
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136566939
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136566939
https://plusone.google.com/share?url=http://www.informit.com/title/9780136566939
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136566939
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136566939/Free-Sample-Chapter


Creating and Using Virtual 
Prototyping Software

9780136566939_print.indb   1 16/11/21   2:33 PM



This page intentionally left blank 



Creating and Using 
Virtual Prototyping 
Software

Principles and Practices

Douglass E. Post 
Richard P. Kendall

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town  
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City  
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

9780136566939_print.indb   3 16/11/21   2:33 PM



Many of the designations used by manufacturers and sellers to distinguish 
their products are claimed as trademarks. Where those designations appear in 
this book, and the publisher was aware of a trademark claim, the designations 
have been printed with initial capital letters or in all capitals.

Cover credits:
Helicopter: KateChris/Shutterstock
Cruise ship: nan728/123RF
Concorde airplane: agsaz/Shutterstock
Passenger plane: iurii/Shutterstock
Sailing yacht: Alvov/Shutterstock
Race car: Scott Betts/123RF

The authors and publisher have taken care in the preparation of this book, 
but make no expressed or implied warranty of any kind and assume no 
responsibility for errors or omissions. No liability is assumed for incidental 
or consequential damages in connection with or arising out of the use of the 
information or programs contained herein.

For information about buying this title in bulk quantities, or for special 
sales opportunities (which may include electronic versions; custom cover 
designs; and content particular to your business, training goals, marketing 
focus, or branding interests), please contact our corporate sales department 
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com. 

Visit us on the Web: informit.com/aw.

Library of Congress Control Number: 2021947676

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission 
must be obtained from the publisher prior to any prohibited reproduction, 
storage in a retrieval system, or transmission in any form or by any means, 
electronic, mechanical, photocopying, recording, or likewise. For information 
regarding permissions, request forms and the appropriate contacts within the 
Pearson Education Global Rights & Permissions Department, please visit 
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-656693-9 
ISBN-10: 0-13-656693-6

ScoutAutomatedPrintCode

Editor-in-Chief
Mark Taub

Executive Editor
Haze Humbert

Development Editor
Mark Taber

Managing Editor
Sandra Schroeder

Senior Project Editor
Lori Lyons

Copy Editor
Krista Hansing 
Editorial Services

Production Manager
Remya Divakaran/
Codemantra

Indexer
Timothy Wright

Proofreader
Abigail Manheim

Compositor
Codemantra

A01_Kendall_FM_p00i-xxx.indd   4 16/11/21   6:15 PM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/


Pearson’s Commitment to  
Diversity, Equity, and 
Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all 
learners. We embrace the many dimensions of diversity, including but not limited to 
race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and 
religious or political beliefs. 

Education is a powerful force for equity and change in our world. It has the poten-
tial to deliver opportunities that improve lives and enable economic mobility. As we 
work with authors to create content for every product and service, we acknowledge 
our responsibility to demonstrate inclusivity and incorporate diverse scholarship so 
that everyone can achieve their potential through learning. As the world’s leading 
learning company, we have a duty to help drive change and live up to our purpose to 
help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

•• Everyone has an equitable and lifelong opportunity to succeed through 
learning.

•• Our educational products and services are inclusive and represent the rich 
diversity of learners.

•• Our educational content accurately reflects the histories and experiences of the 
learners we serve.

•• Our educational content prompts deeper discussions with learners and moti-
vates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about 
any concerns or needs with this Pearson product so that we can investigate and 
address them. 

•• Please contact us with concerns about any potential bias at https://www.pearson. 
com/report-bias.html.

9780136566939_print.indb   5 16/11/21   2:33 PM

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html


To our wives, Susan Post and  
Linda Richards

9780136566939_print.indb   6 16/11/21   2:33 PM



vii

Contents at a Glance

Figure List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  xvii

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     xxi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           xxvii

About the Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           xxix

Chapter 1: �The Power of Physics-Based Software for Engineering and  
Scientific Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          1

Chapter 2: The Computing Ecosystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  25

Chapter 3: Getting the Right Software for the Virtual Prototyping Paradigm . . . . .    43

Chapter 4: Examples of Virtual Prototyping Software (Tools). . . . . . . . . . . . . . . . .                75

Chapter 5: �Applying Virtual Prototyping Tools to Develop Product  
and Conduct Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     101

Chapter 6: �Developing and Marketing a Proposal to Establish a  
Program to Develop Virtual Prototyping Tools. . . . . . . . . . . . . . . . . . .                  135

Chapter 7: �Creating and Sustaining Software Development  
Programs for Virtual Prototyping Tools . . . . . . . . . . . . . . . . . . . . . . . .                       159

Chapter 8: �Managing the Software Development Program for  
Virtual Prototyping Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            189

Chapter 9: �Executing a Software Development Program for  
Virtual Prototyping Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            213

Chapter 10: Verifying and Validating Science-Based Software . . . . . . . . . . . . . . . .               233

Chapter 11: Recruiting and Retaining the Workforce. . . . . . . . . . . . . . . . . . . . . . .                      251

Chapter 12: �Opportunities and Challenges for Virtual Prototyping in  
Engineering and Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  265

9780136566939_print.indb   7 16/11/21   2:33 PM



Contents at a Glanceviii

Postscript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   281

References by Chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         287

Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    309

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                      313

9780136566939_print.indb   8 16/11/21   2:33 PM



ix

Contents

Figure List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                  xvii

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                     xxi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           xxvii

About the Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           xxix

Chapter 1: �The Power of Physics-Based Software for Engineering and  
Scientific Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          1

1.0  A New Product Development Paradigm. . . . . . . . . . . . . . . . . . . . . . . . .                        1
1.1  Computational Engineering and Virtual Prototypes . . . . . . . . . . . . . . .              2
1.2  Computational Science and Digital Surrogates . . . . . . . . . . . . . . . . . . .                  7
1.3  The Computational Engineering and Science Ecosystem. . . . . . . . . . .          10
1.4  High-Performance Computers: The Enablers . . . . . . . . . . . . . . . . . . .                  13
1.5  Full-Featured Virtual Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            14
1.6  The Advantages of Virtual Prototyping for Systems of Systems . . . . .    16

1.6.1  Systems of Systems: Aircraft. . . . . . . . . . . . . . . . . . . . . . . . . . .                          16
1.7 � Virtual Prototyping: A Successful Product Development  

and Scientific Research Paradigm���������������������������������������������������������19
1.8  Historical Perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     22

Chapter 2: The Computing Ecosystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  25

2.0  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            25
2.1  The Commodity Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              27
2.2  Unique Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     28

2.2.1  The Important Role of Skilled and Experienced Users. . . . . . .      28
2.2.2  The Importance and Challenges of Testing. . . . . . . . . . . . . . . .               31
2.2.3  Science-Based Software Is Key. . . . . . . . . . . . . . . . . . . . . . . . . .                         34

2.3  Software Development Is Different . . . . . . . . . . . . . . . . . . . . . . . . . . .                          36

Chapter 3: Getting the Right Software for the Virtual Prototyping Paradigm . . . . .    43

3.0  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           43

9780136566939_print.indb   9 16/11/21   2:33 PM



Contentsx

3.1  Benefits and Shortcomings of the Choices. . . . . . . . . . . . . . . . . . . . . .                     44
3.1.1  Commercial Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               44
3.1.2  Open-Source Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              48
3.1.3 � Free Technical Software from Other  

Technical Organizations�����������������������������������������������������������51
3.1.4  External Contract Software Developers . . . . . . . . . . . . . . . . . .                 51
3.1.5  Internal Software Development. . . . . . . . . . . . . . . . . . . . . . . . .                        53

3.2  Managing Expectations: The CREATE Experience. . . . . . . . . . . . . . .              54
3.3  Intellectual Property (IP) Management . . . . . . . . . . . . . . . . . . . . . . . .                       60
3.4  Factors to Consider When Choosing a Software Option. . . . . . . . . . .          61
3.5  Factors Impacting Internal (In-House) Software Development. . . . . .     70

3.5.1  Complex Physics and Mathematics. . . . . . . . . . . . . . . . . . . . . .                     70
3.5.2  Complex Computers and Programming Models. . . . . . . . . . . .           71
3.5.3  Complex Organizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             72

Chapter 4: Examples of Virtual Prototyping Software (Tools). . . . . . . . . . . . . . . . .                75

4.0  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            75
4.1  The Research Heritage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    77
4.2 � A Brief Description of the Tool Chain That Enables Virtual 

Prototyping for Products ���������������������������������������������������������������������79
4.2.1  Requirements Management Tools. . . . . . . . . . . . . . . . . . . . . . .                      81
4.2.2 � Geometry and Mesh Generation Tools: The Digital 

Product Model���������������������������������������������������������������������������81
4.2.3  Conceptual Design Generation Tools. . . . . . . . . . . . . . . . . . . .                   83
4.2.4  Conceptual Design Analysis Tools . . . . . . . . . . . . . . . . . . . . . .                     84
4.2.5  Tradespace Analysis Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            86
4.2.6  Operational Performance Tools. . . . . . . . . . . . . . . . . . . . . . . . .                        87
4.2.7  High-Fidelity, Science-Based Design and Analysis Tools. . . . . .     88
4.2.8  Workflow Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    95
4.2.9  Manufacturability Analysis Tools. . . . . . . . . . . . . . . . . . . . . . .                      96
4.2.10  Product Deployment and Sustainment Tools . . . . . . . . . . . . .            96
4.2.11  Software Deployment and Sustainment Tools . . . . . . . . . . . .           96

4.3  Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             96

Chapter 5: �Applying Virtual Prototyping Tools to Develop Product and  
Conduct Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        101

5.0  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           101
5.1  The Broad Reach of Computational Engineering and Science. . . . . .     102

9780136566939_print.indb   10 16/11/21   2:33 PM



Contents xi

5.2  �Establishing the Value of Virtual Prototyping for  
Product Development or Scientific Research �������������������������������������105
5.2.1  Return on Investment (ROI) . . . . . . . . . . . . . . . . . . . . . . . . . .                         105
5.2.2  Need for Computational Capability . . . . . . . . . . . . . . . . . . . .                   106
5.2.3  Customer User Community (Active Product Licenses) . . . . . .     106
5.2.4  Number of Different Uses for the Software . . . . . . . . . . . . . .             107
5.2.5  �Importance to the Customer of Products Being  

Designed and Analyzed by the Software Tools �����������������������107
5.2.6  �Size of the Engineering or Research Program Being  

Aided by the Software Tools (Budget, Cost, Staffing,  
and More) �������������������������������������������������������������������������������107

5.2.7  Impact on Customer Programs . . . . . . . . . . . . . . . . . . . . . . . .                       108
5.2.8  Consequences of Not Using Virtual Prototyping . . . . . . . . . .         108
5.2.9  Cost Savings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     108
5.2.10  �Time Saved, Schedule Reductions, and Schedule  

Slips Avoided�������������������������������������������������������������������������109
5.2.11  Technical Credibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              109
5.2.12  �Endorsement or Testimonial of the Value of Virtual 

Prototyping by a User/Customer�������������������������������������������109
5.3  A Case Study of the Value of Virtual Prototyping. . . . . . . . . . . . . . .              110

5.3.1  �Small Unmanned Aerial Vehicle (UAV) Naval Aviation 
(NAVAIR): Case Study by Dr. Theresa Shafer�������������������������110

5.3.2  �Shafer CREATE-AV UAV Success Story. Courtesy of  
Dr. Theresa Shafer, Director of Research and  
Educational Partnerships NAWCAD AOE000,  
U.S. Navy (Shafer 2020) ����������������������������������������������������������111

5.3.3  Discussion and Report Summary of Impacted Systems . . . . .    115
5.4  ROI Redux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            118

5.4.1  Analysis of the DoD HPCMP ROI Study . . . . . . . . . . . . . . . .               119
5.4.2  Other Benefits of ROI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              122

5.5  �Weather Forecasting: A Computational Scientific  
Research Example �����������������������������������������������������������������������������124

5.6  �Representative Impacts of the CREATE Software Applications  
to DoD Program �������������������������������������������������������������������������������127

5.7  Lessons Learned and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . .                          133

9780136566939_print.indb   11 16/11/21   2:33 PM



Contentsxii

Chapter 6: �Developing and Marketing a Proposal to Establish a  
Program to Develop Virtual Prototyping Tools. . . . . . . . . . . . . . . . . . .                  135

6.0  Introduction: Change Is Hard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             136
6.1  �Recommended Steps to Develop and Market a Proposal to  

Establish a Virtual Prototyping Program �������������������������������������������138
6.1.1  Getting Organized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 138
6.1.2  Researching the Proposal. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            139
6.1.3  Preparing and Marketing the Proposal . . . . . . . . . . . . . . . . . .                 139

6.2  Executing the Proposal Development Phases . . . . . . . . . . . . . . . . . . 140
6.2.1  Getting Organized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 140
6.2.2  Researching the Proposal. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            144
6.2.3  Preparing and Marketing the Proposal . . . . . . . . . . . . . . . . . .                 151

6.3  �Summary of Lessons Learned from Virtual Prototyping  
Software Program Startups ���������������������������������������������������������������157

Chapter 7: �Creating and Sustaining Software Development Programs  
for Virtual Prototyping Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               159

7.0  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           159
7.1  �Recommended Steps for Starting and Sustaining Software 

Development Programs for Virtual Prototyping Tools ���������������������161
7.2  �Establishing a Software Development Program for  

Virtual Prototyping Tools �����������������������������������������������������������������162
7.2.1 Getting Started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    162
7.2.2  Defining the program focus. . . . . . . . . . . . . . . . . . . . . . . . . . .                          164
7.2.3  Building the Core Program . . . . . . . . . . . . . . . . . . . . . . . . . . .                          165
7.2.4  Establishing the Computing Ecosystem. . . . . . . . . . . . . . . . . .                 178
7.2.5  Creating Policies and Practices . . . . . . . . . . . . . . . . . . . . . . . .                       181

7.3  Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             186

Chapter 8: �Managing the Software Development Program for  
Virtual Prototyping Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            189

