
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136619949
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136619949
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136619949

Praise for the Second Edition

"When teaching about game design and development, you often get asked the dreaded
question: 'Where can I learn all this?' Introduction to Game Design, Prototyping, and
Development has been my deliverance, as it provides a one-stop solution and answer.
This book is quite unique in covering in-depth both game design and development:
it embraces and exemplifies the idea that design, prototyping, development, and
balancing combine in an iterative process. By sending the message that creating games
is both complex and feasible, I believe this to be a great learning tool; and the new
edition with even more detailed examples seems even better."

—Pietro Polsinelli, Applied Game Designer at Open Lab

"Introduction to Game Design, Prototyping, and Development has truly helped me in
my game development journey and has opened my mind to many helpful techniques
and practices. This book not only contains a full introduction to the C# language, but
also includes information about playtesting, game frameworks, and the game industry
itself. Jeremy is able to explain complex concepts in a way that is very informative and
straightforward. I have also found the prototype tutorials to be useful and effective
for developing good programming practices. I would highly recommend this book to
anyone looking to learn game development from scratch, or simply brush up on their
skills. I look forward to using it as a guide and reference for future projects."

—Logan Sandberg, Pinwheel Games & Animation

"Jeremy's approach to game design shows the importance of prototyping game rules
and prepares the readers to be able to test their own ideas. Being able to create your
own prototypes allows for rapid iteration and experimentation, and makes better Game
Designers."

—Juan Gril, Executive Producer, Flowplay

"Introduction to Game Design, Prototyping, and Development combines the necessary
philosophical and practical concepts for anyone looking to become a Game Designer.
This book will take you on a journey from high-level design theories, through game
development concepts and programming foundations. I regularly recommend this
book to any aspiring game designers who are looking to learn new skills or strengthen
their design chops. Jeremy uses his years of experience as a professor to teach you how
to think with vital game design mindsets so that you can create a game with all the right

A01_Bond_FM_p00i-xliv.indd 1 28/06/22 12:18 AM

tools at hand. Regardless of how long you've been in the games industry, you're bound
to find inspirational ideas that will help you improve your design process. I'm personally
excited to dive into the updates in this latest edition and get a refresher course on some
of the best practices for creating amazing games!"

—Michelle Pun, Game Producer at Osmo, former Lead Game Designer at Disney
and Zynga

"I used Professor Bond's book to teach myself how to code in C# and familiarize myself
with Unity. Since then I have used the book as the backbone for my high school Digital
Game Design class. The programming lessons are top-notch, the prototypes clearly
demonstrate the myriad facets of programming and how those are used to create
recognizable game mechanics, and the prototypes are easily adapted for student
personalization. I can't wait to get hold of the second edition and begin using it in my
classroom."

—Wesley Jeffries, Game Design Teacher, Riverside Unified School District

"With the latest edition of Introduction to Game Design, Prototyping, and Development,
Bond builds on the solid foundation of the first. The new edition adds new content
throughout the book, with updated examples and topics across all the chapters. This is
a thorough and thoughtful exploration of the process of making games."

—Drew Davidson, Director, Entertainment Technology Center at Carnegie Mellon
University

"If you want to take your game development to the next level, this book is a must! Not
only does it give you a lot of game examples from beginning to end, it also—and this
is the most important part—makes you think like a game designer. What makes a game
fun and engaging? What makes a player come back to your game over and over again?
The answers are all here. This book gives you a lot more than a couple of online tutorials
can give you. It gives you the whole picture!"

—David Lindskog, Founder, Monster Grog Games

A01_Bond_FM_p00i-xliv.indd 2 28/06/22 12:18 AM

Introduction to Game
Design, Prototyping, and

Development

A01_Bond_FM_p00i-xliv.indd 3 28/06/22 12:18 AM

A01_Bond_FM_p00i-xliv.indd 4 28/06/22 12:18 AM

This page intentionally left blank

Boston • Columbus • Indianapolis • New York • San Francisco
Amsterdam • Cape Town • Dubai • London • Madrid • Milan

Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Introduction to Game
Design, Prototyping, and

Development

From Concept to Playable Game
with Unity and C#

Jeremy Gibson Bond

A01_Bond_FM_p00i-xliv.indd 5 28/06/22 12:18 AM

Editor-in-Chief
Mark Taub

Acquisitions Editor
Malobika Chakraborty

Development Editor
Chris Zahn

Managing Editor
Sandra Schroeder

Senior Project
Editors
Lori Lyons
Tonya Simpson

Copy Editor
Paula Lowell

Indexer
Ken Johnson

Proofreader
Donna E. Mulder

Technical Reviewer
Margaret Moser

Editorial Assistant
Cindy Teeters

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021947656

Copyright © 2023 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request
forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-661994-9
ISBN-10: 0-13-661994-0

ScoutAutomatedPrintCode

A01_Bond_FM_p00i-xliv.indd 6 15/07/22 3:47 PM

mailto:corpsales@pearsoned.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

PEARSON'S
COMMITMENT TO
DIVERSITY, EQUITY,
AND INCLUSION

Pearson is dedicated to creating bias-free content that reflects the diversity of all learn-
ers. We embrace the many dimensions of diversity, including but not limited to race,
ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or
political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to
deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our respon-
sibility to demonstrate inclusivity and incorporate diverse scholarship so that everyone
can achieve their potential through learning. As the world's leading learning company,
we have a duty to help drive change and live up to our purpose to help more people
create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

■ Everyone has an equitable and lifelong opportunity to succeed through learning

■ Our educational products and services are inclusive and represent the rich diversity
of learners

■ Our educational content accurately reflects the histories and experiences of the
learners we serve

■ Our educational content prompts deeper discussions with learners and motivates
them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

■ Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

A01_Bond_FM_p00i-xliv.indd 7 28/06/22 12:18 AM

https://www.pearson.com/report-bias.html

This book is dedicated to:

My wife Melanie, the love of my life,
for her love, intellect, and support

My son Jordan and godson Phoenix,
whom I hope to make games with one day

My parents and sisters

My friend and mentor Mike Sellers,
a brilliant designer and professor

And my many professors, colleagues, and students
who inspired me to write this book

A01_Bond_FM_p00i-xliv.indd 8 28/06/22 12:18 AM

C o n t e n t s a t a G l a n c e

Foreword . xxv

Preface . xxviii

Acknowledgments .xli

About the Author . xliii

PART I Game Design and Paper Prototyping1

1 Thinking Like a Designer. .3

2 Game Analysis Frameworks 21

3 The Layered Tetrad. 33

4 The Inscribed Layer . 41

5 The Dynamic Layer. 67

6 The Cultural Layer . 89

7 Acting Like a Designer . 103

8 Design Goals . 129

9 Paper Prototyping . 151

10 Game Testing. 167

11 Math and Game Balance. 187

12 Guiding the Player . 231

13 Puzzle Design . 247

14 The Agile Mentality . 265

15 The Digital Game Industry 287

PART II Programming C# in Unity 309

16 Thinking in Digital Systems 311

17 Introducing Unity Hub and the Unity Editor 323

18 Introducing Our Language: C# 347

19 Hello World: Your First Program. 359

20 Variables and Components 383

A01_Bond_FM_p00i-xliv.indd 9 28/06/22 12:18 AM

x CONTENTS AT A GLANCE

21 Boolean Operations and Conditionals 405

22 Loops . 423

23 Collections in C# . 437

24 Functions and Parameters 473

25 Debugging . 493

26 Classes . 521

27 Object-Oriented Thinking 539

28 Data-Oriented Design . 575

PART III Game Prototype Tutorials 619

29 Apple Picker . 621

30 Mission Demolition . 681

31 Space SHMUP – Part 1 . 753

32 Space SHMUP – Part 2 . 807

33 Prospector Solitaire – Part 1 897

34 Prospector Solitaire – Part 2 969

35 Dungeon Delver – Part 1 .1019

36 Dungeon Delver – Part 2 1095

PART IV Next Steps .1187

37 Coding Challenges . 1189

38 Beyond This Book .1197

Index .1203

PART V Online Appendices — http://book.prototools.net or informit.com/
title/9780136619949

A Standard Project Setup Procedure

B Useful Concepts

C Online Reference

D Tips for Teaching from This Book

A01_Bond_FM_p00i-xliv.indd 10 29/06/22 2:52 PM

http://book.prototools.net
http://informit.com/title/9780136619949
http://informit.com/title/9780136619949

C o n t e n t s

Foreword . xxv

Preface . xxviii

Acknowledgmentsxli

About the Author xliii

PART I Game Design and Paper Prototyping 1

1 Thinking Like a Designer 3

You Are a Game Designer . 4

Bartok: A Game Design Exercise. 4

The Definition of Game . 11

Summary . 19

2 Game Analysis Frameworks 21

Common Frameworks for Ludology 22

MDA: Mechanics, Dynamics, and Aesthetics22

Formal, Dramatic, and Dynamic Elements 26

The Elemental Tetrad .30

Summary . 32

3 The Layered Tetrad 33

The Inscribed Layer .34

The Dynamic Layer. 35

The Cultural Layer . 36

The Responsibility of the Designer 38

Summary .40

4 The Inscribed Layer 41

Inscribed Mechanics . 42

Inscribed Aesthetics . 51

A01_Bond_FM_p00i-xliv.indd 11 28/06/22 12:18 AM

xii Contents

Inscribed Narrative. .54

Inscribed Technology . 65

Summary .66

5 The Dynamic Layer 67

The Role of the Player .68

Emergence . 69

Dynamic Mechanics . 70

Dynamic Aesthetics . 77

Dynamic Narrative . 85

Dynamic Technology .88

Summary .88

6 The Cultural Layer 89

Beyond Play .90

Cultural Mechanics . 91

Cultural Aesthetics . 93

Cultural Narrative . 93

Cultural Technology . 95

Authorized Transmedia Are Not Part of the Cultural Layer. . . 96

The Cultural Impact of a Game 97

Summary . 101

7 Acting Like a Designer 103

Iterative Design . 104

Innovation . 112

Brainstorming and Ideation 113

Changing Your Mind. 117

Scoping! . 120

Summary . 127

A01_Bond_FM_p00i-xliv.indd 12 28/06/22 12:18 AM

Contents xiii

8 Design Goals . 129

Design Goals: An Incomplete List 130

Designer-Centric Goals . 131

Player-Centric Goals . 134

Summary . 150

9 Paper Prototyping 151

The Benefits of Paper Prototyping 152

Paper Prototyping Tools . 153

Paper Prototyping for Interfaces 156

A Paper Prototype Example 157

Best Uses for Paper Prototyping 162

Poor Uses for Paper Prototyping 163

Summary . 164

10 Game Testing . 167

Why Playtest? . 168

Being a Great Playtester Yourself 168

The Circles of Playtesters 169

Methods of Playtesting . 172

Other Important Types of Testing. 183

Summary . 185

11 Math and Game Balance 187

The Meaning of Game Balance 188

The Importance of Spreadsheets 188

Examining Dice Probability with Sheets 190

The Math of Probability . 207

Randomizer Technologies in Paper Games 212

Weighted Distributions . 215

Weighted Probability in Google Sheets 216

Permutations . 217

A01_Bond_FM_p00i-xliv.indd 13 28/06/22 12:18 AM

xiv Contents

Using Sheets to Balance Weapons. 219

Positive and Negative Feedback 228

Summary . 229

12 Guiding the Player 231

Direct Guidance . 232

Indirect Guidance . 234

Teaching New Skills and Concepts 242

Summary . 245

13 Puzzle Design . 247

Scott Kim on Puzzle Design 248

The Steps of Solving a Puzzle 257

Puzzle Examples in Action Games. 260

Designing and Developing Puzzle Games 262

Summary . 263

14 The Agile Mentality 265

The Manifesto for Agile Software Development 266

Scrum Methodology. 267

Burndown Chart Example 271

Creating Your Own Burndown Charts 285

Summary . 286

15 The Digital Game Industry 287

About the Game Industry 288

Game Education . 296

Getting Into the Industry 299

Don't Wait to Start Making Games! 305

Summary . 308

A01_Bond_FM_p00i-xliv.indd 14 28/06/22 12:18 AM

Contents xv

PART II Programming C# in Unity309

16 Thinking in Digital Systems 311

Systems Thinking in Board Games 312

An Exercise in Simple Instructions 313

Game Analysis: Apple Picker 316

Summary . 322

17 Introducing Unity Hub and the Unity Editor. 323

Downloading Unity . 324

Introducing Our Development Environment 327

Creating a Unity Account 334

Checking Out a Sample Project 335

Creating Your First Unity Project 335

Learning Your Way Around Unity 338

Setting Up the Unity Window Layout. 339

Summary . 345

18 Introducing Our Language: C# 347

Understanding the Features of C# 348

Reading and Understanding C# Syntax. 355

Summary . 358

19 Hello World: Your First Program 359

Creating a New Project . 360

Making a New C# Script . 363

Making Things More Interesting 370

Summary . 382

20 Variables and Components. 383

Introducing Variables . 384

Statically Typed Variables in C# 384

Important C# Variable Types 386

A01_Bond_FM_p00i-xliv.indd 15 28/06/22 12:18 AM

xvi Contents

The Scope of Variables . 389

Naming Conventions . 389

Important Unity Variable Types 390

Unity GameObjects and Components 399

Summary . 403

21 Boolean Operations and Conditionals405

Booleans . 406

Comparison Operators . 410

Conditional Statements . 416

Summary . 422

22 Loops . 423

Types of Loops . 424

Set Up a Project . 424

hile Loops . 425

do hile Loops. 429

for Loops . 429

foreach Loops . 433

Jump Statements within Loops 433

Summary . 436

23 Collections in C# 437

C# Collections . 438

Using Generic Collections 442

ist T> . 443

Dictionary T ey T alue>. 447

Array . 451

Multidimensional Arrays. 457

Jagged Arrays. 461

Jagged ist T>s . 465

Choosing Whether to Use an Array or List 466

Summary . 467

A01_Bond_FM_p00i-xliv.indd 16 28/06/22 12:18 AM

Contents xvii

24 Functions and Parameters 473

Setting Up the Function Examples Project 474

Definition of a Function . 474

What Happens When You Call a Function? 476

Function Parameters and Arguments 478

Returning Values . 480

Returning oid. 480

Function Naming Conventions 482

Why Use Functions? . 482

Function Overloading . 485

Optional Parameters . 486

The para s Keyword . 487

Recursive Functions . 489

Summary . 491

25 Debugging . 493

Getting Started with Debugging 494

Stepping Through Code with the Debugger 506

Summary . 519

26 Classes . 521

Understanding Classes . 522

Class Inheritance . 533

Summary . 538

27 Object-Oriented Thinking 539

The Object-Oriented Metaphor 540

An Object-Oriented Boids Implementation 542

Summary . 574

28 Data-Oriented Design 575

The Theory of Data-Oriented Design 576

DOTS Tutorial and Example 582

A01_Bond_FM_p00i-xliv.indd 17 28/06/22 12:18 AM

xviii Contents

The Future of Unity DOTS 617

Summary . 618

PART III Game Prototype Tutorials 619

29 Apple Picker . 621

What You Will Learn . 622

The Apple Picker Prototype. 622

The Purpose of a Digital Prototype 623

Preparing . 624

Coding the Apple Picker Prototype 637

GUI and Game Management 661

Summary . 678

30 Mission Demolition 681

What You Will Learn . 682

The Mission Demolition Prototype 682

Getting Started: Mission Demolition 683

Game Prototype Concept 683

Art Assets . 684

Coding the Prototype . 691

From Prototype to First Playable 736

Summary . 751

31 Space SHMUP – Part 1 753

What You Will Learn . 754

Getting Started: Space SHMUP. 755

Setting the Scene . 757

Making the Hero Ship . 758

Adding Some Enemies . 771

Spawning Enemies at Random 787

Setting Tags, Layers, and Physics 790

Making the Enemies Damage the Player 792

A01_Bond_FM_p00i-xliv.indd 18 28/06/22 12:18 AM

Contents xix

Restarting the Game . 797

Shooting (Finally) . 800

Summary . 805

32 Space SHMUP – Part 2. 807

What You Will Learn . 808

Getting Started: Space SHMUP – Part 2 809

Enemy to Enemy_0. 810

Programming Other Enemies 811

Shooting Revisited . 833

Showing Enemy Damage 853

Adding PowerUps and Boosting Weapons 857

Race Conditions & Script Execution Order 869

Making Enemies Drop PowerUps 872

Enemy_4 — A More Complex Enemy 876

Tuning Settings for the Game Entities 888

Adding a Scrolling Starfield Background 890

Summary . 893

33 Prospector Solitaire – Part 1 897

What You Will Learn . 898

The Prospector Game. 899

Getting Started: Prospector Solitaire 901

Build Settings. 902

Setting Up the Unity Window Layout. 906

Setting Up the Camera and Game Pane 906

Importing Images as Sprites. 907

Constructing Cards from Sprites 911

Implementing Prospector in Code 940

Implementing Game Logic 961

Summary . 968

A01_Bond_FM_p00i-xliv.indd 19 28/06/22 12:18 AM

xx Contents

34 Prospector Solitaire – Part 2 969

What You Will Learn . 970

Getting Started: Prospector – Part 2 971

Additional Prospector Game Elements 972

Adding GUI Elements to Display the Score 985

Building and Running Your WebGL Build 1013

Summary . 1016

35 Dungeon Delver – Part 1 1019

What You Will Learn . 1020

The Dungeon Delver Game. 1021

Getting Started: Dungeon Delver 1022

Setting Up the Cameras 1023

Understanding the Dungeon Data 1026

Showing the Map with a Unity Tilemap 1031

Adding the Hero . 1042

Giving Dray an Attack Animation 1055

Dray's Sword . 1059

Programmatic Collision in Unity Tilemap. 1061

The InRoom Script . 1070

Enemy: Skeletos . 1072

Keeping GameObjects in the Room. 1075

Aligning to the Grid . 1078

Moving from Room to Room 1087

Making the Camera Follow Dray 1091

Summary . 1094

36 Dungeon Delver – Part 2 1095

What You Will Learn . 1096

Getting Started: Dungeon Delver — Part 2 1097

Dungeon Delver — Part 2 Overview 1098

Implementing TileSwaps 1098

A01_Bond_FM_p00i-xliv.indd 20 28/06/22 12:18 AM

CONTENTS xxi

Swapping in LockedDoor GameObjects 1105

Implementing Keys and Unlocking Doors1111

Adding GUI to Track Key Count and Health1119

Enabling Enemies to Damage Dray 1125

Making Dray's Attack Damage Enemies 1130

Modifying Enemy to Take Damage1131

Picking Up Items .1135

Enemies Dropping Items on Death 1138

Implementing a New Dungeon — The Hat1143

Implementing a Grappler1147

Summary . 1184

Part IV Next Steps . 1187

37 Coding Challenges 1189

What Is a Coding Challenge? 1190

Getting Started on a Coding Challenge 1191

Filling in the Blanks . 1192

How to Approach Each Challenge 1194

38 Beyond This Book. 1197

Continue to Learn Unity Development 1198

Build a Classic Game . 1199

Start a Small Game Project or Prototype 1199

Make Games for Lifelong Enrichment. 1200

Consider Going to School for GameDev 1200

Explore Advanced Game Design 1201

Finally, Drop Me a Line. 1201

Index . 1203

A01_Bond_FM_p00i-xliv.indd 21 29/06/22 2:43 PM

xxii Contents

PART V Online Appendices — http://book.prototools.net or
informit.com/title/9780136619949

A Standard Project Setup Procedure

The Set Up Sidebar for Tutorial Projects

Setting Up a New Project

Importing a Starter UnityPackage

Setting the Scene Name

Setting the Game Pane to Full HD (1080p)

Setting Up a WebGL Build

Understanding Unity Version Control

Summary

B Useful Concepts

Topics Covered

C# and Unity Coding Concepts

Attributes

Automatic Properties

Bitwise Boolean Operators and Layer Masks

Coroutines

Unity Example—Coroutines

Delegates, Events, and UnityEvents

UnityEvents

Enums

Extension Methods

Interfaces

Unity Example—Interfaces

Unity Makes Frequent Use of Interfaces for Observer Pattern

JSON (JavaScript Object Notation) in Unity

Lambda Expressions =>

Naming Conventions

Object-Oriented Software Design Patterns

Component Pattern

Observer Pattern

Singleton Pattern

A01_Bond_FM_p00i-xliv.indd 22 28/06/22 12:18 AM

http://book.prototools.net
http://informit.com/title/9780136619949

Contents xxiii

Strategy Pattern

More Information on Design Patterns in Game Programming

Operator Precedence and Order of Operations

Race Conditions

Unity Example—Race Conditions

Recursive Functions

String Interpolation –

StringBuilder

Structs

Unity Messages Beyond Start() and pdate()

Life-Cycle Messages

Frame-Based Messages

Physics-Based Messages

Variable Scope

XML

XML Documentation in C#

Math Concepts

Cosine and Sine (Cos and Sin)

Unity Example—Sine and Cosine

Dice Probability Enumeration

Unity Example—Dice Probability

Using Data-Oriented Design to Improve the DiceProbability Code

Dot Product

Interpolation

Linear Interpolation

Time-Based Linear Interpolations

Linear Interpolations Using Zeno's Paradox

Interpolating More Than Just Position

Linear Extrapolation

Easing for Linear Interpolations

Bézier Curves

Three-Point and Four-Point Bézier Curves

A Recursive Bézier Curve Function

A Data-Oriented Bézier Function

A01_Bond_FM_p00i-xliv.indd 23 28/06/22 12:18 AM

xxiv Contents

Pen-and-Paper Roleplaying Games

Tips for Running a Good Roleplaying Campaign

User Interface Concepts

Complex Game Controller Input

Input Manager Mapping for Various Controllers

Right-Click on macOS

Control-Click = Right-Click

Use Any PC Mouse

Set Your macOS Mouse to Right-Click

Set Your macOS Trackpad to Right-Click

C Online Reference

Tutorials

Unite Conference

Unity's YouTube Channel

Programming

Searching Tips

Finding and Creating Assets

Other Tools and Educational Discounts

D Tips for Teaching from This Book

The Goal of This Appendix

Teaching Introduction to Game Design

Teaching Introduction to Game Programming

More Information Is Available

A01_Bond_FM_p00i-xliv.indd 24 28/06/22 12:18 AM

FOREWORD

Jeremy Gibson Bond taught me how to code. When I joined the University of Southern
California Games program in 2012, one of the first things I did was to sign up for
Jeremy's class in Unity and C# programming. I had just left Naughty Dog, where I'd
worked as a lead game designer on the Uncharted series. I'd done a lot of scripting—
simplified programming—during my career, but I'd always had a chip on my shoulder
about not being a "real" coder. Jeremy's class fixed that, in just fifteen weeks.

In the class, I made a version of the classic game Asteroids in Unity, which my teammate
and I then modded into an original game, and even though it was probably the simplest
game I'd made since I was a kid, it was one of the most satisfying development experi-
ences of my life. Every single one of Jeremy's classes was not only jam-packed with infor-
mation about Unity and C# but was also peppered with inspirational wisdom about
game design and practical pieces of advice related to game development—everything
from his thoughts about good "lerping," to great tips for time management and task
prioritization, to the ways that game designers can use spreadsheets to make their
games better. I was blown away by Jeremy's skill as a teacher, and by his ability to make
the process of creating gameplay into its own kind of exciting fun. Of course, I was
delighted when I learned that he was packing all of that inspiring knowledge into the
book you're now starting to read.

I'd first met Jeremy at the Game Developers Conference in 2002, and we hit it off imme-
diately. Jeremy already had a successful career as a game developer, and his enthusiasm
for game design struck a chord with me. I was drawn to his sharp understanding of
game development and design, his easy, friendly manner, and the engaging way he
loves to talk about game design as a craft, a design practice, and an emerging art form.
We stayed friends down the years; I was excited when Jeremy got his master's degree
from the world-famous Entertainment Technology Center at Carnegie Mellon University
and was happy to see him go from strength to strength in his career. And of course, I
was delighted to briefly be colleagues with him at USC, before he moved to teach at
Michigan State University.

I graduated from Jeremy's class wishing that I could take it again, knowing that there
was a huge amount more that I could learn from him. So now you're very fortunate,
because you're holding in your hands what is essentially the textbook—and much, much
more—of the class that I took with Jeremy. With an incredible wealth of knowledge

A01_Bond_FM_p00i-xliv.indd 25 28/06/22 12:18 AM

xxvi Foreword

about game design, Unity, and C#, and highly detailed, step-by-step instructions, this
book is a sure-fire method of realizing your game development dreams. Not only that,
but it's the third edition, and over the years, Jeremy has been continuously refining
and updating this superb volume, seeing it in action in his own classes and in those
of others.

As you'll see, the book opens with a section on Jeremy's wide-reaching, wise, and
grounded philosophy of game design, a section that is worth the price of admission on
its own. Jeremy is extraordinarily well-read about game design, and this book is going
to give you an overview of all the best game design theory to know about. After laying
out the most useful definitions of "game," Jeremy will present you with his idea of the
"Layered Tetrad," a valuable synthesis of the finest game analysis frameworks. He'll go
on to give you a clear breakdown of how to design a game, including paper prototyp-
ing, playtesting, game balancing, guiding the player, and designing puzzles. He'll talk
you through the best practices of Agile development, including the "burndown chart"
scheduling tool, which Jeremy taught me. This tool is now a core part of my own classes
and has helped countless game developers to both keep their projects on track and
avoid running out of time. Part II of the book will ease you painlessly into the world of
programming in C# and working in Unity. The careful way that Jeremy introduces and
explains often abstract and difficult-to-grasp concepts is brilliant and works like magic
to turn non-programmers into wised-up coders. Once you've worked through this sec-
tion, you'll be ready to dive into the excellent tutorials in Part III.

This third edition of the book is the best yet, packed with up-to-date and essential
information. It includes a new chapter on Data-Oriented Design—which thinks about
code from the point of view of how data is managed by the computer—and Unity's
new Data-Oriented Tech Stack, which can help you speed up the performance of your
games enormously. The C# terms and samples in the book are now highlighted and
color-coded in a very similar way to that of Microsoft Visual Studio, the C# development
environment installed with Unity. The book's tutorials, an important part of the spe-
cial magic of Jeremy's teaching, are more refined and detailed than ever before. These
tutorials will supercharge your game coding practice, just like they did mine, as Jeremy
guides you through the creation of small games that build your knowledge in a system-
atic way. In addition, Jeremy is now providing you with a set of "Coding Challenges"
that can be found on the book's website: partially complete games that guide you in the
creation of the code to make them work. These will help you transition from the tutori-
als in the book to writing your own games from scratch. As if all that wasn't enough,
the book now has excellent new 3D art by Peter Burroughs and an appendix on how to
teach using the book, which will be invaluable to game professors around the world.
And don't miss the other appendices in the last part of the book, a grab-bag of knowl-
edge and wisdom that are the diamonds and rubies at the very bottom of this mine.

A01_Bond_FM_p00i-xliv.indd 26 28/06/22 12:18 AM

Foreword xxvii

Jeremy is an immensely talented and knowledgeable game developer and game
educator. He's put in many multiples of the ten thousand hours said to be needed to
become an expert, and done it several times over, in the disciplines of game design, C#,
Unity, and game education. Not only that, but his integrity, his kindness, and his sense
of fun shine through in these pages. This is the book that I recommend to my students
when I want to help them transform themselves from a game engine dabbler into a
Unity adept, and I am delighted to recommend it to you.

Good luck, and have fun!
Richard Lemarchand

Associate Professor, USC Games

A01_Bond_FM_p00i-xliv.indd 27 28/06/22 12:18 AM

PREFACE

Welcome to the third edition of Introduction to Game Design, Prototyping, and Devel-
opment This book is based on my work over many years as both a professional game
designer and a professor of game design at several universities, including the Media and
Information Department at Michigan State University and the Interactive Media and
Games Division at the University of Southern California.

This preface introduces you to the purpose, scope, and approach of this book.

The Purpose of This Book
My goal in this book is simple: I want to give you all the tools and knowledge you need
to get started down the path to being a successful game designer and prototyper. This
book is the distillation of as much knowledge as I can cram into it to help you toward
that goal. Unlike most books out there, this book combines both the disciplines of game
design and digital game programming and development and wraps them both in the
essential practice of iterative prototyping. The growth of advanced, yet approachable,
game development engines such as Unity has made it easier than ever before to create
playable prototypes that express your game design concepts to others. Whether you
wish to be a game programmer, game designer, or a bit of both, this book has much to
offer you.

What's New in the Third Edition?
Since 2017, when the second edition of this book was published, Unity has grown and
changed considerably. To give you the best possible book for learning Unity, I had to
change this book as well. Some of the major changes include:

■■ About 400 additional pages: With the inclusion of the online appendices, the ad-
ditional content in this book is longer than the entirety of some books on learning to
program. Unity has grown significantly over the years, and you need to know more
to be able to use it well. I have added tons of content to the game prototypes so that
you can experience more of the expanded features of Unity. Among the new chap-
ters I have added is a new chapter explaining Data-Oriented Design, a new approach
to Unity programming that can drastically increase performance and efficiency but

A01_Bond_FM_p00i-xliv.indd 28 28/06/22 12:18 AM

PreFaCe xxix

requires a completely different mindset from the Object-Oriented Programming that
has been taught at universities for the past 30 years.

