, 54

capitalization, 42–44

type parameters (generic), 70–71

interfaces, 67–70

common types, 71

enumerations, 72–74

generic type parameters, 70–71

language-specific names, 56–58

methods, 74–75, 196–197

namespaces, 63–67

obsolete guidance, 488

operators, 196–197

overload operator parameters, 80

packages, 61–62

parameters, 79–80

PascalCasing, 480–481

properties, 75–76

readability, 52

resources, 81

self-documenting object models, 30–32

structs, 67–70

common types, 71

enumerations, 72–74

generic type parameters, 70–71

subnamespaces, 489–490

type members, 74

events, 77–78

fields, 78–79

methods, 74–75

properties, 75–76

types (common), 71

underscores (_), 53, 481–482

word choice, 52–55

nested types, design guidelines, 124–127

.NET serialization technologies, 493

non-override members, removing, 543

non-virtual members, changing to virtual 

members, 553

notification events, changing in properties, 

163–165

Nullable<T> struct, usage guidelines, 311–312

NullReferenceException, 276

O
object initializers, C# style conventions, 

477–478

object models (self-documenting), principle 

of, 29–30

abstractions, 34–36

consistency, 34

exceptions, 33

naming, 30–32

strong typing, 33–34

Object.Equals, usage guidelines, 312–314

reference types, 314

value types, 314

Object.GetHashCode, usage guidelines, 

315–316

object-oriented design, 2

object-oriented languages, exceptions and, 

249–250

Object-Oriented Programming, 2

objects, usage guidelines, 312

Object.Equals, 312–314

Object.GetHashCode, 315–316

Object.ToString, 316–318

obsolete guidance, 487–488

Async Patterns, 502

cancellation, 512–513

choosing between Async Patterns, 

503–504

Classic Async Patterns, 503–509

Event-Based Async Patterns, 503–504, 

510–512

incremental results, 516

Out parameters, 512

progress reporting, 513–516

Ref parameters, 512

custom event handlers, 491–492

custom exceptions, 492–493

Dispose Patterns, finalizable types, 

511–517

namespaces, 489–490

.Design subnamespaces, 489

.Interop subnamespaces, 490

.Permissions subnamespaces, 489–490
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naming conventions, 488

serialization, 493

usage guidelines, serialization, 493–502

OO (Object-Oriented) design, 2

OOP (Object-Oriented Programming), 2

OperationCanceledException, 278

operations (scoped), Dispose Patterns, 

387–391

OperationStatus value, buffer operators, 

458–463

operators

conversion operators, 198-C05.1827

equality operators

reference types, 328

usage guidelines, 324–328

value types, 327

inequality operators, 200–202

method names and, 196–197

overloading, 192–198

optional features, design patterns, 408–411

optional parameters, changing

default values, 552

to required, 551–552

required parameters to optional, 551

organization (files), C# style conventions, 

483–485

Out parameters, 512

OutOfMemoryException, 277–278

overload operator parameters, naming 

conventions, 80

overloading

members, 136–148, 544–545

operators, 192–198

override members

adding to unsealed types, 540

removing

removing an override of a virtual 

member, 543

removing an override of an abstract 

member, 543–544

P
packages, naming conventions, 61–62

parameters

argument validation, 207–210

boolean parameters, choosing, 205–207

collection parameters, 296–297

designing, 202–204

enum parameters, choosing, 205–207

members with variable number of 

parameters, 214–218

method parameters

adding, 546

changing types, 546

removing, 546

renaming, 545

reordering parameters by the same 

type, 547

reordering parameters of differing 

types, 547

naming conventions, 79–80

optional parameters, changing

default values, 552

required parameters to optional, 551

to required, 551–552

Out parameters, 512

overload operator parameters, naming 

conventions, 80

passing, 210–214, 549–550

pointer parameters, 218–219

Ref parameters, 512

reference parameters

Async variants of existing  

synchronous methods, 352–353

changing, 549–550

required parameters, changing

optional parameters to, 551–552

to optional, 551

Pareto principle, 10

partial writes to buffers, 458–463

PascalCasing, 42–44

C# style conventions, 480–481

naming conventions, 480–481

passing parameters, 210–214

passive voice, comments, 483

performance, exceptions, 281

Tester-Doer Pattern, 281–282

Try Pattern, 282–286

.Permissions subnamespaces, 489–490

personification, comments, 483

PlatformNotSupportedException, 279

pointer parameters, 218–219

predetermined buffer sizes, 451–452

private fields

removing, on serializable types, 544

renaming, in serializable types, 544

programming

languages, framework design, 11–12

OOP, 7–8

progress reporting, Async Patterns,  

513–516

progressive frameworks, 12–15
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