8.0  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           189
8.1  Programmatic Risks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     191
8.2  Risk Management by Principles and Practices. . . . . . . . . . . . . . . . . .                 192
8.3  Program Management Policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             193
8.4  �Examples of Risk-Based Management Principles  

from CREATE�����������������������������������������������������������������������������������194

9780136566939_print.indb   12 16/11/21   2:33 PM



Contents xiii

8.5  Risk-Mitigating Program Management Practices . . . . . . . . . . . . . . .              195
8.5.1  Financial Risks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.5.2  Management Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                197
8.5.3  Schedule Risks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    200
8.5.4  Technical Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   203

8.6  Program Organization: The CREATE Example . . . . . . . . . . . . . . . .               204
8.7  �Keeping Track Across Disparate Domains of the  

CREATE Federation �������������������������������������������������������������������������206
8.7.1  �Documentation for a Lightweight  

Management Approach�����������������������������������������������������������206
8.8  How It All Comes Together: The Product Development Cycle . . . . .    209
8.9  Summary and Lessons Learned. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            211

Chapter 9: �Executing a Software Development Program for  
Virtual Prototyping Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            213

9.0  Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           213
9.1  Execution Risk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         214
9.2  Key Software Development Principles . . . . . . . . . . . . . . . . . . . . . . . .                       217

9.2.1  Flexibility and Discipline (Disciplined Agile) . . . . . . . . . . . . .            217
9.2.2  Practice-Based, Not Process-Based, Conformity. . . . . . . . . . .          218
9.2.3  �Product Testing Is As Important As Product  

Construction ���������������������������������������������������������������������������218
9.2.4  �Adoption of a Product Release Cadence That  

Ensures Relevance �������������������������������������������������������������������218
9.2.5  �Focus on Usability, Not Just Working Software  

(DevOps)���������������������������������������������������������������������������������219
9.3  Core Software Development Practices. . . . . . . . . . . . . . . . . . . . . . . .                       220

9.3.1  Requirements Management Risk. . . . . . . . . . . . . . . . . . . . . . .                      220
9.3.2  Workflow Management Risk. . . . . . . . . . . . . . . . . . . . . . . . . .                         221
9.3.3  Team Communications Risk. . . . . . . . . . . . . . . . . . . . . . . . . .                         223
9.3.4  Product Development Cadence Risk. . . . . . . . . . . . . . . . . . . .                   224
9.3.5  Product Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   225
9.3.6  Product Support Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              226

9.4  Workflow Management Selection: Agile or Plan Driven . . . . . . . . . .         227
9.4.1  Environmental Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             227
9.4.2  Requirements Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            228

9780136566939_print.indb   13 16/11/21   2:33 PM



Contentsxiv

9.4.3  Experience of the Development Team. . . . . . . . . . . . . . . . . . .                  228
9.4.4  Criticality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        229

9.5  Workflow Management Documentation. . . . . . . . . . . . . . . . . . . . . .                     229
9.6  Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  229
9.7  Lessons Learned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        232

Chapter 10: Verifying and Validating Science-Based Software . . . . . . . . . . . . . . . .               233

10.0  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          233
10.1  How Testing Is Organized in CREATE . . . . . . . . . . . . . . . . . . . . . .                     235
10.2  Automated Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     236
10.3  CREATE Testing Principles and Practices. . . . . . . . . . . . . . . . . . . .                   237

10.3.1  Verification Principles and Practices . . . . . . . . . . . . . . . . . . .                  238
10.3.2  Validation Principles and Practices . . . . . . . . . . . . . . . . . . . .                   243
10.3.3  Uncertainty Quantification Practices . . . . . . . . . . . . . . . . . .                 247

10.4  An Example of the Application of the Practices . . . . . . . . . . . . . . .              248
10.5  Lessons Learned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       249

Chapter 11: Recruiting and Retaining the Workforce. . . . . . . . . . . . . . . . . . . . . . .                      251

11.0  �General Description of the Workforce for the Development  
of Software for Virtual Prototypes ���������������������������������������������������251

11.1  Why This Differs from Conventional Software Development . . . . .    252
11.2  How Knowledge Workers Differ from Conventional Workers. . . . .    252
11.3  �Why Standard Management Methods Don’t Work with  

Knowledge Workers �������������������������������������������������������������������������253
11.4  What Motivates Knowledge-Based Workers. . . . . . . . . . . . . . . . . . 254
11.5 � What Knowledge-Based Workers Need to Bring to  

This Endeavor (Software Development for Virtual   
Prototyping Applications) ���������������������������������������������������������������255

11.6  What Is Required to Recruit These Knowledge-Based Workers. . . .   257
11.7  How to Find Knowledge-Based Workers . . . . . . . . . . . . . . . . . . . . .                    257
11.8  What Is Required to Retain Knowledge-Based Workers. . . . . . . . . .         258
11.9  The Importance of Teams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               259
11.10  The Importance of Development Infrastructure and Support. . . .   260
11.11  Intellectual Property Issues and Other Legal Issues. . . . . . . . . . . .           261
11.12  �Advantages of Virtual Prototyping for Workforce  

Development and Training �����������������������������������������������������������262
11.13  Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           263

9780136566939_print.indb   14 16/11/21   2:33 PM



Contents xv

Chapter 12: �Opportunities and Challenges for Virtual Prototyping in  
Engineering and Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  265

12.0  Where We Are Now (2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               265
12.1  What Could Be Next for Virtual Prototyping?. . . . . . . . . . . . . . . . .                266

12.1.1  Sustainment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     267
12.1.2  Manufacturability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                269
12.1.3  Design Automation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               269
12.1.4  Autonomous Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              270
12.1.5  Operational Simulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            272
12.1.6  Military Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              273
12.1.7  Uncertainty Quantification (UQ) . . . . . . . . . . . . . . . . . . . . .                    274
12.1.8  Interpreting and Understanding Model Results. . . . . . . . . . 275

12.2  Some Thoughts About the Future of Virtual Prototyping. . . . . . . .       275
12.2.1  Moore’s Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    276
12.2.2  Future Computers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                277
12.2.3  �More Speculative Future Applications of the Virtual 

Prototyping Paradigm �����������������������������������������������������������278
12.3  In Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         280

Postscript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                   281

References by Chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         287

Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                    309

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                      313

9780136566939_print.indb   15 16/11/21   2:33 PM



This page intentionally left blank 



xvii

Figure List

Figure 1.1 �Traditional product development process based on  
physical prototypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                          3

Figure 1.2 �Computational engineering product development  
process based on virtual prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             3

Figure 1.3 �Schematic comparison of historical empirical iterated  
“design, build, test” paradigm and the virtual prototyping paradigm. . . .   4

Figure 1.4 �Schematic illustration of the computational science  
research process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            8

Figure 1.5 �Illustration of essential elements of a successful customer-focused,  
secure ecosystem required to support virtual prototyping  
from HPCMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                             11

Figure 1.6 History of supercomputer performance growth, 1945 to 2019. . . . . . . . .        14
Figure 1.7 �Physics-based software with high-performance computing  

can provide the means to transition from science and technology  
discoveries to the design and production of real systems to leap  
over the “Valley of Death”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   16

Figure 1.8 �Major aircraft systems and functions for a generic  
commercial airliner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         17

Figure 1.9 �Greek Gods and mythological beasts populated the heavens  
in 700 BCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               23

Figure 2.1 �Six components of a computational engineering and  
scientific research ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 26

Figure 2.2 �Airplane parts and functions that must be addressed by  
a virtual prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         35

Figure 2.3 �Principal steps in the lifecycle for a typical hardware development  
and deployment project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     37

Figure 2.4 �One year of product development, iteration n+1, of the  
CREATE family of virtual product design software (here, n>0) . . . . . . .      40

9780136566939_print.indb   17 16/11/21   2:33 PM



Figure Listxviii

Figure 3.1 Compatibility chart of common open-source licenses. . . . . . . . . . . . . . .              49
Figure 3.2 �CREATE 12-year, three-stage software development strategy  

and steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                 56
Figure 3.3 �“Legacy-to-Native:” application of minimum viable product to  

physics-based software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     58

Figure 4.1 Ptolemy’s model of the planets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                76
Figure 4.2 Example of the geometry and mesh of a wing joining a fuselage. . . . . . .      82
Figure 4.3 Example of Hull Form Optimization with IHDE . . . . . . . . . . . . . . . . . .                 85
Figure 4.4 Example of a tradespace analysis from RSDE. . . . . . . . . . . . . . . . . . . . .                    86
Figure 4.5 RSDE functional architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 87
Figure 4.6 Architecture of the Kestrel digital aircraft design and analysis tools . . . .   89
Figure 4.7 Kestrel analysis of F-16 maneuver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             90
Figure 4.8 Helios simulation of tiltrotor dynamics illustrating wakes . . . . . . . . . . .          91
Figure 4.9 Joubert submarine animation still, based on NavyFOAM. . . . . . . . . . . .           92
Figure 4.10 The USS Cole after a terrorist attack . . . . . . . . . . . . . . . . . . . . . . . . . . .                          93
Figure 4.11 Modeling tracked vehicle performance with Mercury. . . . . . . . . . . . . .             94
Figure 4.12 �Schematic representation of the VERA virtual  

reactor design and analysis tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              95
Figure 4.13 �DoD 5000 Acquisition lifecycle (workflow) phases  

with decision points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       97
Figure 4.14 �Role of specific CREATE virtual prototyping tools in the  

DoD 5000 and systems engineering product development  
workflows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                               98

Figure 5.1 �Aerial view of the Army Corps of Engineers Waterways  
Experiment Station (WES) in Vicksburg, Mississippi. . . . . . . . . . . . . . .              123

Figure 5.2 �Major physics elements of the land–sea–atmosphere  
weather system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                           126

Figure 5.3 The Gerald R. Ford Carrier, CVN-78. . . . . . . . . . . . . . . . . . . . . . . . . . .                          131

Figure 7.1 CREATE program organization chart. . . . . . . . . . . . . . . . . . . . . . . . . .                         172
Figure 7.2 CREATE annual release cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                177

Figure 8.1 CREATE program organization chart (as of 6/1/2020) . . . . . . . . . . . . .            205
Figure 8.2 Example CREATE Product Roadmap (Helios) . . . . . . . . . . . . . . . . . . .                  208
Figure 8.3 The annual CREATE product development (dev) cycle. . . . . . . . . . . . .            210

9780136566939_print.indb   18 16/11/21   2:33 PM



Figure List xix

Figure 9.1 Geographic distribution of the CREATE teams . . . . . . . . . . . . . . . . . .                 214
Figure 9.2 The canonical DevOps loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 219
Figure 9.3 �The span of the DevOps infrastructure, as envisioned  

by the Defense Science Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                222
Figure 9.4 The CREATE DevOps tool chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             223
Figure 9.5 CREATE portal home page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                 224
Figure 9.6 �Levels of testing of CREATE applications  

(QA refers to quality assurance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Figure 10.1 Six levels of testing of CREATE software. . . . . . . . . . . . . . . . . . . . . . .                      236
Figure 10.2 Automated testing after each code commit. . . . . . . . . . . . . . . . . . . . . .                     236
Figure 10.3 Model validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Figure 12.1 �Example of AI-trained lower-order model prediction  
of pitching moment for UH-60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              268

Figure 12.2 �The attributes of autonomous systems for the  
U.S. Department of Defense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                271

Figure 12.3 A complex system of swarming bats. . . . . . . . . . . . . . . . . . . . . . . . . . 273
Figure 12.4 FieldView image of a Joubert submarine virtual prototype. . . . . . . . .        275

9780136566939_print.indb   19 16/11/21   2:33 PM



This page intentionally left blank 



xxi

Preface

Why This Book?

The purpose of our book is to provide guidance for engineers and scientists who 
want to acquire or develop software to improve the competitiveness of their engi-
neering and scientific research organizations with virtual prototypes. Virtual proto-
types replace physical prototypes in the product development process. They are an 
extension of computer-aided design that allows product developers not just to visu-
alize product designs, but to accurately predict their performance, using physics-
based software tools, before anything is manufactured. When applied to natural 
systems such as the weather, they allow forecasts of behavior to a level of accuracy 
never before possible. 

Engineering design and scientific research have always involved working with 
abstractions of new products or the objectives of research. For the development of 
complex products, the abstraction may start with a mental image of the new product 
that can be then translated into a drawing or physical model. For scientific research, 
the abstraction may be an expectation of the result of an experiment or an observa-
tion of natural phenomena. As science and technology have progressed from ancient 
times to the present, the usefulness of these abstractions has grown immensely.

This progress has accelerated dramatically during the last 50 years or so. Comput-
ing power has grown explosively from 1 floating point operation per second (FLOP) 
at the end of World War II to 1017 FLOPS today. The consequences of this are almost 
as dramatic as the stunning increase in computing power. It is now possible to use 
computers to design and accurately predict the behavior of complex products such 
as supersonic jet aircraft and to accurately forecast the behavior of complex natural 
phenomena such as the weather.

Although computers have played a role in product design for decades, espe-
cially in microelectronics, current engineering design methods still rely largely on 
an experiment-based “design, build, test” paradigm. Scientific and engineering 
research is based on theoretical studies, physical models, and experiments, from 
tabletop scale to very large experimental facilities such as high-energy accelerators 
and large terrestrial and satellite-based telescopes. To improve the competitiveness 
of their organizations, engineers and scientists are increasingly turning to com-
putational methods to analyze and predict the performance of new products and 

9780136566939_print.indb   21 16/11/21   2:33 PM



Prefacexxii

conduct scientific research. This has become substantially more useful due to the 
introduction of multiphysics modeling software coupled with high-performance 
computing. The union of these two in a virtual prototype makes accurate predic-
tions of full-scale system performance possible. For many applications, this was not 
the case even at the beginning of this century. This computational product develop-
ment paradigm is much faster, much less expensive, and much more flexible than 
experiment-based methods.