■ Improved, more polished tutorials: The first edition contained eight rather
small tutorials that provided a good introduction to Unity at the time. Now that
Unity has more capabilities, I have worked these into the tutorials as well. Of the five
tutorials in Part III of this book, three are now spread across two chapters (a space
shooter, a card game, and an action/adventure game). For each of these, the first
chapter sets up the underlying technology and gets you to a rough prototype, while
the second chapter expands the prototype into a first playable, a more polished ver-
sion of the game that is ready to be shown to others for feedback.

■ Better code throughout: As I have improved as a programmer, so has the code in
this book. Each of the Part III prototypes are designed to be a framework upon which
you could build your own games, so code throughout the book has been revised
to be more understandable and extensible. Additionally, immense care has been
taken to implement consistent syntax coloring throughout the book, making the
code clearer and easier to read. In the many places where you are modifying existing
scripts, the areas that you must modify have also been made clearer.

■ Coding Challenges: One wholly new aspect of the book is the online Coding Chal-
lenges, which are designed to aid your transition from following the book tutorials
to creating your own games from scratch. Each challenge is a complete Unity game
project with much of the key code missing. In place of this code are comments that
explain what the code should do and how it should work. Replacing the missing
code draws upon your experience from this book and helps you better internalize
what you learn here. I have used these successfully in my classes for a few years to
great effect!

■ Unity 2020.3 LTS: Unity's new commitment to Long Term Support (LTS) releases
means that they will make only bug-fix and security fixes to LTS releases and will
avoid any changes that could break code or tutorials like those in this book. By com-
mitting the book to version 2020.3 LTS, I avoid many of the issues that could come
up if you tried to use a more recent version of Unity with these tutorials. 2020.3 LTS
was released in mid-2021 and will be updated monthly until mid-2023, but it will be
a viable, solid release for years after that.

■ Better online tools: Many of the online tools that I offer you through this book
are the same tools that I developed for my own game development projects and the
classes I teach. Hundreds of students have used these tools for dozens of projects,
and I have improved them every semester. This now even includes an online code-
checker that can help you find issues in your code at any point in one of the tutorials.

These are just a few of the many improvements I have worked into the book since the
previous edition. While the game design chapters in Part I and the C# programming

A01_Bond_FM_p00i-xliv.indd 29 28/06/22 12:18 AM

xxx PreFaCe

chapters in Part II have several revisions throughout, the game prototypes in Part III and
beyond contain the most drastic changes. I have put well over 1,000 hours into improv-
ing this book to make it the best possible way for you to learn Unity. It contains as much
content as I could possibly fit into it (more pages than they would allow me to print!),
and I know it will be a great resource for you.

Who This Book Is For
There are many books about game design, and there are many books about program-
ming. This book seeks to fill the gap between the two. As game development technolo-
gies like Unity become more ubiquitous, it is increasingly important that game designers
have the ability to sketch their design ideas not only on paper but also through working
digital prototypes. This book exists to help you learn to do just that:

■■ If you're interested in game design but have never programmed, this book
is perfect for you.

■■ Part I: Game Design and Paper Prototyping introduces you to several prac-
tical theories for game design and presents you with the practices that can help
you develop and refine your design ideas.

■■ Part II: Programming C# in Unity teaches you how to program from
nothing to understanding object-oriented class hierarchies in C# (pronounced
See-Sharp). Since I became a college professor, the majority of my classes have
focused on teaching nonprogrammers how to program games. I have distilled all
of my experience doing so into Part II of this book.

■■ Part III: Game Prototype Tutorials takes you through the process of develop-
ing several different game prototypes across several different game genres. Each
demonstrates fast methods to get from concept to working digital prototype.

■■ Part IV: Next Steps covers what you can do once you've finished this book. It
introduces the Coding Challenges that have been extremely successful in helping
my students transition from following tutorials to creating their own games and
gives you many ideas for what you can do next in your journey.

■■ Lastly, the online Appendices in Part V explain specific game development and
programming concepts in-depth and guide you to other online resources that
may be useful.

■■ If you're a programmer who is interested in game design, Parts I and III of
this book will be of most interest to you.

■■ Part I: Game Design and Paper Prototyping introduces you to several prac-
tical theories for game design and presents you with the practices that can help
you develop and refine your design ideas.

A01_Bond_FM_p00i-xliv.indd 30 28/06/22 12:18 AM

 PreFaCe xxxi

■■ You can skim Part II: Programming C# in Unity, which introduces C# (pro-
nounced See-Sharp) and how it is used in Unity. If you are familiar with other pro-
gramming languages, C# looks like C++ but has the advanced features of Java.

■■ Part III: Game Prototype Tutorials takes you through the process of devel-
oping several different game prototypes across several different game genres.
Game development in Unity is very different from what you may be used to from
other game engines, as many elements of development are managed outside of
the code. Each prototype will demonstrate the style of development that works
best in Unity to get from concept to working digital prototype quickly.

■■ Part IV: Next Steps covers what you can do once you've finished this book. It
introduces the Coding Challenges that have been extremely successful in helping
my students transition from following tutorials to creating their own games and
gives you many ideas for what you can do next in your journey.

■■ You will also want to look carefully at Part V: Appendices, which is full of
 detailed information about various Unity development concepts and is arranged
as a reference that you can return to later.

■■ If you're teaching game design or programming, you're not alone. Many univer-
sities worldwide use this book as their game design and programming textbook. I have
added a new Appendix D that outlines how I recommend teaching from this book.

The Structure of This Book
The book is divided into five parts:

Part I: Game Design and Paper Prototyping
The first part of the book starts by exploring various theories of game design and
the analytical frameworks for game design that have been proposed by several ear-
lier books. This section then describes the Layered Tetrad as a way of combining and
expanding on many of the best features of these earlier theories. The Layered Tetrad is
explored in depth as it relates to various decisions that you must make as a designer of
interactive experiences. This part also covers information about the interesting chal-
lenges of different game design disciplines; describes the process of paper prototyp-
ing, testing, and iteration; gives you concrete information to help you become a better
designer; and presents you with effective project and time management strategies to
help keep your projects on track. The final chapter examines the game industry and
gives you several tips for how to approach finding a job.

A01_Bond_FM_p00i-xliv.indd 31 28/06/22 12:18 AM

xxxii PreFaCe

Part II: Programming C# in Unity
The second part teaches you C#—our programming language—from the basics through
class inheritance and object-oriented programming. This part draws upon my many
years of experience as a professor teaching nontechnical students how to express their
game design ideas through digital code. If you have no prior knowledge or experience
with programming or development, this part is designed for you. However, even if you
do have some programming experience, you might want to take a look at this part to
learn a few new tricks or get a refresher on some approaches.

The final chapters of this part explore Object-Oriented Programming and Data-Oriented
Design, two very different approaches to designing advanced code. Data-Oriented
Design is the core of Unity's new Data-Oriented Tech Stack (DOTS), which can drasti-
cally improve the performance and efficiency of your code.

Part III: Game Prototype Tutorials
The third part of the book encompasses several different tutorials, each of which guides
you through the development of a prototype for a specific style of game. The purpose
of this part is twofold: It reveals some best practices for rapid game prototyping by
showing you how I personally approach prototypes for various kinds of games, and it
provides you with a basic foundation on which to build your own games in the future.
Many other books on the market that attempt to teach Unity (our game development
environment) do so by taking the reader through a single, monolithic tutorial that is
hundreds of pages long. In contrast, this book takes you through several much smaller
tutorials. The final products of these tutorials are necessarily less robust than those
found in some other books, but it is my belief that the variety of projects in this book
will better prepare you for creating your own projects in the future.

The three final projects of this part each span two chapters. The first chapter gets you
to the playable prototype stage of the project, where the basic technology is in place
and the core mechanics of the game work. The second chapter of each takes the game
to what is known in the industry as a first playable, the state of the game where you
would actually show it to other people and get their feedback. Each of these projects
has grown as Unity has grown. The versions of these projects in the first edition of the
book were basic and rough, while the versions in this third edition have grown more
refined and take advantage of more interesting and useful aspects of both Unity and
C# programming.

Part IV: Next Steps
This entirely new section comprises two chapters that will help you take the next steps
in your game programming journey after you have finished the book. After completing

A01_Bond_FM_p00i-xliv.indd 32 28/06/22 12:18 AM

 PreFaCe xxxiii

prior editions of the book, readers and students often had difficulty transitioning from
following the detailed book tutorials to creating their own projects from scratch. To
rectify this in my classes, I introduced Coding Challenges, game prototypes that are
nearly complete except for the code. In place of the code, there are detailed comments
outlining what the code needs to do there, and you can follow those comments to cre-
ate the needed code and make the prototypes work. Chapter 37, "Coding Challenges,"
introduces you to these challenges and guides you to finding them online. I plan to add
a new challenge at least once per semester following publication of the book. The final
chapter of Part IV, "Beyond This Book," gives you several ideas for the next projects you
can tackle and where to find resources to do so.

Part V: Online Appendices
This book has several important appendices that merit mention here. Rather than repeat
information throughout the book or require you to go hunting through various chapters
for it, any piece of information that is referenced several times in the book or that I think
you would want to look back on (after you've finished reading the book once) is placed
in the appendices, which are online-only, both to reduce the immense size of this book
and make searching them easier. To find them, head to this book's website: http://
book.prototools.net or informit.com/title/9780136619949.

■■ Appendix A: Standard Project Setup Procedure is a step-by-step introduction
to the initial creation process for a game project in Unity. There is a lot to know, and
this appendix will make sure your projects start on the right foot.

■■ The longest appendix is Appendix B: Useful Concepts. Though it has a rather
lackluster name, this is the portion of the book that I believe you will return to most
often in the years following your initial read through the book. "Useful Concepts" is
a collection of several go-to technologies and strategies that I use constantly in my
personal game prototyping process, and I think you'll find a great deal of it to be
very useful. To be honest, I brush up on topics in this appendix pretty often myself!

■■ Appendix C: Online Reference is a list of very useful online references where you
can find answers to questions not covered in this book. It is often difficult to know
the right places to look for help online; this appendix lists those that I personally turn
to most often.

■■ Appendix D: Tips for Teaching from This Book covers my best practices for
instructors using this book in a classroom. I have taught from this book every semes-
ter since the first edition was published, and I have iterated many times to find the
right way to present the information. This includes sample schedules for both Game
Design and Game Programming classes.

A01_Bond_FM_p00i-xliv.indd 33 28/06/22 12:18 AM

http://book.prototools.net
http://book.prototools.net
http://informit.com/title/9780136619949

xxxiv Preface

Book Website
The website for this book includes all of the files referenced in the chapters, lecturer
notes, starter packages, and errata for anything that we somehow failed to correct
in the many passes through editing and the tutorial projects. Find it at

http://book.prototools.net

or

informit.com/title/9780136619949

Why You Should Learn Unity and C#
All the digital game examples in this book are based on the C# programming language
and the Unity Game Engine. I have taught students to develop digital games and inter-
active experiences for two decades now, and in my experience, Unity is—by far—the
best environment that I have found for learning to develop games. I have also found that
C# is the best initial language for game prototypers to learn.

The Unity 2020.3 LTS Development Environment
Some other tools out there are easier to learn and require no real programming (Game
Maker is a great example), but Unity allows you much more flexibility and performance
in a package that is basically free (the free version of Unity includes nearly all the capa-
bilities of the paid version, and it is the version used throughout this book). Unreal is
another game engine used by some studios, but in Unreal, there is very little middle
ground between the simplified graphical programming of the Blueprint system and the
very complex C++ code on which the engine is built. If you want to actually learn to pro-
gram games and have success doing it, Unity is the engine you want to use.

Unity has both Tech Stream releases that include all the newest features (in a sometimes
buggy state) and Long Term Support (LTS) releases that are stable and supported for many
years. Unity 2020.3 LTS, which we use in this book, was initially released in 2021 and
represents an extremely stable and feature-rich release of Unity. It will be updated monthly
until 2023 and will be stable and usable for several years beyond that. I do not recommend
attempting to follow the book tutorials with a future version of Unity, but transitioning from
2020.3 LTS to later versions of Unity after completing the book will be easy for you.

The C# Programming Language
In the past, I have taught my students many languages, including C++, JavaScript,
and ActionScript. However, C# is the one language that I have used that continually

A01_Bond_FM_p00i-xliv.indd 34 29/06/22 2:44 PM

http://book.prototools.net
http://informit.com/title/9780136619949

 PreFaCe xxxv

impresses me with its flexibility and feature set. Learning C# means learning not only
programming but also good programming practices. Languages such as JavaScript
allow a lot of sloppy behaviors that I have found actually lead to slower development.
C# keeps you honest (via things like strongly typed variables), and that honesty will not
only make you a better programmer but will also result in your being able to code more
quickly (e.g., strong variable typing enables very robust code hinting and auto-comple-
tion, which makes coding faster and more accurate).

Conventions in This Book
This book maintains several writing conventions to help make the text more easily
understandable.

Any place that specific button names, menu commands, or other multi-word nouns
appear in the text, they will be listed in italics. This includes terms like the Main Cam-
era GameObject. An example menu command is Edit > Project Settings > Physics, which
would instruct you to select the Edit menu from the menu bar, choose the Project Settings
submenu, and then select Physics. I also tend to italicize important terms when first intro-
ducing them and use bold and italics for emphasis throughout the book. When specific
terms from C# code are used in text, they are in bold code font for emphasis and clarity.
Examples include float, List<>, and text like "Hello World", and MonoBehaviour
(which uses the British spelling because Unity originated in Europe).

Book Elements
The book includes several different types of asides that feature useful or important infor-
mation that does not fit in the flow of the regular body text.

note
Callouts in this format are for information that is useful but not critical.
Information in notes will often be an interesting aside to the main text that
provides a little bit more info about the topic.

tip
This element provides additional information that is related to the book con-
tent and can help you as you explore the concepts in the book.

A01_Bond_FM_p00i-xliv.indd 35 28/06/22 12:18 AM

xxxvi PreFaCe

warning
BE CAREFUL Warnings cover information about things that you need to
be aware of to avoid mistakes or other pitfalls.

SIDEBAR

The sidebar is for discussions of longer topics that are important to the text but
should be considered separately from it.

C o d e
Several conventions apply to the code samples in this book. When specific elements from
the code listing are placed in regular paragraph text, they appear in a onospaced font.
The variable ariable n e ine from the code listing below is an example of this.

Code Listings also utilize a monospaced font and appear as follows. Code Listings are all
numbered (here 0.1), and the name of the code file you're editing is also included (e.g.,
SampleClass.cs).

Code Listing 0.1 sampleClass.cs

1 public class SampleClass {
2 public GameObject variableOnExistingLine; // a
 public Ga e b ect ariable n e ine; // b

4 }

a. Code Listings are often annotated; in this case, additional information about
the line marked with // a would appear in this first annotation. Annotations are
always bold to call attention to them.

b. Some code listings will be expansions on code that you've already written or
that already exists in the C# script file for another reason. In this case, the old
lines will be at normal weight, and the new lines will be at bold eight.

Most of the code listings in the first two parts of the book will include line numbers (as
seen in the preceding listing). You do not need to type the line numbers when
entering the code into Visual Studio (it will automatically number all lines). In Part III of
the book, there are no line numbers due to the size and complexity of the code listings
increasing the chance that your line numbers would differ from mine. However, later

A01_Bond_FM_p00i-xliv.indd 36 28/06/22 12:18 AM

 PreFaCe xxxvii

code listings precede each line with a pipe character "|" to clarify the indentation level
of each line of code, and new lines are preceded by a bold right angle bracket ">" as
shown in Code Listing 0.2. You also should not type these | or > characters.

Code Listing 0.2 sampleClassFromlaterIntheBook.cs

| public class SampleClassFromLaterInTheBook {
| public GameObject variableOnExistingLine;
> public GameObject variableOnNewLine;
| }

tip
THE CODE YOU WRITE IN YOUR PROJECTS WON'T LOOK LIKE MINE
This is something that a reader asked me to add to the beginning of this
book. I spend many hours and many passes working to make my code as
clear and understandable as possible. When you start writing your own C#
code for your own games, it is not going to be as clean, and that is absolutely
okay. Game prototyping is not about beautiful, clean code; it is about getting
a game working as quickly as possible. Once the game is working, if you
want to continue and expand the project, you can always go back and refac-
tor the code into something cleaner. And, if you want to write tutorials to
teach other people, you can refactor it a third or even fourth time, like I have.

There Are Other Books Out There
As a designer or creator of any kind, I think that it's absolutely essential to acknowledge
those on whose shoulders you stand. Many books have been written on games and
game design, and the few that I list here are those that have had the most profound
effect on either my process or my thinking about game design. You will see several of
these books referenced many times throughout this text, and I encourage you to read as
many of them as possible.

Game Design Workshop by Tracy Fullerton
Initially penned by Tracy Fullerton, Chris Swain, and Steven S. Hoffman, Game Design
Workshop is now in its third edition. This book was initially based on the Game Design
Workshop class that Tracy and Chris taught at the University of Southern California,
a class that formed the foundation for the entire games program at USC (and a class

A01_Bond_FM_p00i-xliv.indd 37 28/06/22 12:18 AM

xxxviii PreFaCe

that I taught at USC from 2009–2013). The USC Interactive Media and Games graduate
program has been named the number one private university for game design in North
America by Princeton Review nearly every year that it has been ranking game programs,
and the Game Design Workshop book and class were the foundation for that success.

Unlike many other books that speak volumes of theory about games, Tracy's book
maintains a laser focus on information that helps budding designers improve their craft.
I taught from this book for many years (even before I started working at USC), and I
believe that if you actually attempt all the exercises listed in the book, you can't help but
have a pretty good paper game at the end.

Tracy Fullerton, Christopher Swain, and Steven Hoffman, Game Design Workshop: A
Playcentric Approach to Creating Innovative Games, 2nd ed. (Boca Raton, FL: Elsevier
Morgan Kaufmann, 2008)

The Art of Game Design by Jesse Schell
Jesse Schell was one of my professors at Carnegie Mellon University and is a fantastic
game designer with a background in theme park design gained from years working for
Walt Disney Imagineering. Jesse's book is a favorite of many working designers because
it approaches game design as a discipline to be examined through 100 different lenses
that are revealed throughout the book. Jesse's book is a very entertaining read and
broaches several topics not covered in this book.

Jesse Schell, The Art of Game Design: A Book of Lenses (Boca Raton, FL: CRC Press,
2008)

Advanced Game Design: A Systems Approach
by Michael Sellers
Mike Sellers once told me that "Systems thinking is the literacy of the 21st century," and
I think that he is absolutely right. A large portion of the world population began the
20th century unable to read, but it is now a nearly ubiquitous skill. Similarly, he believes
that to survive in the future, people must learn to understand the interrelated systems
that impact their lives, and one of the best ways to understand systems is to design
games. Mike is one of the most brilliant game and artificial intelligence developers that I
have ever met, and he distilled a tremendous amount of his knowledge, understanding,
and processes of design into this excellent book.

Michael Sellers, Advanced Game Design: A Systems Approach (Indianapolis: Pearson
Education, Inc., 2018)

A01_Bond_FM_p00i-xliv.indd 38 28/06/22 12:18 AM

 PreFaCe xxxix

A Playful Production Process: For Game
Designers (and Everyone) by Richard
Lemarchand
Richard Lemarchand, the author of the forewords to all three editions of this book, has
thought deeply for nearly 30 years about how the production process of a game (or
any project) can be designed to make the experience of working on the game playful
and joyful for everyone involved. Those years of experience as both a co-lead designer
on the Uncharted series and a professor at the University of Southern California have all
led to this book. Discussions with Richard and my reading of this book changed how I
approach some of my group-based game development classes and led to many of the
third edition changes that I made to Chapter 7, "Acting Like a Designer."

Richard Lemarchand, A Playful Production Process: For Game Designers (and Every-
one) (Cambridge, MA: MIT Press, 2021)

Games, Design and Play by Colleen Macklin and
John Sharp
Unlike some other game design texts that talk about the process of game design in
theory, Games, Design and Play digs deeply into the details of design; into the nuts and
bolts of what actually goes into making good design decisions as well as the impact of
those decisions. Colleen and John do not cover game development at all—in fact, they
recommend that you read this book to learn game programming—and instead focus
exclusively on game design. This book illustrates its points with real examples from
independent game developers, meaning that their examples are much more similar in
scope to those you might encounter as you're getting into game development.

Colleen Macklin and John Sharp, Games, Design and Play: A Detailed Approach to
Iterative Game Design (Boston, MA: Addison-Wesley, 2016)

Level Up! by Scott Rogers
Rogers distills his knowledge from many years in the trenches of game development
into a book that is fun, approachable, and very practical. When he and I co-taught a
level design class, this was the textbook that we used. Scott is also a comic book artist,
and his book is full of humorous and helpful illustrations that drive home the design
concepts.

Scott Rogers, Level Up!: The Guide to Great Video Game Design (Chichester, UK:
Wiley, 2010)

A01_Bond_FM_p00i-xliv.indd 39 28/06/22 12:18 AM

xl PreFaCe

Imaginary Games b y C h r i s B a t e m a n
Bateman uses this book to argue that games are a legitimate medium for scholarly
study. He pulls from several scholarly, practical, and philosophical sources; and his
discussions of books like Homo Ludens by Johan Huizinga, Man, Play, and Games by
Roger Caillois, and the paper "The Game Game" by Mary Midgley are both smart and
accessible.

Chris Bateman, Imaginary Games (Washington, USA: Zero Books, 2011)

The Grasshopper b y B e r n a r d S u i t s
While not actually a book on game design at all, The Grasshopper is an excellent explora-
tion of the definition of the word game. Presented in a style reminiscent of the Socratic
method, the book presents its definition of game very early in the text as the Grass-
hopper (from Aesop's fable The Ant and the Grasshopper) gives his definition on his
deathbed, and his disciples spend the remainder of the book attempting to critique and
understand this definition. This book also explores the question of the place of games
and play in society.

Bernard Suits, The Grasshopper: Games, Life and Utopia (Peterborough, Ontario:
Broadview Press, 2005)

Game Design Theory b y K e i t h B u r g u n
In this book, Burgun explores what he believes are faults in the current state of game
design and development and proposes a much narrower definition of game than does
Bernard Suits. Burgun's goal in writing this text was to be provocative and to push the
discussion of game design theory forward. While largely negative in tone, Burgun's text
raises a number of interesting points and helped me refine my personal understanding
of game design.

Keith Burgun, Game Design Theory: A New Philosophy for Understanding Games
(Boca Raton, FL: A K Peters/CRC Press, 2013)

A01_Bond_FM_p00i-xliv.indd 40 28/06/22 12:18 AM

ACKNOWLEDGMENTS

A tremendous number of people deserve to be thanked here. First and foremost, I want
to thank my wife, Melanie, whose help and feedback on my chapters throughout the
entire process of all three editions of this book improved them tremendously. She is not
only my inspiration but has also been an excellent copy editor. I also want to thank my
family for their many years of support, with special thanks to my father for teaching me
how to program as a child.

As with every edition, there were several people at Pearson who provided support
to me and shepherded me through this process. Chief among them was Chris Zahn,
who has been with me since the first edition. Laura Lewin initially approached me
about writing a book and served as the acquisitions editor for the first two editions.
Also at Pearson, Malobika Chakraborty, Lori Lyons, and Tonya Simpson each demon-
strated incredible patience in working with me as I worked to complete this book with
a new child and throughout the COVID pandemic. Margaret Moser continued her
fantastic work as a technical reviewer on this edition of the book and not only caught
my mistakes but also added her brilliant insight throughout the book. Thanks also to
the excellent proofreader, Donna E. Mulder, as well as Aswini Kumar and the team at
Codemantra for their work in the production phase.

I would also like to thank all the educators who have taught me and worked as my col-
leagues. Special thanks go to Dr. Randy Pausch and Jesse Schell. Though I had worked
as a professor and game designer before meeting them, they each had a profound effect
on my understanding of design and education. I also owe tremendous thanks to Tracy
Fullerton, Mark Bolas, and Scott Fisher, who were friends and mentors to me in the years
I taught at the University of Southern California's Games and Interactive Media Division.
There were also many other brilliant faculty and friends at USC who helped me flesh
out the ideas in this book, including Adam Sulzdorf-Liszkiewicz, William Huber, Richard
Lemarchand, Scott Rogers, Vincent Diamante, Sam Roberts, and Logan Ver Hoef. My
current colleagues at Michigan State University have also contributed ideas and feed-
back on the third edition of the book, especially Andrew Dennis, Elizabeth LaPensée,
Adam Sulzdorf-Liszkiewicz, and Ryan Thompson.

Many of my friends in the industry have also helped me by giving me suggestions for
the book and feedback on the ideas presented therein. These included Michael Sellers,
Nicholas Fortugno, Jenova Chen, Zac Pavlov, Joseph Stevens, and many others.

A01_Bond_FM_p00i-xliv.indd 41 28/06/22 12:18 AM

xlii aCknowledGments

Thanks as well to all the fantastic students that I have taught over the past decade. It is
you who inspired me to want to write this book and who convinced me that there was
something important and different about the way I was teaching game development.
Every day that I teach, I find myself inspired and invigorated by your creativity, intelli-
gence, and passion.

Finally, I would like to thank you. Thank you for purchasing this book and for your inter-
est in developing games. I hope that this book helps you get started, and I would love to
see what you make with the knowledge you gain here.

A01_Bond_FM_p00i-xliv.indd 42 28/06/22 12:18 AM

ABOUT THE AUTHOR

Jeremy Gibson Bond is a Professor of Practice teaching game design and develop-
ment at Michigan State University, which in 2022 was ranked the #1 public university
for undergraduate game development by Princeton Review three of the last four years.
Since 2013, he has served the IndieCade independent game festival and conference as
the Chair of Education and Advancement, where he co-chairs the IndieXchange summit
each year and has also chaired the GameU summit. In 2013, Jeremy founded the com-
pany ExNinja Interactive, through which he develops his independent game projects.
Jeremy has spoken several times at the Game Developers Conference. He also created
the official Unity Certified Programmer Exam Review specialization on Coursera, which
thousands of developers (including several Unity employees) used to prepare for the
UCP exam from 2018–2022.

Prior to joining the Games faculty at Michigan State, Jeremy taught for three years as a
lecturer in the Electrical Engineering and Computer Science department at the Univer-
sity of Michigan Ann Arbor where he taught game design and software development.
From 2009–2013, Jeremy was an assistant professor teaching game design for the
Games and Interactive Media Division of the University of Southern California's School
of Cinematic Arts, which was named the #1 game design school in North America
throughout his tenure there.

Jeremy earned a Master of Entertainment Technology degree from Carnegie Mellon
University's Entertainment Technology Center in 2007 and a Bachelor of Science degree
in Radio, Television, and Film from the University of Texas at Austin in 1999. Jeremy has
worked as a programmer and prototyper for companies such as Human Code and frog
design; has taught classes for Great Northern Way Campus (in Vancouver, BC), Texas
State University, the Art Institute of Pittsburgh, Austin Community College, and the
University of Texas at Austin; and has worked for Walt Disney Imagineering, Maxis, and
Electronic Arts/Pogo.com, among others. While in graduate school, his team created the
game Skyrates, which won the Silver Gleemax Award at the 2008 Independent Games
Festival. Jeremy also apparently has the distinction of being the first person to ever teach
game design in Costa Rica.

A01_Bond_FM_p00i-xliv.indd 43 28/06/22 12:18 AM

http://Arts/Pogo.com

F i g u r e C r e d i t s
Cover image by Rost9/Shutterstock

Figure 1-2: Jason Rohrer

Figure 2-1: Robin Hunicke

Figure 2-3, Figure 3-1, Figure 3-2: Taylor & Francis Group

Figure 4-1: Thatgamecompany, Inc

Figure 5-2: Richard A. Bartle

Chapter 5, Zork screengrab: Infocom

Figure 7-1: Elsevier

Figure 8-5: Mattie Brice

Figure 9-3, Figure 9-5: Nintendo

Figure 10-2: You Run Ltd

Figure 19-3, Figure 25-7, Figure 25-10, Figure 25-11, Figure 25-12 (bottom), Figure 26-1,
Figure 26-3, Figure 35-5, Figure B-7: Microsoft Corporation

Figure 12-1, Figure 12-5: Sony Interactive Entertainment

Figure 12-2, Figure 12-3: Naughty Dog

Figure 12-4, Figure 12-6: Eden Games

Figure 13-1, Figure 13-2: Scott Kim

Figure 16-1, Figure 16-2, Figure 17-1–Figure 17-10, Figure 19-1, Figure 19-4–Figure 19-14,
Figure 20-1, Figure 23-1, Figure 23-2, Figure 25-1–Figure 25-6, Figure 25-8, Figure 25-9, Figure 26-2,
Figure 27-1–Figure 27-8, Figure 28-3, Figure 28-5–Figure 28-7, Figure 28-9–Figure 28-11,
Figure 28-12B, Figure 28-13, Figure 28-14, Figure 29-1–Figure 29-9, Figure 29-11–Figure 29-15,
Figure 30-1–Figure 30-7, Figure 30-10–Figure 30-17, Figure 31-1–Figure 31-10, Figure 32-1,
Figure 32-2, Figure 32-3c, Figure 32-4–Figure 32-12, Figure 33-1, Figure 33-4–Figure 33-11,
Figure 33-13–Figure 33-15, Figure 34-1–Figure 34-9, Figure 35-3, Figure 35-4, Figure 35-8,
Figure 35-10–Figure 35-12, Figure 36-2–Figure 36-7, Figure 37-1, Figure 37-2, Figure A-1–Figure A-7,
Figure B-1, Figure B-2, Figure B-4, Figure B-5, Figure B-9, Figure C-1: Unity Technologies

Figure 19-2, Figure 25-12 (top): Apple Inc

Figure 11-1–Figure 11-8, Figure 11-13, Figure 11-15–Figure 11-18, Figure 14-1–Figure 14-7,
Figure 28-12A, Figure B-6: Google LLC

Figure 30-9: Skyrates

Figure 33-1A, Figure 33-2, Figure 33-3, Figure 33-7A, Figure 33-9A, Figure 33-11A, Figure 33-13A,
Figure 33-15A: Chris Aguilar

Figure 35-1, Figure 35-2, Figure 35-6, Figure 35-9, Figure 35-13, Figure 35-14,
Figure 36-1: SKIPSTONE PICTURES

A01_Bond_FM_p00i-xliv.indd 44 28/06/22 12:18 AM

PA R T I

GAME DESIGN AND
PAPER PROTOTYPING

 1 Thinking Like a Designer

 2 Game Analysis Frameworks

 3 The Layered Tetrad

 4 The Inscribed Layer

 5 The Dynamic Layer

 6 The Cultural Layer

 7 Acting Like a Designer

 8 Design Goals

 9 Paper Prototyping

10 Game Testing

11 Math and Game Balance

12 Guiding the Player

13 Puzzle Design

14 The Agile Mentality

15 The Digital Game Industry

9780136619949_print.indb 1 25/06/22 1:45 PM

A01_Bond_FM_p00i-xliv.indd 4 28/06/22 12:18 AM

This page intentionally left blank

C H A P T E R 1

THINKING LIKE A
DESIGNER

Our journey starts here. This chapter presents

the basic theories of design upon which

the rest of the book is built. In this chapter,

you also encounter your first game design

exercise and learn more about the underlying

philosophy of this book.

9780136619949_print.indb 3 25/06/22 1:45 PM

4 CHAPTER 1 thInkInG lIke a desIGner

You Are a Game Designer
As of this moment, you are a game designer, and I want you to say it out loud:1

"I am a game designer."

It's okay. You can say it out loud, even if other people can hear you. In fact, according
to psychologist Robert Cialdini's book, Influence: The Psychology of Persuasion,2 if other
people hear you commit to something, you're more likely to follow through. So, go
ahead and tell your friends, tell your family, shout it from the mountain tops, post it to
social media:

"I am a game designer!"

But, what does it mean to be a game designer? This book will help you answer that
question and will give you the tools to start making your own games. Let's start with a
design exercise.

Bartok: A Game Design Exercise
I first saw this exercise used by game designer Malcolm Ryan as part of a Game Design
Workshop session at the Foundations of Digital Gaming conference. The goal of this
exercise is to demonstrate how even a simple change to the rules of a game can have a
massive effect on the experience of playing the game.

Bartok is a simple game played with a single deck of standard cards that is very similar
to the commercial game Uno. In the best-case scenario, you would play this game with
three friends who are also interested in game design; however, I've also made a digital
version of the game that you can play solo. Either the paper or digital version will work
fine for our purposes.3

1. I thank my former professor Jesse Schell for asking me to make this statement publicly in a
class full of people. He also includes this request in his excellent book, The Art of Game Design:
A Book of Lenses (Boca Raton, FL: CRC Press, 2008).

2. Robert B. Cialdini, Influence: The Psychology of Persuasion (New York: Morrow, 1993).

3. The card images in this book and in the digital card games presented in the book are based on
Vectorized Playing Cards 1.3, Copyright 2011, Chris Aguilar, https://sourceforge.net/projects/
vector-cards/ . Licensed under LGPL 3 (http:// www.gnu.org/copyleft/lesser.html).

9780136619949_print.indb 4 25/06/22 1:45 PM

https://sourceforge.net/projects/vector-cards/
https://sourceforge.net/projects/vector-cards/
http://www.gnu.org/copyleft/lesser.html

BARTOK: a Game desIGn eXerCIse 5

PLAYING THE DIGITAL VERSION OF BARTOK

To play the digital version of Bartok, simply visit the website for this book:

http://book.prototools.net

You will find the game in the section of the website for Chapter 1.

You can, of course, also just grab a standard deck of playing cards and a few
friends and play the game in person, which will allow you to talk with your friends
about the feel of the game and the changes you want to make to it.

Objective
Be the first player to get rid of all the cards in your hand.

Getting Started
Here are the basic rules for Bartok:

1. Start with a regular deck of playing cards. Remove the Jokers, leaving you with 52
cards (13 of each suit ranked Ace–King).

2. Shuffle the deck and deal seven cards to each player.

3. Place the rest of the cards face-down in a draw pile.

4. Pick the top card from the draw pile and place it on the table face-up to start the
discard pile.

5. Starting with the player to the left of the dealer and proceeding clockwise, each
player must play a card onto the discard pile if possible, and if they cannot play a
card, the player must draw a single card from the draw pile (see Figure 1.1).

6. A player may play a card onto the discard pile if the card is either:

a. The same suit as the top card of the discard pile. (For example, if the top card
of the discard pile is a 2 of Clubs (2C), any other Club may be played onto the
discard pile.)

b. The same rank as the top card of the discard pile. (For example, if the top card of
the discard pile is a 2C, any other 2 may be played onto the discard pile.)

7. The first player to successfully get rid of all their cards wins.

9780136619949_print.indb 5 25/06/22 1:45 PM

http://book.prototools.net

6 CHAPTER 1 thInkInG lIke a desIGner

Figure 1.1 The initial layout of Bartok. In the situation shown, the player can choose to play any one of
the cards highlighted with blue borders (7C, JC, 2H, 2S).

Playtesting
Try playing the game a couple times to get a feel for it. Be sure to shuffle the cards
thoroughly between each playthrough. Games will often result in a somewhat sorted
discard pile, and without a good shuffle, subsequent games may have results weighted
by the nonrandom post-game card distribution.

9780136619949_print.indb 6 25/06/22 1:45 PM

BARTOK: a Game desIGn eXerCIse 7

tip
DEBLOCKING Deblocking is the term for strategies used to break up
blocks of cards (i.e., groups of similar cards). In Bartok, each successful game
ends with all the cards sorted into blocks of the same suit and blocks of the
same rank. If you don't deblock those groups, the subsequent game will
end much faster because players are more likely to be dealt cards that match
each other.

According to mathematician and magician Persi Diaconis, seven good riffle4

shuffles should be sufficient for nearly all games;5 if you run into issues,
though, some of these deblocking strategies can help.

Here are some standard strategies for deblocking a deck of cards if standard
shuffling doesn't work:

■ Deal the cards into several different piles. Then shuffle these piles
together.

■ Deal the cards out face-down into a large, spread-out pool. Then
use both hands to move the cards around almost like mixing water.
This is how dominoes are usually shuffled, and it can help break up
your card blocks. Then gather all the cards into a single stack.

■ Play 52 Pickup: Throw all the cards on the floor and pick them up.

Analysis: Asking the Right Questions
After each playtest, it's important to ask the right questions. Of course, each game
will require slightly different questions, though many of them will be based on these
general guidelines:

■ Is the game of the appropriate difficulty for the intended audience? Is it
too difficult, too easy, or just right?

4. A riffle shuffle is one where half of the deck starts in each hand and you bend the cards
up with the thumb and hold the cards down with the index finger of each hand, causing
the cards from the left and right to alternate falling into a center pile. See more at
https://en.wikipedia.org/wiki/Shuffling#Riffle.

5. Persi Diaconis, "Mathematical Developments from the Analysis of Riffle Shuffling," Groups,
Combinatorics and Geometry, edited by Ivanov, Liebeck, and Saxl. World Scientific (2003):
73–97. Also available online at http://statweb.stanford.edu/~cgates/PERSI/papers/Riffle.pdf.

9780136619949_print.indb 7 25/06/22 1:45 PM

https://en.wikipedia.org/wiki/Shuffling#Riffle
http://statweb.stanford.edu/~cgates/PERSI/papers/Riffle.pdf

8 CHAPTER 1 thInkInG lIke a desIGner

■ Is the outcome of the game based more on strategy or chance? Does
randomness play too strong a role in the game, or, alternatively, is the game too
deterministic so that after one player takes the lead, the other players don't have any
chance to catch up?

■ Does the game have meaningful, interesting decisions? When it's your turn, do
you have several choices, and is the decision between those choices an interesting one?

■ Is the game interesting when it's not your turn? Do you have any effect on
the other players' turns, or do their turns have any immediate effect on you?

We could ask many other questions, but these are some of the most common.

Take a moment to think about your answers to these questions relative to the games
of Bartok you just played and write them down. If you're playing the paper version of
this game with other human players, asking them to write down their own answers to
the questions individually and then discussing them after they're written is worthwhile,
because it keeps each player's responses from being influenced by the other players.

Modifying the Rules
As you'll see throughout this book, from a process standpoint, game design is pretty
straightforward. The process is almost always:

1. Incrementally modify the rules, changing very few things between each playtest.

2. Playtest the game with the new rules.

3. Analyze how the feel of the game is altered by the new rules.

4. Design new rules that you think might move the feel of the game in the direction
you want.

5. Repeat this process until you're happy with the game.

Iterative design is the term for this repetitive process of deciding on a small change to
the game design, implementing that change, playtesting the game, analyzing how the
change affected the gameplay, and then starting the process over again by deciding
on another small change. Chapter 7, "Acting Like a Designer," covers iterative design in
detail.

For the Bartok example, why don't you start by picking one of the following three rule
changes and playtesting it:

■ Rule 1: If a player plays a 2, the person to her left must draw two cards instead of
playing.

■ Rule 2: If any player has a card that matches the rank and color (red or black) of
the top card, they may announce "Match card!" and play it out of turn. Play then

9780136619949_print.indb 8 25/06/22 1:45 PM

BARTOK: a Game desIGn eXerCIse 9

continues with the player to the left of the one who just played the out-of-turn card.
This can lead to players having their turns skipped.

For example: In a four-player game, the first player plays a 3C (three of Clubs). The
third player has the 3S (which matches both the rank and color of the 3C), so they
call "Match card!" and play the 3S on top of the 3C out-of-turn, skipping the second
player's turn. Play then continues with the fourth player.

■ Rule 3: A player must announce "Last card" when they have only one card left.
If someone else calls it first, the player must draw two cards (bringing their total
number of cards to three).

Choose only one of the rule changes from the previous listing and play the game a
couple times with the new rule. Then have each player write their answers to the four
playtest questions. You should also try playing with another one of the rules (although I
would recommend still only using one of them at a time when trying a new rule for the
first time).

If you're playing the digital version of the game, you can use the check boxes on the
menu screen to choose various game options.

warning
WATCH OUT FOR PLAYTESTING FLUKES A weird shuffle or other external
factor can sometimes cause a single play through the game to feel really
different from the others. This is known as a fluke, and you want to be care-
ful not to make game design decisions based on flukes. If something you
do seems to affect the game feel in a very unexpected way, be sure to play
through the game multiple times with those same rules to make sure you're
not experiencing a fluke.

Analysis: Comparing the Rounds
Now that you've played through the game with some different rule options, analyze the
results from the different rounds. Look back over your notes and see how each different
rule set felt to play. As you experienced, even a simple rule change can greatly change
the feel of the game. Here are some common reactions to the previously listed rules:

■ The original rules

Many players find the original version of the game to be pretty boring. There are
no interesting choices to make, and as the players remove cards from their hands,
the number of possible choices dwindles as well, often leaving the player with only
one valid choice for most of the later turns of the game. The game is largely based

9780136619949_print.indb 9 25/06/22 1:45 PM

10 CHAPTER 1 thInkInG lIke a desIGner

on chance, and players have no real reason to pay attention to other players' turns
because they don't really have any way of affecting each other.

■ Rule 1: If a player plays a 2, the person to her left must draw two cards instead of
playing.

This rule allows players to directly affect each other, which generally increases inter-
est in the game. However, whether a player has 2s is based entirely on luck, and each
player only really has the ability to affect the player on their left, which often seems
unfair. However, this does make other players' turns a bit more interesting because
other players (or at least the player to your right) have the ability to affect you.

■ Rule 2: If any player has a card that matches the number and color (red or black)
of the top card, they may announce "Match card!" and play it out of turn. Play then
continues with the player to the left of the one who just played the out-of-turn card.

This rule often has the greatest effect on player attention. Because any player has
the opportunity to interrupt another player's turn, all players tend to pay a lot more
attention to each other's turns. Games played with this rule often feel more dramatic
and exciting than those played with the other rules.

■ Rule 3: A player must announce "Last card!" when they have only one card left.
If someone else calls it first, the player must draw two cards.

This rule only comes into play near the end of the game, so it doesn't have any effect
on the majority of gameplay; however, it does change how players behave at the
end. This can lead to some interesting tension as players try to jump in and say, "last
card" before the player who is down to only one card. This is a common rule in both
domino and card games where the players are trying to empty everything from their
hands because it gives other players a chance to catch up to the lead player if the
leader forgets about the rule.

Designing for the Game Feel That You Want
Now that you've seen the effects of a few different rules on Bartok, it's time to do your
job as a designer and make the game better. First, decide on the feel that you want the
game to have: Do you want it to be exciting and cutthroat, do you want it to be leisurely
and slow, or do you want it to be based more on strategy than chance?

After you have a general idea of how you want the game to feel, think about the rules
that you tested and try to come up with additional rules that can push the feel of the
game in the direction that you want. Here are some tips to keep in mind as you design
new rules for the game:

■ Change only one thing in between each playtest. If you change (or even tweak) a
number of rules between each play through the game, it can be difficult to deter-
mine which rule is affecting the game in what way. Keep your changes incremental,
and you'll be better able to understand the effect that each is having.

9780136619949_print.indb 10 25/06/22 1:45 PM

the deFInItIon oF GAME 11

■ The bigger change you make, the more playtests will be required to understand how
it changes the game feel. If you only make a subtle change to the game, one or two
plays can tell you a lot about how that change affects the feel. However, if it's a ma-
jor rule change, you will need to test it more times to avoid being tricked by a fluke
game. Additionally, if the small rule change only happens in rare circumstances, you
also may need multiple plays through the game to experience that circumstance.

■ Change a number, and you change the experience. Even a seemingly small change
can have a huge effect on gameplay. For instance, think about how much faster
this game would end if there were two discard piles to choose from or if the players
started with five cards instead of seven.

Of course, adding new rules is a lot easier to do when playing the card game in person
with friends than when working with a digital prototype. That's one of the reasons that
paper prototypes can be so important, even when you're designing digital games. The
first part of this book discusses both paper and digital design, but most of the design
exercises are done with paper games because they can be so much faster to develop
and test than digital games.

The Definition of Game
Before moving too much further into design and iteration, we should probably clarify
what we're talking about when we use terms such as game and game design. Many very
smart people have tried to accurately define the word game. Here are a few of them in
chronological order:

■ In his 1978 book The Grasshopper, Bernard Suits (who was a professor of philosophy
at the University of Waterloo) declares that "a game is the voluntary attempt to
overcome unnecessary obstacles."6

■ Game design legend Sid Meier says that "a game is a series of interesting choices."7

■ In Game Design Workshop, Tracy Fullerton defines a game as "a closed, formal
system that engages players in a structured conflict and resolves its uncertainty in
an unequal outcome."8

■ In The Art of Game Design, Jesse Schell playfully examines several definitions for game
and eventually decides on "a game is a problem-solving activity, approached with a
playful attitude."9

6. Bernard Suits, The Grasshopper: Games, Life, and Utopia (Toronto: Toronto University Press,
1978), 41.

7. Andrew Rollings and Dave Morris. Game Architecture and Design (Scottsdale: Coriolis, 2000), 38.

8. Tracy Fullerton, Christopher Swain, and Steven Hoffman. Game Design Workshop: A Playcentric
Approach to Creating Innovative Games, 2nd ed. (Boca Raton, FL: Elsevier Morgan Kaufmann,
2008), 43.

9. Jesse Schell, Art of Game Design: A Book of Lenses (Boca Raton, FL: CRC Press, 2008), 37.

9780136619949_print.indb 11 25/06/22 1:45 PM

12 CHAPTER 1 thInkInG lIke a desIGner

■ In the book Game Design Theory, Keith Burgun presents a much more limited defini-
tion of game: "a system of rules in which agents compete by making ambiguous,
endogenously meaningful decisions."10, 11

As you can see, all of these are compelling and correct in their own way. Perhaps even
more important than the individual definition is the insight that it gives us into each
author's intent when crafting that definition.

Bernard Suits' Definition
In addition to the short definition "a game is the voluntary attempt to overcome unnec-
essary obstacles," Suits also offers a longer, more robust version:

To play a game is to attempt to achieve a specific state of affairs, using only means
permitted by rules, where the rules prohibit use of more efficient in favor of less effi-
cient means, and where the rules are accepted just because they make possible such
activity.12

Throughout his book, Suits proposes and refutes various attacks on this definition; and
having read the book, I am certainly willing to say that he has found the definition of
"game" that most accurately matches the way that the word is used in day-to-day life.

However, it's also important to realize that this definition was crafted in 1978, and
even though digital games and roleplaying games existed at this time, Suits was either
unaware of them or intentionally ignored them. In fact, in Chapter 9 of The Grasshopper,
Suits laments that there is no kind of game with rules for dramatic play through which
players could burn off dramatic energy (much like children can burn off excess athletic
energy via play of any number of different sports), exactly the kind of play that was
enabled by games like Dungeons & Dragons.13

Although this is a small point, it gets at exactly what is missing from this definition:
Whereas Suits' definition of game is an accurate definition of the word, it offers nothing
to designers seeking to craft good games for others.

10. Keith Burgun. Game Design Theory: A New Philosophy for Understanding Games
(Boca Raton, FL: A K Peters/CRC Press, 2013), 10, 19.

11. Endogenous means inherent to or arising from the internal systems of a thing,
so "endogenously meaningful decisions" are those decisions that actually affect the game
state and change the outcome. Choosing the color of your avatar's clothing in Farmville is
not endogenously meaningful, whereas choosing the color of your clothing in Metal Gear
Solid 4 is, because the color of your clothing affects whether your avatar is visible to enemies.

12. Bernard Suits, The Grasshopper: Games, Life, and Utopia (Toronto: Toronto University Press,
1978), 41.

13. Suits, The Grasshopper, 96.

9780136619949_print.indb 12 25/06/22 1:46 PM

THE DEFINITION OF GAME 13

For an example of what I mean, take a moment to play Jason Rohrer's fantastic game
Passage14 (see Figure 1.2). The game only takes 5 minutes to play, and it does a fantastic
job of demonstrating the power that even short games can have. Try playing through
it a couple times. If you can't find a playable version for your computer, try watching
some videos online, though playing it yourself is certainly better.

Figure 1.2 Passage by Jason Rohrer (released December 13, 2007)

Suits' definition will tell you that, yes, this is a game. In fact, it is specifically an "open
game," which he defines as: a game that has as its sole goal the continuance of the
game.15 In Passage, the goal is to continue to play for as long as possible…or is it?
Passage has several potential goals, and it's up to the player to choose which of these
they want to achieve. These goals could include the following:

■ Moving as far to the right as possible before dying (exploration)

■ Earning as many points as possible by finding treasure chests (achievement)

■ Finding a wife (socialization)

The point of Passage as an artistic statement is that each of these can be a goal in life,
and to some extent, these goals are all mutually exclusive. If you find a wife early in
the game, getting treasure chests becomes more difficult because the two of you are
unable to enter areas that could be entered singly. If you choose to seek treasure, you
will spend your time exploring the vertical space of the world and won't be able to see
the different scenery to the right. If you choose to move as far to the right as possible,
you won't rack up nearly as much treasure.

In this incredibly simple game, Rohrer exposes a few of the fundamental decisions that
every one of us must make in life and demonstrates how even early decisions can have a
major effect on the rest of our lives. The important thing here is that he is giving players
choice and demonstrating to them that their choices matter.

14. Passage is downloadable from Rohrer's website at http://hcsoftware.sourceforge.net/
passage/, or you can find an online version at http://passage.toolness.org/.

15. Suits contrasts these with closed games, which have a specific goal (e.g., crossing a finish
line in a race or ridding yourself of all your cards in Bartok). Suits' example of an open game
is the game of make-believe that children play.

M01_Bond_C01_p001-020.indd 13 27/06/22 8:32 PM

http://hcsoftware.sourceforge.net/passage/
http://hcsoftware.sourceforge.net/passage/
http://passage.toolness.org/

14 CHAPTER 1 thInkInG lIke a desIGner

This is an example of the first of a number of designer's goals that I will introduce in this
book: experiential understanding. Whereas a linear story like a book can encourage
empathy with a character by exposing the reader to the character's life and the deci-
sions that they have made, games can allow players to understand not only the
outcome of decisions but also to be complicit in that outcome by giving the player the
power and the responsibility of decision and then showing them the outcome wrought
by their decisions. Chapter 8, "Design Goals," explores these in much greater depth.

Sid Meier's Definition
By stating that "a game is a series of interesting choices," Meier is saying very little about
the definition of the word game (there are many, many things that could be categorized
as a series of interesting choices and yet are not games) and quite a bit about what he
personally believes makes for a good game. As the designer of games such as Pirates,
Civilization, Alpha Centauri, and many more, Sid Meier is one of the most successful
game designers alive, and he has consistently produced games that present players
with interesting choices. This, of course, raises the question of what makes a choice or
decision interesting. An interesting decision is generally one where:

■ The player has multiple valid options from which to choose.

■ Each option has both positive and negative potential consequences.

■ The outcome of each option is predictable but not guaranteed.

This brings up the second of our designer's goals: to create interesting decisions. If a
player is presented with a number of choices, but one choice is obviously superior to
the others, the experience of deciding which to choose doesn't actually exist. If a game
is designed well, players will often have multiple choices from which to choose, and the
decision will often be a tricky one.

Tracy Fullerton's Definition
As she states in her book, Tracy Fullerton is much more concerned with giving design-
ers tools to make better games than she is with the philosophical definition of game.
Accordingly, her definition of a game as "a closed, formal system that engages players
in a structured conflict and resolves its uncertainty in an unequal outcome" is not only
a good definition of game but also a list of elements that designers can modify in their
games:

■ Formal elements: The elements that differentiate a game from other types of
media: rules, procedures, players, resources, objectives, boundaries, conflict, and
outcome.

■ (Dynamic) systems: Methods of interaction that evolve as the game is played.

9780136619949_print.indb 14 25/06/22 1:46 PM

the deFInItIon oF GAME 15

■ Conflict structure: The ways in which players interact with each other.

■ Uncertainty: The interaction between randomness, determinism, and player
strategy.

■ Unequal outcome: How does the game end? Do players win, lose, or something
else?

Another critical element in Fullerton's book is her continual insistence on actually making
games. The only way to become a better game designer is to make games. Some of the
games you'll design will probably be pretty awful—some of mine certainly have been—
but even designing a terrible game is a learning process, and every game you create will
improve your design skills and help you better understand how to make great games.

Jesse Schell's Definition
Schell defines a game as "a problem-solving activity, approached with a playful
attitude." This is similar in many ways to Suits' definition, including its consideration of
the player's perspective. According to both, it is the playful attitude of the player that
makes something a game.

Suits argues in his book that two people could both be involved in the same activity,
and to one, it would be a game, whereas to the other, it would not be. His example is a
foot race where one runner is just running because she wants to take part in the race,
but the other runner knows that at the finish line there is a bomb they must defuse
before it explodes. According to Suits, although the two runners would both be running
in the same foot race, the one who is simply racing would follow the rules of the race
because of what Suits calls her lusory attitude. On the other hand, the bomb-defusing
runner would break the rules of the game the first chance they got because they have
a serious attitude (as is required to defuse a bomb) and are not engaged in the game.
Ludus is the Latin word for play, so Suits proposes the term lusory attitude to describe
the attitude of one who willingly takes part in playing a game.

It is because of their lusory attitude that players will happily follow the rules of a game
even though there may be an easier way to achieve the stated goal of the game (what
Suits would call the pre-lusory goal). For example, the pre-lusory goal of golf is to get
the golf ball into the cup, but there are many easier ways to do so than to stand hun-
dreds of yards away and hit the ball with a bent stick. When people have a lusory atti-
tude, they set challenges for themselves just for the joy of overcoming them.

So, another design goal is to encourage a lusory attitude. You should design your game
to encourage players to enjoy the limitations placed on them by the rules. Think about
why each rule is there and how it changes the player experience. If a game is balanced
well and has the proper rules, players will enjoy the limitations of the rules rather than
feel exasperated by them.

9780136619949_print.indb 15 25/06/22 1:46 PM

16 CHAPTER 1 thInkInG lIke a desIGner

Keith Burgun's Definition
Burgun's definition of a game as "a system of rules in which agents compete by making
ambiguous, endogenously meaningful decisions" is his attempt to push the discourse
on games forward from a rut that he feels it has fallen into by narrowing the meaning of
game down to something that can be better examined and understood. The core of this
definition is that the player is making choices and that those choices are both ambigu-
ous (the player doesn't know exactly what the outcome of the choice will be) and
endogenously meaningful (the choice is meaningful because it has a noticeable effect
upon the game system).

Burgun's definition is intentionally limited and purposefully excludes several of the
things that many people think of as games (including foot races and other competitions
based on physical skill) as well as reflective games like The Graveyard, by Tale of Tales, in
which the player experiences wandering through a graveyard as an old woman. Both
of these are excluded because the decisions in them lack ambiguity and endogenous
meaning.

Burgun chooses such a limited definition because he wants to get down to the essence of
games and what makes them unique. In doing so, he makes several good points, includ-
ing his statement that whether an experience is fun has little to do with the question of
whether it is a game. Even a terribly boring game is still a game; it's just a bad game.

In my discussions with other designers, I have found that a lot of contention can exist
around this question of what types of things should fall under the term game. Games
are a medium that has experienced a tremendous amount of growth, expansion, and
maturation over the last few decades, and the explosion of independent game develop-
ment this decade has only hastened the pace. Today, more people than ever before—
with disparate voices and varied backgrounds—are contributing work to the field of
games, and as a result, the definition of the medium is expanding, which is understand-
ably bothersome to some people because this expanding definition can be seen as
blurring the lines of what is considered a game. Burgun's response to this is his concern
that it is difficult to rigorously advance a medium if we lack a good definition of what
the medium is. I'll come back to this topic in a little while.

Why Care About the Definition of Game?
In his 1953 book Philosophical Investigations, Ludwig Wittgenstein proposed that the
term game, as it is used colloquially, had come at that time to refer to several very dif-
ferent things that shared some traits (which he likened to a family resemblance) but
couldn't be encapsulated in a single definition. In 1978, Bernard Suits attacked this idea
by using his book, The Grasshopper, to argue very stringently for the specific definition
of game that you read earlier in this chapter. However, as Chris Bateman points out in
his book Imaginary Games, though Wittgenstein used the word game as his example,

9780136619949_print.indb 16 25/06/22 1:46 PM

the deFInItIon oF GAME 17

he was really trying to make a larger point: the point that words are created to define
things rather than things being created to meet the definition of words.

In 1974 (between the publications of Philosophical Investigations and The Grasshopper),
the philosopher Mary Midgley published a paper titled, "The Game Game," in which
she explored and refuted the "family resemblance" claim by Wittgenstein not by argu-
ing for a specific definition of game herself but instead by exploring why the word game
existed. In her paper, she agrees with Wittgenstein that the word game came into being
long after games existed, but she makes the statement that words like game are not
defined by the things that they encompass but instead by the needs that they meet. As
she states:

Something can be accepted as a chair provided it is properly made for sitting on,
whether it consists of a plastic balloon, a large blob of foam, or a basket slung from
the ceiling. Provided you understand the need you can see whether it has the right
characteristics, and aptness for that need is what chairs have in common.16

In her paper, Midgley seeks to understand some of the needs that games fulfill. She
completely rejects the idea that games are closed systems by both citing many exam-
ples of game outcomes that have effects beyond the game and pointing out that games
cannot be closed because humans have a reason for entering into them. To her, that
reason is paramount. The following are just a few reasons for playing games:

■ Humans desire structured conflict: As Midgley writes, "The Chess Player's
desire is not for general abstract intellectual activity, curbed and frustrated by a
particular set of rules. It is a desire for a particular kind of intellectual activity, whose
channel is the rules of chess." As Suits pointed out in his definition, the rules that
limit behavior are there precisely because the challenge of those limitations is appeal-
ing to players.