The computational science and engineering literature contains references to vir-
tual prototypes, digital surrogates, digital twins, mirrors, simulations, and various 
synonyms. The concepts behind these terms are roughly equivalent. We use them to 
refer to physics-based, mathematical representations (often referred to as models) 
of physical objects or natural physical systems captured in a digital form that can 
help predict their behavior or state. We use all these terms in this book, depending 
on the context. For example, virtual prototyping is the process of developing virtual 
prototypes and using them to investigate systems of interest. A digital surrogate is 
a computer model of a specific product or natural system, just as is a virtual pro-
totype. The term digital surrogate often connotes more persistence than the term 
virtual prototype. A digital twin is a digital surrogate tied to a specific instance of a 
product or system of interest; it persists throughout the life of the product or system. 
Although we don’t discuss it in detail, others have extended these concepts to include 
biological systems, including human societies, collections of microorganisms, and 
predator–prey behavior in natural ecosystems.

Historical Perspective

Although the advent of practical electronic computers occurred only recently (since 
World War II), the use of mathematical abstractions of systems for design and pre-
diction has a long and distinguished history dating as far back as the Babylonian 
astronomers (800–400 BCE).

Babylonian astronomers used empirically based mathematical models and their 
400 years of astronomical measurements of the motions of the moon and planets to 
predict astronomical events such as eclipses and planetary motion. Similar to mod-
ern digital surrogates, their “model” was validated by their data. However, unlike the 
Greeks, the Babylonians had no concept of a general model for the heavens. Their 
approach was purely an empirical mathematical exercise to predict eclipses, phases 
of the moon, and other events important for their astrology. They believed, as did 
many ancient peoples, that events in the heavens were clues from the gods that fore-
told future earthly events.

9780136566939_print.indb   22 16/11/21   2:33 PM



Preface xxiii

The Greek astronomer Claudius Ptolemaeus (Ptolemy), in Alexandria, Egypt 
(150–170 CE), developed a geocentric model of the heavens. It is one of the most 
familiar examples of an ancient virtual prototype: virtual in the dictionary sense of 
capturing the essence but not the appearance of the system. Most dictionaries now 
also list digital as an alternative meaning of virtual. Ptolemy’s model is described 
in his manuscript, The Almagest. In the geocentric Ptolemaic model, the spherical 
Earth is motionless and the fixed stars, planets, moon, and sun revolve around Earth 
in various complicated orbits (epicycles). This was a very sophisticated model—and 
the most accurate mathematical model for the heavens for its time. As planetary and 
astronomical observations improved from the 1st century to the 16th century, the 
geocentric Ptolemaic model became increasingly unwieldy. However, it lasted 1,450 
years, until the Copernican Revolution (circa 1550 CE), when Nicholas Copernicus 
published his heliocentric model for the heavens. His successors (Galileo, Kepler, 
Newton, Gauss, and others) ignited the scientific revolution. Newton was among the 
first to appreciate that the laws of physics were universal. Newton applied his three 
laws of motion and the law of gravity to the heavens and calculus (which he invented 
for this purpose) to predict the motion of the planets.

Over the next several centuries, other mathematicians and scientists developed 
physics-based, mathematical models to explain electromagnetics, fluid flow, and 
myriad other physical phenomena. The predictions of these models were initially 
calculated by hand, which severely limited their accuracy and scope. To help with 
his planetary orbit calculations, Gauss memorized a four-place log table. Until com-
puters came along, calculating problems with realistic geometries and materials was 
extremely difficult for mortals who were less mentally endowed. 

Although it developed a little later than the methods to calculate planetary 
motion, the mathematics of weather prediction were worked out reasonably well 
by 1910. Highly accurate practical weather predictions required computers that 
emerged only in the latter half of the 20th century. Virtual prototyping in the digi-
tal sense played a significant role in the Manhattan Project and a major role in the 
hydrogen bomb project. Both were (and remain) major drivers of the development 
of high-performance computing. Virtual prototyping has continued to play a major 
role in the U.S. nuclear weapons community, especially now that the U.S. is no longer 
conducting nuclear tests.

Computers became available to the general scientific and engineering commu-
nity by the late 1950s. Computational engineering and computational science then 
started to grow rapidly as the advantages of virtual prototypes became apparent. 
Today the individual components of computational science (such as finite element-
based fluid flow solvers) and computational engineering software tools are relatively 
mature. A major remaining frontier is the development and deployment of large-
scale, multiphysics research and design tools, which can include all the important 
physical effects, together with realistic geometries and materials. 

9780136566939_print.indb   23 16/11/21   2:33 PM



Prefacexxiv

The Key Role of Software

Software applications are an essential part of this capability. They are in many ways 
the key part, despite being the least visible. At least for now, computers are general-
purpose machines that can be used for handling accounting, creating animated mov-
ies, or predicting the weather. Although high-performance computers are far from 
simple, the needed computing power can be purchased from many cloud vendors. 
Neither they nor the networks to reach them need to be owned. Computing has thus 
become a commodity. For organizations that want to own and operate their own 
computing facilities, a plethora of vendors specialize in setting up and supporting 
the operation of computer centers. Many good engineering and scientific software 
packages are available from commercial vendors and other sources, yet the software 
needs for many applications are unique and not available from the marketplace. 

This is especially true for the software that makes the virtual prototyping para-
digm work. This software is not yet a commodity, especially at the multiscale, mul-
tiphysics, high-performance computing, system-of-systems level. We were motivated 
to write this book because it is potentially difficult to acquire and use the right soft-
ware tools to successfully implement the virtual prototyping paradigm. In the fol-
lowing chapters, we share our experiences and lessons learned from initiating and 
executing the Computational Research and Engineering Tools and Environments 
(HPCMP CREATE, or just CREATE) program. One of the authors (Post) initi-
ated and led CREATE for its first 12 years; the other (Kendall) has been a senior 
member of the CREATE team since 2007. CREATE was formed in 2006 by the U.S. 
Department of Defense (DoD) High Performance Computing Modernization Pro-
gram (HPCMP) to introduce the virtual prototyping paradigm to the DoD acquisi-
tion community. The goal for CREATE was to develop, deploy, and sustain a suite 
of 11 physics-based, high-performance computing software tools for the develop-
ment of digital surrogates for DoD air vehicles, naval vessels, ground vehicles, and 
radar antennas. A secondary goal was to provide a model for how the DoD high-
performance computing community could develop its own multiphysics software for 
engineering design. 

Our insights are captured here in a set of software engineering and software 
program management practices and principles that we found to be successful in 
CREATE. They are also tempered by our experiences from our 50-year careers in 
computational engineering and computational science in the U.S. DoD, the U.S. 
Department of Energy (DOE), and other federal agencies; U.S. industry; and aca-
demia. With colleagues, we have made formal and informal assessments and 
case studies of both successful and unsuccessful programs to develop and deploy 
physics-based software for product development and scientific research in areas such 
as weather prediction, computational chemistry, atomic and molecular physics, oil 

9780136566939_print.indb   24 16/11/21   2:33 PM



Preface xxv

and gas production, earthquakes, astrophysics, cosmology, plasma physics, con-
trolled fusion, and the design of nuclear and conventional weapons.

While we focus describing the ways we overcame the challenges faced by the 
CREATE program, similar challenges will be faced by any organization seeking to 
use physics-based modeling and simulation for product development or scientific 
research. 

Final Note

This is a “how to” book about creating and managing programs to develop the soft-
ware needed to make the paradigm shift to digital product design and performance 
analysis, which is the heart of virtual prototyping. We focus on establishing and exe-
cuting a successful virtual prototyping program. Included are the following topics:

	 1.	 A brief history of virtual prototyping and computing (Chapter 1)

	 2.	 The ecosystem required to support product development and scientific research 
(Chapter 2)

	 3.	 Successful examples of virtual prototyping (Chapters 1 and 5)

	 4.	 Choosing between licensing and internal development of virtual prototyping 
software (Chapter 3)

	 5.	 The software tools that play a role in creating virtual prototypes (Chapter 4)

	 6.	 Managing the risks typically encountered in software acquisition and develop-
ment over the long term (Chapters 3, 8, 9, and 10)

	 7.	 Retaining control over the intellectual property created by a virtual prototyp-
ing program (Chapter 3)

	 8.	 Determining the software requirements (Chapters 6 and 8)

	 9.	 Providing the necessary software tools and hardware infrastructure for 
software development (Chapters 3, 7, and 8)

	 10.	  Demonstrating the value of the virtual prototyping to the sponsor (Chapter 5)

	 11.	 Development and marketing of a successful proposal to establish a virtual 
prototyping software development program (Chapter 6)

	 12.	 Building and sustaining support for a virtual prototyping program (Chapter 7)

9780136566939_print.indb   25 16/11/21   2:33 PM



Prefacexxvi

	 13.	 Best practices for managing virtual prototyping software development and 
testing (Chapters 8, 9, and 10)

	 14.	 Recruitment and retention of the right workforce (Chapter 11)

	 15.	 Opportunities for virtual prototyping in science and engineering, and the challenges 
posed by architecture changes of next-generation computers (Chapter 12)

We assume that our readers are professional scientists or engineers who have 
gained extensive skills and experience in the details of basic science and engineering 
science. Hundreds of thousands of books and papers thoroughly describe those top-
ics. Surveying the software development and engineering literature, we found only 
one book on software engineering principles and practices for software for scientific 
research, and none on the software engineering principles and practices for develop-
ing physics-based software for product development. We offer this book to help fill 
that near vacuum. 

9780136566939_print.indb   26 16/11/21   2:33 PM



xxvii

Acknowledgments

The CREATE program was successfully launched in 2007 by the Office of the Secre-
tary of Defense (OSD) due to the efforts of many scientists and engineers from the 
Department of Defense (DoD) and other agencies and institutions. We have space to 
acknowledge only a small portion of the key contributors to CREATE during its first 
few years and to its subsequent rapid success. 

Aviation: Robert Meakin and his deputy, Chris Atwood, established the CRE-
ATE Aviation program. Edward Kraft, Scott Morton, Nathan Hariharan, Andrew 
Wissink, and Roger Strawn made key contributions to the establishment and sustain-
ment of the CREATE Aviation program that included fixed-wing aircraft for the U.S. 
Air Force and NAVAIR and rotorcraft for the U.S. Army, Air Force, and Marines. 
They developed and utilized advanced computational algorithms and software archi-
tectures that enabled the CREATE Aviation program tools to make groundbreaking 
advances in aircraft simulation and design analysis. Theresa Shafer provided a useful 
case study on the utility of Kestrel for flight certification of small UAVs, enabling 
NAVAIR to acquire the UAVs for their sailors and marines.

Ships: Richard Vogelsong, Tom Moyer, Myles Hurwitz, Scott Littlefield, Adrian 
Mackenna, Joseph Gorski, and Jon Stergiou provided the vision and leadership 
for the formation and sustainment of the CREATE Ships program to address key 
naval ship design issues, including ship vulnerability, maneuvering, seakeeping, and 
operations.

Radio Frequency Antennas: Kueichien Hill, John D’Angelo, and Michael Gil-
bert founded and sustained the CREATE Radio Frequency Antenna program, which 
has played a strong role in electromagnetics and radar and communications antenna 
design for DoD systems.

Geometry and Meshing: Saikat Dey and Ted Blacker founded the CREATE 
Geometry and Meshing program, which provided the essential capability for users to 
generate the geometries and meshes that are the starting point for design and analy-
sis. Saikat Dey, Eric Mestreau, and Romain Aubry sustained this program.

Program Leadership: Chris Atwood served as the deputy CREATE Director 
before returning to Silicon Valley. Dr. Meakin succeeded Doug Post as the CREATE 
Director. 

Program Management: Kevin Newmeyer, Scott Sundt, Portia Bell, Paula Gib-
son, Loren Miller, Larry Votta, and Linda Park freely shared their technical, 

9780136566939_print.indb   27 16/11/21   2:33 PM



Acknowledgmentsxxviii

organizational, and program management experience and skills with the CREATE 
team. This really helped the CREATE program succeed in the long run. 

DoD HPCMP: Cray Henry, Director of the DoD High Performance Comput-
ing Modernization Program (HPCMP) from 2004 through 2011, provided essential 
support and leadership needed by the CREATE program during its formative years. 
Nathan Hariharan, Louis Turcotte, Robert Meakin, Scott Morton, CDMR Kevin 
Newmeyer (USN, ret.), Denise O’Donnell, and Capt. Scott Sundt (USN ret.), from 
the DoD HPCMP, reviewed the draft manuscripts for book and gave us their com-
ments and suggestions.

The Carnegie Mellon University Software Engineering Institute (CMU/SEI): 
Director Paul Nielsen and SEI Chief of Staff John Bramer provided IPA appoint-
ments, support for writing this book, and strategic and technical advice and sup-
port that enabled Doug Post and Chris Atwood to be successful participants in the 
HPCMP and the CREATE program. Doug is particularly grateful for John’s gift 
of a copy of Hugh Montgomery’s book Bureaucratic Nirvana, Life in the Center 
of  the Box (the Pentagon), an essential guide to successfully navigating the DoD 
bureaucracy. 

Charles Holland (now CMU/SEI, but OSD when CREATE was approved) played 
a key role in paving the way for the CREATE program within the OSD and support-
ing the CREATE book project by CMU/SEI. 

The authors are also grateful to their SEI/CMU colleagues Charles Holland, 
Harry Levinson, Gerald Miller, and William Thomas, who reviewed drafts of the 
book. Todd Loizes (CMU/SEI) and David Biber (CMU/SEI) provided graphics assis-
tance that was essential for developing many of the figures and diagrams used in the 
book. Copy editing by Gerald Miller (CMU/SEI) was also a highly necessary and 
appreciated contribution.

Douglass Post is grateful for the mentoring and strong support by Paul Ruther-
ford while Doug was a post-doc and research staff member of the Princeton Plasma 
Physics Laboratory. This was especially helpful during the early years of his career, 
when he was making a transition from experimental atomic physics to tokamak 
modeling, and also later when he led the ITER Physics Group during the ITER 
Conceptual Design Phase.