■ Humans desire the experience of being someone else: We are all acutely
aware that we have but one life to live (or at least one at a time), and play can allow
us to experience another life. Just as a game of Call of Duty allows a player to pretend
to experience the life of a soldier, so too does The Graveyard allow the player to pre-
tend to experience the life of an old woman, and playing the role of Hamlet allows
an actor to pretend to experience the life of a troubled Danish prince.

■ Humans desire excitement: Much popular media is devoted to this desire for
excitement, be it action films, courtroom dramas, or romance novels. The thing
that makes games different in this regard is that the player is actively taking part in
the excitement rather than vicariously absorbing it, which is the only option for the
majority of linear media. As a player, you aren't watching someone else be chased by
zombies, you're being chased yourself.

16. Mary Midgley. "The Game Game," Philosophy 49, no. 189 (1974): 231–53.

9780136619949_print.indb 17 25/06/22 1:46 PM

18 CHAPTER 1 thInkInG lIke a desIGner

Midgley found it critical to consider the needs that are fulfilled by games in order to
understand both their importance in society and the positive and negative effects that
games can have on the people who play them. Both Suits and Midgley spoke about the
potentially addictive qualities of games in the 1970s, long before video games became
ubiquitous and public concern emerged about players becoming addicted. As game
designers, it is useful for us to understand these needs and respect their power.

The Nebulous Nature of Definitions
As Midgley pointed out, it is useful to think of the word game as being defined by the
need that it fills. However, she also stated that a chess player doesn't want to play just
any kind of game; they specifically want to play chess. Not only is it difficult to come
up with an all-encompassing definition for game, it's also true that the same word will
mean different things to different people at different times. When I say that I'm going
to play a game, I usually mean a console or video game; when my wife says the same
thing, though, she usually means Scrabble or another word game. When my parents say
they want to play a game, it means something like Alan R. Moon's Ticket to Ride (a board
game that is interesting but doesn't require players to be overly competitive with each
other), and my in-laws usually mean a game of cards or dominoes when they use the
word. Even within our family, the word has great breadth.

The meaning of the word game is also constantly evolving. When the first computer
games were created, no one could have possibly imagined the multi-billion-dollar
industry that we now have or the rise of the fantastic indie renaissance that we've seen
over the past decade. All that they knew was that these things people were doing on
computers were kind of like tabletop war board games (I'm thinking of Space War here),
and these new games were called "computer games" to differentiate them from the
pre-existing meanings of game.

The evolution of digital games was a gradual process with each new genre building
in some way on the ones that had come before, and along the way, the term game
expanded further and further to encompass all of them.

Now, as the art form matures, many designers are entering the field from various other
disciplines and bringing with them their own concepts about what can be created with
the technologies and design methodologies that have been developed to make digital
games. (You may even be one of them.) As these new artists and designers enter the
space, some of them are making things that are very different from what we think of
as a stereotypical game. That's okay; in fact, I think it's fantastic! And, this isn't just my
opinion. IndieCade, the international festival of independent games, seeks every year
to find games that push the envelope of what is meant by game. According to Festival

9780136619949_print.indb 18 25/06/22 1:46 PM

sUmmary 19

Chair Celia Pearce and Festival Director Sam Roberts, if an independent developer
wants to call the interactive piece that they have created a game, IndieCade will accept
it as one.17

Summary
After all these interwoven and sometimes contradictory definitions, you may be won-
dering why this chapter has spent so much time exploring the definition of the word
game. I have to admit that in my day-to-day work as an educator and game designer, I
don't spend a lot of time wrestling with the definitions of words. As Shakespeare points
out, were a rose to be named something else, it would still smell as sweet, still have
thorns, and still be a thing of fragile beauty. However, I believe that an understanding of
these definitions can be critical to you as a designer in the following three ways:

■ Definitions help you understand what people expect from your games. This proves es-
pecially true if you're working in a specific genre or for a specific audience. Understand-
ing how your audience defines the term will help you to craft better games for them.

■ Definitions can lead you to understand not only the core of the defined concept but
also the periphery (i.e., games that fit the definition perfectly (the core) and games
that just barely fit the definition (the periphery)). As you read through this chapter, you
encountered several different definitions by different people, and each had both a core
and a periphery. The places where these peripheries don't mesh can be hints at some
of the interesting areas to explore with a new game. For example, the area of disagree-
ment between Fullerton and Midgley about whether a game is a closed system high-
lights the previously untracked ground that in the 2000s grew into alternate reality
games (ARGs), a genre centered on perforating the closed magic circle of play.18

■ Definitions can help you speak eloquently with others in the field. This chapter has
more references and footnotes than any other in the book because I want you to be
able to explore the philosophical understanding of games in ways that are beyond
the scope of this one book (especially since this book is really focused on the practi-
calities of actually making digital games). Following these footnotes and reading the
source material can help improve the critical thinking that you do about games.

17. This was stated during the Festival Submission Workshop given by Celia Pearce and Sam
Roberts at IndieCade East 2014 and is paraphrased on the IndieCade submissions website at
https://www.indiecade.com/submissions-help-section/eligibility/#mean-by-game (accessed
June 14, 2021).

18. The first large-scale ARG was Majestic (Electronic Arts, 2001), a game that would phone play-
ers in the middle of the night and send them faxes and emails. Smaller-scale ARGs include
the game Assassin, which is played on many college campuses, where players can "assas-
sinate" each other (usually with Nerf or water guns, or by snapping a photo) any time that
they are outside of classes. One of the fun aspects of these games is that they are always
happening and can interfere with normal life.

9780136619949_print.indb 19 25/06/22 1:46 PM

https://www.indiecade.com/submissions-help-section/eligibility/#mean-by-game

20 CHAPTER 1 thInkInG lIke a desIGner

The Core Lessons of This Book
This book will actually teach you how to design a lot more than just games. In fact, it
will teach you how to craft any kind of interactive experience. As I define it:

An interactive experience is any experience created by a designer; inscribed into rules,
media, or technology; and decoded by people through play.

That makes interactive experience a pretty expansive term. In fact, any time that you
attempt to craft an experience for people—whether you're designing a game, planning
a surprise birthday party, or even planning a wedding—you're using the same tools
that you will learn as a game designer. The processes that you will learn in this book are
more than just the proper way to approach game design. They are a meaningful way to
approach any design problem, and the iterative process of design that is introduced in
Chapter 7, "Acting Like a Designer," is the essential method for improving the quality of
any design.

No one bursts forth from the womb as a brilliant game designer. My friend Chris Swain19

is fond of saying that "Game design is 1% inspiration and 99% iteration," a play on the
famous quote by Thomas Edison. He is absolutely correct, and one of the great things
about game design (unlike the previously mentioned examples of the surprise party
and the wedding) is that you get the chance to iterate on your designs, to playtest the
game, make subtle tweaks, and play it again. With each prototype you make—and
with each iteration of your prototypes—your skills as a designer will improve. Similarly,
once you reach the parts of this book that teach digital development, be sure to keep
experimenting and iterating. The code samples and tutorials are designed to show you
how to make a playable game prototype, but every tutorial in this book will end where
your work as a designer should begin. Each one of these prototypes could be built into a
larger, more robust, better balanced game, and I encourage you to do so.

Moving Forward
Now that you've experienced a bit of game design and explored various definitions of
game, it's time to move on to a more in-depth exploration of a few different analytical
frameworks that game designers use to understand games and game design. The next
chapter explores various frameworks that have been used over the past several years,
and the chapter that follows synthesizes those into the framework used throughout the
remainder of this book.

19. Chris Swain co-wrote the first edition of Game Design Workshop with Tracy Fullerton and
taught the class of the same name at the University of Southern California for many years,
which I took over from him in 2009. He is now an entrepreneur and independent game
designer.

9780136619949_print.indb 20 25/06/22 1:46 PM

INDEX

S y m b o l s
&& (AND operator), 406
< > (angle brackets)

C# programming language, 414–415
generic methods, 398

// (comments), 369, 384
{ } (braces)

C# programming language, 415
opening brace positioning in C#499–500

[] (brackets), C# programming language, 415
-- (decrement operators), 428, 431
$ (dollar sign), string interpolation, 981–982
= (Assignment operator), 411, 418
== (Is Equal To operator), 411–413
! (NOT operator), 406
!= (Not Equal To operator), 414
> (Greater Than operator), 414
>= (Greater Than or Equal To operator), 415
< (Less Than operator), 414
<= (Less Than or Equal To operator), 415
() (parentheses), C# programming language,

415
% (modulo operators), 436
|| (OR operator), 406
++ (increment operators), 428
; (semicolons)

debugging, 495
for loops, 431

N u m b e r s
2D adventure game level

playtesting, 161–162
prototyping, 157–159

combat, 162
shortcuts, 161
traversal mechanics, 159–161

3D printing, aesthetics, 50
3x5 note cards, prototyping, 155
52 Pickup, 5

A
AAA development, costs, 293
absolute spreadsheet references, 193–194

access speeds, DOD, 577–578
accounts (Unity), creating, 334–335
accumulating points, Apple Picker, 665–668
Achievers (Bartle's Diamonds), 74
acquaintances, circles of playtesters, 171–172
actions

calls to action, direct player guidance,
233–234

discernable actions, 71
five-act dramatic structures, 54
functions encapsulating actions, 476
integrated actions, 71, 147, 245
player actions, tracking, 61
puzzles, 250–251
rising action, five-act dramatic structures, 54

action lists, Apple Picker, 318
action puzzles, 260–262
Adkison, Peter

innovation, 113
ADL (Automated Data Logging), 182–183
Advanced Game Design: A Systems Approach,

1201
Advantage (Max) NES controllers, 36
aesthetics

cultural aesthetics, 93
cosplay, 93
fan art, 93
gameplay as art, 93
machinema, 93

cultural layer, Layered Tetrad, 36
Defiance, 36
dynamic aesthetics, 77

environmental aesthetics, 82–85
procedural aesthetics, 77–82

dynamic layer, Layered Tetrad, 34
Elemental Tetrad framework, 28
environmental aesthetics, 82

audio play environments, 83–84
player considerations, 84–85
visual play environments, 82–83

five aesthetic senses, 51
goals, 51–53
inscribed aesthetics, 51
inscribed layer, Layered Tetrad, 33
MDA framework, 33
procedural aesthetics, 77

Z05_Bond_Index_p1203-1252.indd 1203 29/06/22 3:20 PM

1204 AESTHETICS

procedural music, 78–79
procedural visual arts, 80–82

Tomb Raider, 36
ages/genders, digital games industry, 291–292
Agile Software Development. See also Scrum,

266–267
agon, 134
Aguilar, Chris

Vectorized Playing Cards, 2
alea, 134
Alexander, Christopher

design patterns, 49
A Pattern Language, 49
purpose of spaces, 49

alpha phase, game development, 119
ambiguous decisions, 147
Among Us, player relationships, 47
ampersands (&), && (AND operator), 406
Amplitude, VRO, 78–79
analysis

Apple Picker, 316
basic gameplay, 317
GameObjects, 317–318
GameObjects, action lists, 318
GameObjects, flowcharts, 319–321

Elemental Tetrad framework, 20, 30–31
FDD elements framework, 20, 25–27

dramatic elements, 25, 27–28
dynamic elements, 25, 28–29
formal elements, 27–28

frames, 319–320
MDA framework, 22

defined, 23
designer views, 23
player views, 23
Snakes and Ladders, 22–24

playtesting, 5–6, 7–8
self-analysis, playtesting, 169

analysis phase, iterative design, 105–107
AND operator (&&), 406
angle brackets (< >)

C# programming language, 414–415
generic methods, 398

animation
blending, 81
Dungeon Delver, 1044–1049

attack animations, 1055–1058
walking animations, 1054–1055

procedural animation, 81
antagonism, three-act dramatic structures, 58
anti-aliasing issues, Dungeon Delver, 1041–1042
Apache OpenO�ce Calc, 190

A Pattern Language, 49
Apple Numbers, 190
Apple Picker, 316, 621–623

art assets, 624–633
basic gameplay, 317
baskets

destroying, 670–672
instantiating, 655–656
moving with mouse, 657–658

cameras, setup, 633–634
catching apples, 658–659
coding, 637–641
directionality, 646–648
dropping apples, 649–651
game management, 661–662
game panel settings, 636–637
GameObjects, 317–318

action lists, 318
flowcharts, 319–321

GUI, 661–662
HighScore texts, 662–664, 672–678
instance overrides, applying to prefabs,

641–642
missed apple notifications, 668–672
movement systems, 643–646
physics layers, 651–652
points accumulation, 665–668
purpose of, 623
random directionality, 647–648
ScoreCounter texts, 662–664
script variables, tuning, 659–660
setup, 624
stopping apples from falling too far,

653–655
application variables, 397
applications, force quitting, 426, 509
approximate float comparisons, 412
archipelagos, turning noise into, 603–612
ARG (Alternate Reality Game)

boundaries, 46–48
Majestic, 17

arguments, functions, 478–479
arrays, 439, 451–453

choosing, 466–467
converting

Lists to arrays, 447
arrays to Lists, 457

empty elements within arrays, 453
jagged arrays, 461–464
linear arrays, storing two-dimensional data

in, 1039–1040
multidimensional arrays, 457–461

Z05_Bond_Index_p1203-1252.indd 1204 29/06/22 3:20 PM

1205BALANCE

null arrays, skipping with foreach loops,
454–455

properties, 455–456
static methods, 456–457
zero-indexed arrays, 440

arrows (visual design), indirect player
guidance, 237–238

art
Apple Picker, 624–633
face art, adding to cards, 936–937
fan art, 93
gameplay as art, 93
games as art, 97–98
Mission Demolition, 684–690
procedural visual arts, 80

particle systems, 80
procedural animation, 81
procedural environments, 82
shaders, 81–82

Space SHMUP, enemies, 771–773
Art of Game Design, The, 9, 2

design phase, iterative design, 108–109
Elemental Tetrad framework, 30–31
indirect player guidance, 234–240
inscribed mechanics, 43
interest curves, 145–146
"Ten Rules of Probability Every Game

Designer Should Know," 207–211
testing phase, iterative design, 111–112

"Art of Puzzle Design," The, 248–250
Assassin's Creed

audio design, 240
plots versus free will, 57
visual design, indirect player guidance, 237

Assassin's Creed IV: Black Flag
direct player guidance, 234
embedded experiences, 48

Assassin's Creed: Odyssey, HDR lighting, 83
asset packages, importing, 755–757
assets, 49
assigning tasks (Main worksheets), BDC,

274–275, 280
Assignment operator (=), 411, 418
asymmetric games, 188
AT (Automated Testing), 185
Attach to Unity button, repairing in Visual

Studio, 513
attaching scripts, 500–502
attack animations, Dungeon Delver, 1055–1058
"Attention, Not Immersion: Making Your

Games Better with Psychology and
Playtesting, the Uncharted Way," 144–145

attention/involvement, player-centric goals,
145–147

Attractor GameObject, Boids project, 549–551
Attractor script, Boids project, 551, 553–555,

567–570
attributes, 49
audio

background noise, 53
design, indirect player guidance, 240
dialogue, 52
five aesthetic senses, 49–53
music, 52
play environments, 83–84
noisy environments, 84
player-controlled game volume, 84
sound e�ects, 50–52

authorized transmedia and cultural layer, 96–97
autocompleteing

for loops, 431
scripts, Visual Studio, 365–366

autoformatting for loops, 656
Automated Data Logging (ADL), 182–183
Automated Testing (AT), 185
autotelic empowerment, 143
avatars, 61–62, 240
average damage

calculating, 222
charting, 223–224

awake() method versus start() method, 814–815

B
background images, Prospector, 983–985
background noise, 53
backlogs (product)/task lists, Scrum, 269
backs, adding to cards, 937–938
balance

game balance
di�culty, levels of, 188
feedback, 228–229
Mario Kart, 228
meaning of, 188
Monopoly, 228–229
spreadsheets, importance of, 188–189

weapon balance
average damage, 222–224
duplicating data, 225–226
example of, 227–228
Google Sheets, 219–228
overall damage, showing, 224–225
percent chance for each shot, 220–221
rebalancing weapons, 226–227

Z05_Bond_Index_p1203-1252.indd 1205 29/06/22 3:20 PM

BARTLE, RICHARD1206

Bartle, Richard
player intent, 74–75
types of players, 74–75

Bartok, 2
analysis, playtesting, 5–6, 7–8
deblocking, 5
digital version, 3
emergence, 69
house rules, 73–74
layout, 4
objective, 3
playtesting, 4–5
procedures, 70
rules, 3, 6–7

baskets, Apple Picker
destroying, 670–672
instantiating, 655–656
moving with mouse, 657–658

BDC (Burndown Charts), 269, 271–272
creating, 286
Daily Scrum worksheets, 283–285
Main worksheets, 273

estimating hours, 274–276, 277–280
sprint progress, 277–279
sprint settings, 273–274
task assignments, 274–275, 280
totalling hours, 277–280

Person Charts, 282–283
Task Rank Charts, 280–282
worksheets, 272–273

behaviors
behavioral change, games for, 133
NPC behaviors, modeling

emotional connections, 240–241
negative behaviors, 241
positive behaviors, 241
safety, 241

beta phase, game development, 119
Bethesda SoftWorks

Elder Scrolls, The, 92
Fallout, narrative game mods, 94
Fallout 3, 92
Fallout 4, 58
Skyrim, 58, 92, 94

conflicting objectives, 44–45
optional objectives, 42–44

primary objectives, 42–44
Betrayal at House on the Hill, player

relationships, 44, 47
BézierMover class, Prospector, 987–991
biases, playtesting, 169
BioWare

Mass E�ect
multiple dialogue choices, 61–64
novel decisions, 148–149
player interaction patterns, 46

Star Wars: Knights of the Old Republic, plots
versus free will, 57

bitwise Boolean operators, 409
Bitwise operators, System.Flags enums,

780–782
Blade Runner, multiple dialogue choices, 63–64
blending, animation, 81
Blizzard, Defense of the Ancients (DotA), 92
board games, systems thinking, 312
Bogost, Ian

magic circle, 138
Boids project

Attractor GameObject, 549–551
Boids values, 573
Reynolds, Craig W.542
scripts, 551

Attractor script, 551, 553–555
Boid script - part 1, 558
Boid script - part 2, 561–567
Boid script - part 3, 570–573
LookAtAttractor script, 551, 557–558
Neighborhood script, 551, 567–570
Spawner script, 551, 558–561

setup, 542–543
simple Boid model, 543–548

bool variables, 386
Boolean operations

AND operator (&&), 406
bitwise Boolean operators, 409
combining, 409–410
if statements with, 417–418
logical equivalence, 410
NOT operator (!), 406
| (OR operator), 406

boss fights, puzzle design, 261–262
Boston Red Sox, 2013 season, 34
boundaries

FDD elements framework, 26
inscribed mechanics, 40, 46–48

BoundsCheck bndCheck, Space SHMUP,
816–819

Box Collider component, GameObjects, 371
braces ({ })

C# programming language, 415
opening brace positioning in C#499–500

brackets ([]), C# programming language, 415
brainstorming/ideation, 113–114

collection phase, 115–116

Z05_Bond_Index_p1203-1252.indd 1206 29/06/22 3:20 PM

1207C# PROGRAMMING LANGUAGE

collision phase, 116–117
discussion phase, 117
expansion phase, 114–115
idea cards, 115
nodes, 115
rating phase, 117

break statements, exiting loops, 433–435
brevity, direct player guidance, 233
Brice, Mattie

experiential understanding, 149–150
Mainichi, 149–150

brightness
visual design, indirect player guidance, 239
visual play environments, 83

Brigs, Je�
C.P.U. Bach, 79

building games. See also game prototype
tutorials; projects

2D adventure game level
combat, 162
playtesting, 161–162
prototyping, 157–159
shortcuts, 161
traversal mechanics, 159–161

Apple Picker, 316
basic gameplay, 317
GameObjects, 317–318
GameObjects, action lists, 318
GameObjects, flowcharts, 319–321

classic games, building as a learning
example, 1199

frames, 319–320
for lifelong enrichment, 1200
small game projects, 1199
uroboros

collection phase, brainstorming/ideation,
115

collision phase, brainstorming/ideation,
116–117

discussion phase, brainstorming/ideation,
117

expansion phase, brainstorming/ideation,
114–115

idea cards, 115
idea collisions, 116–117
rating phase, brainstorming/ideation, 117

Bulls & Cows
image/media puzzles, 253
permutations, 217–219

Burgun, Keith
ambiguous decisions, 147
fun, elements of, 134–135

Game Design Theory, 9–10, 93, 134–135,
144

games, defined, 14
performative empowerment, 144

burndown charts (BDC), 269, 271–272
creating, 286
Daily Scrum worksheets, 283–285
Main worksheets, 273

estimating hours, 274–276, 277–280
sprint progress, 277–279
sprint settings, 273–274
task assignments, 274–275, 280
totalling hours, 277–280

Person Charts, 282–283
Task Rank Charts, 280–282
worksheets, 272–273

Burnout
particle systems, 80
puzzle design, 260–261

Burst Compiler, DOTS, 599–600

C
C# programming language

angle brackets (< >), 414–415
arrays, 451–453

arrays, 439
choosing, 466–467
converting Lists to, 447
converting to Lists, 457
empty elements within arrays, 453
jagged arrays, 461–464
multidimensional arrays, 457–461
null arrays, skipping with foreach loops,

454–455
properties, 455–456
static methods, 456–457
zero-indexed arrays, 440

Boolean operations
AND operator (&&), 406
bitwise Boolean operators, 409
combining, 409–410
if statements with, 417–418
logical equivalence, 410
NOT operator (!), 406
OR operator (|), 406

brackets ([]), 415
choosing, 330–331
classes, 521

anatomy of, 522–524
Class Declarations, 523
constructors, 524

Z05_Bond_Index_p1203-1252.indd 1207 29/06/22 3:20 PM

1208 C# PROGRAMMING LANGUAGE

C# programming language (continued)
Enemy class on GameObjects, 534
fields, 523
fields, methods/properties as fields,

527–530
Includes, 523–524
inheritance, 533
instances, 391–392
matching names with scripts, 525–526
methods, 523
methods/properties as fields, 527–530
MonoBehavior subclasses as GameObject

components, 530–533
properties, 524
race conditions, 533
subclasses, 535–538, 950
superclasses, 535–538, 950
understanding, 522
viewing private fields in, 734
WeaponDefinition class, SpaceSHMUP,

834–842
collections

commonly used collections, 439–440
defined, 438
generic collections, 438, 442–443

commas (,) in statements, 432
comments (//), 369, 384
comparison operators, 410

approximate float comparisons, 412
Assignment operator), 411, 418
Greater Than operator (>), 414
Greater Than or Equal To operator (>=),

415
Is Equal To operator (==), 411–413
Less Than operator (<), 414
Less Than or Equal To operator (<=), 415
Not Equal To operator (!=), 414

as a compiled language, 348–350
conditional statements, 416

if statements, 416
if statements, = (Assignment operator),

418
if statements, with Boolean operations,

417–418
if.else if.else statements, 418–419
if.else statements, 418
nesting if statements, 419
switch statements, 419–422

CS0029 compile-time code errors, 388
CS0664 compile-time code errors, 387
CS1012 compile-time code errors, 388
CS1525 compile-time code errors, 388

dashes (-), -- (decrement operators), 428, 431
debugging, 494

attaching scripts, 500–502
capitalization errors, 494
compile-time bugs, 495–500
examining code, 513–519
removing scripts, 500–502
runtime errors, 502–504
semicolons (;), 495
spelling errors, 494
stepping through errors, 506–507
typos, 494–495

Dictionaries, 441, 447–450
methods, 450–451
properties, 450

enums (enumeration), 742
features (overview), 348
force quitting applications, 426
functions

arguments, 478–479
C# as function-based language, 352–353
calling, 476–477
defined, 474–476
defining order, 480
encapsulating actions, 476
mathf functions, 396
naming, 482
overloading, 485–486
parameters, 478–479
parameters, optional parameters,

486–487
parameters, params keyword,

487–489
as properties, 483–484
reasons for using, 482–483, 484–485
recursive functions, 489–491
returning values (results), 480
returning void, 481–482
scope, 476
static functions, 391–392

generic methods (< >), 398
increment operators (++), 428
is managed code, 351
Lists, 439–440, 443–446

choosing, 466–467
converting arrays to, 457
converting to arrays, 447
jagged Lists, 465–466
methods, 446–447
properties, 446
zero-indexed lists, 440

Z05_Bond_Index_p1203-1252.indd 1208 29/06/22 3:20 PM

1209CALLING FUNCTIONS

C# programming language (continued)
loops, 423

break statements, 433–435
condition clauses (i<3), 430
continue statements, 435
do.while loops, 424, 429
exiting, 433–435
for loops, 424, 429–431, 432, 656
for loops, jagged arrays, 464–465
foreach loops, 424, 433
foreach loops, skipping null arrays,

454–455
infinite loops, 425–427
initialization clauses (int i=0;), 430
iteration clauses (i++), 430, 431
jump statements, 433
Loop Examples project, 424–426
modulo operators (%), 436
skipping single iterations, 435
types of (overview), 424
while loops, 424, 425, 426–428

modulo operators (%), 436
naming conventions, 389–390
nonshorting operators, 407–409
opening brace positioning {499–500
parentheses (), 415
percentage symbols (%), % (modulo

operators), 436
plus signs (+), ++ (increment operators), 428
private fields, viewing in classes, 734
pseudocode, 440
queues, 441
scripts, 402

adding color, 381–382
Boids project, Attractor script, 551,

553–555
Boids project, Boid script, 551
Boids project, Boid script - part 1, 558
Boids project, Boid script - part 2, 561–567
Boids project, Boid script - part 3, 570–573
Boids project, LookAtAttractor script, 551,

557–558
Boids project, Neighborhood script, 551,

567–570
Boids project, Spawner script, 551,

558–561
creating, 363–368
disabling, 370
enemies, Space SHMUP, 773–787
execution order, 1040
GridMove scripts, Dungeon Delver,

1085–1087

headers, 553–555
InRoom scripts, Dungeon Delver, 1070–1072
linear interpolation, 567
manipulating GameObjects, 370–373
matching names with classes, 525–526
prefabs, 373–378
Space SHMUP, projectiles, 803
TileSwapManager scripts, Dungeon Delver,

1099–1101
UITextManager scripts, 1010–1013
Visual Studio, autocompleteing scripts,

365–366
Visual Studio, script appearance, 365–366
Visual Studio, spacing, 375

shorting operators, 407–409
stacks, 441–442
start() function versus update() function,

370–398
static typing, 351–352
string interpolation using $981–982
syntax of, 355–357
testing operation equality by value/

reference, 412–413
variables, 384

application variables, 397
bool variables, 386
char variables, 387
class variables, 388
color variables, 393–395
declaring, 385
defining, 385
float variables, 387
instance variables/functions, 390
int variables, 386
iteration variables, Loop Example project,

428
naming, 402
quaternion variables/functions, 395–396
scope, 389
screen variables, 397
static class variables/functions, 390–392
statically typed variables, 384–385
string variables, 388
SystemInfo variables, 397
Vector3 instance variables/functions, 393

cache lines, DOD, 578–579
Caillois, Roger

fun, elements of, 134–135
Les Jeux et Les Hommes, 134–135

calculating average damage, 222
calling functions, 476–477, 1154

Z05_Bond_Index_p1203-1252.indd 1209 29/06/22 3:20 PM

1210 CALLS TO ACTION, DIRECT PLAYER GUIDANCE

calls to action, direct player guidance, 233–234
cameras

Apple Picker, setup, 633–634
Dungeon Delver, 1023

following Dray (hero), 1091–1094
GUI cameras, 1024–1025
main camera, 1024–1025

Mission Demolition
follow cameras, 702–710
settings, 685–687

orthographic cameras, 634–636
perspective cameras, 634–636
Prospector, 906–907
view frustum, 634
visual design, indirect player guidance,

238–239
capitalization errors, debugging, 494
card sleeves, prototyping, 155
cards

3x5 note cards, 155
52 Pickup, 5
deblocking, Bartok, 5
prototyping, 153
ri�e shu�es, 5

cards, decks of
customizing, 214
digital decks of cards, 214
Prospector Solitaire, 898–899, 969–970

adding backs to cards, 937–938
adding face art to cards, 936–937
adding game elements, 972
background images, 983–985
BézierMover class, 987–991
build settings, 903
building cards, 922–938
cameras, 906–907
classes, 948–961
clickable cards, 962–964
example of play, 900–901
feedback on player scores, 1007–1013
FloatingScore GameObject, 991–999
game logic, 961–962
Game pane, 906–907
gold cards, 1017
GUI, 985–986
initial layout, 899–900
JSON through code, 913–917
managing rounds, 972–975
matching cards in mine, 964–968
Mine Tableau layout, 940–948
mobile devices, 1018
moving cards, 1017–1018

pauses between rounds, 1006–1007
pips, adding to cards, 934–935
Prospector_Scene_0, 905
rules, 900
ScoreBoard class, 1000–1001
ScoreBoard GameObject, 999
scoring, 975–983, 985–986, 999–1006,

1007–1013
setup, 901–902, 906–907, 971
shu�ing cards, 939–940
silver cards, 1017
sorting cards, 954–958
sprites, building cards from sprites, 931–934
sprites, constructing cards from sprites,

911–912
sprites, gathering references to the deck,

918–920
sprites, importing images as, 907–909
sprites, prefab GameObjects as sprites/

cards, 921–922
sprites, slicing rank images as sprites,

909–911
Unity window layout, 906
updating ScoreManager script, 1001–1006
WebGL module, 1013–1016
WebGL module, installing, 903–904
WebGL module, switching to, 904–905

randomizer technologies, 213–215
shu�ing, 215

Carnegie Mellon University, Entertainment
Technology Center (ETC), 297–298

Cash, Bryan
sporadic-play games, 135–136

castles, Mission Demolition, 717–725,
734–737

catching apples, Apple Picker, 658–659
CCG (Collectible Card Games), 113
cells, editing contents n spreadsheets, 198
Cerny, Mark

Cerny Method, 121
holistic design, 125
scope management with preproduction

deliverables, 121
chain reaction games, puzzle design,

260–261
changing

direction, Apple Picker, 646–648
Scene pane, 380
script values in Inspector pane, 660–661
your mind, iterative design, 117–118

char variables, 387

Z05_Bond_Index_p1203-1252.indd 1210 29/06/22 3:20 PM

1211COLLIDER COMPONENT, GAMEOBJECTS

characters
empathetic characters, avatars versus,

61–62
FDD elements framework, 26
inscribed narratives, 52
NPC, minor NPC development, 58–59

charts
average damage, 223–224
BDC, 269, 271–272

creating, 286
Daily Scrum worksheets, 283–285
Main worksheets, 273–280
Person Charts, 282–283
Task Rank Charts, 280–282
worksheets (overview), 272–273

Google Sheets, 204–206
Macro Charts, 126
Task Rank Charts, BDC, 280–282

Cheap Ass Games, touch aesthetics, 50
cheaters, 75
Chen, Jenova

game flow, 138
Journey, 171
tissue playtesters, 171

choice paralysis, 148–149, 234–235
choosing

Lists or arrays, 466–467
Unity, 329–330

Chowanec, John "Chow"
fortune, designer-centric goals, 131

Chrono Trigger, plots versus free will, 58
Chutes and Ladders, 27–29
Cialdini, Robert, 2
circles of playtesters, 169

acquaintances, 171–172
Internet, 172
trusted friends, 170
you, 170

citizens, player relationships, 45
Civilization

inscribed mechanics, 43
tech tree, 43

clarity
direct player guidance, 233
in spreadsheets, 199

classes, 521
anatomy of, 522–524
BézierMover class, Prospector, 987–991
Class Declarations, 523
constructors, 524
data stored by reference, 579–580
Enemy class on GameObjects, 534

fields, 523, 527–530
Includes, 523–524
inheritance, 354, 533
instances, 391–392
matching names with scripts, 525–526
methods, 523, 527–530
MonoBehavior subclasses, as GameObject

components, 530–533
properties, 524, 527–530
Prospector, 948–961
race conditions, 533
ScoreBoard class, Prospector, 1000–1001
subclasses, 535–538, 950
superclasses, 535–538, 950
understanding, 522
Unity classes, data storage, 580
variables, 388
viewing private fields in, 734
WeaponDefinition class, SpaceSHMUP

dictionaries, 838–842
serializable, 834–838

classic games, building as a learning example,
1199

clear decisions, 148
clickable cards, Prospector, 962–964
climaxes

five-act dramatic structures, 54
three-act dramatic structures, 58

closed games, 11
Clover Studio, Okami, 60
Clubs (Bartle's Killers), 74
Clue, flow of spaces, 47
coding

iterative code development, 793–794
libraries, 314–315

Coding Challenges
approaches to, 1194–1195
defined, 1190–1191
Updraft Coding Challenge

filling in blanks, 1192–1194
starting, 1191–1192

collaborative prototyping, 152
collaborators, player relationships, 45
Collectible Card Game (CCG), 113
collection phase, brainstorming/ideation,

115–116
collections

commonly used collections, 439–440
defined, 438
generic collections, 438, 442–443

Collections Examples project, setup, 442–443
Collider component, GameObjects, 400–401

Z05_Bond_Index_p1203-1252.indd 1211 29/06/22 3:20 PM

1212 COLLISION DETECTION, MISSION DEMOLITION

collision detection, Mission Demolition,
698–699

collision phase, brainstorming/ideation,
116–117

collisions, Grappler (Dungeon Delver),
1169–1173

CollisionTiles sprites, Dungeon Delver,
1061–1064

color
"Hello World" project, 381–382
Unity, adding to projects, 381–382
variables, 393–395
visual design, indirect player guidance, 239

color scale conditional formatting, Google
Sheets, 200

colorblindness, 85
columns/rows, Google Sheets

adding columns, 194–195
creating rows, 194
filling rows with data, 196
iterating Die A rows, 197
making Die A rows, 196–197
making Die B rows, 197–198
setting column widths, 195

combat, 2D adventure game level, 162
combining Boolean operations, 409–410
commas (,) in statements, 432
comments (//), C# scripts, 369, 384
communication/personal expression,

designer-centric goals, 132–133
community, designer-centric goals, 132,

146–147
comparing rounds, analysis, 7–8
comparison operators, 410

approximate float comparisons, 412
Assignment operator (=), 411, 418
Greater Than operator (>), 414
Greater Than or Equal To operator (>=), 415
Is Equal To operator (==), 411–413
Less Than operator (<), 414
Less Than or Equal To operator (<=), 415
Not Equal To operator (!=), 414

competition
multilateral competition interaction pattern,

44
player relationships, 44
team competition interaction pattern, 44
unilateral competition interaction pattern,

44
compile-time bugs, 495–500
compile-time code errors

CS0029 compile-time code errors, 388

CS0664 compile-time code errors, 387
CS1012 compile-time code errors, 388
CS1525 compile-time code errors, 388

complex problems, breaking down, 315
component-based design, Dungeon Delver,

1021–1022
Component-Oriented Design, 552–553
computer languages, 313–314
"Concept of Flow," The, 139
concepts/skills, teaching, 243
condition clauses (i<3), 430
conditional formatting, Google Sheets, 200,

203
conditional statements, 416

if statements, 416
Assignment operator (=), 418
with Boolean operations, 417–418

if.else if.else statements, 418–419
if.else statements, 418
nesting if statements, 419
switch statements, 419–422

conflict
structures, 13, 141–142
objectives, 44–45

Conrad, Joseph
Heart of Darkness, 62

Console pane (Unity), 339
constraints, indirect player guidance, 234–235
construction puzzles, 251, 256
constructor classes, 524
continue statements, skipping single iterations,

435
contrast (visual design), indirect player

guidance, 239
"controller thumb," 34
converting

arrays to Lists, 457
Lists to arrays, 447

cooperative play interaction pattern, 44
Core War, roles of players, 68–69
cosplay, 93
costs, AAA development, 293
Counter Strike, game mods, 92
counting

all die rolls, 202–203
sums of die rolls, 202–203

counting coup, 141–142
C.P.U. Bach, PCO, 79
Crazy Cakes, ADL, 182–183
Csíkszentmihályi, Mihaly

autotelic empowerment, 143
"Concept of Flow," The, 139

Z05_Bond_Index_p1203-1252.indd 1212 29/06/22 3:20 PM

1213DECISIONS

Flow: The Psychology of Optimal
Experience, 139–140

game flow, 138–140
cubes, "Hello World" project

cube environments, 378–381
deleting cubes, 467–471
manipulating, 370–373
prefabs, 373–378
shrinking cubes, 467–471

cultural aesthetics, 93
cosplay, 93
fan art, 93
gameplay as art, 93
machinema, 93

cultural impact of games, 97–98
cultural layer, Layered Tetrad, 36–37, 90–91

aesthetics, 36
authorized transmedia and, 96–97
cultural aesthetics, 93–0042
cultural mechanics, 91–92
cultural narratives, 36, 93–94–0053
cultural technology, 95–96
GamerGate, 100–101
mechanics, 35–38
narratives, 36
technology, 36

cultural mechanics
custom game levels, 92
game mods, 91–92, 92

cultural narratives, 93–94
fan fiction, 95
machinema, 94–95
narrative game mods, 94

cultural technology, 95
game technology used outside games, 95
player-made external tools, 95–96

cumulative outcomes, 76
customizing

decks of cards, 214
game levels, 92

D
Daily Scrum meetings, 268, 269–270
Daily Scrum worksheets, BDC, 283–285
damage

average damage
calculating, 222
charting, 223–224

Dungeon Delver, 1125–1135
overall damage, showing, 224–225
Space SHMUP, 792–797, 853–857

Damage Per Second (DPS) calculators, 95
dashes (-), -- (decrement operators), 428, 431
Data-Oriented Design (DOD)

access speeds, 577–578
cache lines, 578–579
data locality, 577–578
"Moore's Law," 576
parallel processing, 576
theory of, 576
Unity, 354–355

Data-Oriented Tech Stack (DOTS), 581–582
archipelagos, turning noise into, 603–612
Burst Compiler, 599–600
DOTS Example project, setup, 582–586
example of, 581–582
future of, 617
image creation, 593–602
noise

archipelagos, turning noise into, 603–612
avoiding octaves, 600–602

Perlin noise, 593–602
reference-based data, avoiding, 595–599
tutorial, 581–582

Dean, Dr. Je�
"Numbers Everyone Should Know," 577

deblocking, Bartok, 5
debugging, 494

attaching scripts, 500–502
capitalization errors, 494
compile-time bugs, 495–500
examining code, 513–519
macOS, 507–508, 510–511
removing scripts, 500–502
runtime errors, 502–504
semicolons (;), 495
spelling errors, 494
stepping through errors, 506–507
typos, 494–495
Unity, 510

enabling, 509–510
errors, 505
macOS debuggers, 510–511
Windows debugger, 511–513

variables, 517–518
Windows, 507–508, 511–513

decisions
ambiguous decisions, 147
clear decisions, 148
discernable decisions, 147
double-edged decisions, 148
integrated decisions, 147
interesting decisions, 12, 147–149
novel decisions, 148

Z05_Bond_Index_p1203-1252.indd 1213 29/06/22 3:20 PM

1214 DECKS OF CARDS

decks of cards
customizing, 214
digital decks of cards, 214
randomizer technologies, 213–215
shu�ing, 215

declaring
classes, 523
variables, 385

decrement operators (--), 428, 431
Defense of the Ancients (DotA), game mods, 92
Defiance, aesthetics, 36
defining variables, 385
delegate events, Space SHMUP, 842–844
deleting

cubes, "Hello World" project, 467–471
enemies, Space SHMUP, 777–787

DeliverTiles, Dungeon Delver, 1026–1028
DelverLevel_Eagle Text files, Dungeon Delver,

1028–1031, 1033–1035
denouement, five-act dramatic structures, 54
design

aesthetics, 23
audio design, indirect player guidance, 240
component-based design, Dungeon Delver,

1021–1022
Component-Oriented Design, 552–553
game design, 1201

joining projects, 305
royalty points, 306–307
starting projects, 305–308

goals, 130
designer-centric goals, 130, 131–134
player-centric goals, 130, 134–150

holistic design, 125
iterative design, 104

analysis phase, 105–107
changing your mind, 117–118
design phase, 104, 107–109
implementation phase, 105, 111
interpreting feedback, 112
testing phase, 105, 112

patterns, 50
puzzle design, 248, 250–251, 262–263

action puzzles, 250–251, 260–262
boss fights, 261–262
construction puzzles, 251
construction sets, 256
defining, 248–250
dexterity/timing, 262
goals, 256–257
image/media puzzles, 253
inspiration, 255

Kim, Scott, 248–250, 255–256
levels, 255
logic puzzles, 253
mixed-mode puzzles, 254
modes of thought, 252
physics puzzles, 260
presentation, 256
pure puzzles, 251
reasons for playing, 251–252
rules, 255
sequencing, 256
simplification, 255
single-mode puzzles, 253
sliding block/position puzzles, 260
solving puzzles, 257–259
stealth puzzles, 261
story puzzles, 251
strategy puzzles, 251
testing, 255
Tetris, 255
traversal puzzles, 261
word puzzles, 253

reality of, 117–118
strategies, 73
systems design, 118–119
visual design, indirect player guidance,

236–239
Design Patterns: Elements of Reusable

Object-Oriented Software, 552
design phase, iterative design, 104, 107–109
designer-centric goals, 130

community, 146–147
fortune, 130

community, 132
fame, 131–132
greater good, 133
personal expression/communication,

132–133
improving as a game designer, 134

designer views, MDA framework, 23
designers, responsibilities, Layered Tetrad,

39–40
destroying enemies, Space SHMUP, 804
developing games, 118, 120

AAA development, costs, 293
Agile Software Development, 266–267
alpha phase, 119
beta phase, 119
education/programs, 1200–1201
gold phase, 119
ideation phase, 118–119

Z05_Bond_Index_p1203-1252.indd 1214 29/06/22 3:20 PM

1215DOTS (DATA-ORIENTED TECH STACK)

indie gaming scene, 295
post-release phase, 119
preproduction phase, 118–119
production phase, 118–119
Unity, 315

development environment, Unity, 328
development speeds, prototyping, 152–153
development teams, Scrum, 268
dexterity/timing, puzzle design, 262
Diaconis, Persi, 5
dialogue, 52, 61
Diamante, Vincent

Flower, 79
Diamonds (Achievers), 74
dice

probability with Google Sheets, 191
prototyping, 153
randomizer technologies, 212
summing results

counting all die rolls, 202–203
counting sums of die rolls, 201–202
two dice, 201

Dictionaries, 441, 447–450
methods, 450–451
properties, 450
WeaponDefinition class, 838–842

di�culty levels, game balance, 188
digital decks of cards, 214
Digital Extremes, Warframe, 93
digital games

industry
AAA development costs, 293
ages/genders, 291–292
conditions in, 289–295
Entertainment Software Association (ESA),

288–289
following up with contacts, 301
freemium games, 295
game conferences, 301
game education/programs, 296–299
games as a service, 295
getting into, 299–308
growth, 289–290
indie gaming scene development, 295
interviewing, 302–305
joining game design projects, 305
meeting people in the industry, 300
royalty points, 306–307
starting game design projects, 305–308
working conditions in game companies,

292–293
inscribed technology, 65

digital systems/programming
breaking down complex problems, 315
code libraries, 314–315
computer languages, 313–314
simple instructions, 313
systems thinking, 312
Unity game development environment, 315

DigitalMania, Warshmallows, 179–180
direct player guidance, 232

brevity, 233
calls to action, 233–234
clarity, 233
immediacy, 232
instructions, 233–234
maps/guidance systems, 233–234
pop-ups, 234
scarcity, 232

directional light, Mission Demolition, 685
directionality

Apple Picker, 646–648
random directionality, Apple Picker, 647–648
visual design, indirect player guidance, 239

discernable actions/decisions, 71, 147
discussion phase, brainstorming/ideation, 117
Disneyland, visual design and indirect player

guidance, 236–237
distributions, weighted, 215–216
Doctor Who, foreshadowing, 58
documentation

Macro Documents, 124–126
Requirements Documents, 124–126

DOD (Data-Oriented Design)
access speeds, 577–578
cache lines, 578–579
data locality, 577–578
"Moore's Law," 576
parallel processing, 576
theory of, 576

dollar sign ($), string interpolation, 981–982
don't like/liking ideas, playtesting, 169
doors, Dungeon Delver

keys, 1111–1121, 1138–1140
TileSwaps, 1101–1107

DOTS (Data-Oriented Tech Stack), 581–582
archipelagos, turning noise into, 603–612
Burst Compiler, 599–600
DOTS Example project, setup, 582–586
example of, 581–582
future of, 617
image creation, 593–602
noise

archipelagos, turning noise into, 603–612
avoiding octaves, 600–602

Z05_Bond_Index_p1203-1252.indd 1215 29/06/22 3:20 PM

1216 DOTS (DATA-ORIENTED TECH STACK)

Perlin noise, 593–602
reference-based data, avoiding, 595–599
tutorial, 581–582

double-edged decisions, 148
doubles, 386–387
do.while loops, 424, 429
downloading

IGDPD layout, Unity, 340
Unity, 324
Unity Hub, 324–326

dramatic elements, 25, 26–28
characters, 26
premises, 28
stories, 26

dramatics
inscribed dramatics, purposes for, 62–64
traditional dramatics, 55

five-act dramatic structures, 54–55
three-act dramatic structures, 56–58

Dray (hero), Dungeon Delver, 1042
animation, 1044–1049

attack animations, 1055–1058
walking animations, 1054–1055

camera movement, 1091–1094
collisions, 1069
giving damage, 1130–1135
Grappler attacks, 1174–1180
GUI connections, 1123–1125
health, 1121–1122
IGadget interface, 1150–1154
movement systems, 1049–1053,

1059–1061, 1087–1091
naming conventions, 1043–1044
picking up items, 1135–1137, 1181–1184
taking damage, 1127–1130
weapons, 1059–1061

dropping
apples, Apple Picker, 649–651
items, Dungeon Delver

keys, 1138–1140
randomized items, 1140–1143

Dungeon Delver, 1019–1021, 1095–1096.
See also The Legend of Zelda

anti-aliasing issues, 1041–1042
cameras, 1023

GUI cameras, 1024–1025
main camera, 1024–1025

component-based design, 1021–1022
damage, 1125–1135
DeliverTiles, 1026–1028
DelverLevel_Eagle Text files, 1028–1031,

1033–1035

doors, keys, 1111–1121, 1138–1140
Dray (hero), 1042

animation, 1044–1049
animation, attack animations, 1055–1058
animation, walking animations,

1054–1055
camera movement, 1091–1094
collisions, 1069
giving damage, 1130–1135
Grappler attacks, 1174–1180
GUI connections, 1123–1125
health, 1121–1122
IGadget interface, 1150–1154
movement systems, 1049–1053,

1059–1061, 1087–1091
naming conventions, 1043–1044
picking up items, 1135–1137, 1181–1184
taking damage, 1127–1130
weapons, 1059–1061

dropping items
keys, 1138–1140
randomized items, 1140–1143

dungeon design, 1143–1147
enemies

dropping items, keys, 1138–1140
dropping items, randomized items,

1140–1143
giving damage, 1127–1130
Skeletos, 1072–1075, 1109, 1145–1147
taking damage, 1130–1135

Game pane, 1024
Grappler, 1147–1148

building, 1154–1159
collisions, 1169–1173
firing, 1169
picking up items, 1181–1184
pulling Dray (hero) in, 1174–1180
secondary abilities, 1159–1169
testing, 1180–1181

grid alignment, 1078–1079
GridMove scripts, 1085–1087
IFacingMover interface, 1079–1084
IGadget interface, 1148–1154
ISwappable interface, 1107–1111,

1145–1147
keys, 1111–1121, 1138–1140
maps/guidance systems, 1031–1042
picking up items, 1135–1137, 1181–1184
prefabs, 1109
Project pane, 1026
randomized items, 1140–1143
Resources folder files, 1026

Z05_Bond_Index_p1203-1252.indd 1216 29/06/22 3:20 PM

1217EMPTY ELEMENTS WITHIN ARRAYS

room to room movement, 1087–1091
setup, 1022–1023, 1097–1098
sprites

CollisionTiles sprites, 1061–1064
naming conventions, 1043–1044

storing two-dimensional data in linear
arrays, 1039–1040

Tilemaps, 1031–1042
programmatic collisions, 1061
programmatically filling collisions,

1065–1069
TileSwaps, 1099, 1101–1107, 1144–1147

Dungeons & Dragons, 27, 59
cultural narratives, 93–94
cumulative outcomes, 76
dynamic narratives, 85
emergent narratives, 87
gameplay as art, 93
outcomes, 26
progression tables, 48

duplicating weapon data, 225–226
dynamic aesthetics, 77

environmental aesthetics, 82
audio play environments, 83–84
player considerations, 84–85
visual play environments, 82–83

procedural aesthetics, 77
procedural music, 78–79
procedural visual arts, 80–82

dynamic elements, 25, 28–29
emergence, 27
emergent narratives, 27
playtesting, 28

Dynamic headers, 555
dynamic layer, Layered Tetrad, 35–36, 67

aesthetics, 34
dynamic mechanics, 70

discernable actions, 71
dynamic aesthetics, 77–85
integrated actions, 71
meaningful play, 71
outcomes, 76–77
procedures, 70
strategies, 71–73

dynamic narratives, 85–87
dynamic technology, 88
emergence, 69
emergent narratives, 87
mechanics, 34
narratives, 34
players, roles of, 68–69
technology, 34

dynamic mechanics, 70
discernable actions, 71
dynamic aesthetics, 77

environmental aesthetics, 82–85
procedural aesthetics, 77–82

house rules, 73–74
integrated actions, 71
meaningful play, 71
outcomes, 76–77
player intent, 74–75
procedures, 70
strategies, 71

designing for, 73
optimal strategies, 72

dynamic narratives, 85–86
dynamic systems, 12
dynamic technology, 88

E
ECS (Entity Component Systems), 612–616
editing cell contents in spreadsheets, 198
Editor tool, Unity, 380
Edmund G. Brown, Jr., Governor of California,

et al., Petitioners v. Entertainment Merchants
Association et al., 564 U.S. (2011), 97–98

education/programs, game development,
296–299, 1200–1201

e�ects, sound, 50–52
e�ciency when testing, 974–975
Elder Scrolls game mods, The, 92
Electronic Arts, Majestic, 17, 46–48
Elemental Tetrad, 20, 30

aesthetics, 28
mechanics, 31
story, 29
technology, 28

elements, formal, 12
Elite Beat Agents, VRO, 78–79
embedded experiences, 48
emergence, 69

FDD elements framework, 27- 27
narratives, 27- 27, 87
unexpected mechanical emergence, 69–70

emotion
inscribed dramatics, 64
modeling NPC behavior, 240–241

empathetic characters versus avatars, 61–62
empowerment, player-centric goals, 142

autotelic empowerment, 143
performative empowerment, 144

empty elements within arrays, 453

Z05_Bond_Index_p1203-1252.indd 1217 29/06/22 3:20 PM

1218 ENDOGENOUS DECISIONS

endogenous decisions, 10
enemies

Dungeon Delver
dropping items, keys, 1138–1140
dropping items, randomized items,

1140–1143
giving damage, 1127–1130
Skeletos, 1072–1075, 1109, 1145–1147
taking damage, 1130–1135

Enemy Class Examples project
Enemy class on GameObjects, 534
setup, 524-TEXT NOT FOUND IN PRE XML

FILE
Space SHMUP

art assets, 771–773
damage, 792–797
deleting, 777–787
destroying, 804
Enemy_0, 810–811
Enemy_1, 812–819
Enemy_2, 819–826
Enemy_3, 826–832
Enemy_4, 876–888
OnCollisionEnter method, 851–852
PowerUps, 872–876
private BoundsCheck bndCheck, 816–819
programming, 811–832
randomly spawning, 787–790
scripts, 773–787
showing damage, 853–857

Entertainment Software Association (ESA),
288–289

Entertainment Technology Center (ETC),
Carnegie Mellon University, 297–298

Entity Component Systems (ECS), 612–616
enums (enumeration), 742

Space SHMUP, eWeaponType enum,
833–834

System.Flags enums, Bitwise operators,
780–782

environmental aesthetics, 82
audio play environments, 83–84

noisy environments, 84
player-controlled game volume, 84

player considerations, 84–85
visual play environments, 82

brightness, 83
resolution, 83
screen size/resolution, 83

environments, procedural, 82
Epic Games

Fortnite, 294
Unreal, 92

epilepsy, 85
equals sign (=)
= (Assignment operator), 411, 418

== (Is Equal To operator), 411–413
Ernst, James

Cheap Ass Games, 50
touch aesthetics, 50

errors, debugging
runtime errors, 502–504
stepping through errors, 506–507
Unity errors, 505

ESA (Entertainment Software Association),
288–289

estimating hours, Main worksheets (BDC),
274–276, 277–280

ETC (Entertainment Technology Center),
Carnegie Mellon University, 297–298

Eve Online, 96
Evil Hat Productions, FATE Accelerated

system, 59
eWeaponType enum, Space SHMUP,

833–834
Excel (Microsoft), 189–190
execution order, scripts, 1040
executive attention, 145
exclamation points (!)

! (NOT operator), 406
!= (Not Equal To operator), 414

exiting loops, 433–435
expansion phase, brainstorming/ideation,

114–115
experience (shared), developing player

relationships, 86–87
experiential understanding, 12, 149–150
explicit procedures, 70
explicit written rules, 46
Explorers (Bartle's Spades), 74
exponents, 386–387
exposition

five-act dramatic structures, 56
three-act dramatic structures, 55

F
Fable, plots versus free will, 57
face art, adding to cards, 936–937
fair play, 312
fairness. See game balance
falling action

five-act dramatic structures, 54
three-act dramatic structures, 56

Fallout, narrative game mods, 94

Z05_Bond_Index_p1203-1252.indd 1218 29/06/22 3:20 PM

1219FRAMEWORKS, GAME DESIGN

Fallout 3
custom game levels, 92
game mods, 92

Fallout 4, plots versus free will, 58
fame, designer-centric goals, 131–132
fan art, 93
fan fiction, 95
Fantastic Contraption, 251
Farmville, 10

assets, 47
resources, 47
spoilage mechanics, 47, 135–137

Farscape, foreshadowing, 58
FATE Accelerated system, 59
FDD (Formal, Dramatic, Dynamic) elements,

20, 25–27
dramatic elements, 25, 26–28

characters, 26
premises, 28
stories, 26

dynamic elements, 25, 28–29
emergence, 27
emergent narratives, 27
playtesting, 28

formal elements, 27–28
feedback

game balance, 228–229
interpreting, iterative design, 112
player scores, Prospector, 1007–1013

"Feminist Critics of Video Games Facing Threats
in 'GamerGate' Campaign," 99–101

fiction, fan, 95
Field, Syd

three-act dramatic structures, 56–58
fields

classes, 523, 527–530
names in Inspector, 637–641
overriding values in Inspector, 641
private fields, viewing in classes, 734

Final Fantasy III, minor NPC development, 58
Final Fantasy VI, minor NPC development, 58
Final Fantasy VII

empathetic characters versus avatars, 62
final outcomes, 76
novel decisions, 148
plots versus free will, 58

Final Fantasy X, plots versus free will, 58
final outcomes, 76–77
first plot points, three-act dramatic structures,

55
five-act dramatic structures, 54–55
five aesthetic senses, 51

fixed updates, 556–557
float variables, 387
FloatingScore GameObject, Prospector,

991–999
"Flocks, Herds, and Schools: A Distributed

Behavioral Model," 542
flow

player-centric goals, 138–141
spaces, 47

Flow: The Psychology of Optimal Experience,
139–140

flowcharts, Apple Picker, 319–321
Flower, PCO, 79
flukes, playtesting, 7
focus testing, 152–153, 183
folder names, changing in Unity, 362
follow cameras, Mission Demolition, 702–710
for loops, 424, 429–431, 432

autoformatting, 656
jagged arrays, 464–465

force quitting applications, 426, 509
foreach loops, 424, 433, 454–455
foreshadowing, linear narratives, 58
formal elements, 12, 27

boundaries, 26
objectives, 25
outcomes, 26
player interaction patterns, 28
procedures, 25
resources, 25
rules, 25

formal group playtesting, 175–176
formal individual playtesting, 176–181
Fortnite, 294
fortune, designer-centric goals, 130

community, 132
fame, 131–132
greater good, 133
personal expression/communication,

132–133
Forza: Horizon, traversal puzzles, 261
frames, defined, 319–320
frameworks, game design

Elemental Tetrad, 20, 30
aesthetics, 28
mechanics, 31
story, 29
technology, 28

FDD elements, 20, 25–27
dramatic elements, 25, 27–28
dynamic elements, 25, 28–29
formal elements, 27–28

Z05_Bond_Index_p1203-1252.indd 1219 29/06/22 3:20 PM

1220 FRAMEWORKS, GAME DESIGN

MDA, 22
defined, 23
designer views, 23
player views, 23
Snakes and Ladders, 22–24

free will versus plots, 59
freemium games, 295
Freeq, background noise, 53
Frequency, VRO, 78–79
Freytag, Gustav

five-act dramatic structures, 54–55
Technik des Drama (The Technique of

Drama), Die, 54–55
friends (trusted), circles of playtesters, 170
Fullerton, Tracy

dramatic elements, 26–27
dynamic mechanics, 70
formal elements, 28
Game Design Workshop, 9, 18, 70,