9780136566939_print.indb   28 16/11/21   2:33 PM



xxix

About the Authors

Douglass E. Post, Carnegie Mellon University Software Engineering Institute

Dr. Douglass Post was the Chief Scientist of the DoD High Performance Computing 
Modernization Program from 2005 to 2014 and was a Principal Researcher at the 
Carnegie Mellon University Software Engineering Institute from 2016 to 2020. His 
major professional interest for almost 50 years has been the development and appli-
cation of physics-based software to solve basic and applied atomic, molecular, 
plasma and controlled fusion physics problems, as well as physics and engineering 
design problems. In 2005, he established and led the DoD Computational Research 
and Engineering Acquisition Tools and Environments (CREATE) program, a multi-
year DoD program to develop and deploy physics-based computational engineering 
software for the design of ships, air vehicles, ground vehicles, and RF antennas. He 
was the Associate Editor-in-Chief of the AIP/IEEE publication Computing in Science 
and Engineering for 20 years. Doug received a Ph.D. in physics from Stanford Univer-
sity in 1975. He led the tokamak and atomic and molecular physics modeling group 
at Princeton Plasma Physics Laboratory (1975–1993), the International Thermonu-
clear Experimental Reactor (ITER) Physics Project Unit (1988–1990), and the ITER 
Joint Central Team In-vessel Physics Group (1993–1998). More recently, he led the 
Lawrence Livermore National Laboratory A Division (1998–2000) and Los Alamos 
National Laboratory (2001–2003) with X-Division programs to develop physics-
based computer simulations for the design of nuclear weapons. He is the author of 
over 250 scientific and engineering publications and a Hertz Fellow, a Fellow of the 
APS, ANS, and IEEE; an AIAA Associate Fellow; and the recipient of ASNE 2011 
Gold Medal.

Richard P. Kendall, DoD HPCMP CREATE Program

Dr. Richard Kendall is a software engineering consultant with the DoD High Perfor-
mance Computer Modernization Program (HPCMP). He has more than 50 years of 
experience in applications of computational mathematics to engineering problems. 
After graduating from Rice University in 1972, he joined Esso Production Research 
Co. (now Exxon Mobil) as a Senior Research Mathematician. There he was directly 
involved in the development of physics-based reservoir simulators, the enablers of 
early virtual prototypes of petroleum reservoirs. During the early 1980s, he helped 

9780136566939_print.indb   29 16/11/21   2:33 PM



About the Authorsxxx

start an ISV to develop high-performance software modeling tools for the interna-
tional oil market, specifically state-owned companies that lacked the expertise of oil 
industry leaders such as ExxonMobil. This startup was eventually sold to Western 
Atlas International (now Schlumberger), where Dr. Kendall became the Senior Vice 
President and Chief Operating Officer of the Western Atlas Software Division. In 
the mid-1990s, he joined Los Alamos National Laboratory as a team leader for Oil 
& Gas Programs. In 1996, he was appointed Director of the Computational Testbed 
for Industry. This DOE User Facility provided U.S. companies such as Procter & 
Gamble access to state-of-the art supercomputers of the 1990s (for example, the 
Thinking Machines CM-5). Later at Los Alamos, he was appointed Chief Informa-
tion Officer of the Laboratory. In 2007, he followed Dr. Douglass Post to the HPCMP 
CREATE program, where he still consults. He is a member of IEEE and SPE/AIME 
and has published in the fields of numerical analysis, petroleum engineering, infor-
mation technology, and software engineering.

9780136566939_print.indb   30 16/11/21   2:33 PM



1

Chapter 1

The Power of Physics-Based 
Software for Engineering and 
Scientific Research

Nearly all mature organizations reach a time when the ways in which they have been 
developing products or conducting scientific research are no longer competitive. The 
organizations that survive (and thrive) find new and better ways to operate. In this 
chapter, we describe the paradigm of virtual prototyping that provides a better way 
to develop products and conduct research.

1.0  A New Product Development Paradigm

Since the end of World War II in 1945, computing power has increased exponen-
tially, from about 1 floating point operation per second (FLOPS) to more than 1017 
FLOPS (Strohmaier 2015). The capability to store, access, distribute, and share 
data has increased concomitantly. These technologies are enabling engineers and 
scientists to use computers to make revolutionary advances in engineering and 
science. 

One consequence of this explosive growth in computing power is that the 
experiment-based “design, build, test, iterate” model (Post 2014), with roots in the 
19th century Industrial Revolution, is no longer competitive in the modern world 
for the design and manufacture of many complex products. Engineers are using vir-
tual prototypes of complex products to dramatically reduce the risk, time, and cost 
of developing them, while also improving their performance and quality. Examples 
range from the design of golf clubs and automobile tires, to the analysis of auto-
mobiles crashes, design and performance predictions for naval vessels, commercial 

9780136566939_print.indb   1 16/11/21   2:33 PM



Chapter  1  The Power of Physics-Based Software2

and military aircraft, and rocket engines. The prototypes are also often referred to 
as “digital models” or “digital surrogates” (Forrester 2008 and Saddik 2018). These  
different terms are often used as synonyms. However, there might be many different 
virtual prototypes, but only a few digital surrogates might exist, based on the final 
designs and software capabilities.

Scientists are using digital surrogates to conduct new and ground-breaking 
fundamental scientific research that is not possible with traditional methods that 
are based only on physical experiments. In the scientific research arena, the use 
of virtual surrogates plays a key role in understanding supernova explosions, 
predicting the weather, and designing new materials (Council 2010 and Dongarra 
et al. 2003).

1.1  Computational Engineering and Virtual Prototypes

Engineering can be defined as follows: 

The use of  science and mathematics to design, construct, or manufacture physical 
systems.

Computational engineering is an extension of classical engineering that makes 
it possible to shift from physical prototypes to virtual prototypes. Computational 
engineering adds:

Digital models and simulations, often coupled with high-performance com-
puting, to solve complex physical problems arising in engineering analysis and 
design.

Traditional engineering product design involves the repeated iteration of four 
steps: 1. requirements and conceptual design, 2. detailed design, 3. construction of 
physical prototypes, and 4. experimental testing of the physical prototypes. Figure 1.1 
depicts this process. The design analysis was initially carried out using hand calcu-
lations and heuristics, then calculators, and, more recently, computers (Consortium 
2015 and Paquin 2014).

If the experimental physical prototype tests are successful, the product proceeds 
to manufacture. The manufactured products are tested experimentally to determine 
whether they meet requirements. 

9780136566939_print.indb   2 16/11/21   2:33 PM



31.1  Computational Engineering and Virtual Prototypes

The manufacturing process is guided by engineering drawings, which can be digi-
tal, paper documents, and possibly even a physical model of the product.

Figure 1.1	 Traditional product development process based on physical prototypes

(Courtesy Software Engineering Institute)

Computational engineering exploits the use of computers to supplement or 
even replace the use of physical prototypes with virtual prototypes for the devel-
opment of complex products (Consortium 2015, Post 2015, and Post 2009). Figure 
1.2 illustrates this process. The starting point of a virtual prototype can range 
from a 2-D CAD drawing to a 3-D NURBS (non-uniform, rational B-spline) 
description of the product geometry, including all the associated metadata needed 
to completely describe the product and its attributes. The latter is called the 
digital product model. It can also include the history of the design process, a com-
plete record of the analysis of the product design, and the data needed to start 
product manufacture.

Figure 1.2	 Computational engineering product development process based on virtual 
prototypes 

(Courtesy Software Engineering Institute)

Figure 1.3 compares the two approaches.

9780136566939_print.indb   3 16/11/21   2:33 PM



Chapter  1  The Power of Physics-Based Software4

Figure 1.3	 Schematic comparison of  historical empirical iterated “design, build, test” 
paradigm and the virtual prototyping paradigm

(Courtesy Software Engineering Institute)

What does it mean to pass a “virtual” test? Chapter 10, “Verifying and Validating 
Science-Based Software,” discusses this in detail. However, remember that Mother 
Nature always casts the final vote. Her laws of physics enable us to predict her vote 
before we build a physical prototype of the product and test it. As our understanding 
and experience grow, the need for physical confirmation decreases.

Although the widespread use of computational engineering is relatively new, the 
use of computers to design and analyze the performance of products, or at least 
components of them, dates at least as far back as the early days of the Manhat-
tan Project during and just after World War II (Dyson 2012, Ford 2015, and Atomic 
2014). From the end of World War II to the present, the U.S. Department of Energy 
nuclear weapon laboratories have relied on virtual prototypes to maintain and opti-
mize the designs of nuclear weapons (Energy 2019). When high-performance com-
puters became generally available (1960s onward), industry and government began 
to use them to develop new, more complex products (Council 2005, Post et al. 2016, 
and Paquin 2014).

More recently, the concept and capabilities of computational engineering (and sci-
ence) have been extended to include the whole process of product development and 
scientific research. This is expressed with terms such as digital engineering and the 

9780136566939_print.indb   4 16/11/21   2:33 PM



51.1  Computational Engineering and Virtual Prototypes

digital thread (Fei Tao 2019 and Kraft 2016). Starting with the digital product model, 
the artifacts (surrogates and design metadata, along with maintenance and opera-
tional history) of the entire product lifecycle are linked together as a digital thread. 

Computational engineering extends the classical engineering approach to make 
use of software and computers to model the effects that determine the behavior or 
performance of a product before it is manufactured. Only in the last decade have 
high-performance computers reached the petascale capability (1015 FLOPS) to han-
dle all the relevant aspects of the design of very complex products such as aircraft 
and ships. However, even high-performance computer workstations are often ade-
quate for designing and testing smaller, simpler products. The utility of computa-
tional engineering is not limited to designing complex machines such as aircraft. It is 
also being used to design consumer products such as bicycles, golf clubs, bleach and 
detergent bottles, and even hip replacement joints and other medical appliances.

The strong need for a new approach for the product development of complex sys-
tems based on computational engineering can be illustrated by the history of three 
of the most recent U.S. Department of Defense (DoD) major multibillion-dollar air 
vehicle procurement programs described in a recent Hudson Institute report (Green-
walt 2021): 

•• F-35 Joint Strike Fighter (JSF)

•• F-22 Raptor Stealth Fighter

•• V22 Osprey Tilt-Rotor 

Following the present “design, build, test, repeat” (see Figure 1.1) approaches that 
rely on the development and testing of physical prototypes for these three aircraft, 
DoD contractors now need more than 20 years from project start (contract award) to 
deliver fully operational aircraft to the DoD. In 1975, they needed only about 5 years. 
The Joint Strike Fighter (F-35) program started in 1996. The first fully operational 
F-35 was delivered 15 years later in 2011 (F-35 2021). The costs almost doubled from 
project start to acceptance by the Air Force (Wheeler 2012). Without improvement in 
aircraft procurement methods, it will continue to take the U.S. longer to develop new 
aircraft. The F-22 program started about 1986. Delivery of the first fully operational 
aircraft occurred in 2005, nearly 20 years later (F-22 2021). The number of F-22 fight-
ers that the DoD ultimately purchased dropped from 750 to 183, due to the increase in 
price of each airplane and the delay in the program (Ritsick 2020). The final cost was 
$340 million for each F-22. The V-22 Osprey Tilt-Rotor program started about 1983. 
The first full operational capability (FOC) aircraft was delivered in 2005, more than 
20 years later (V-22 2021). 

9780136566939_print.indb   5 16/11/21   2:33 PM



Chapter  1  The Power of Physics-Based Software6

Before 1975, DoD defense contractors generally took no longer than 5 to 7 years 
to develop and deliver new aircraft. The Lockheed F-117 Nighthawk Stealth bomber 
program, the General Dynamics F-16 Fighting Falcon, and the McDonnell Douglas 
F/A-18 Hornet were begun in the 1970s and delivered in 5 to 6 years. The McDonnell 
Douglas F-15 Eagle, started in 1967 was delivered in 1976, 9 years later. 

Other types of complex aircraft have not experienced this level of growth in 
development time. During the this period (1967 to 2011), the time to market for new 
commercial aircraft such as the Boeing 737 (delivered in 1967), the Boeing 767 (in 
1982), and Boeing 787 (in 2011) rose by only two years, from approximately 5 years 
to 7 years. Similarly, the time to market for new automobile and truck models has 
remained 4 to 6 years. Commercial aircraft and automobiles and trucks are quite 
complex, with massive amounts of embedded software, high reliability require-
ments, and strong cost constraints (Greenwalt 2021).

The recent history of Goodyear Tire and Rubber Co. provides a compelling exam-
ple of the benefits of computational engineering for reducing the “Time to Market.” 
Facing fierce competition from Europe (Michelin) and Japan (Bridgestone), Good-
year decided in 1992 to build physics-based tire design software (which we hence-
forth often refer to as tools). Goodyear entered into an ongoing collaboration with 
Sandia National Laboratory that enabled the company to combine its knowledge of 
tires and its materials with Sandia’s knowledge of finite element algorithms for mas-
sively parallel computers to develop this capability. In 2003, Goodyear used the tire 
design tool to reduce its time to market by a factor of 4 (Miller 2010, Miller 2017, and  
Council 2009). By enabling designers to generate and analyze more design alter-
natives, the tire design tool also allowed Goodyear to increase the number of new 
products per year, from 10 to 60. The Goodyear annual reports began to refer to 
the company’s “New Product/Innovation Engine.” This story is being repeated in 
many industries, such as Ford automobiles (Kochhar 2010), Whirlpool refrigerators 
(Gielda 2009), and Procter and Gamble shampoos and hand lotions (Lange 2009). 

Today the use of virtual prototypes can supplement and, in some cases, even 
replace the use of physical prototypes (Post 2015). Design engineers can construct 
and store thousands or even millions of 3-D virtual prototypes of a potential prod-
uct in a design option tradespace. The performance and behavior of each virtual 
prototype can be quickly assessed using simplified physics-based software. Further 
analysis can identify the most promising design options. More sophisticated high-
fidelity computational analysis tools can then be used to accurately predict their per-
formance. Finally, if needed, a physical prototype of the final design can then be 
constructed and tested for final verification of the design before manufacture. 

Another advantage is that virtual prototyping can greatly accelerate product 
innovation. Final design decisions can be postponed until later in the design process, 
when more information is available through virtual testing of the design candidates. 