118–119
games, defined, 12–13
ideation phase, game development,

118–119
inscribed mechanics, 40
player interaction patterns, 43–46

fun, player-centric goals, 134–135
functions

arguments, 478–479
calling, 476–477, 1154
defined, 474–476
defining order, 480
encapsulating actions, 476
Function Examples project, setup, 474
Mathf functions, 396
naming, 482
overloading, 485–486
parameters, 478–479

optional parameters, 486–487
params keyword, 487–489

as properties, 483–484
reasons for using, 482–483, 484–485
recursive functions, 489–491
returning

values (results), 480
void, 481–482

scope, 476
start() function versus update() function,

370–398
static functions, 391–392
Update() function versus Start() function,

370–398

G
game builds. See also game prototype tutorials;

projects
2D adventure game level

combat, 162
playtesting, 161–162
prototyping, 157–159
shortcuts, 161
traversal mechanics, 159–161

Apple Picker, 316
basic gameplay, 317
GameObjects, 317–318
GameObjects, action lists, 318
GameObjects, flowcharts, 319–321

classic games, building as a learning
example, 1199

frames, 319–320
for lifelong enrichment, 1200
small game projects, 1199
uroboros

collection phase, brainstorming/ideation,
115

collision phase, brainstorming/ideation,
116–117

discussion phase, brainstorming/ideation,
117

expansion phase, brainstorming/ideation,
114–115

idea cards, 115
idea collisions, 116–117
rating phase, brainstorming/ideation, 117

game companies, working conditions,
292–293

game conferences, 301
Game Design Theory,9–10, 93

fun, elements of, 134–135
performative empowerment, 144

Game Design Workshop,9, 18, 40, 70
dramatic elements, 25, 27–28
dynamic elements, 25, 28–29
formal elements, 27–28
ideation phase, game development,

118–119
player interaction patterns, 43–46

game development, 118, 120
industry See digital games industry

Game Feel, 623–624
"Game Game, The," 15–16
game masters, 45
Game pane (Unity), 339

Apple Picker, 636–637
Dungeon Delver, 1024
Prospector, 906–907

Z05_Bond_Index_p1203-1252.indd 1220 29/06/22 3:20 PM

1221GAME PROTOTYPE TUTORIALS

game prototype tutorials. See also game builds;
projects

Apple Picker, 621–623
art assets, 624–633
boids, 551
cameras, setup, 633–634
catching apples, 658–659
coding, 637–641
destroying baskets, 670–672
directionality, 646–648
DOTS, 582
dropping apples, 649–651
game management, 661–662
game panel settings, 636–637
GUI, 661–662
Hello World, 359
HighScore texts, 662–664, 672–678
instance overrides, applying to prefabs,

641–642
instantiating baskets, 655–656
missed apple notifications, 668–672
movement systems, 643–646
moving baskets with mouse, 657–658
physics layers, 651–652
points accumulation, 665–668
purpose of, 623
ScoreCounter texts, 662–664
setup, 624
stopping apples from falling too far,

653–655
tuning script variables, 659–660

Dungeon Delver, 1019–1021, 1095–1096
anti-aliasing issues, 1041–1042
cameras, 1023
cameras, GUI cameras, 1024–1025
cameras, main camera, 1024–1025
component-based design, 1021–1022
damage, 1125–1135
DeliverTiles, 1026–1028
DelverLevel_Eagle Text files, 1028–1031,

1033–1035
doors, keys, 1111–1121, 1138–1140
Dray (hero), 1042
Dray (hero), animation, 1044–1049
Dray (hero), attack animations,

1055–1058
Dray (hero), camera movement,

1059–1061, 1091–1094
Dray (hero), collisions, 1069
Dray (hero), giving damage, 1130–1135
Dray (hero), Grappler attacks, 1174–1180
Dray (hero), GUI connections, 1123–1125
Dray (hero), health, 1121–1122
Dray (hero), IGadget interface, 1150–1154

Dray (hero), movement systems,
1049–1053, 1087–1091

Dray (hero), naming conventions,
1043–1044

Dray (hero), picking up items, 1135–1137,
1181–1184

Dray (hero), taking damage, 1127–1130
Dray (hero), walking animations,

1054–1055
Dray (hero), weapons, 1059–1061
dropping items, keys, 1138–1140
dropping items, randomized items,

1140–1143
dungeon design, 1143–1147
enemies, dropping keys, 1138–1140
enemies, dropping randomized items,

1140–1143
enemies, giving damage, 1127–1130
enemies, Skeletos, 1072–1075, 1109,

1145–1147
enemies, taking damage, 1130–1135
Game pane, 1024
Grappler, 1147–1148
Grappler, building, 1154–1159
Grappler, collisions, 1169–1173
Grappler, firing, 1169
Grappler, picking up items, 1181–1184
Grappler, pulling Dray (hero) in,

1174–1180
Grappler, secondary abilities, 1159–1169
Grappler, testing, 1180–1181
grid alignment, 1078–1079
GridMove scripts, 1085–1087
IFacingMover interface, 1079–1084
IGadget interface, 1148–1154
ISwappable interface, 1107–1111, 1145–1147
keys, 1111–1121, 1138–1140
maps/guidance systems, 1031–1042
picking up items, 1135–1137, 1181–1184
prefabs, 1109
Project pane, 1026
randomized items, 1140–1143
Resources folder files, 1026
room to room movement, 1087–1091
setup, 1022–1023, 1097–1098
sprites, CollisionTiles sprites, 1061–1064
sprites, naming conventions, 1043–1044
storing two-dimensional data in linear

arrays, 1039–1040
Tilemaps, 1031–1042
Tilemaps, programmatic collisions, 1061
Tilemaps, programmatically filling

collisions, 1065–1069

Z05_Bond_Index_p1203-1252.indd 1221 29/06/22 4:05 PM

1222 GAME PROTOTYPE TUTORIALS

game prototype tutorials. See also game builds;
projects (continued)

TileSwaps, 1099, 1144–1147
TileSwaps, doors, 1101–1107

Mission Demolition, 681–683
art assets, 684–690
cameras, follow cameras, 702–710
cameras, settings, 685–687
castles, 717–725, 734–737
coding, 691
coding, castles, 717–725, 734–737
coding, collision detection, 698–699
coding, creating slingshot class, 691–702
coding, follow cameras, 702–710
coding, goals, 734–736
coding, instantiating projectiles, 694–698
coding, multiple views, 745–751
coding, organizing Project pane (Unity),

716–717
coding, projectiles, 725–734
coding, showing when slingshot is active,

692–693
coding, UI, 737–738
coding, vection/speed, 710–716
directional light, 685
game management, 739–744
goals, 734–736
ground, 684–685
multiple views, 745–751
projectiles, 690
projectiles, instantiating, 694–698
projectiles, ProjectileLine Trails, 728–734
projectiles, RigidBody insomnia, 725–728
prototype concept, 683–684
setup, 662–683
slingshots, 687–690
slingshots, creating slingshot class,

691–702
slingshots, showing when active, 692–693
UI, 737–738

Prospector, 898–899, 969–970
adding backs to cards, 937–938
adding face art to cards, 936–937
adding game elements, 972
background images, 983–985
BézierMover class, 987–991
build settings, 903
building cards, 922–938
cameras, 906–907
classes, 948–961
clickable cards, 962–964

example of play, 900–901
feedback on player scores, 1007–1013
FloatingScore GameObject, 991–999
game logic, 961–962
Game pane, 906–907
gold cards, 1017
GUI, 985–986
initial layout, 899–900
JSON through code, 913–917
managing rounds, 972–975
matching cards in mine, 964–968
Mine Tableau layout, 940–948
mobile devices, 1018
moving cards, 1017–1018
pauses between rounds, 1006–1007
pips, adding to cards, 934–935
Prospector_Scene_0, 905
rules, 900
ScoreBoard class, 1000–1001
ScoreBoard GameObject, 999
scoring, 975–983, 985–986, 999–1006,

1007–1013
setup, 901–902, 906–907, 971
shu�ing cards, 939–940
silver cards, 1017
sorting cards, 954–958
sprites, building cards from sprites,

931–934
sprites, constructing cards from sprites,

911–912
sprites, gathering references to the deck,

918–920
sprites, importing images as, 907–909
sprites, prefab GameObjects as sprites/

cards, 921–922
sprites, slicing rank images as sprites,

909–911
Unity window layout, 906
updating ScoreManager script, 1001–1006
WebGL module, 1013–1016
WebGL module, installing, 903–904
WebGL module, switching to, 904–905

Space SHMUP, 753–754, 807–808
adding elements, 894
building game levels, 894–895
delegate events, 842–844
enemies, art assets, 771–773
enemies, damage, 792–797
enemies, deleting, 777–787
enemies, destroying, 804
enemies, Enemy_0, 810–811

Z05_Bond_Index_p1203-1252.indd 1222 29/06/22 3:20 PM

1223 GAMES

game prototype tutorials. See also game builds;
projects (continued)

enemies, Enemy_1, 812–819
enemies, Enemy_2, 819–826
enemies, Enemy_3, 826–832
enemies, Enemy_4, 876–888
enemies, OnCollisionEnter method,

851–852
enemies, PowerUps, 872–876
enemies, private BoundsCheck bndCheck,

816–819
enemies, programming, 811–832
enemies, randomly spawning, 787–790
enemies, scripts, 773–787
enemies, showing damage, 853–857
expanding weapon options, 865–866
game structure, 895
GUI (Graphical User Interfaces), 895
hero ship, creating, 758–760
hero ship, Hero update() method,

760–764
hero ship, keeping on screen, 767–771
hero ship, shields, 764–766
importing asset packages, 755–757
layers, 790–792
physics, 790–792
PowerUps, 857–869, 872–876
projectiles, adding shooting capability,

800–801
projectiles, destroying enemies, 804
projectiles, hero's bullet, 800–801
projectiles, scripts, 803
projectiles, shooting, 800
projectiles, weapon GameObjects,

844–851
race conditions, 869–872
restarting games, 797–799
scene setup, 757–758
setting up, 809
setup, 755, 757–758
shooting, 800, 833
shooting, adding shooting capability,

802–803
shooting, delegate events, 842–844
shooting, eWeaponType enum,

833–834
shooting, hero's bullet, 800–801
shooting, showing damage,

853–857
shooting, WeaponDefinition class,

834–842
starfield backgrounds, 890–893

tags, 790–792
tuning settings, 888–890
tuning variables, 893

GameObjects, 398
Apple Picker, 317–318

action lists, 318
flowcharts, 319–321

Attractor GameObject, Boids project,
549–551

Box Collider component, 371
Collider component, 400–401
Dungeon Delver, keeping GameObjects in

the room, 1075–1078
Enemy class on GameObjects, 534
FloatingScore GameObject, Prospector,

991–999
flowcharts, Apple Picker, 319–321
manipulating, 370–373
Mesh Filter component, 371
Mesh Renderer component, 372
MeshFilter component, 400
MonoBehavior subclasses as GameObject

components, 530–533
prefabs, 373–378
Prospector, prefabs for sprites/cards,

921–922
Renderer component, 400
RigidBody component, 372, 402
ScoreBoard GameObject, Prospector, 999
Transform component, 372
weapon GameObjects, Space SHMUP,

844–851
gameplay as art, 93
GamerGate, 100–101
games

as art, 97–98
asymmetric games, 188
board games, systems thinking, 312
builds. See game builds
classic games, building as a learning

example, 1199
closed games, 11
cultural impact of games, 97–98
custom levels, 92
defined, 9–10

Burgun, Keith, 14
caring about definitions, 14–16
Fullerton, Tracy, 12–13
human desire, 15
IndieCade, 16–17
Meier, Sid, 12
Midgley, Mary, 15–16

Z05_Bond_Index_p1203-1252.indd 1223 29/06/22 3:20 PM

1224 GAMES

nebulous nature of, 16
Pearce, Celia, 16–17
Roberts, Sam, 16–17
Schell, Jesse, 13
Suits, Bernard, 10–12, 14
Wittgenstein, Ludwig, 14

development, 118, 120
AAA development, costs, 293
Agile Software Development, 266–267
alpha phase, 119
beta phase, 119
education/programs, 1200–1201
gold phase, 119
ideation phase, 118–119
indie gaming scene, 295
post-release phase, 119
preproduction phase, 118–119
production phase, 118–119
Unity, 315

education/programs, 296–299
flow, player-centric goals, 138–141
freemium games, 295
logic, Prospector, 961–962
loops, 424
managing

Apple Picker, 661–662
Mission Demolition, 739–744

manipulative game design, 98–99
modifying, 91–92, 94
narrative game mods, 94
open games, 11
as a series of interesting choices, 868
as a service, 295
social media games, 136–137
sporadic-play games, 135–136, 137
symmetric games, 188
technology used outside games, 95
time-base games, 644–645

"Gang of Four," 552
Garfield, Richard

innovation, 113
RoboRally, 113

genders/ages, digital games industry, 291–292
generic collections, 438, 442–443
generic methods (< >), 398
goals

aesthetics, 51–53
design, 130

designer-centric goals, 130, 131–134
player-centric goals, 130, 134–150

indirect player guidance, 235
Mission Demolition, 734–736
Passage, 11

puzzle design, 256–257
God of War

direct player guidance, 234
game flow, 140–141
sequencing, 244

gold cards, Prospector, 1017
gold phase, game development, 119
Google Sheets, 189

balancing weapons, 219–220
calculating average damage, 222
charting average damage, 223–224
duplicating weapon data, 225–226
example of, 227–228
percent chance for each shot, 220–221
rebalancing weapons, 226–227
showing overall damage, 224–225

charts, 204–206
clarity in, 199
color scale conditional formatting, 200
columns

adding, 194–195
setting widths, 195

conditional formatting, 203
dice probability, 191
getting started, 191–192
labels, 199
naming documents, 194
rows

creating, 194
filling with data, 196
iterating Die A rows, 197
making Die A rows, 196–197
making Die B rows, 197–198

saving, 199
summing results

counting all die rolls, 202–203
counting sums of die rolls, 201–202
two dice, 201

weighted probabilities, 216–217
Grand Theft Auto V, direct player guidance,

233–234
Grandia III, novel decisions, 148
Grappler, Dungeon Delver, 1147–1148

building, 1154–1159
collisions, 1169–1173
firing, 1169
picking up items, 1181–1184
pulling Dray (hero) in, 1174–1180
secondary abilities, 1159–1169
testing, 1180–1181

Grasshopper, The, 9, 10, 14, 137, 144–145
greater good, designer-centric goals, 133
greater than symbol (>)

Z05_Bond_Index_p1203-1252.indd 1224 29/06/22 3:20 PM

1225HOURS, MAIN WORKSHEETS (BDC)

Greater Than operator (>), 414
Greater Than or Equal To operator (>=), 415

GridMove scripts, Dungeon Delver, 1085–1087
grids

Dungeon Delver, player alignment,
1078–1079

hexagonal grids, 155
movement systems, 154–155
square grids, 154

ground, Mission Demolition, 684–685
Groundhog Day, experiential understanding,

149–150
group playtesting, formal, 175–176
growth, digital games industry, 289–290
GUI (Graphical User Interfaces)

Apple Picker, 661–662
cameras, Dungeon Delver, 1024–1025
Dray (hero), Dungeon Delver, 1123–1125
Prospector

feedback on player scores, 1007–1013
pauses between rounds, 1006–1007
scoring, 985–986, 999–1006, 1007–1013
updating ScoreManager script, 1001–1006

prototyping, 156
guidance systems/maps, 232

direct guidance, 232, 233–234
brevity, 233
calls to action, 233–234
clarity, 233
immediacy, 232
instructions, 233–234
maps/guidance systems, 233–234
pop-ups, 234
scarcity, 232

Dungeon Delver, 1031–1042
indirect player guidance, 234

audio design, 240
constraints, 234–240
goals, 235
NPC, 240
physical interfaces, 235–236
player avatars, 240
visual design, 236–239

integrated actions, 245
sequencing, 243–244
teaching new skills/concepts, 243

Guitar Hero, indirect player guidance, 235–236

H
HAL Laboratories, Kirby, 71
Half-Life, game mods, 92
Halo, machinema, 94

Hamlet on the Holodeck, 85–86
Hand tool (Q), Unity, 380
Hawaii, landmarks, 47–48
headers, 555
health, Dungeon Delver, 1121–1122
hearing

background noise, 53
dialogue, 52
five aesthetic senses, 49–53
music, 52
sound e�ects, 50–52

Heart of Darkness, 62
Hearts (Bartle's Socializers), 74
"Hello World" project

adding color, 381–382
cube environments, 378–381
debugging

attaching scripts, 500–502
compile-time bugs, 495–500
removing scripts, 500–502
runtime errors, 502–504
stepping through errors, 506–507

deleting cubes, 467–471
folder configuration, 361–362
scripts

comments in scripts, 369
creating, 363–368
disabling, 370
manipulating GameObjects, 370–373
prefabs, 373–378
start() function versus update() function,

370–398
setup, 360
shrinking cubes, 467–471

hero ship, Space SHMUP
creating, 758–760
Hero update() method, 760–764
keeping on screen, 767–771
shields, 764–766
shooting

adding shooting capability, 802–803
hero's bullet, 800–801

hexadecimal numbers, DelverLevel_Eagle Text
files, 1030–1031

hexagonal grids, movement systems, 155
Hierarchy pane (Unity), 339
HighScore texts, Apple Picker, 662–664,

672–678
holistic design, 125
Homo Ludens, 26, 138
Honolulu, Hawaii, landmarks, 47–48
hooks, three-act dramatic structures, 57
hours, Main worksheets (BDC)

Z05_Bond_Index_p1203-1252.indd 1225 29/06/22 3:20 PM

1226 HOURS, MAIN WORKSHEETS (BDC)

estimates, 274–276, 277–280
totals, 277–280

house rules, 73–74
Hoye, Mike

Legend of Zelda: The Wind Waker, The, 94
HRS (Horizontal Re-Sequencing), 78–79
Huizinga, John

boundaries, 26
Homo Ludens, 26, 138
magic circle, 138

human desire in gameplay, defined, 15

I
i++ (iteration clauses), 430, 431
i<3 (conditional clauses), 430
ideation phase, game development, 118–119
ideation/brainstorming, 113–114

collection phase, 115–116
collision phase, 116–117
discussion phase, 117
expansion phase, 114–115
idea cards, 115
nodes, 115
rating phase, 117

if statements, 416
Assignment operator (=), 418
with Boolean operations, 417–418
nesting if statements, 419

IFacingMover interface, Dungeon Delver,
1079–1084

if.else if.else statements, 418–419
if.else statements, 418
IGadget interface, Dungeon Delver, 1148–1154
IGDPD layout, Unity

downloading, 340
manually arranging, 341–344

ilinx, 134
images

creation, OOP, 586–593
logic puzzles, 254
media puzzles, 253
Prospector

background images, 983–985
importing as sprites, 907–909

slicing rank images as sprites, 909–911
word puzzles, 254

IMGD (Interactive Media & Games Division),
University of Southern California, 298

immediacy
direct player guidance, 232
of objectives, 42–43

outcomes, 77
impact of games, cultural, 97–98
implementation phase, iterative design, 105,

111
implicit procedures, 70
implicit rules, 46
importing Unity asset packages, 755–757
impotance of objectives, 42–44
improving as a game designer, 134
inciting incidents, three-act dramatic structures,

55
Includes, classes, 523–524
Incredible Machine, The, 251
increment operators (++), 428
incremental innovation, 113
indie gaming scene, development of, 295
IndieCade, 17

games, defined, 16–17
scoping, 120

indirect guidance strategies, 42, 234
audio design, 240
constraints, 234–240
goals, 235
NPC, 240
physical interfaces, 235–236
player avatars, 240
visual design, 236–239

individual playtesting, formal, 176–181
infinite loops, 425–427
Influence: The Psychology of Persuasion, 2
Infocom, Zork, 86
informal individual playtesting, 172–175
information, aesthetic goals, 51
inheritance (class), 354, 533
initial development speeds, prototyping,

152–153
initialization clauses (int i=0;), 430
in medias res, 145
innovation, 112

incremental innovation, 113
intersectional innovation, 113

InRoom scripts, Dungeon Delver, 1070–1072
inscribed aesthetics, 51

five aesthetic senses, 51
goals, 51–53

inscribed dramatics
emotion, 64
justification, 62
mechanics reinforcement, 62
motivation, 62
progression, 62
purposes for, 62–64

Z05_Bond_Index_p1203-1252.indd 1226 29/06/22 3:20 PM

1227INVOLVEMENT/ATTENTION, PLAYER-CENTRIC GOALS

rewards, 62
Inscribed headers, 555
inscribed layer, Layered Tetrad, 34, 40

aesthetics, 33
inscribed aesthetics, 51
inscribed dramatics, 62–64
inscribed mechanics, 35, 40–46, 48–51
inscribed narratives, 33, 53–54
inscribed technology, 33, 63, 65
traditional dramatics, 55

five-act dramatic structures, 54–55
interactive versus linear narratives, 59–61
three-act dramatic structures, 56–58

inscribed mechanics, 35
boundaries, 40, 46–48
defined, 40
Fullerton, Tracy, 40
objectives, 43

conflicting objectives, 44–45
defining player relationships, 44–47
immediacy of objectives, 42–43
importance of objectives, 42–44
spaces, 48

player relationships, 40
defining with objectives, 44–47
player interaction patterns, 43–46

resources, 40, 47–49
rules, 40, 46–48
Schell, Jesse, 43
spaces, 40, 47–48
tables, 41, 50–51

inscribed narratives, 33, 54
characters, 52
plots, 53
premises, 52–54
settings, 52

inscribed technology, 33, 63
digital games, 65
paper games, 63–65

Inspector pane (Unity), 339
fields

naming, 637–641
overriding values, 641

headers, 553–555
naming variables, 402
play mode values, setting, 646
script values, changing, 660–661

inspiration, puzzle design, 255
installing

Unity 2020.3 LTS, 326–327
Unity Hub, 324–326
WebGL module, 903–904

instance overrides, applying to prefabs,
641–642

instance variables/functions, 390
instantiating

baskets, Apple Picker, 655–656
projectiles, Mission Demolition, 694–698

instructions
direct player guidance, 233–234
systems thinking, 313

int i=0; (initialization clauses), 430
int variables, 386
integrated actions, 71, 147, 245
intent of players, 74–75
interaction patterns, players, 43–45

cooperative play interaction pattern, 44
multilateral competition interaction

pattern, 44
parallel play interaction pattern, 44
player versus player interaction pattern, 46
single player interaction pattern, 44
team competition interaction pattern, 44
unilateral competition interaction

pattern, 44
interactive experiences, defined, 18
interactive fiction, 86
Interactive Media & Games Division (IMGD),

University of Southern California, 298
interactive narratives

incunabula, 85–86
linear narratives versus, 59

interest curves, 145–146
interest polling, 184
interesting decisions, 12, 147–149, 868
interfaces

Dungeon Delver
IFacingMover interface, 1079–1084
IGadget interface, 1148–1154
ISwappable interface, 1107–1111,

1145–1147
Mission Demolition, 737–738
physical interfaces, indirect player guidance,

235–236
prototyping, 156

Internet, circles of playtesters, 172
interpolation

linear interpolation, 567
of strings using $981–982

intersectional innovation, 113
interviewing, digital games industry,

302–305
investigators versus playtesters, 168
involvement/attention, player-centric goals,

145–147

Z05_Bond_Index_p1203-1252.indd 1227 29/06/22 3:20 PM

1228 IS EQUAL TO OPERATOR (==)

Is Equal To operator (==), 411–413
ISerializationCallbackReceiver Interface,

942–943
ISwappable interface, Dungeon Delver,

1107–1111, 1145–1147
iteration clauses (i++), 430, 431
iteration speeds, prototyping, 152
iteration variables, Loop Examples project, 428
iterative code development, 793–794
iterative design, 6, 104

analysis phase, 105–107
changing your mind, 117–118
design phase, 104, 107–109
feedback, interpreting, 112
implementation phase, 105, 111
testing phase, 105, 112

J
jagged arrays, 461–464
jagged Lists, 465–466
JetBrains Rider, 328–329
Johansson, Frans

innovation, 112–113
joining game design projects, 305
Journey

indirect player guidance, 236
NPC emotional connections, 240–242
tissue playtesters, 171

JSON through code, Prospector, 913–917
jump statements, in loops, 433
justification, inscribed dramatics, 62

K
Kaboom!, 316
keys, Dungeon Delver, 1111–1121, 1138–1140
Killers (Bartle's Club's), 74
Kim, Scott

"Art of Puzzle Design," The, 248–250
puzzle design, 248–250, 255–256

Kirby, integrated actions, 71
Kya: Dark Lineage

direct player guidance, 232
modeling NPC behavior, 240–241
sequencing, 243–245

L
L.A. Confidential, image/media puzzles, 253
labels, Google Sheets, 199

labs, formal individual playtesting, 178–179
landmarks

Honolulu, Hawaii, 47–48
spaces, 47–48
visual design, indirect player guidance,

236–237
languages, computer, 313–314
Layered Tetrad, 32–34

cultural layer, 36–37, 90–91
aesthetics, 36
authorized transmedia and, 96–97
cultural aesthetics, 93
cultural impact of games, 97–98
cultural mechanics, 91–92
cultural narratives, 93–95
cultural technology, 95–96
manipulative game design, 98–99
mechanics, 35–38
messages games/fans send, 101
narratives, 36
technology, 36

designer responsibilities, 39–40
dynamic layer, 35–36, 67

aesthetics, 34
dynamic aesthetics, 77–85
dynamic mechanics, 70–77
dynamic narratives, 85–87
dynamic technology, 88
emergence, 69
mechanics, 34
narratives, 34
roles of players, 68–69
technology, 34

inscribed layer, 34
aesthetics, 33
boundaries, 46–48
inscribed aesthetics, 51–54
inscribed dramatics, 62–64
inscribed mechanics, objectives, 42–43
inscribed mechanics, overview, 40–43
inscribed narratives, 53–54
inscribed technology, 63–65
interactive narratives, 59–61
linear narratives, 59–61
mechanics, 35
narratives, 33
objectives, 42–43
player relationships, 45–47
resources, 47–49
rules, 46–48
spaces, 47–48
tables, 50–51

Z05_Bond_Index_p1203-1252.indd 1228 29/06/22 3:20 PM

1229LUCASARTS, X-WING

technology, 33
traditional dramatics, 55–58

layers, Space SHMUP, 790–792
layouts

Mine Tableau layout, Prospector, 940–948
Prospector, 899–900
Snakes and Ladders, 22–25
Unity layouts, navigating, 338–339
Unity window, Prospector, 906

learning, programming languages, 331–334
Legend of Zelda: Ocarina of Time, direct player

guidance, 233
Legend of Zelda: The Wind Waker

justification, 62
motivation, 62
narrative game mods, 94

Legend of Zelda: Twilight Princess, touch
aesthetics, 50

Legend of Zelda. See also Dungeon Delver
attributes, 49
boss fights, 262
resources, 49
silent protagonists, 60
traversal mechanics, 159

LEGO bricks, prototyping, 155
Lemarchand, Richard

"Attention, Not Immersion: Making Your
Games Better with Psychology and
Playtesting, the Uncharted Way,"
144–145

attention/involvement, player-centric goals,
145

Playful Production Process: For Game
Designers (and Everyone), A, 121–122,
126

scope management with preproduction
deliverables, 121–122

Les Jeux et Les Hommes, 134–135
less than symbol (<)

Less Than operator (<), 414
Less Than or Equal To operator (<=), 415

levels
custom levels, 92
puzzle design, 255

libraries, code, 314–315
LibreO�ce Calc, 190
lifelong enrichment, building games for, 1200
light

directional light, Mission Demolition, 685
visual design, indirect player guidance, 236

Light Editor Theme, Unity, 338
liking/not liking ideas, playtesting, 169
linear arrays, storing two-dimensional data in,

1039–1040

linear interpolation, 567
linear narratives

foreshadowing, 58
interactive narratives versus, 59
minor NPC development, 58–59
side quests, 58

Lionshead Studios, Fable, 57
listening, iterative design, 108–109
Lists, 439–440, 443–446

choosing, 466–467
converting arrays to, 457
converting to arrays, 447
jagged Lists, 465–466
methods, 446–447
properties, 446
zero-indexed lists, 440

Little Big Planet, custom game levels, 92
locality (DOD), data, 577–578
logic, Prospector, 961–962
logic puzzles, 253
logic/image puzzles, 254
logic/word puzzles, 254
logical equivalence, Boolean operations, 410
logs, ADL, 182–183
long-term objectives, 42
LookAtAttractor script, Boids project, 551,

557–558
loops, 423

break statements, 433–435
condition clauses (i<3), 430
do.while loops, 424, 429
exiting, 433–435
for loops, 424, 429–431, 432

autoformatting, 656
jagged arrays, 464–465

foreach loops, 424, 433, 454–455
game loops, 424
infinite loops, 425–427
initialization clauses (int i=0;), 430
iteration clauses (i++), 430, 431
jump statements, 433
Loop Examples project, 424–426
modulo operators (%), 436
skipping single iterations, 435
types of (overview), 424
while loops, 424, 425, 426–428

Lord of the Rings, 59
low technical barriers to entry, prototyping,

152
LucasArts, X-Wing

aesthetic goals, 53–54
procedural music, 78–79

Z05_Bond_Index_p1203-1252.indd 1229 29/06/22 3:20 PM

1230 LUDOLOGY

ludology
defined, 19–21
frameworks, 22

Ludwig, Manfred
Up the River, 72

lusory attitude, 13, 136–137

M
machinema, 93, 94–95
macOS

debugging, 507–508, 510–511
force quitting applications, 509
"right-clicking" on mouse, 361

Macro Charts, 126
Macro Documents, 124–126
magic circle, 138
Magic: The Gathering, 113
Main worksheets (BDC), 273

estimating hours, 274–276, 277–280
sprint progress, 277–279
sprint settings, 273–274
task assignments, 274–275, 280
totalling hours, 277–280

Mainichi, experiential understanding, 149–150
Majestic, 17, 46–48
managing

games
Apple Picker, 661–662
Mission Demolition, 739–744

rounds, Prospector, 972–975
scope with preproduction deliverables,

121–122
Macro Charts, 126
Macro Documents, 124–126
Vertical Slices, 118–119, 122–123

"Mangle of Play," The, 90–91
manipulative game design, 98–99
manually arranging IGDPD layout, Unity,

341–344
maps/guidance systems

direct player guidance, 233–234
Dungeon Delver, 1031–1042

Mario Kart, game balance, 228
markers (whiteboard), brainstorming/ideation

(expansion phase), 115
Mass E�ect

multiple dialogue choices, 61–64
novel decisions, 148–149
player interaction patterns, 46

matching cards in mine, Prospector, 964–968
math of probability, 207–211

mathf functions, 396
Max (Advantage) controllers, 36
MDA (Mechanics, Dynamics, Aesthetics), 22

aesthetics, 33
defined, 23
designer views, 23
player views, 23
Snakes and Ladders, 22–25

layouts, 22–25
modifying for strategic game play, 24–26

meaningful play, 71, 147
mechanics

cultural layer, Layered Tetrad, 35–38
cultural mechanics

custom game levels, 92
game mods, 91–92, 92

dynamic layer, Layered Tetrad, 34
dynamic mechanics, 70

discernable actions, 71
dynamic aesthetics, 77–85
house rules, 73–74
integrated actions, 71
meaningful play, 71
outcomes, 76–77
player intent, 74–75
procedures, 70
strategies, 71–73

Elemental Tetrad framework, 31
inscribed layer, Layered Tetrad, 35
reinforcement, inscribed dramatics, 62
traversal mechanics, prototyping, 159–161

Media and Information Department, Michigan
State University, 298

Media Molecule, Little Big Planet, 92
media/image puzzles, 253
Medici E�ect, The, 112–113
Meier, Sid, 9

C.P.U. Bach, 79
games, defined, 12
games as a series of interesting choices, 868
interesting decisions, 147–149

Mesh Filter component, GameObjects, 371
Mesh Renderer component, GameObjects, 372
MeshFilter component, GameObjects, 400
messages games/fans send, 101
Metal Gear Solid 4, 10
methods

awake() method versus start() method,
814–815

classes, 523, 527–530
Dictionaries, 450–451
Lists, 446–447

Z05_Bond_Index_p1203-1252.indd 1230 29/06/22 3:20 PM

1231MOUSE

OnCollisionEnter method, Space SHMUP,
851–852

static methods, arrays, 456–457
Metroid Dread, direct player guidance, 232–233
Michigan State University, Media and

Information Department, 298
Microsoft Excel, 189–190
Middle-earth: Shadow of Mordor, minor NPC

development, 59
Midgley, Mary

"Game Game, The," 15–16
games, defined, 15–16

mid-term objectives, 42
migraines, 85
mimicry, 134
Mine Tableau layout, Prospector, 940–948
Minecraft, 99–101

autotelic empowerment, 143
implementation phase, iterative design, 110
indirect player guidance, 235
player-made external tools, 96
procedural environments, 82

minor NPC development, 58–59
missed apple notifications, Apple Picker,

668–672
Mission Demolition, 681–683

art assets, 684–690
cameras

follow cameras, 702–710
settings, 685–687

castles, 717–725, 734–737
coding, 691

castles, 717–725, 734–737
collision detection, 698–699
creating slingshot class, 691–702
follow cameras, 702–710
goals, 734–736
instantiating projectiles, 694–698
multiple views, 745–751
organizing Project pane (Unity),

716–717
projectiles, ProjectileLine Trails, 728–734
projectiles, RigidBody insomnia, 725–728
showing when slingshot is active,

692–693
UI, 737–738
vection/speed, 710–716

directional light, 685
game management, 739–744
goals, 734–736
ground, 684–685
multiple views, 745–751

projectiles, 690
instantiating, 694–698
ProjectileLine Trails, 728–734
RigidBody insomnia, 725–728

prototype concept, 683–684
setup, 662–683
slingshots, 687–690

creating slingshot class, 691–702
showing when active, 692–693

UI, 737–738
misspellings, debugging, 494
mixed-mode puzzles, 254
MMORPG (Massively Multiplayer Online

Roleplaying Game)
Damage Per Second (DPS) calculators, 95
parallel play interaction pattern, 44

mobile devices, Prospector, 1018
modeling NPC behavior

emotional connections, 240–241
negative behaviors, 241
positive behaviors, 241
safety, 241

modifying
games, 91–92, 94
rules, 6–7

modulo operators (%), 436
Moksha Patamu. See Snakes and Ladders
MonoBehavior subclasses, as GameObject

components, 530–533
MonoDevelop, 329
Monolith Productions, Middle-earth: Shadow of

Mordor, 59
monolithic programming (OOP), flock of birds

simulation, 540–542
Monopoly

assets, 49
conflicting objectives, 44–45
game balance, 228–229
game mods, 92
house rules, 73–74
immediate outcomes, 77
resources, 49
rules, 45

Monte Carlo method, 211
mood, aesthetic goals, 53
Moore, Gordon

"Moore's Law," DOD, 576
motivation, inscribed dramatics, 62
mouse

moving baskets with mouse, Apple Picker,
657–658

"right-clicking," macOS, 361

Z05_Bond_Index_p1203-1252.indd 1231 29/06/22 3:20 PM

1232 MOVEMENT SYSTEMS

movement systems
Apple Picker, 643–646, 657–658
Dungeon Delver, 1049–1053, 1087–1094
grids, 154–155
Prospector, 1017–1018
prototyping, 154–155

Mr. X (Scotland Yard), unilateral competition
interaction pattern, 44

multidimensional arrays, 457–461
multilateral competition interaction pattern, 44
multiple dialogue choices, 61
multiple views, Mission Demolition, 745–751
Murray, Janet

Hamlet on the Holodeck, 85–86
music, 52, 78

HRS, 78–79
PCO, 79
VRO, 78–79

N
Nakamura, Jeanne

"Concept of Flow," The, 139
game flow, 139

naming
documents, Google Sheets, 194
fields in Inspector, 637–641
folders in Unity, 362
functions, 482
sprites, Dungeon Delver, 1043–1044
Unity conventions, 389–390
variables in Unity, 376

narratives
cultural layer, Layered Tetrad, 36
cultural narratives, 93–94

fan fiction, 95
machinema, 94–95
narrative game mods, 94

dynamic layer, Layered Tetrad, 34
dynamic narratives, 85–87
emergent narratives, 27, 87
game mods, 94
inscribed layer, Layered Tetrad, 33
inscribed narratives, 54

characters, 52
plots, 53
premises, 52–54
settings, 52

interactive versus linear narratives, 59
linear narratives

foreshadowing, 58
interactive narratives versus, 59

minor NPC development, 58–59
side quests, 58

Naughty Dog, Uncharted 3: Drake's Deception
machinema, 94–95
particle systems, 80

visual design, indirect player guidance,
237–239

navigating Unity layouts, 338–339
negative behaviors, NPC, 241
Neighborhood script, Boids project, 551,

567–570
NES (Nintendo Entertainment System),

Advantage (Max) controllers, 36
nesting if statements, 419
Neverwinter Nights, narrative game mods, 94
new Unity projects, creating, 360–362
New York Times, "Feminist Critics of Video

Games Facing Threats in 'GamerGate'
Campaign," 99–101

Nintendo Switch, screen size/resolution, 83
"Nintendo thumb," 34
nodes, brainstorming/ideation, 115
noise

archipelagos, turning noise into, 603–612
octaves, avoiding in DOTS, 600–602
Perlin noise

archipelagos, turning noise into, 603–612
DOTS image creation, 593–602
improving with octaves, 590–593
OOP image creation, 586–593

noisy environments, 84
nonshorting operators, 407–409
Not Equal To operator (!=), 414
not liking/liking ideas, playtesting, 169
NOT operator (!), 406
note cards, prototyping, 155
notebooks, prototyping, 155
notes, taking (playtesting), 173–175
notifications, missed apple (Apple Picker),

668–672
novel decisions, 148
NPC (Non-Player Characters)

indirect player guidance, 240
minor NPC development, 58–59
modeling behavior

emotional connections, 240–241
negative behaviors, 241
positive behaviors, 241
safety, 241

null arrays, skipping with foreach loops,
454–455

Numbers (Apple), 190

Z05_Bond_Index_p1203-1252.indd 1232 29/06/22 3:20 PM

1233OVERSCOPING

numbers, hexadecimal, 1030–1031
"Numbers Everyone Should Know," 577

O
objectives

Bartok, 3
conflicting objectives, 44–45
FDD elements framework, 25
inscribed mechanics, 43

conflicting objectives, 44–45
immediacy of objectives, 42–43
impotance of objectives, 42–44

long-term objectives, 42
mid-term objectives, 42
optional objectives, 42–44
player relationships, defining, 44–47
primary objectives, 42–44
short-term objectives, 44
spaces, 48

Object-Oriented Programming (OOP), 540–542
Boids project

Attractor GameObject, 549–551
Attractor script, 551, 553–555
Boid script - part 1, 558
Boid script - part 2, 561–567
Boid script - part 3, 570–573
Boids project, 551
Boids values, 573
LookAtAttractor script, 551, 557–558
Neighborhood script, 551, 567–570
Reynolds, Craig W.542
setup, 542–543
simple Boid model, 543–548
Spawner script, 551, 558–561

classes
data stored by reference, 579–580
Unity classes, data storage, 580

flock of birds simulation, 540–542
image creation, 586–593
issues with, 579–580
monolithic programming, 540–542
Perlin noise, 586–593
Unity, 354

objects. See GameObjects
octaves

improving Perlin noise, 590–593
noise octaves in DOTS, avoiding, 600–602

Okami
empathetic characters versus avatars, 60
touch aesthetics, 50

OnCollisionEnter method, Space SHMUP,
851–852

online playtesting, 181–183
online resources, Unity development,

1198–1199
open games, 11
OpenO�ce Calc (Apache), 190
operations

Bitwise operators, System.Flags enums,
780–782

Boolean operations
AND operator (&&), 406
bitwise Boolean operators, 409
combining, 409–410
if statements with, 417–418
logical equivalence, 410
NOT operator (!), 406
| (OR operator), 406

comparison operators, 410
approximate float comparisons, 412
Assignment operator (=), 411, 418
Greater Than operator (>), 414
Greater Than or Equal To operator (>=),

415
Is Equal To operator (==), 411–413
Less Than operator (<), 414
Less Than or Equal To operator (<=), 415
Not Equal To operator (!=), 414

nonshorting operators, 407–409
shorting operators, 407–409, 1154
testing equality by value/reference, 412–413

OR operator (|), 406
optimal strategies, 72
optional objectives, 42–44
optional parameters, functions, 486–487
organizing Project pane (Unity), 716–717
Origin Systems, Ultima IV, 61
orthographic cameras, 634–636
Osu! Tatakae! Ouendan, VRO, 78–79
out loud (playtesting), thinking, 168–169
outcomes

cumulative outcomes, 76
defined, 76
FDD elements framework, 26
final outcomes, 76–77
immediate outcomes, 77
quest outcomes, 76
unequal outcomes, 13

overall damage, showing, 224–225
overloading functions, 485–486
overriding field values in Inspector, 641
overscoping, 120–121

Z05_Bond_Index_p1203-1252.indd 1233 29/06/22 3:20 PM

1234 PAPA SANGRE, BACKGROUND NOISE

P
Papa Sangre, background noise, 53
paper games

decks of cards, 213–215
dice, 212
inscribed technology, 65
randomizer technologies, 212

decks of cards, 213–215
dice, 212
spinners, 212–213
weighted distributions, 215–216

spinners, 212–213
weighted probabilities, 216–217

paper prototyping, 151
2D adventure game level, 157–159

combat, 162
playtesting, 161–162
shortcuts, 161
traversal mechanics, 159–161

3x5 note cards, 155
benefits of, 152
best uses, 162–163
card sleeves, 155
cards, 153
collaborative prototyping, 152
dice, 153
focused prototyping/testing, 152–153
grids, 154–155
initial development speeds, 152–153
interfaces, 156
iteration speeds, 152
LEGO bricks, 155
low technical barriers to entry, 152
movement systems, 154–155
notebooks, 155
paper, 153
pipe cleaners, 155
playing pieces, 155
poor uses of, 163–164
post-it-notes, 155
tools, 153–155
traversal mechanics, 159–161
whiteboards, 155

parallel play interaction pattern, 44
parallel processing, DOD, 576
paralysis, choice, 234–235
parameters functions, 478–479

optional parameters, 486–487
params keyword, 487–489

PaRappa the Rapper, VRO, 78–79
parentheses (), C# programming language,

415

partial absolute references, 193–194
particle systems, 80
Passage, 11–12
Pauling, Linus

brainstorming/ideation, 113–114
pauses between rounds, Prospector, 1006–1007
PCO (Procedural Composition), 79
Pearce, Celia, 17

games, defined, 16–17
pen-and-paper RPG, 59–61
percent chance for each shot, balancing

weapons, 220–221
percentage symbol (%), % (modulo operators),

436
performative empowerment, 144
Perlin noise

archipelagos, turning noise into, 603–612
DOTS image creation, 593–602
improving with octaves, 590–593
OOP image creation, 586–593

permutations, 217–218
Bulls and Cows, 217–219
with repeating elements, 219
without repeating elements, 219

Person Charts, BDC, 282–283
personal expression/communication,

designer-centric goals, 132–133
perspective cameras, 634–636
Philosophical Investigations, 14
physical interfaces, indirect player guidance,

235–236
physics

engines, fixed updates, 556–557
layers, Apple Picker, 651–652
puzzles, 260
Space SHMUP, 790–792

picking up items, Dungeon Delver, 1135–1137,
1181–1184

pipe cleaners, prototyping, 155
pipes (|), | (OR operator), 406
pips, adding to cards, 934–935
Pixel Junk Shooter, puzzle design, 260–261
Planetfall, developing player relationships,

86–87
planning sprints, Scrum, 270–271
play, meaningful, 71, 147
players

actions, tracking, 61
avatars, 240
colorblindness, 85
epilepsy, 85
external tools, 95–96

Z05_Bond_Index_p1203-1252.indd 1234 29/06/22 3:20 PM

1235POKEMON GO

fair play, 312
game volume, 84
goals, 130, 134

attention/involvement, 145–147
empowerment, 142–144
experiential understanding, 149–150
flow, 138–141
fun, 134–135
interesting decisions, 147–149
lusory attitude, 136–137
magic circle, 138
structured conflict, player-centric goals,

141–142
grid alignment, Dungeon Delver, 1078–1079
guidance, 232

direct guidance, 232–234
indirect guidance, 234–240
integration, 245
sequencing, 243–244
teaching new skills/concepts, 243–245

intent, 74–75
interaction patterns, 43–45

cooperative play interaction pattern, 44
FDD elements framework, 28
multilateral competition interaction

pattern, 44
parallel play interaction pattern, 44
player versus player interaction pattern, 46
single player interaction pattern, 44
team competition interaction pattern, 44
unilateral competition interaction pattern,

44
interactive fiction, 86
migraines, 85
player versus player interaction pattern, 46
Prospector, feedback on scores, 1007–1013
relationships

citizens, 45
collaborators, 45
competitors, 44
defining with objectives, 44–47
developing through shared experiences,

86–87
game masters, 45
inscribed mechanics, 40, 43–46
protagonists, 47

roles of, 68–69
types of, 74–75
views, MDA framework, 23

Playful Production Process: For Game Designers
(and Everyone), A, 121–122, 126

playing pieces, prototyping, 155

playtesting
2D adventure game level, 161–162
ADL, 182–183
analysis, 5–6, 7–8
AT, 185
Bartok, 4–5
biases, 169
circles of playtesters, 169

acquaintances, 171–172
Internet, 172
trusted friends, 170
you, 170

data tables, 49
dynamic elements, 28
FDD elements framework, 28
flukes, 7
focus testing, 183
formal group playtesting, 176
formal individual playtesting, 176–181
great playtesters, 168–169
importance of, 168
informal individual playtesting, 172–175
interest polling, 184
investigators versus playtesters, 168
liking/don't liking ideas, 169
modifying rules, 6–7
notes, taking, 173–175
online playtesting, 181–183
prototyping, 161–162
Quality Assurance (QA) testing, 184
self-analysis, 169
separating elements, 169
thinking out loud, 168–169
tissue playtesters, 170–172
usability testing, 184
Warshmallows, 179–180

Plenty-Coups, Chief
counting coup, 141–142

plots
first plot points, three-act dramatic

structures, 55
free will versus, 59
inscribed narratives, 53
second plot points, three-act dramatic

structures, 58
plus symbol (+), ++ (increment operators), 428
Pogo.com, Crazy Cakes, 182–183
points accumulation, Apple Picker, 665–668
Pokemon Go

epilepsy, 85
parallel play interaction pattern, 44
player relationships, 45

Z05_Bond_Index_p1203-1252.indd 1235 29/06/22 3:20 PM

http://Pogo.com

1236 POKER

Poker, 25
pop-ups, direct player guidance, 234
position/sliding block puzzles, 260
positive behaviors, NPC, 241
positive feedback, game balance, 228–229
post-it-notes, prototyping, 155
post-release phase, game development, 119
PowerUps, Space SHMUP, 857–869, 872–876
prefabs, 373–378

doors, Dungeon Delver, 1109
instance overrides, applying to prefabs,

641–642
Skeletos (enemy), Dungeon Delver, 1109

premises
FDD elements framework, 28
inscribed narratives, 52–54

preproduction deliverables, scope
management, 121–122

Macro Charts, 126
Macro Documents, 124–126
Vertical Slices, 122–123
vertical slices, 118–119

preproduction phase, game development,
118–119

presentation, puzzle design, 256
pricing, Unity, 330
primary objectives, 42–44
Prince of Persia: The Sands of Time, plots versus

free will, 57
private BoundsCheck bndCheck, Space SHMUP,

816–819
private fields, viewing in classes, 734
probability. See also randomizer technologies

dice probability with Google Sheets, 191
Monte Carlo method, 211
"Ten Rules of Probability Every Game

Designer Should Know," 207–211
weighted probabilities, 216–217

probability
math of probability, 207–211
tables, 51

problems (complex), breaking down, 315
procedural aesthetics, 77

procedural music, 78
HRS, 78–79
PCO, 79
VRO, 78–79

procedural visual arts, 80
particle systems, 80
procedural animation, 81
procedural environments, 82
shaders, 81–82

procedural animation, 81
procedural environments, 82
procedural languages, 352–353
procedural music, 78

HRS, 78–79
PCO, 79
VRO, 78–79

procedural visual arts, 80
particle systems, 80
procedural animation, 81
procedural environments, 82
shaders, 81–82

procedures, 25, 70
product backlogs/task lists, Scum, 269
Product Owners, Scrum, 268
production phase, game development,

118–119
programmatic collisions, Tilemaps, 1061
programming languages. See also C#

learning, 331–334
procedural languages, 352–353

programming/digital systems
breaking down complex problems, 315
code libraries, 314–315
computer languages, 313–314
simple instructions, 313
systems thinking, 312
Unity game development environment, 315

programs, game development, 1200–1201
progression

inscribed dramatics, 62
inscribed paper game technology, 63
tables, 48

Project pane (Unity), 339
Dungeon Delver, 1026
organizing, 716–717

projectiles
Mission Demolition, 690

instantiating projectiles, 694–698
ProjectileLine Trails, 728–734
RigidBody insomnia, 725–728

Space SHMUP
hero's bullet, 800–801
scripts, 803
shooting, 800
shooting, adding shooting capability,

800–801
shooting, destroying enemies, 804
shooting, weapon GameObjects, 844–851

projects See also game builds ; game prototype
tutorials

Boids project

Z05_Bond_Index_p1203-1252.indd 1236 29/06/22 3:20 PM

1237PROSPECTOR SOLITAIRE

Attractor GameObject, 549–551
Attractor script, 551, 553–555
Boid script - part 1, 558
Boid script - part 2, 561–567
Boid script - part 3, 570–573
Boids project, 551
Boids values, 573
LookAtAttractor script, 551, 557–558
Neighborhood script, 551, 567–570
Reynolds, Craig W.542
setup, 542–543
simple Boid model, 543–548
Spawner script, 551, 558–561

Collections Examples project, setup,
442–443

DOTS Example project, setup, 582–586
Enemy Class Examples project

Enemy class on GameObjects, 534
setup, 524-TEXT NOT FOUND IN PRE XML

FILE
Function Examples project, setup, 474
"Hello World" project

adding color, 381–382
comments in scripts, 369
creating scripts, 363–368
cube environments, 378–381
debugging, attaching scripts, 500–502
debugging, compile-time bugs, 495–500
debugging, removing scripts, 500–502
debugging, runtime errors, 502–504
debugging, stepping through errors,

506–507
deleting cubes, 467–471
disabling scripts, 370
folder configuration, 361–362
manipulating GameObjects, 370–373
prefabs, 373–378
setup, 360
shrinking cubes, 467–471
start() function versus update() function,

370–398
Loop Examples, setup, 424–426
new Unity projects, creating, 360–362
small game projects, 1199
Updraft Coding Challenge

filling in blanks, 1192–1194
starting, 1191–1192

properties
arrays, 455–456
classes, 524, 527–530
Dictionaries, 450
as fields, 527–530
functions as, 483–484

Lists, 446
Unity issues, 728

Prospector Solitaire, 898–899, 969–970
adding

backs to cards, 937–938
face art to cards, 936–937
game elements, 972

background images, 983–985
BézierMover class, 987–991
build settings, 903
building cards, 922–938
cameras, 906–907
classes, 948–961
clickable cards, 962–964
example of play, 900–901
feedback on player scores, 1007–1013
FloatingScore GameObject, 991–999
game logic, 961–962
Game pane, 906–907
gold cards, 1017
GUI, 985–986
initial layout, 899–900
JSON through code, 913–917
managing rounds, 972–975
matching cards in mine, 964–968
Mine Tableau layout, 940–948
mobile devices, 1018
moving cards, 1017–1018
pauses between rounds, 1006–1007
pips, adding to cards, 934–935
Prospector_Scene_0, 905
rules, 900
ScoreBoard class, 1000–1001
ScoreBoard GameObject, 999
scoring, 975–983, 985–986, 999–1006,

1007–1013
setup, 901–902, 906–907, 971
shu�ing cards, 939–940
silver cards, 1017
sorting cards, 954–958
sprites

building cards from sprites, 931–934
cards, constructing from sprites, 911–912
gathering references to the deck, 918–920
importing images as, 907–909
prefab GameObjects as sprites/cards,

921–922
slicing rank images as sprites, 909–911

Unity window layout, 906
updating ScoreManager script, 1001–1006
WebGL module, 1013–1016

installing, 903–904
switching to, 904–905

Z05_Bond_Index_p1203-1252.indd 1237 29/06/22 3:20 PM

1238 PROTAGONISTS

protagonists
player relationships, 47
silent protagonists, empathetic characters

versus avatars, 60
prototyping, 151

2D adventure game level, 157–159
combat, 162
playtesting, 161–162
shortcuts, 161
traversal mechanics, 159–161

3x5 note cards, 155
benefits of, 152
best uses, 162–163
card sleeves, 155
cards, 153
collaborative prototyping, 152
dice, 153
focused prototyping/testing, 152–153
grids, 154–155
initial development speeds, 152–153
interfaces, 156
iteration speeds, 152
LEGO bricks, 155
low technical barriers to entry, 152
movement systems, 154–155
notebooks, 155
paper, 153
pipe cleaners, 155
playing pieces, 155
poor uses of, 163–164
post-it-notes, 155
tools, 153–155
traversal mechanics, 159–161
whiteboards, 155

pseudocode, 440
Psychic Bunny, Freeq, 53
pure puzzles, 251
purpose of spaces, 47–50
puzzle design, 248, 262–263

action puzzles, 250–251, 260–262
boss fights, 261–262
construction puzzles, 251, 256
defining, 248–250
dexterity/timing, 262
genres of, 250–251
goals, 256–257
image/media puzzles, 253
inspiration, 255
Kim, Scott, 248–250, 255–256
levels, 255
logic puzzles, 253
mixed-mode puzzles, 254
modes of thought, 252

physics puzzles, 260
presentation, 256
pure puzzles, 251
reasons for playing, 251–252
rules, 255
sequencing, 256
simplification, 255
single-mode puzzles, 253
sliding block/position puzzles, 260
solving puzzles, 257–259
stealth puzzles, 261
story puzzles, 251
strategy puzzles, 251
testing, 255
Tetris, 255
traversal puzzles, 261
word puzzles, 253

Q
Quake, machinema, 94–95
Quake 2, game mods, 92
Quality Assurance (QA) testing, 184
quaternion variables/functions, 395–396
Queasy Games, Sound Shapes, 92
questions, playtesting analysis, 5–6
quests

outcomes, 76
side quests, 58

queues, 441
quitting applications, force, 426, 509

R
race conditions, 533, 869–872
randomization

directionality, Apple Picker, 647–648
inscribed paper game technology, 65
randomized items, Dungeon Delver,

1140–1143
randomizer technologies, 212

decks of cards, 213–215
dice, 212
spinners, 212–213
weighted distributions, 215–216
weighted probabilities, 216–217

spawning enemies, Space SHMUP, 787–790
rating phase, brainstorming/ideation, 117
Ravensburger, Up the River, 62
RectTransform tool (T), Unity, 380
recursive functions, 489–491
Red Dead Redemption, three-act dramatic

structures, 58

Z05_Bond_Index_p1203-1252.indd 1238 29/06/22 3:20 PM

1239RYAN, MALCOLM

Red vs. Blue, machinema, 94
reference-based data, avoiding in DOTS,

595–599
references

absolute references, 193–194
partial absolute references, 193–194
relative references, 193

reflexive attention, 145
reinforcing mechanics, inscribed dramatics, 62
relationships, player

citizens, 45
collaborators, 45
competitors, 44
defining with objectives, 44–47
developing through shared experiences,

86–87
game masters, 45
inscribed mechanics, 40, 43–46
protagonists, 47

relative references, 193
releases, Scrum, 270–271
removing scripts, 500–502
Renderer component, GameObjects, 400
Requirements Documents, 124–126
resolution

three-act dramatic structures, 56–58
visual play environments, 83

resources
assets, 49
attributes, 49
FDD elements framework, 25
inscribed mechanics, 40, 47–49
online resources, Unity development,

1198–1199
Resources folder, Dungeon Delver, 1026
responsibilities of designers, Layered Tetrad,

39–40
restarting games, Space SHMUP, 797–799
retrospectives, sprint, 271
Return of the Obra Din

image/media puzzles, 253
logic puzzles, 253

rewards, inscribed dramatics, 62
Reynolds, Craig W.