9780136566939_print.indb   6 16/11/21   2:33 PM



71.2  Computational Science and Digital Surrogates

Usually this can be done orders of magnitude more quickly and cheaply with virtual 
prototypes than with physical prototypes. Virtual prototypes make it possible for 
designers to learn by developing and testing a much larger tradespace of designs. 
Goodyear used virtual prototyping to increase its innovation rate by a factor of 6, 
from 10 new tires per year to 60 new tires per year. Virtual prototyping enabled the 
company to rapidly learn through failure, similar to the Silicon Valley mantra 	
(Petroski 2006 and Post 2017). 

Numerous studies (Augustine 2007, Oden 2006, and Glotzer 2009) have high-
lighted the risks to U.S. international competitiveness if U.S. industry falls behind the 
rest of the world in the use of computational engineering. It is widely acknowledged 
by senior U.S. industry and DoD leaders (Cordell 2018) that, to remain competitive, 
U.S. industry and the U.S. government and its contractors must reduce their time to 
market, costs, and risks while producing high-quality, market-worthy products. 

1.2  Computational Science and Digital Surrogates

Science can be defined as follows: 

The systematic study of  the natural world to identify general laws and principles.

Computational science is defined as follows:

The use of  computers, models, and simulations to develop a quantitative under-
standing of  natural phenomena.

Scientific research generally involves four major steps (see Table 1.1):

Table 1.1  Four Major Elements of  Scientific Research

1.	 Observations of natural systems

2.	 Controlled experiments with the real system or models of the system

3.	 Development of mathematical theories of the behavior of natural systems

4.	 Predictions of system behaviors, based on the mathematical theory and 
machine learning algorithms trained on observations of natural systems

9780136566939_print.indb   7 16/11/21   2:33 PM



Chapter  1  The Power of Physics-Based Software8

The first three elements are iterated and can occur in any order. However, predic-
tions require a model and data of sufficient accuracy and breadth. Figure 1.4 illus-
trates the scientific research process based on these four steps.

Natural System

Experiments with
actual System

Experiments with
model of System

Observations of actual
System

Machine LearingPhysical ModelSimulation

Theory Mathematical
Model

Analytical Solution

Prediction

Figure 1.4	 Schematic illustration of  the computational science research process

(Courtesy Software Engineering Institute)

Computational science has joined experiments and theory as a third leg of the 
stool that supports scientific advances.

Today observations of natural phenomena such as terrestrial and space weather, 
planetary systems, chemical reactions, genetic evolution, geologic phenomena, fires, 
and hundreds of others increasingly rely on the collection and analysis of extremely 
large data sets. Generally, understanding and predicting the consequences of these 
natural events require detailed solutions of complex, nonlinear mathematical models 
that can be obtained only with computers. Additionally, recent advances in general-
purpose graphical processing units (GPGPUs) and other accelerator chips optimized 
for the rapid processing of streaming data flows, together with the development of 
computational software for multilayer neural networks, have enabled the analysis of 
very large data sets (many millions of elements) (Krizhevsky 2012 and Rumelhart 
1986). Together with the explosion of data from hundreds of different kinds of sen-
sors (cameras, microphones, pressure transducers, magnetism sensors, and so on), 
computers can be trained using various machine learning algorithms on large sets 
of data from observations of the natural system and experiments for both real and 

9780136566939_print.indb   8 16/11/21   2:33 PM



91.2  Computational Science and Digital Surrogates

model systems. This is opening up a revolution in artificial intelligence and can sup-
plement physics-based algorithms. 

Investigating the behavior of natural systems focuses on analyzing and develop-
ing digital models of natural systems of interest. The models serve as digital sur-
rogates for the actual natural systems. This approach is especially useful for natural 
systems upon which scientists have little or no influence, such as the weather, cli-
mate, and stellar formation and evolution. Scientists can conduct controlled virtual 
experiments by inserting different physics models into the calculation to see which 
physics models and sets of initial conditions provide the best match to the observed 
data. The best physics models can then be used to predict the future behavior of the 
system. A key advantage of using models for the study of natural systems is that it is 
often possible to study the details of the behavior of a virtual system’s internal com-
ponents. This is often very difficult or impossible for many highly interesting real 
systems (such as supernovae, the interior of the sun, or even large weather systems).

A key difference between computational engineering and computational science 
is its goals and approaches. One goal of computational engineering is the design 
of specific, complex products. The software application is a tool for developing 
the design. All the physics and solution algorithms in the software application are 
known, verified, validated, and accredited. The outcome of the calculations is the 
product design. In contrast, the primary goal of computational science is the dis-
covery of knowledge. The purpose of the simulation is to determine which, if any, 
of a set of candidate physics or other scientific models best fit the observational or 
experimental data. If none of the models fits the data, new models are needed.

This is the current situation in astrophysics. The universe is now thought to consist 
of 5% ordinary matter and energy, 27% an unknown type of matter called dark matter 
(because we can’t see it) (Trimble 1987), and 68% an unknown form of energy known 
as dark energy, which we also can’t see (Frieman 2008). The evidence for dark matter is 
this: Dark matter is needed to explain why spiral galaxies don’t fly apart instead of just 
rotating. There just isn’t enough observed matter to provide the gravitational attraction 
needed to keep them from flying apart. The evidence for dark energy is that it is needed 
to explain why the universe is expanding at a rate that continues to increase instead of 
decreasing as would be expected from gravitational attraction of the observed matter 
(and dark matter) in the universe. The evidence for the existence of dark matter and 
dark energy is indirect. It is partly based on the failure of the known physics models 
to explain the observations described previously. Our lack of any fundamental under-
standing of 95% of the matter and energy in the universe makes dark matter and dark 
energy major focal points for current scientific investigation and study.

Weather prediction (meteorology) is a good example of a successful applied 
computational science research program based on digital surrogates of a complex 
natural system. The science of weather forecasting began in roughly 1860 with the 

9780136566939_print.indb   9 16/11/21   2:33 PM



Chapter  1  The Power of Physics-Based Software10

establishment of the United Kingdom (U.K.) Meteorological Office (MET) by Admi-
ral Robert FitzRoy (Blum 2019). Earlier in his career, FitzRoy was the captain of the 
HMS Beagle when it carried out a survey of the southern part of South America, 
with Charles Darwin as the naturalist (1831 to 1836). FitzRoy based his forecasts on 
weather data sent to him by telegraph from various upwind reporting stations around 
the U.K., especially those on the western and northern shores. Knowledge of basic 
principles of meteorology steadily improved during the latter half of the 19th cen-
tury and the first half of the 20th century (Fleming 2016 and Sawyer 1962), but it still 
roughly followed FitzRoy’s method of collecting and analyzing upwind weather data 
(air temperature, air pressure, humidity, wind speed and direction, and precipitation, 
for example). Weather prediction began to improve more rapidly in the latter half of 
the 20th century due to the exponential growth of computing following the end of 
World War II, together with more extensive and more complete data collection and 
analysis. “Modern 72-hour predictions of hurricane tracks are more accurate than 
24-hour forecasts were 40 years ago” (Alley 2019). Alley and his collaborators credit 
today’s accuracy to improvements in computing power, better understanding of the 
major physics effects, better data collection, and better computing techniques. 

Computational techniques are also proving useful for soft sciences, which involve 
complex interactions among living systems (animals, people, microbes, and so on) 
with the natural world. These include biology (medicine, epidemiology, genetics, and 
others), military strategy and war games, social and political behavior, ecology, eco-
nomics, finance, business planning, and many other complex systems. Sports teams 
are even constructing digital twins for their players, to track their physical condition 
and predict their performance (Siegele 2020).

1.3  The Computational Engineering and Science 
Ecosystem

The virtual prototyping/digital surrogates/digital paradigm requires a computa-
tional ecosystem (see Table 1.2). 

Table 1.2  Elements of  the Computational Ecosystem

1.	 Computers (or at least computer time)

2.	 Computer networks (access to computers) 

3.	 Data storage 

4.	 Experienced and skilled users (customers)

5.	 Testing and test data

6.	 Application software (including developers and user support staff, if software is 
to be developed)

9780136566939_print.indb   10 16/11/21   2:33 PM



111.3  The Computational Engineering and Science Ecosystem

Figure 1.5 presents an example of such an ecosystem for the DoD’s High-
Performance Computer Modernization Program (HPCMP). The next chapter dis-
cusses these elements in more detail.

Figure 1.5	 Illustration of  essential elements of  a successful customer-focused, secure 
ecosystem required to support virtual prototyping from HPCMP

(Courtesy DoD HPC Modernization Program)

The HPCMP ecosystem supports both product development and scientific 
research. It includes secure, cloudlike, high-performance computing and network-
ing resources, along with various software applications, including the CREATE fam-
ily of virtual prototyping software applications. The outputs of this ecosystem are 
virtually tested air vehicle, ground vehicle, ship and antenna design, and scientific 
research results for DoD problems. 

Although computers, computer networks, and data storage capabilities are at the 
forefront of advanced technologies, they are primarily general-purpose, commod-
ity technologies that are available from commercial vendors along with supporting 
services (for example, the cloud and commercial communication networks). The 
need for a workforce with skills in the relevant engineering and scientific disciplines 
is obvious. Organizations already have much of the workforce they need to use 
computers for design or research and understand how to recruit to augment their 
workforce. 

9780136566939_print.indb   11 16/11/21   2:33 PM



Chapter  1  The Power of Physics-Based Software12

Acquiring the needed software applications presents a fundamentally differ-
ent challenge than obtaining computers, communication networks, data handling, 
and even a capable engineering workforce. It is important to recognize that techni-
cal software is not like hardware. It is not a commodity and is not general purpose. 
Almost always, every technical software application is developed for a specific set of 
technical problems. Software used to calculate the effects of airflow across an air-
plane wing cannot be used to determine the performance of an antenna. Engineering 
and scientific software is based on the laws of science (physics, chemistry, and so on). 
Software that can address a complex technical problem is at least as complex as the 
problem. Case studies indicate that developing a good multiphysics engineering or 
scientific software application generally takes 5 to 10 years (Post 2004). At the top of 
the list of important requirements for an engineering and scientific software appli-
cation is accuracy. By this, we mean that the software must be accurate enough to 
support its potential uses. Validation testing, including comparison of the software 
predictions with experimental test data, is a key requirement for demonstrating the 
needed accuracy.

For many design and analysis tasks, product development organizations can 
obtain application software from independent software vendors (ISVs). The com-
petitive advantage shifts from the software to the effective use of the software. If 
commercial software products can meet an organization’s needs, licensing can be 
attractive. However, commercially available software may not meet the needs of a 
specific product development effort. Crucial features may be missing. The algorithms 
for important effects may not be accurate enough. In that case, it may be necessary 
to develop the needed software applications. Following the 5 to 10 years needed to 
develop the multiphysics simulation, the software will require continued support for 
the whole time it is needed. This book focuses on lessons learned from examples of 
real programs that have developed and deployed such software.

Scientific research organizations face similar challenges to develop and deploy 
scientific research software. Unless other research organizations have developed 
software that meets a research organization’s needs and are willing to share, each 
organization will need to develop its own software. Even if externally developed soft-
ware is available, considerable modification and future development may be required 
to address evolving needs. 

For both product development and research, a dearth of useful, actionable infor-
mation exists about successful software engineering and project management prin-
ciples and practices for developing large-scale scientific software applications. The 
evidence indicates that many, if not most, of these projects either fail to meet their 

9780136566939_print.indb   12 16/11/21   2:33 PM



131.4  High-Performance Computers: The Enablers

goals or fail totally (Ewusi-Mensah 2003, Glass 1998, and Gorman 2006). The pur-
pose of this book is to address this need.

1.4  High-Performance Computers: The Enablers

The principal driver and enabler of computational engineering and science is the 
exponential growth of computer performance since the end of World War II: 17 orders 
of magnitude. We are not aware of any other technical advance of this magnitude.

Two Historic Increases in Mankind’s Technological Capabilities 

•• Explosive power from a few pounds of black powder in the Civil War, to the 
50-megaton hydrogen bomb tested in the USSR in 1961—a net increase of 
~2x1013 in explosive power 

•• Continuous human-led travel speed increase of ~3x104 spread over millions 
of years

•• Human walking: 2 to 4 mph

•• Horse travel: 30 mph

•• Railroad travel: 50 to 400 mph

•• Civilian jet aircraft travel: Up to 2200 mph

•• New Horizon mission to Pluto: 50,000 mph 

There are only several dozen supercomputers in the world with near-Exascale per-
formance (1018 FLOPS), and only a handful of engineers and scientists at the world’s 
largest research and engineering facilities have access to these computers. However, 
many, if not most, scientists and engineers in major industries, universities, and gov-
ernment laboratories in the U.S., Europe, and Asia, now have access to supercomput-
ers with processing powers in the PetaFLOP range (1 PetaFLOP=1015 FLOPS) (see 
Figure 1.6) (Strohmaier 2015). This enables them to tackle and solve problems at the 
leading edge of scientific research and engineering design. Also, there are thousands 
of powerful servers, and millions of desktop and laptop personal computers with 
processing power in the GFLOPS to TeraFLOPS range. It’s a “Brave New World,” 
and the industries, universities, and government laboratories not using these tech-
nologies are beginning to fall behind. 

9780136566939_print.indb   13 16/11/21   2:33 PM



Chapter  1  The Power of Physics-Based Software14

Figure 1.6	 History of  supercomputer performance growth, 1945 to 2019

(Data is taken from the top500.org website, http://www.top500.org/; (Erich Strohmaier 2015); and 
historical data from LLNL and LANL, analyzed by Douglass Post.)

1.5  Full-Featured Virtual Prototypes 

Only in the last decade or so has the full promise of virtual prototypes been realiza-
ble. By 2010, the processing power of the fastest high-performance computers had 
reached a level to support accurate predictions of the future performance and behav-
ior of full-scale, full-featured products and complex natural systems. The previous 
generation of digital surrogates often suffered from a lack of adequate resolution 
and the inability to include all the important physics needed for accurate predictions. 
The capability to deploy high-resolution, multiphysics, systems-of-systems software 
makes full-featured (see Table 1.3) product design now possible.

M01_Kendall_C01_p001-024.indd   14 16/11/21   4:29 PM

http://top500.org
http://www.top500.org/


151.5  Full-Featured Virtual Prototypes 

A tremendous advantage of these new capabilities is that they enable industrial, 
academic, and governmental organizations to collect and consolidate, in a software 
application, their most important and insightful past corporate knowledge and 
experience, along with their new research knowledge. Experienced engineers can 
then immediately use that software application to develop designs that are informed 
by this knowledge. 

Very often in the past, many of the most promising results of government, aca-
demic, and industrial research programs have not been successfully transitioned into 
real products or applications, due to these limitations: 

•• The lack of transition paths

•• The difficulties of gaining the interest, acceptance, and endorsement of the 
design community

•• Funding obstacles for developing and testing prototypes

•• Competition from other promising research results

In the U.S. Department of Defense, concepts that fail to transition from research 
into real products or operational concepts fall into what is referred to as the “Val-
ley of Death” (Montgomery 2010). Computational engineering can help bridge this 
chasm by providing a path to real application of the research (see Figure 1.7). 

Table 1.3  Attributes of  Full-Featured, Physics-Based, High-Performance Computing 
Software Applications

1.	 The applications include all the major physical effects that determine the perfor-
mance and behavior of the system.

2.	 They enable the design and generation of complex, multidimensional (3-D) 
digital product models of full-scale systems, not just components.

3.	 They support the high-resolution calculations needed to capture fine detail.

4.	 They use highly accurate mathematical and computational solution algorithms.

5.	 They can demonstrate the validity of the predictive capability of the software 
applications through comparison with detailed, accurate experimental test data.

6.	 They can predict the performance and behavior of a complex full-scale system 
(for example, an entire ship, airplane, or planetary weather system).

7.	 They are able to quantify the uncertainties of the predictions.

8.	 They can complete a high-fidelity, time-dependent, multidimensional, multiphysics 
calculation in minutes to hours, to provide timely results (compared to months to 
years in 1998). 

9780136566939_print.indb   15 16/11/21   2:33 PM



Chapter  1  The Power of Physics-Based Software16

Figure 1.7	 Physics-based software with high-performance computing can provide the 
means to transition from science and technology discoveries to the design and production of  
real systems to leap over the “Valley of  Death”

(Courtesy CMU Software Engineering Institute)

1.6  The Advantages of Virtual Prototyping for  
Systems of Systems

The construction and analysis of virtual prototypes is a natural and powerful method 
for analyzing the behavior of systems of systems. A major advantage is that it forces 
the engineer or scientist to address all the important effects that determine the behav-
ior of the system of systems, not just the ones that are the easiest to address. We 
illustrate that with the example of air vehicles.

1.6.1  Systems of Systems: Aircraft

Air vehicles are an example of systems of systems that provide natural tests of our 
depth of understanding of their operation. To accurately model and predict their 
behavior, it is necessary to successfully integrate all the crucial physics elements that 
determine the system performance. If the software cannot successfully do that, it is 
missing at least one key part of the required physics capability. In practical terms, 
this means that the software developer has to build and implement solution algo-
rithms that can smoothly integrate all the important individual physics effects and 
operational controls (see Figure 1.8). One of the CREATE software applications, 
Kestrel, illustrates this (McDaniel 2016 and McDaniel 2020). 

9780136566939_print.indb   16 16/11/21   2:33 PM



171.6  The Advantages of Virtual Prototyping for Systems of Systems 

Figure 1.8	 Major aircraft systems and functions for a generic commercial airliner

(VectorMine/Shutterstock)

The major physics effects include the following:

•• Time-dependent motion with six degrees of freedom (pitch, yaw, roll, surge, 
heave, and sway—6DoF)

•• Gravity and Newton’s laws of motion

•• The forces on the aircraft structure due to the flow of air across the outer surfaces

•• The reaction of aircraft structure to those forces

•• The forces due to propulsion systems (jet engines or propellers)

•• The forces from the air flow on the passive and active control systems

•• The forces on the landing gear

Kestrel was developed to smoothly integrate all these effects to be able to accu-
rately calculate aircraft flight for subsonic and supersonic aircraft. The predicted 
flight path and other measures of performance compare well with measured flight 
data and wind tunnel tests. Kestrel is being used extensively by the U.S. Naval 

9780136566939_print.indb   17 16/11/21   2:33 PM



Chapter  1  The Power of Physics-Based Software18

Aviation and Air Force communities (Shafer 2014), as well as U.S. industry (Stookes-
berry 2015). Kestrel includes: 

•• A six degrees of freedom (6DoF) algorithm for computing the aircraft motion 
in response to the forces acting on it 

•• A computational fluid dynamics solver for computing the air flow and result-
ant forces on the structure, including the passive and active control systems

•• A computational structural dynamics solver for computing the response of the 
structure to the airflow and other loads

•• A hierarchy of models for computing the effects of the propulsion systems, 
from one-dimensional empirical models to turbo-machinery models 

•• The capability to dynamically move the active control surfaces and accurately 
calculate their effect on the flight path and the loads placed on them

Described in very simple terms, aircraft are solid objects moving rapidly through 
a fluid (air). Their forward motion is driven by a propulsion system (propeller or jet). 
As the aircraft moves, it pushes air out of the way. The air flowing around the aircraft 
(particularly the wings) produces forces (lift and drag) on its structure that enable it 
to overcome gravity and fly (lift). Displacing the air and friction with the airplane 
exterior skin takes energy that generates resistance to the forward motion of the air-
craft (drag). An aircraft moves through time and space with six degrees of freedom, 
based on the forces from the airflow, the propulsion system, the passive and active 
control surfaces, and gravity. The airflow can exhibit turbulence, depending on local 
conditions. The software must be capable of computing this complex motion.

As evident from Figure 1.8, aircraft are highly complex systems. The major exter-
nal components are the fuselage, wings, engines, control surfaces, and landing gear 
(not shown). Interior struts, ribs, and so on embedded in the fuselage, wings, static 
control surfaces (vertical and horizontal stabilizers), and the landing gear provide 
most of the aircraft’s structural strength.

Much of the complexity of an aircraft system is due to the need for flight control. 
This representation of commercial aircraft has 12 active control systems (6 on the 
right and 6 on the left) and 7 passive control systems. A real commercial airliner 
likely has more. Flight control is essential. The Wright brothers were among the first 
to appreciate this and the first humans to successfully achieve powered, controlled 
flight. This insight made it possible for humans to be able to fly. 

9780136566939_print.indb   18 16/11/21   2:33 PM



191.7  Virtual Prototyping

Below their exterior surface, modern aircraft are highly complex as well. In addi-
tion to structural supports for the aircraft exterior, there are fuel tanks, propeller and 
jet engines, fuel lines, avionics, the flight cabin, the cockpit, cargo spaces, hydrau-
lic systems, steel cables, power lines, electronic cables, sanitary systems and plumb-
ing, exterior and interior sensors, communication systems, radar systems, weather 
systems, flight recorders, navigation systems, ventilation, emergency oxygen, cabin 
pressure systems, cabin doors and windows, life rafts, life preservers, and myriad 
other systems. The aircraft doesn’t need all these systems to fly, but they are all essen-
tial for the aircraft to meet all its operational goals for a pleasant safe flight. The only 
safer way to travel today is in elevators. 

1.7  Virtual Prototyping: A Successful Product 
Development and Scientific Research Paradigm

As mentioned earlier, virtual prototyping has a long track record of solid achieve-
ments. Virtual prototyping for the Manhattan Project was one of the major drivers 
of the original development of computers during World War II until the mid-1950s 
(Ford 2015 and Atomic 2014). Manhattan Project scientists developed 1-D virtual 
prototypes to predict the criticality of nuclear reactors and nuclear explosives and 
the implosion compression of fissile materials. Following the end of World War II, 
the development of electronic computers continued at a number of institutions, 
including the Institute of Advanced Studies at Princeton with John von Neumann 
and others, where the first “modern” computers were developed (Dyson 2012). The 
U.S. nuclear weapons programs at the Los Alamos, Livermore, and Sandia National 
Laboratories have continued the work begun during the Manhattan Project to pio-
neer the use of supercomputers to successfully design and sustain the U.S. nuclear 
stockpile. Nuclear tests are expensive and unpopular, so simulating and optimizing 
nuclear explosions with a computer offers tremendous advantages. Instead of con-
ducting hundreds of real nuclear tests, only a few are needed to calibrate and confirm 
the computer predictions. These U.S. Department of Energy (DOE) laboratories 
continue to be among the leading users of high-performance computing hardware 
and software, especially since the U.S. stopped conducting nuclear tests in September 
1992 (Energy 2019). 

Motivated by the problems the DoD was having in designing and developing 
new military platforms, the Office of the Secretary of Defense launched a small 
experimental program in 2006 to develop and deploy a set of physics-based, high-
performance computing software applications. The program goal was to deter-
mine whether virtual prototypes could help the department meet the challenges of 

9780136566939_print.indb   19 16/11/21   2:33 PM



Chapter  1  The Power of Physics-Based Software20

designing and producing major military systems more rapidly and less expensively 
than in using physical prototypes. In addition to the main question about the viabil-
ity of virtual prototypes, other concerns included these: 

	 1.	 Could government and contractor teams develop the needed software?

	 2.	 Would government and industry groups be able to use the software to design 
and guide the production of successful complex military systems? 

The Computational Research and Engineering Acquisition Tools and Environ-
ments (CREATE) program proposal was approved in late 2006 to address these 
questions. It was executed by the DoD High Performance Computing Moderniza-
tion Program (HPCMP), beginning on October 1, 2007. The HPCMP rapidly organ-
ized and sponsored software application development teams to build and deploy 12 
software applications for the design and development of naval ships, military air-
craft, ground vehicles, and radio frequency antennas, including developing three-
dimensional digital product models. The development teams were located at major 
DoD laboratories and warfare centers. During the following 12 years, the CREATE 
program was able to provide examples of the high value of virtual prototypes for the 
development of complex products (Post et al. 2016). The CREATE software tools 
are now being used by more than 2,000 acquisition engineers (40% government, 
50% industry, and 10% other sectors), contributing to more than 180 different DoD 
programs.

Many other recent commercial examples of the value of virtual prototyping exist. 
The benefit to Goodyear Tire of adopting the virtual product development para-
digm has already been discussed. The process of adoption at Goodyear was evolu-
tionary. During its transition to use of the tire design software, Goodyear continued 
to build a physical prototype of the final design produced by the physics-based tire 
design software and continued to test the physical prototype tire before starting 
to manufacture it. Goodyear found that the virtual tire designs were so successful 
that it could start manufacturing immediately after the final design and virtual tests 
were completed. Goodyear then tested the first tires from the initial production run. 
Design flaws appeared so infrequently that the advantages of the virtual tire design 
process (faster and cheaper, with greater product innovation and fewer design flaws) 
outweighed the disadvantages of an occasional flawed design. Goodyear engineers 
used the lessons learned from those few flaws to improve the tire design software and 
reduce the rate of flaws in future designs (Council 2009).

Whirlpool is another example of a company that successfully adopted the virtual 
prototyping paradigm. Whirlpool is one of the world’s leading manufacturers and 
marketers of major home appliances (including the Whirlpool, Maytag, KitchenAid, 

9780136566939_print.indb   20 16/11/21   2:33 PM



211.7  Virtual Prototyping

Jenn-Air, Amana, and Brastemp brands, among others). Today’s home appliances 
are highly complex products. Their design and manufacture involve trade-offs of 
cost, safety, reliability, performance, maintainability, efficiency, and convenience. 
Safety is a major issue; for example, a washing machine must not tip over if a child 
sits on the door when it is open. The appliance market is international, and the prod-
ucts must be designed to fit into the homes in dozens of countries on almost every 
continent. A large American refrigerator or stove will not fit into a smaller European 
or Japanese apartment, for example. The appliance market is also highly competi-
tive. Appliances can be assembled anywhere, with components from a global sup-
ply chain. Whirlpool models the appliances as systems of systems, including the 
packaging for shipment. A refrigerator that arrives at the appliance store scratched 
or dented during shipment has lost most of its sale value. Whirlpool models the 
fluid flow (water, refrigerant, and others), airflow, heat flow transport, mechanical 
strength of the appliance frame and components, electrical layout and switching, 
motor and pump performance, level of vibration, noise levels, computerized con-
trol systems, and mechanical balance. The company has substantially replaced much 
of its physical prototypes with virtual prototypes. “Testing using virtual prototypes 
has, for the most part, replaced physical testing—we’re no longer using the old ‘heat 
and beat’ approach,” says Tom Gielda (Gielda, 2009), Whirlpool’s engineering direc-
tor for global mechanical structures and systems.

Automobile companies increasingly supplement crash tests with virtual tests, 
which are faster and less expensive. Virtual tests are easier to diagnose and ana-
lyze than real crash tests. According to a 2014 press release, Ford Motor Company 
increased its computing power by 50% to maximize the speed and number of vir-
tual crash tests it can perform (Ford_Media 2014). The automaker performed more 
than two million crash test simulations from 2004 to 2014. By comparison, Ford per-
formed its 20,000th full vehicle crash test at its Dearborn, Michigan, testing facility 
around 2014. The new computing power allows Ford to include up to two million 
finite elements in its virtual crash test simulations, a significant increase from half 
a million elements a few years before 2014. Ford’s virtual tests include front impact, 
side impact, rear impact, roof strength, and safety system checks. 

Virtual prototypes with high-performance computers played a pivotal role in the 
development of Ford’s EcoBoost engine technology that was introduced in late 2010 
(Kochhar 2010). Derrick Kuzak, group vice president of global produce development 
at Ford, stated, “EcoBoost is truly a smart solution for consumers because it pro-
vides both improved fuel economy and superior driving performance. The combi-
nation of turbocharging and direct injection allows smaller engines to perform like 
larger ones while still delivering the fuel economy of the smaller powerplant.” Nand 
Kochhar, the chief engineer at Ford for global materials and standards engineer-
ing, said, “A lot of HPC-based computational analysis is involved in simulating the 

9780136566939_print.indb   21 16/11/21   2:33 PM



Chapter  1  The Power of Physics-Based Software22

trade-offs between performance, shift quality, and fuel economy. In the case of the 
engine, we conduct combustion analysis of turbocharging—optimizing a fuel–air 
mix, for example. To develop overall vehicle fuel efficiency, we use Computational 
Fluid Dynamics calculations to compute the optimal aerodynamics of the proposed 
vehicle” (Kochhar 2010).

Procter & Gamble (P&G) has used virtual prototyping in many parts of its prod-
uct development process (Lange 2009). P&G uses computational tools to design 
and test its product packaging for plastic bottles intended to hold bleach and other 
liquids. It modeled the transport of potato chips (for example, Pringles) through 
baking ovens to maximize the throughput of the chips. The detailed properties of  
surfactants (the major ingredients in soaps, detergents, lotions, and shampoos) deter-
mine how well P&G products meet its customers’ needs. In addition, environmental 
concerns, both with production and with consumer use and product disposal, have 
become highly important. Initially, the company’s knowledge and research on sur-
factants were experimental, but the research demands began to overwhelm what was 
possible with that approach. P&G turned to modeling the behavior of the atoms and 
molecules in the surfactants using computational chemistry and molecular dynamics 
calculations. With this approach, P&G was able to identify ways to produce better 
products. Kelly Anderson, a senior scientist specializing in molecular dynamics at 
P&G, said, “Molecular dynamics allows us to make approximations about the inter-
actions—the chemical potentials that are occurring. By investigating the molecular 
composition of these materials, we are better able to predict what properties a for-
mulation will exhibit—not only its immediate characteristics, but what will happen 
to the mix 6 months from now. By mixing and matching different molecules contain-
ing different configurations of atoms, we can create the most desirable characteris-
tics for our consumer products, such as detergents and shampoos, and at the same 
time, ensure they are safe and environmentally friendly. That’s really the magic of 
what we are trying to do” (Lange 2009).

1.8  Historical Perspective

The computer-driven leap in our ability to predict the future has its roots in a realiza-
tion by Greek natural philosophers in the late 7th and early 6th century BCE: The 
physical world might not be controlled by the capricious whims of gods and spirits 
(see Figure 1.9). Greek natural philosophers began searching for an underlying order 
in nature—for natural and universal laws that relate cause to effect, to explain the 
physical universe instead of relying on mythology and religion (Barnes 1965, Parkes 
1959, and Pollitt 1972). The next era of advances in science and engineering began 

9780136566939_print.indb   22 16/11/21   2:33 PM



231.8  Historical Perspective

during the Italian Renaissance in Italy (15th and 16th centuries), partly through the 
rediscovery of ancient Greek science and mathematics via the Islamic states in Spain 
and the Near East. The Age of Discovery, which began in the 16th century and lasted 
into the 19th century, saw further advances, such as the invention of the calculus to 
explain motion. The Age of Discovery was followed by the scientific and mathemati-
cal advances of the 17th and 18th centuries in Northern Europe, and the scientific 
revolution in the 19th and 20th centuries in Europe and North America. 

Figure 1.9	 Greek Gods and mythological beasts populated the heavens in 700 BCE

(matrioshka/Shutterstock)

With modern supercomputers and the appropriate software, humankind now has 
the ability to design and accurately predict the future performance of new products, 
as well as the future behavior of natural systems. Like those just cited, starting with 
the Greeks, this is a historic advance in our ability to develop new and exciting tech-
nologies and to better understand our world and the universe quantitatively. Some 
technology leaders place the advent of advanced computing as part of the Fourth 
Industrial Revolution (Schwab 2016). It is our view that what has happened is far 
more significant. Computational engineering now allows accurate predictions of 
the future performance and behavior of some of the most complex products ever 
conceived—before they are built. Computational science gives us the capability 
to ask and answer fundamental questions about natural phenomena such as the 
weather, the climate, and the structure, history, and future of the universe that we 
could not address before now.

9780136566939_print.indb   23 16/11/21   2:33 PM



313

Index

A
accuracy, right fidelity, 85
ADAPT (Aircraft Design, Analysis, 

Performance, and Tradespace), 83–84, 
127

Aerostar, 112–114
affordability, software, 67
Agile development, 217–218, 225. See also 

DevOps
aircraft, 35. See also UAVs (unmanned aerial 

vehicles)
commercial

physics effects, 17
time to market, 6

DoD procurement programs, 5–6
external components, 18
flight control, 19
Kestrel and, 16–18, 88–90
systems of systems, 16–19

Anderson, K., 22
APB (annual product baseline), 206
Army Corps of Engineers, Waterways 

Experiment Station, 123
artificial intelligence, 8, 267, 270–271
astronomical models, 76
astrophysics, 9
automation, 202–203, 222–223, 269
automobiles, virtual crash testing, 21
autonomous systems, 270–273

B
Bjerknes, V., 124–125
Blacker, T., 172–173
Boehm, B., 192, 227
Box, G., 237–238
Brooks, F., 143, 215

Mythical Man Month, 52–53

C
Capstone, 58, 82, 132
CFD (computational fluid dynamics), 111, 

113, 149
CME (coronal mass ejection), 278–279
commercial aircraft, physics effects, 17
commercial software, 44–47

CREATE and, 47
onsite consultants, 46
trial license, 45–46

communication, 216
cybersecurity and, 223–224
team, 260–261

compilers, 241
complex organizations, 72–73
computational engineering, 2, 3. See also 

virtual prototyping
complex physics and mathematics, 70–71
computational science and, 9
digital product model, 4
digital thread, 4
high-performance computers and, 13
processing power, 27, 101

Moore’s law, 71
PetaFLOP, 5, 13

time to market and, 6
UAV computational flight certification, 115
unique components, skilled and 

experienced users, 31
U.S. competitiveness and, 7
virtual prototyping, 4, 103–104

computational science, 7–8, 23
computational engineering and, 9
digital surrogates, 9
research results, 30
software bugs and, 32
testing, 32–34
weather forecasting, 124–127
weather prediction and, 9

9780136566939_print.indb   313 16/11/21   2:33 PM



Index314

computing ecosystem, 10–13, 25–26, 43.  
See also knowledge workers

commodity components, 27–28
software, 12–13, 29, 36

bugs and, 32
complexity of, 38
development, 37–38
hardware and, 36–37, 38
science-based, 34–36
sources of, 35–36
testing, 31–32

software development and, 178–180
unique components, 28–31
workforce and, 11

conceptual design analysis tools, 84–85
conceptual design generation tools, 83
continuous delivery, 202–203
continuous integration, 241
contract-based software development,  

51–53, 64
COVID-19, telework and, 72–73
CREATE (Computational Research and 

Engineering Acquisition Tools and 
Environments) program, 11, 16, 20, 
39–41, 47, 53–54, 72–73, 79, 107,  
146, 159

3-stage development strategy, 55–56
ADAPT (Aircraft Design, Analysis, 

Performance, and Tradespace),  
83–84, 127

AV Shadow Ops project, 112, 114
impact of, 112–113
metrics, 113–114

Capstone, 58, 82, 132
development stages, 146–147
DevOps tool chain, 223
documentation, 206

APB (annual product baseline), 206
FDR (final design review), 207
product post-release retrospective, 

208–209
product release summary of key 

features, 208
product roadmap, 207

GV (Ground Vehicles), 132
Helios, 59, 90–91, 129
IHDE (Integrated Hydrodynamic Design 

Environment), 84–85, 132

Kestrel, 16–18, 65, 88–90, 115, 118, 128, 
147, 248–249

legacy to native, 57–58
Mercury, 93–94
minimum viable product, 56, 57–58
NavyFOAM, 91–92, 130
NESM (Navy Enhanced Sierra Mechanics), 

59–60, 131
organizational chart, 205
POM (Program Objective Memorandum), 

156–157
portal, 224
product development cycle, 210
program goals, 57
program management policies, 193–194
project structure, 171–172
Quality Assurance, 218
research and development, 54
risk management, 190

principles and practices, 194–195
programmatic, 192

RSDE (Rapid Ship Design Environment), 
83, 86, 129–130

security and, 260–261
SENTRi, 93, 132
software development teams, 213–214
stakeholders, 149
testing, 234–235

automated, 236–237
continuous integration, 241
hierarchical, 240
principles and practices, 237–238
validation, 243–247
verification principles and practices, 

238–240
verification tests, 241–243

UAVs (unmanned aerial vehicles), 112–113
cybersecurity, 27–28, 178–179

Equifax breach and, 28
OPM breach and, 28
team communication and, 223–224

D
dark energy, 9
dark matter, 9
DARPA (Defense Advanced Research Projects 

Agency), ERI (Electronic Resurgence 
Initiative), 277

9780136566939_print.indb   314 16/11/21   2:33 PM



Index 315

Darwin, C., 9, 124–125
data privacy, 28
Demarco, T., 198–199
Dennard’s Law, 276
deployability, software, 67
design automation, 269
DevOps, 176, 179, 215–216, 219–221
DFM (design for manufacturability), 269
digital models, 75
digital product model, 3, 4, 81
digital surrogates, 1–2, 9, 77, 272

full-featured product design, 14–16
multiphysics, 88–89
weather prediction and, 9

digital thread, 4
documentation, 206, 229–231

APB (annual product baseline), 206
FDR (final design review), 207
FLASH, 232
MOUs/MOAs, 182
product post-release retrospective, 208–209
product release summary of key features, 208
product roadmap, 207
schedule for preparation, completion, and 

distribution, 231
software, 61
technical, 227
workflow management, 229
writing, 230

DoD (Department of Defense), 19, 37, 47. 
See also CREATE (Computational 
Research and Engineering Acquisition 
Tools and Environments)

5000 Acquisition workflow, 97–98
autonomous systems, 270
HPCMP (High-Performance Computer 

Modernization Program), 11, 101–102
procurement programs, 5–6
“Valley of Death” and, 15

double-blind studies, 121, 124
DSB (Defense Science Board), 270

E
ECP (Exascale Computer Project), 278
Edholm’s Law, 27
engineering, 2, 265

computational, 2
product design, 2–3

evolvability, 65–66
Exdrone, 112, 114
execution risk management, 214–215

communication and, 216
DevOps, 219–220
principles

flexibility and discipline, 217–218
practice-based conformity, 218

product release cadence and, 216, 218–219, 
224–225

product support and, 217, 226–227
requirements management, 215, 220–221
team communications risk, 223–224
testing and, 216, 218, 225–226
workflow management, 215–216, 221–223, 

227
criticality and, 229
documentation, 229
organizational culture, 227
requirements dynamics, 228
team experience and, 228

extensibility, 65–66

F
F-16 Fighting Falcon, 6
F-22 Raptor Stealth Fighter, 5
F-35 JSF (Joint Strike Fighter), 5
F-117 Nighthawk Stealth bomber program, 6
FBI Sentinel project, 52–53
FDR (final design review), 207
federated software development programs, 

204–205
FitzRoy, R., 9, 124–125
FLASH, 66, 225

documentation, 232
program management policies, 193–194

Fleischmann, M., 30
flight control, 19
Ford Motor Company, EcoBoost engine 

technology, 21–22
Fourth Industrial Revolution, 23
free technical software, 51
full-featured product design, 14–16

G
GAMESS program, 66
geometry and mesh generation tools, 81–83, 

172–173

9780136566939_print.indb   315 16/11/21   2:33 PM



Index316

Gielda, T., 20–21
Goodyear Tire and Rubber Co., 6, 170

adoption of virtual prototyping, 140–141
tire design tool and, 6, 20

GPGPUs (general-purpose graphical 
processing units), 8, 71, 266

Grinspoon, D., 160
GV (Ground Vehicles), 132

H
hardware

development, 37
software and, 36–38

Heilmeier catechism, 138
Helios, 59, 90–91, 129
hierarchical testing, 240
high-fidelity design and analysis tools, 88

Helios, 90–91
Kestrel, 88–90
Mercury, 93–94
NavyFOAM, 91–92
NESM (Navy Enhanced Sierra Mechanics), 

92–93
SENTRi, 93

high-performance computers, 13
home appliances, virtual prototyping, 20–21
in-house software development, 53–54,  

70, 159
HPCMP (High-Performance Computer 

Modernization Program), 11, 101–102, 
142

ROI study, 118–119
analysis, 119–121
double-blind studies and, 121
HPC Innovation Excellence awards, 

121–122
scope of, 119

Hulse, R., 31

I
IHDE (Integrated Hydrodynamic Design 

Environment), 84–85, 132
“ilities,” 63
innovation, virtual prototyping and, 6
integrity, 67–68, 175, 242
IP (intellectual property) management, 60–61, 

199–200

ISVs (independent software vendors), 44–45
Italian Renaissance, scientific advancements 

and, 22

J-K
Jobs, S., 143–144
Kestrel, 16–18, 65, 88–90, 115, 128

technical credibility, 118
testing, 248–249

knowledge workers
conventional workers and, 252–253
finding, 257–258
management techniques, 253–254
motivating, 254–255
recruiting, 257
retaining, 258–259
skill set needed for virtual prototyping, 

255–256
Kochhar, N., 21–22
Kuzak, D., 21–22

L-M
licensing, 61

open-source software, 48, 49–50
software development and, 173

machine learning, 267–268
maintainability, software, 68
management risks, program management 

policies, 197–200
Manhattan Project, 19
manufacturability analysis tools, 96, 269
marketing a virtual prototyping proposal, 

135–138, 154
assemble the proposal

proposal outline, 152–153
schedule and plan perspectives, 153

evaluate the software options, 149–151
funding, 154, 156
getting organized

enlist potential sponsor support, 
142–143

identify a potential sponsor, 140, 
141–142

vision team, 143–144
Heilmeier catechism, 138
POM (Program Objective Memorandum), 

156–157

9780136566939_print.indb   316 16/11/21   2:33 PM



Index 317

preparing and marketing the proposal, 139
program approval, 155
recruit potential stakeholders, 148–149
researching the proposal, 139

determine how sponsors can overcome 
obstacles, 145–146

estimate needed resources and assess 
changes needed to organizational 
culture, 148

identify a need for a new approach to 
product design, 144

identify obstacles preventing adoption 
of virtual prototyping, 145

short-term plan, 155
Mars Climate Orbiter, 31–32
mathematics, complex physics and, 70–71
medicine, virtual prototyping and, 279–280
Mercury, 93–94
military simulators, 273–274
Miller, G., 32
Miller, L., 141
modularity, software and, 66
Moore’s law, 71
multiphysics, 88–89, 94–95

N
NAS (National Academy of Sciences)

Assessing the Reliability of  Complex 
Models: Mathematical and Statistical 
Foundations of  Verification,    
Validation, and Uncertainty 
Quantification, 234–235

The Future of Computing Performance: 
Game Over or Next Level?, 277

observations about testing, 237
workflow management, 1

NASTRAN, 36–37
natural philosophy, science and, 22
NAVAIR (Naval Aviation), 106

UAV computational flight certification, 
110–112, 114–115
establishing the value of virtual 

prototyping, 116–118
impact of, 112–113
metrics, 113–114
ROI (return on investment), 115–116

NavyFOAM, 91–92, 130
NESM (Navy Enhanced Sierra Mechanics), 

59–60, 92–93, 131

networks
advancements in, 27
cybersecurity and, 27–28
data privacy and, 28
Edholm’s Law, 27

New Horizons satellite, 160
NRC (National Research Council)

core validation principles, 244
core verification principles, 238

NSA Trailblazer project, 52–53
NURBS (non-uniform rational B-splines), 81

O
Oberkampf, 234, 246–247
open-source software, 48–50

licensing, 48
risks of using, 49
security vulnerabilities, 50

operational performance tools, 87–88
operational simulators, 272
organizations

complex, 72–73
culture and, 227

P
packaging, virtual prototyping and, 22
pathological science, 30
PetaFLOP, 5, 13
physical prototypes, 6
physics

mathematics and, 70–71
models, 9
software applications and, 191, 267

pilot projects, 146, 201
POM (Program Objective Memorandum), 

156–157
Pons, S., 30
portability, software, 69
prediction, 8, 14

accuracy and, 64
computational science and, 9
weather, 9

processes, 192–193
processing power, 27, 101

Moore’s law, 71, 276–277
PetaFLOP, 5, 13

Procter & Gamble, product packaging, 22
product deployment and sustainment tools, 96

9780136566939_print.indb   317 16/11/21   2:33 PM



Index318

product design
full-featured, 14–16
Sleipner disaster and, 29
software tools, 79–80

conceptual design analysis tools, 84–85
conceptual design generation tools, 83
geometry and mesh generation tools, 

81–83
high-fidelity design and analysis tools, 

87–88
manufacturability analysis tools, 96
operational performance tools, 87–88
product deployment and sustainment 

tools, 96
requirements management tools, 81
software deployment and sustainment 

tools, 96
tradespace analysis tools, 86–87
workflow tools, 95

product development
CREATE, 39–41

3-stage development strategy, 55–56
Capstone project, 58
Helios project, 59
legacy to native, 57–58
minimum viable product, 56–58
NESM (Navy Enhanced Sierra 

Mechanics), 59–60
program goals, 57

establishing the value of virtual 
prototyping, 105
consequences of not using virtual 

prototyping, 108, 117
cost savings, 108, 117
customer user community, 106–107, 116
impact on customer programs, 108, 117
importance to the customer, 107, 117
need for computational capability, 106, 

116
number of different uses for the 

software, 107, 117
ROI (return on investment), 105, 116
size of programs, 107, 117
technical credibility, 109, 118
time saved, schedule reductions, and 

schedule slips avoided, 109, 118
user endorsement/testimonial, 109

workflows, 96–99
product post-release retrospective, 208–209

product release
cadence, 216, 218–219, 224–225
summary of key features, 208

product roadmap, 207
program management policies, 193–195

financial risks and, 195–197
management risks and, 197–200
schedule risks and, 200–203

programmatic risk management, 190–192
programming models, supercomputers and, 

71–72
Ptolemaic model, 76

Q-R
QOIs (quantities of interest), 238, 245, 

247–248
Quality Assurance, 218
reproducibility, 65
requirements management, 81, 215, 220–221, 

228
research and development, CREATE program 

and, 54. See also scientific research
reusability, software, 69
right fidelity, 85
risk management, 189–191

execution risks, 214–215
communication, 216
product release cadence, 216
product support, 217, 226–227
requirements management, 215
testing, 216, 225–226
workflow management, 215–216, 

227–229
financial risks, program management 

practices, 195–197
management risks, program management 

practices, 197–200
by principles and practices, 192–195
program management policies, 195
programmatic risks, 190–192
schedule risks, program management 

practices, 200–203
technical risks, 203–204

Roache, 234
ROI (return on investment), 105

HPCMP study, 118–119
analysis, 119–121
double-blind studies and, 121

9780136566939_print.indb   318 16/11/21   2:33 PM



Index 319

HPC Innovation Excellence awards, 
121–122

scope of, 119
UAV computational flight certification, 

115–116
Rossby, C.-G., 124–125
RSDE (Rapid Ship Design Environment), 83, 

86, 129–130

S
schedule risks, program management policies, 

200–203
science, 7, 266

computational, 7
discoveries and, 31
elements of, 7–8
Italian Renaissance and, 22
natural philosophy and, 22
pathological, 30
research results, 30, 34

scientific research
establishing the value of virtual 

prototyping, 105
consequences of not using virtual 

prototyping, 108, 117
cost savings, 108, 117
customer user community, 106–107, 116
impact on customer programs, 108, 117
importance to the customer, 107, 117
need for computational capability, 106, 

116
number of different uses for the 

software, 107, 117
ROI (return on investment), 105, 116
size of programs, 107, 117
technical credibility, 109, 118
time saved, schedule reductions, and 

schedule slips avoided, 109, 118
user endorsement/testimonial, 109

software development and, 77–79
SENTRi, 93, 132
Shafer, T., 110, 111, 114–115, 272
Sleipner disaster, 29
software, 12–13, 29, 36

bugs, 31–32, 233–234
commercial, 44–47

onsite consultants, 46
trial license, 45–46

complexity of, 38
copyright and, 48
documentation, 61
factors to consider when choosing an 

option, 61–63
free technical, 51
full-featured, 15
“government use,” 60
hardware and, 36–38
“ilities,” 63
IP management, 60–61
ISVs (independent software vendors), 

44–45
licensing, 61
open-source, 48–50

licensing, 49–50
risks of using, 49
security vulnerabilities, 50

quality attributes
accuracy, 64
affordability, 67
deployability, 67
evolvability, 65–66
extensibility, 65–66
integrity, 67–68
maintainability, 68
modularity, 66
portability, 69
quantification of uncertainties, 70
reproducibility, 65
reusability, 69
“speed of relevance,” 65
supportability, 67
sustainability, 68
understandability, 68
usability, 67

science-based, 34–36
sources of, 35–36, 43–44

external contract developers, 51–53
internal development, 53–54, 60–61

testing, 31–34
user error and, 30

software deployment and sustainment tools, 
96

software development, 37, 38, 54, 60–61. 
See also execution risk management; 
starting software development 
programs for virtual prototyping tools

Agile, 217–218

9780136566939_print.indb   319 16/11/21   2:33 PM



Index320

automation and, 202–203
code development, 202
compilers, 241
complex organizations and, 72–73
contract-based, 51–53, 232–234
DevOps, 176, 179, 215–216, 219–220
federated programs, 204–205
in-house, 70
licensing and, 173
processes, 192–193
programmatic risks, 190
research and, 77–79
teams, 259–260

sources of science-based software, 43–44
commercial licenses, 44–47
external contract developers, 51–53, 63
internal development, 53–54, 60–61, 70
open source, 48–50
technical organizations, 51

space weather, 278–279
“speed of relevance,” 65
sponsors

developing a governance strategy, 182
roles and responsibilities, 181–182

stakeholders
CREATE program, 149
recruiting, 148–149

starting software development programs for 
virtual prototyping tools, 160–162

assemble the software development team, 
166–167

collocate the developers and users, 
169–170, 174

develop mesh and geometry tools 
internally, 172–173

developing a governance strategy, 182
establish the computing ecosystem, 

178–180
form a program leadership team, 163
keeping the software developers happy, 181
management policies, 183
MOUs/MOAs, 182
opportunities for extra funding, 186
outreach, 185–186
policies for consistent units, 185
programming practices, 184–185
recruit the team leader, 165–166
revise the draft program organization and 

leadership plan, 170–172

risks of losing control of software 
distribution, 173–174

roles and responsibilities, 181–182
select software applications to meet the 

sponsor’s needs, 165
select the program leader, 162–163
set up a program office, 164
siting the software development team, 168
software management, development and 

testing practices, 183
strategies for quality assurance, software 

acceptance testing and software release, 
176–177

testing and, 174–175
translate the sponsor’s needs into software 

requirements, 164
uncertainty quantification practices, 176

Stern, A., 160
supercomputers, 13, 23, 102

federal agencies and, 101–102
Moore’s law and, 276–277
programming models and, 71–72

supportability, software, 67
sustainability, software, 68
systems of systems, 16–19, 266

T
teams, 259–260

communication and, 260–261
technical risks, program management policies, 

203–204
technology, increasing capabilities in, 13
testing, 20–21, 31–34, 174–175, 233, 234

in CREATE, 234–236
automated, 236–237
continuous integration, 241
hierarchical testing, 240
Kestrel, 248–249
principles and practices, 237–238
validation, 243–247
verification principles and practices, 

238–240
verification tests, 241–243

execution risks and, 216, 218, 225–226
integrity, 175
software bugs and, 32, 233–234
theoretical work and, 33–34
uncertainty quantification, 247–248

9780136566939_print.indb   320 16/11/21   2:33 PM



Index 321

virtual, 21
virtual shock, 59–60

theoretical work, testing and, 33–34
time to market

commercial aircraft, 6
tire design tool and, 6

tire design tool, 6, 20
tradespace analysis tools, 86–87
Trucano, 234

U
UAVs (unmanned aerial vehicles)

Aerostar, 112–113
computational flight certification, 110–118

metrics, 113–114
ROI (return on investment), 115–116

Exdrone, 112
swarms, 272

understandability, software and, 68
United States, 7
UQ (uncertainty quantification), 176, 

247–248, 274
US Department of Energy, ECP (Exascale 

Computer Project), 278
US Navy, virtual shock tests, 59–60. See also 

NAVAIR (Naval Aviation)
usability, 64, 67

V
V&V (verification and validation). See testing
V22 Osprey Tilt-Rotor, 5
validation, 243–244

archival base, 244–245
developing test plans, 245–246
NRC core principles, 244
QOIs and, 245

VERA, 95
verification, 238–240, 243. See also testing
virtual prototyping, 1, 3, 4, 75, 77, 102.  

See also marketing a virtual 
prototyping proposal; starting  
software development programs for 
virtual prototyping tools

advantages of for workforce development 
and training, 262

ancient astronomical models and, 76
application areas, 102–103

comparison with conventional software 
development, 252

CREATE program, 11, 16, 20
description of workforce, 251
EcoBoost engine technology, 21–22
establishing the value of for product 

development or scientific research, 105
consequences of not using virtual 

prototyping, 108, 117
cost savings, 108, 117
customer user community, 106–107, 116
impact on customer programs, 108, 117
importance to the customer, 107, 117
need for computational capability, 106, 

116
number of different uses for the 

software, 107, 117
ROI (return on investment), 105–106, 

116
size of programs, 107, 117
technical credibility, 109, 118
time saved, schedule reductions, and 

schedule slips avoided, 109, 118
user endorsement/testimonial, 109

full-featured product design, 14–16
future applications of

autonomous systems, 270–273
design automation, 269
interpreting and understanding model 

results, 275
manufacturability, 269
military simulators, 273–274
operational simulators, 272
precision medicine, 279–280
sustainment, 267–268
uncertainty quantification, 274

Manhattan Project, 19
Moore’s law and, 276–277
physical prototypes and, 6
product innovation and, 6
product packaging, 22
ROI (return on investment), 122–123.  

See also ROI (return on investment)
in science and engineering, 103–104
software tool chain, 79–80

conceptual design analysis tools, 84–85
conceptual design generation tools, 83
geometry and mesh generation tools, 

81–83

9780136566939_print.indb   321 16/11/21   2:33 PM



Index322

high-fidelity design and analysis tools, 
87–88

manufacturability analysis tools, 96
operational performance tools, 87–88
product deployment and sustainment 

tools, 96
requirements management tools, 81
software deployment and sustainment 

tools, 96
tradespace analysis tools, 86–87
workflow tools, 95

systems of systems, 16
testing and, 21
UAV computational flight certification, 

110–113
metrics, 113–114
ROI (return on investment), 115–116

Whirlpool, 20–21
virtual shock tests, 59–60
von Neumann, J., 19

W-X-Y-Z
weather

forecasting, 9, 124–127, 279
space, 278–279

Wexler, H., 124–125
Whirlpool, virtual prototyping, 20–21
“Why Most Published Research Findings  

are False,” 34
Wilson, G., Best Practices for Scientific 

Programming, 184–185
workflow management, 95, 215–216,  

221–223, 227
criticality and, 229
documentation, 229
organizational culture, 227
requirements dynamics, 228
team experience and, 228

Wozniak, S., 143–144

9780136566939_print.indb   322 16/11/21   2:33 PM


	Cover
	Half Title
	Title Page
	Copyright
	Dedication
	Contents at a Glance
	Contents
	Figure List
	Preface
	Acknowledgments
	About the Authors
	Chapter 1: The Power of Physics-Based Software for Engineering and Scientific Research
	1.0 A New Product Development Paradigm
	1.1 Computational Engineering and Virtual Prototypes
	1.2 Computational Science and Digital Surrogates
	1.3 The Computational Engineering and Science Ecosystem
	1.4 High-Performance Computers: The Enablers
	1.5 Full-Featured Virtual Prototypes
	1.6 The Advantages of Virtual Prototyping for Systems of Systems
	1.6.1 Systems of Systems: Aircraft

	1.7 Virtual Prototyping: A Successful Product Development and Scientific Research Paradigm
	1.8 Historical Perspective

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L-M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z