Boids project, 542
"Flocks, Herds, and Schools: A Distributed

Behavioral Model," 542
ri�e shu�es, 5
"right-clicking" on mouse, macOS, 361
RigidBody component

GameObjects, 372, 402
projectiles, Mission Demolition, 725–728

rising action, five-act dramatic structures, 54
Roberts, Sam, 17

games, defined, 16–17
RoboCup, roles of players, 68–69
RoboRally, 113
Rock Band, 235–236
Rockstar Games, Red Dead Redemption, 58
Rogers, Scott

emergence, 69–70
Rogue, final outcomes, 77
Rohrer, Jason

Passage, 10, 11
role fullfillment, empathetic characters versus

avatars, 63
Romeo and Juliet, 54–55
room to room movement, Dungeon Delver,

1087–1091
Rotate tool (E), Unity, 379
rounds

comparing (analysis), 7–8
Prospector

managing, 972–975
pauses between rounds, 1006–1007

rows/columns, Google Sheets
adding columns, 194–195
creating rows, 194
filling rows with data, 196
iterating Die A rows, 197
making Die A rows, 196–197
making Die B rows, 197–198
setting column widths, 195

royalty points, 306–307
RPG (Role-Playing Game), pen-and-paper RPG,

59–61
rules

Bartok 3, 6–7
explicit written rules, 46
FDD elements framework, 25
house rules, 73–74
implicit rules, 46
inscribed mechanics, 40, 46–48
modifying, 6–7
Prospector, 900
puzzle design, 255
written rules, 46

Rules of Play, meaningful play, 71
rumble-style player feedback, touch

aesthetics, 51
runtime errors, debugging, 502–504
Ryan, Malcolm, 2

Z05_Bond_Index_p1203-1252.indd 1239 29/06/22 3:20 PM

1240 SAFETY, MODELING NPC BEHAVIOR

S
safety, modeling NPC behavior, 241
Salen, Katie

meaningful play, 147
Rules of Play, 71

Sarkeesian, Anna
Feminist Frequency, 99–101

saving Google Sheets, 199
Scalak, puzzle design, 256
Scale tool (R), Unity, 379
scarcity, direct player guidance, 232
Scene pane (Unity), changing, 380
Scene/Prefab pane (Unity), 338–339
Schell, Jesse

Art of Game Design, The, 9, 2, 30–31,
108–109, 111–112, 145–146, 207–211,
234–240

design phase, iterative design, 108–109
Elemental Tetrad framework, 30–31
games, defined, 13
indirect player guidance, 234–240
inscribed mechanics, 43
interest curves, 145–146
"Ten Rules of Probability Every Game

Designer Should Know," 207–211
testing phase, iterative design, 111–112

scientific notation, 386–387
scope

functions, 476
of variables, 389

scoping
IndieCade Game Festival, 120
managing with preproduction deliverables,

121–122
Macro Charts, 126
Macro Documents, 124–126
Vertical Slices, 118–119, 122–123

overscoping, 120–121
Star Wars, 120–121

ScoreBoard class, Prospector, 1000–1001
ScoreBoard GameObject, Prospector, 999
ScoreCounter texts, Apple Picker, 662–664
ScoreManager script, Prospector, updating,

1001–1006
scoring, Prospector, 975–983, 985–986,

999–1006
Scotland Yard (Mr. X), unilateral competition

interaction pattern, 44
screen size/resolution, visual play

environments, 83
screen variables, 397
scripts, 402

attaching, 500–502
autocompleting scripts, Visual Studio,

365–366
Boids project

Attractor script, 551, 553–555
Boid script, 551
Boid script - part 1, 558
Boid script - part 2, 561–567
Boid script - part 3, 570–573
LookAtAttractor script, 551, 557–558
Neighborhood script, 551, 567–570
Spawner script, 551, 558–561

enemies, Space SHMUP, 773–787
enums (enumeration), 742
execution order, 1040
formal group playtesting, 176
GridMove scripts, Dungeon Delver,

1085–1087
headers, 553–555
InRoom scripts, Dungeon Delver, 1070–1072
linear interpolation, 567
matching names with classes, 525–526
removing, 500–502
ScoreManager script, Prospector, updating,

1001–1006
Space SHMUP, projectiles, 803
TileSwapManager scripts, Dungeon Delver,

1099–1101
UITextManager scripts, 1010–1013
Unity scripting reference, 642–643
variables, tuning, Apple Picker, 659–660
Visual Studio

autocompleteing scripts, 365–366
script appearance, 365–366

scrolling backgrounds, Space SHMUP,
890–893

Scrum, 268. See also Agile Software
Development

BDC, 269, 271–272
creating, 286
Daily Scrum worksheets, 283–285
Main worksheets, 273–280
Person Charts, 282–283
Task Rank Charts, 280–282
worksheets (overview), 272–273

Daily Scrum meetings, 268, 269–270
development teams, 268
methodologies, 268
product backlogs/task lists, 269
Product Owners, 268
releases, 270–271
Scrum Masters, 268

Z05_Bond_Index_p1203-1252.indd 1240 29/06/22 3:20 PM

1241SOCIALIZERS (BARTLE'S HEARTS)

sprints, 270–271, 273–274, 277–279
teams, 268

second plot points, three-act dramatic
structures, 58

self-analysis, playtesting, 169
Sellers, Michael

Advanced Game Design: A Systems
Approach, 1201

semicolons (;)
debugging, 495
for loops, 431

separating elements, playtesting, 169
sequencing, 243–244, 256
serializable WeaponDefinition class, Space

SHMUP, 834–838
"serious" games, 133
service, games as a, 295
setting up

Apple Picker,
camera setup, 633–634
project guidelines, 624

Boids project, 542–543
Collections Examples project, 442–443
DOTS Example project, 582–586
Dungeon Delver, 1022–1023, 1097–1098
Enemy Class Examples project, 524-TEXT

NOT FOUND IN PRE XML FILE
Function Examples project, 474
"Hello World" project, 360
Loop Examples project, 424–426
Mission Demolition, 662–683
Prospector, 901–902, 906–907, 971
Space SHMUP, 755, 757–758, 809

settings, inscribed narratives, 52
Settlers of Catan

assets, 49
decks of cards, shu�ing, 215
designing for strategy, 73
resources, 49

shaders, 81–82
Shadow of the Colossus, embedded experiences,

48
Shakespeare, William

Romeo and Juliet, 54–55
shared experiences, developing player

relationships, 86–87
Sheets. See Google Sheets
shields (hero ship), Space SHMUP, 764–766
shooting, Space SHMUP, 800, 833

delegate events, 842–844
eWeaponType enum, 833–834
hero's bullet, 800–801

showing damage, 853–857
WeaponDefinition class, 834–842

shortcuts, dangers of, 161
shorting operators, 407–409, 1154
short-term objectives, 44
shrinking cubes, "Hello World" project,

467–471
shu�ing cards

decks of cards, 215
Prospector, 939–940

side quests, 58
significands, 386–387
silent protagonists, empathetic characters

versus avatars, 60
silver cards, Prospector, 1017
similarity, visual design and indirect player

guidance, 236
simple instructions, systems thinking, 313
simplification, puzzle design, 255
single player interaction pattern, 44
single-mode puzzles, 253
Skeletos (enemy), Dungeon Delver, 1072–1075,

1109, 1145–1147
skills/concepts, teaching, 243
skipping null arrays with foreach loops,

454–455
Skyrates, 135–136

online playtesting, 182
Skyrim

conflicting objectives, 44–45
custom game levels, 92
direct player guidance, 232
final outcomes, 76
game mods, 92
narrative game mods, 94
optional objectives, 42–44
plots versus free will, 58
primary objectives, 42–44

sleeves (card), prototyping, 155
Slices, Vertical, 118–119, 122–123
sliding block/position puzzles, 260
slingshots. Mission Demolition, 687–690,

691–702
small game projects, 1199
smell, five aesthetic senses, 51
Snakes and Ladders, 22–25, 27–29

layouts, 22–25
modifying for strategic game play,

24–26
social change, games for, 133
social media games, 136–137
Socializers (Bartle's Hearts), 74

Z05_Bond_Index_p1203-1252.indd 1241 29/06/22 3:20 PM

1242 SOFTWARE

software
Agile Software Development, 266–267
ESA, 288–289

solitaire games. See Prospector
solving puzzles, 257–259
Something Else, Papa Sangre, 53
sorting cards in Prospector, 954–958
sound e�ects, 50–52
Sound Shapes, custom game levels, 92
Space SHMUP, 753–754, 807–808

adding elements, 894
asset packages, importing, 755–757
building game levels, 894–895
delegate events, 842–844
enemies

art assets, 771–773
damage, 792–797
deleting, 777–787
destroying, 804
Enemy_0, 810–811
Enemy_1, 812–819
Enemy_2, 819–826
Enemy_3, 826–832
Enemy_4, 876–888
OnCollisionEnter method, 851–852
PowerUps, 872–876
private BoundsCheck bndCheck, 816–819
programming, 811–832
randomly spawning, 787–790
scripts, 773–787
showing damage, 853–857

expanding weapon options, 865–866
game structure, 895
GUI, 895
hero ship

creating, 758–760
Hero update() method, 760–764
keeping on screen, 767–771
shields, 764–766

layers, 790–792
physics, 790–792
PowerUps, 857–869, 872–876
projectiles

hero's bullet, 800–801
scripts, 803
shooting, 800
shooting, adding shooting capability,

800–801
shooting, destroying enemies, 804
shooting, weapon GameObjects, 844–851

race conditions, 869–872
restarting games, 797–799

scene setup, 757–758
setting up, 809
setup, 755, 757–758
shooting, 800, 833

adding shooting capability, 802–803
delegate events, 842–844
eWeaponType enum, 833–834
hero's bullet, 800–801
showing damage, 853–857
WeaponDefinition class, 834–842

starfield backgrounds, 890–893
tags, 790–792
tuning settings, 888–890
tuning variables, 893

spaces
embedded experiences, 48
flow, 47
inscribed mechanics, 40, 47–48
landmarks, 47–48
objectives, 48
purpose of spaces, 47–50

Spades (Bartle's Explorers), 74
Spawner script, Boids project, 551, 558–561
spawning enemies, Space SHMUP, 787–790
Spec Ops: The Line

justification, 62
motivation, 62
plots versus free will, 57

speeds
Mission Demolition, 710–716
prototyping

initial development speeds, 152–153
iteration speeds, 152

spelling errors, debugging, 494
Spider-Man 2, quest outcomes, 76
spinners, randomizer technologies, 212–213
spoilage mechanics, Farmville, 47, 135–137
spoilsports, 75
sporadic-play games, 135–136, 137
Spore, procedural animation, 81
spreadsheets

absolute references, 193–194
Excel (Microsoft), 189–190
Google Sheets, 189

adding columns, 194–195
balancing weapons, 219–228
charts, 204–206
clarity in, 199
color scale conditional formatting, 200
conditional formatting, 203
creating rows, 194
filling rows with data, 196

Z05_Bond_Index_p1203-1252.indd 1242 29/06/22 3:20 PM

1243SUPER MARIO ODYSSEY, GAMERGATE

getting started, 191–192
iterating Die A rows, 197
labels, 199
making Die A rows, 196–197
making Die B rows, 197–198
naming documents, 194
saving, 199
setting column widths, 195
summing results, counting all die rolls,

202–203
summing results, counting sums of die

rolls, 201–202
summing results, two dice, 201
weighted probabilities, 216–217

importance of, 188–189
LibreO�ce Calc, 190
Numbers (Apple), 190
OpenO�ce Calc (Apache), 190
partial absolute references, 193–194
relative references, 193

sprints, Scrum, 270–271, 273–274, 277–279
sprites

building cards from sprites, 931–934
cards, constructing from sprites, 911–912
Dungeon Delver

CollisionTiles sprites, 1061–1064
naming conventions, 1043–1044

gathering references to the deck, 918–920
importing images as sprites, Prospector,

907–909
slicing rank images as sprites, 909–911

square grids, movement systems, 154
stacks, 441–442
Star Wars, 52, 56–57, 120–121
Star Wars Jedi: Fallen Order, direct player

guidance, 234
Star Wars: Knights of the Old Republic, plots

versus free will, 57
starfield backgrounds, Space SHMUP, 890–893
Start() function versus update() function,

370–398
Start() method versus awake() method,

814–815
starting

game design projects, 305–308
Updraft, Coding Challenge, 1191–1192

state tracking, inscribed paper game
technology, 63

statements
break statements, exiting loops, 433–435
commas (,) in, 432
conditional statements, 416

if statements, 416–418
if.else if.else statements, 418–419
if.else statements, 418
nesting if statements, 419
switch statements, 419–422

continue statements, skipping single
iterations, 435

jump statements, in loops, 433
static class variables/functions, 390–392
static functions, 391–392
static methods, arrays, 456–457
static typing

C# programming language, 351–352
variables, 384–385

stealth puzzles, 261
Steinkuehler, Constance, 90–91
stepping through errors, debugging, 506–507
stopping apples from falling too far, Apple

Picker, 653–655
stories

Elemental Tetrad framework, 29
FDD elements framework, 26
puzzles, 251

storing two-dimensional data in linear arrays,
1039–1040

strategies, 71
designing for, 73
indirect guidance strategies, 42
optimal strategies, 72
puzzles, 251

string variables, 388, 981–982
structured conflict, player-centric goals,

141–142
subclasses, 535–538, 950
Suits, Bernard

attention/involvement, player-centric goals,
144–145

closed/open games, 11
games, defined, 10–12, 14
Grasshopper, The, 9, 10, 14, 137, 144–145
lusory attitude, 13, 137

summing
counting

all die rolls, 202–203
sums of die rolls, 201–202

results of two dice, 201
Super Mario Bros.

integrated actions, 71
procedural music, 78–79
teaching new skills/concepts, 243

Super Mario Galaxy, particle systems, 80
Super Mario Odyssey, GamerGate, 99–100

Z05_Bond_Index_p1203-1252.indd 1243 29/06/22 3:20 PM

1244 SUPERCLASSES

superclasses, 535–538, 950
support, Unity, 330
Swain, Chris

game design, 104
game design, defined, 18
Game Design Workshop, 18

Swink, Steve
Game Feel, 623–624

Switch (Nintendo), screen size/resolution, 83
switch statements, 419–422
symmetric games, 188
System.Flags enums, Bitwise operators,

780–782
SystemInfo variables, 397
systems design, 118–119
systems thinking

board games, 312
simple instructions, 313

T
tables

inscribed mechanics, 41, 50–51
playtest data tables, 49
probability tables, 51
progression tables, 48

tags, Space SHMUP, 790–792
Tales of the Arabian Nights, probability tables,

51
task assignments, Main worksheets (BDC),

274–275, 280
task lists/product backlogs, Scrum, 269
Task Rank Charts, BDC, 280–282
taste, five aesthetic senses, 51
teaching, skills/concepts, 243
team competition interaction pattern, 44
Team Fortress 2, 294
tech tree, Civilization, 43
technical barriers to entry, prototyping, 152
Technik des Drama (The Technique of Drama),

Die, 54–55
Technique of Drama, The, 54–55
technology

cultural layer, Layered Tetrad, 36
cultural technology, 95

game technology used outside games, 95
player-made external tools, 95–96

dynamic layer, Layered Tetrad, 34, 88
Elemental Tetrad framework, 28
game technology used outside games, 95
inscribed layer, Layered Tetrad, 33
inscribed technology, 63

digital games, 65

paper games, 63–65
testing

AT, 185
e�ciency when testing, 974–975
focus testing, 183
focused prototyping/testing, 152–153
Grappler, Dungeon Delver, 1180–1181
interest polling, 184
operation equality by value/reference,

412–413
playtesting

2D adventure game level, 161–162
analysis, 5–6, 7–8
ADL, 182–183
AT, 185
Bartok, 4–5
biases, 169
circles of playtesters, 169–172
data tables, 49
dynamic elements, 28
FDD elements framework, 28
flukes, 7
focus testing, 183
formal group playtesting, 176
formal individual playtesting, 176–181
great playtesters, 168–169
importance of, 168
informal individual playtesting, 172–175
interest polling, 184
investigators versus playtesters, 168
liking/don't liking ideas, 169
modifying rules, 6–7
online playtesting, 181–183
prototyping, 161–162
QA testing, 184
self-analysis, 169
separating elements, 169
taking notes, 173–175
thinking out loud, 168–169
tissue playtesters, 170–172
usability testing, 184
Warshmallows, 179–180

puzzle design, 255
QA testing, 184
usability testing, 184

testing phase, iterative design, 105, 112
Tetris, 255
Teuber, Klaus

Settlers of Catan, 73
texture, visual design and indirect player

guidance, 239
thinking out loud, playtesting, 168–169

Z05_Bond_Index_p1203-1252.indd 1244 29/06/22 3:20 PM

1245TUTORIALS, GAME PROTOTYPE

three-act dramatic structures, 56–58
Tilemaps, Dungeon Delver, 1031–1042

programmatic collisions, 1061
programmatically filling collisions,

1065–1069
TileSwapManager scripts, Dungeon Delver,

1099–1101
TileSwaps, Dungeon Delver, 1099, 1101–1107,

1144–1147
time-base games, 644–645
timing/dexterity, puzzle design, 262
tinting Unity window, 505
tissue playtesters, 170–172
Tomb Raider, aesthetics, 36
Tony Hawk's Pro Skater

gameplay as art, 93
performative empowerment, 144

totalling hours, Main worksheets (BDC),
277–280

touch, five aesthetic senses, 50–51
tracking

player actions, 61
state tracking, inscribed paper game

technology, 63
traditional dramatics, 55

five-act dramatic structures, 54–55
three-act dramatic structures, 56–58

trails, visual design and indirect player
guidance, 236

Tranform tools, Unity, 379–380
Transform component, GameObjects, 372, 400
Transform tool (Y), Unity, 380
Translate tool (W), Unity, 379
transmedia (authorized), cultural layer and,

96–97
traversal mechanics, prototyping, 159–161
traversal puzzles, 261
trusted friends, circles of playtesters, 170
tuning variables, 893
tutorials, game prototype. See also game

builds; projects
Apple Picker, 621–623

art assets, 624–633
boids, 551
cameras, setup, 633–634
catching apples, 658–659
coding, 637–641
destroying baskets, 670–672
directionality, 646–648
DOTS, 582
dropping apples, 649–651
game management, 661–662

game panel settings, 636–637
GUI, 661–662
Hello World, 359
HighScore texts, 662–664, 672–678
instance overrides, applying to prefabs,

641–642
instantiating baskets, 655–656
missed apple notifications, 668–672
movement systems, 643–646
moving baskets with mouse, 657–658
physics layers, 651–652
points accumulation, 665–668
purpose of, 623
ScoreCounter texts, 662–664
setup, 624
stopping apples from falling too far,

653–655
tuning script variables, 659–660

Dungeon Delver, 1019–1021, 1095–1096
anti-aliasing issues, 1041–1042
cameras, 1023
cameras, GUI cameras, 1024–1025
cameras, main camera, 1024–1025
component-based design, 1021–1022
damage, 1125–1135
DeliverTiles, 1026–1028
DelverLevel_Eagle Text files, 1028–1031,

1033–1035
doors, keys, 1111–1121, 1138–1140
Dray (hero), 1042
Dray (hero), animation, 1044–1049
Dray (hero), attack animations, 1055–1058
Dray (hero), camera movement,

1059–1061, 1091–1094
Dray (hero), collisions, 1069
Dray (hero), giving damage, 1130–1135
Dray (hero), Grappler attacks, 1174–1180
Dray (hero), GUI connections, 1123–1125
Dray (hero), health, 1121–1122
Dray (hero), IGadget interface, 1150–1154
Dray (hero), movement systems,

1049–1053, 1087–1091
Dray (hero), naming conventions,

1043–1044
Dray (hero), picking up items, 1135–1137,

1181–1184
Dray (hero), taking damage, 1127–1130
Dray (hero), walking animations,

1054–1055
Dray (hero), weapons, 1059–1061
dropping items, keys, 1138–1140
dropping items, randomized items,

1140–1143

Z05_Bond_Index_p1203-1252.indd 1245 29/06/22 3:20 PM

1246 TUTORIALS, GAME PROTOTYPE

tutorials, game prototype. See also game
builds; projects (continued)

dungeon design, 1143–1147
enemies, dropping keys, 1138–1140
enemies, dropping randomized items,

1140–1143
enemies, giving damage, 1127–1130
enemies, Skeletos, 1072–1075, 1109,

1145–1147
enemies, taking damage, 1130–1135
Game pane, 1024
Grappler, 1147–1148
Grappler, building, 1154–1159
Grappler, collisions, 1169–1173
Grappler, firing, 1169
Grappler, picking up items, 1181–1184
Grappler, pulling Dray (hero) in,

1174–1180
Grappler, secondary abilities, 1159–1169
Grappler, testing, 1180–1181
grid alignment, 1078–1079
GridMove scripts, 1085–1087
IFacingMover interface, 1079–1084
IGadget interface, 1148–1154
ISwappable interface, 1107–1111,

1145–1147
keys, 1111–1121, 1138–1140
maps/guidance systems, 1031–1042
picking up items, 1135–1137, 1181–1184
prefabs, 1109
Project pane, 1026
randomized items, 1140–1143
Resources folder files, 1026
room to room movement, 1087–1091
setup, 1022–1023, 1097–1098
sprites, CollisionTiles sprites, 1061–1064
sprites, naming conventions, 1043–1044
storing two-dimensional data in linear

arrays, 1039–1040
Tilemaps, 1031–1042
Tilemaps, programmatic collisions, 1061
Tilemaps, programmatically filling

collisions, 1065–1069
TileSwaps, 1099, 1144–1147
TileSwaps, doors, 1101–1107

Mission Demolition, 681–683
art assets, 684–690
cameras, follow cameras, 702–710
cameras, settings, 685–687
castles, 717–725, 734–737
coding, 691

coding, castles, 717–725, 734–737
coding, collision detection, 698–699
coding, creating slingshot class, 691–702
coding, follow cameras, 702–710
coding, goals, 734–736
coding, instantiating projectiles, 694–698
coding, multiple views, 745–751
coding, organizing Project pane (Unity),

716–717
coding, projectiles, 725–734
coding, showing when slingshot is active,

692–693
coding, UI, 737–738
coding, vection/speed, 710–716
directional light, 685
game management, 739–744
goals, 734–736
ground, 684–685
multiple views, 745–751
projectiles, 690
projectiles, instantiating, 694–698
projectiles, ProjectileLine Trails, 728–734
projectiles, RigidBody insomnia, 725–728
prototype concept, 683–684
setup, 662–683
slingshots, 687–690
slingshots, creating slingshot class,

691–702
slingshots, showing when active, 692–693
UI, 737–738

Prospector, 898–899, 969–970
adding backs to cards, 937–938
adding face art to cards, 936–937
adding game elements, 972
background images, 983–985
BézierMover class, 987–991
build settings, 903
building cards, 922–938
cameras, 906–907
classes, 948–961
clickable cards, 962–964
example of play, 900–901
feedback on player scores, 1007–1013
FloatingScore GameObject, 991–999
game logic, 961–962
Game pane, 906–907
gold cards, 1017
GUI, 985–986
initial layout, 899–900
JSON through code, 913–917
managing rounds, 972–975

Z05_Bond_Index_p1203-1252.indd 1246 29/06/22 3:20 PM

1247UITEXTMANAGER SCRIPTS

tutorials, game prototype. See also game
builds; projects (continued)

matching cards in mine, 964–968
Mine Tableau layout, 940–948
mobile devices, 1018
moving cards, 1017–1018
pauses between rounds, 1006–1007
pips, adding to cards, 934–935
Prospector_Scene_0, 905
rules, 900
ScoreBoard class, 1000–1001
ScoreBoard GameObject, 999
scoring, 975–983, 985–986, 999–1006,

1007–1013
setup, 901–902, 906–907, 971
shu�ing cards, 939–940
silver cards, 1017
sorting cards, 954–958
sprites, building cards from sprites,

931–934
sprites, constructing cards from sprites,

911–912
sprites, gathering references to the deck,

918–920
sprites, importing images as, 907–909
sprites, prefab GameObjects as sprites/

cards, 921–922
sprites, slicing rank images as sprites,

909–911
Unity window layout, 906
updating ScoreManager script, 1001–1006
WebGL module, 1013–1016
WebGL module, installing, 903–904
WebGL module, switching to, 904–905

Space SHMUP, 753–754, 807–808
adding elements, 894
building game levels, 894–895
delegate events, 842–844
enemies, art assets, 771–773
enemies, damage, 792–797
enemies, deleting, 777–787
enemies, destroying, 804
enemies, Enemy_0, 810–811
enemies, Enemy_1, 812–819
enemies, Enemy_2, 819–826
enemies, Enemy_3, 826–832
enemies, Enemy_4, 876–888
enemies, OnCollisionEnter method,

851–852
enemies, PowerUps, 872–876
enemies, private BoundsCheck bndCheck,

816–819

enemies, programming, 811–832
enemies, randomly spawning, 787–790
enemies, scripts, 773–787
enemies, showing damage, 853–857
expanding weapon options, 865–866
game structure, 895
GUI (Graphical User Interfaces), 895
hero ship, creating, 758–760
hero ship, Hero update() method,

760–764
hero ship, keeping on screen, 767–771
hero ship, shields, 764–766
importing asset packages, 755–757
layers, 790–792
physics, 790–792
PowerUps, 857–869, 872–876
projectiles, adding shooting capability,

800–801
projectiles, destroying enemies, 804
projectiles, hero's bullet, 800–801
projectiles, scripts, 803
projectiles, shooting, 800
projectiles, weapon GameObjects,

844–851
race conditions, 869–872
restarting games, 797–799
scene setup, 757–758
setting up, 809
setup, 755, 757–758
shooting, 800, 833
shooting, adding shooting capability,

802–803
shooting, delegate events, 842–844
shooting, eWeaponType enum, 833–834
shooting, hero's bullet, 800–801
shooting, showing damage, 853–857
shooting, WeaponDefinition class,

834–842
starfield backgrounds, 890–893
tags, 790–792
tuning settings, 888–890
tuning variables, 893

two-dimensional data, storing in linear arrays,
1039–1040

typos, debugging, 494–495

U
UI (User Interface), Mission Demolition, 737–738
UITextManager scripts, 1010–1013

Z05_Bond_Index_p1203-1252.indd 1247 29/06/22 3:20 PM

1248 ULTIMA IV, TRACKING PLAYER ACTIONS

Ultima IV, tracking player actions, 61
uncertainty, 13
Uncharted 3: Drake's Deception

machinema, 94–95
particle systems, 80
visual design, indirect player guidance,

237–239
understanding, experiential, 12, 149–150
unequal outcomes, 13
unexpected mechanical emergence, 69–70
unilateral competition interaction pattern, 44
Unity, 330

accounts, creating, 334–335
asset packages, importing, 755–757
Attach to Unity button, repairing, 513
class instances, 391–392
classes, data storage, 580
comments (//), 384
Console pane, 339
creating projects, 335–337
CS0029 compile-time code errors, 388
CS0664 compile-time code errors, 387
CS1012 compile-time code errors, 388
CS1525 compile-time code errors, 388
DOD, 354–355
DOTS, 581–582

example of, 581–582
tutorial, 581–582

debugging, 510
enabling, 509–510
errors, 505
macOS debuggers, 510–511
Windows debugger, 511–513

development
environment, 328
resources, 1198–1199

downloading, 324
ECS, 612–616
Editor tool, 380
errors, debugging, 505
fixed updates, 556–557
folder names, changing, 362
functions

mathf functions, 396
static functions, 391–392

game development environment, 315
game loops, 424
Game pane, 339 1024
GameObjects, 383, 398

Attractor GameObject, Boids project,
549–551

Box Collider component, 371

Collider component, 400–401
Dungeon Delver, 1075–1078
Enemy class on GameObjects, 534
Mesh Filter component, 371
Mesh Renderer component, 372
MeshFilter component, 400
MonoBehavior subclasses as GameObject

components, 530–533
prefabs, 373–378
Renderer component, 400
RigidBody component, 372, 402
Transform component, 372, 400

generic methods (< >), 398
Hand tool (Q), 380
"Hello World" project

adding color, 381–382
comments in scripts, 369
creating scripts, 363–368
cube environments, 378–381
disabling scripts, 370
folder configuration, 361–362
manipulating GameObjects, 370–373
prefabs, 373–378
setup, 360
start() function versus update() function,

370–398
Hierarchy pane, 339
IGDPD layout

downloading, 340
manually arranging, 341–344

Inspector pane, 339
changing script values, 660–661
field names, 637–641
headers, 553–555
naming variables, 402
overriding field values, 641
settinmg play mode values, 646

ISerializationCallbackReceiver Interface,
942–943

layouts
IGDPD layout, downloading, 340
navigating, 338–339

Light Editor Theme, 338
naming conventions, 389–390
new projects, creating, 360–362
OOP, 354
physics engines, fixed updates, 556–557
pricing, 330
Project pane, 339

Dungeon Delver, 1026
organizing, 716–717

Z05_Bond_Index_p1203-1252.indd 1248 29/06/22 3:20 PM

1249VARIABLES

property issues, 728
race conditions, 533
reasons for choosing, 329–330
RectTransform tool (T), 380
Rotate tool (E), 379
sample projects, 335
Scale tool (R), 379
Scene pane, changing, 380
Scene/Prefab pane, 338–339
scripting reference, 642–643
support, 330
Tranform tools, 379–380
Transform tool (Y), 380
Translate tool (W), 379
Unity 2020.3 LTS, installing, 326–327
Unity Hub

downloading, 324–326
installing, 324–326

variables, 384
application variables, 397
bool variables, 386
char variables, 387
class variables, 388
color variables, 393–395
declaring, 385
defining, 385
float variables, 387
instance variables/functions, 390
int variables, 386
naming, 376 402
quaternion variables/functions, 395–396
scope, 389
screen variables, 397
static class variables/functions, 390–392
statically typed variables, 384–385
string variables, 388
SystemInfo variables, 397
Vector3 instance variables/functions, 393

Visual Studio, alternatives
JetBrains Rider, 328–329
MonoDevelop, 329
VS Professional/Enterprise, 329
VSCode, 328
VSComm, 328–329
VSMac, 328–329

Visual Studio, connections, 366
WebGL module

installing, 903–904
switching to, 904–905

website changes, 324
window layout, Prospector, 906

Unity Asset Store, implementation phase
(iterative design), 110–111

University of Southern California, Interactive
Media & Games Division (IMGD), 298

Uno, 2
Unreal, custom game levels, 92
Up the River

mechanics reinforcement, 62
optimal strategies, 72

Update() function versus Start() function,
370–398

updating
fixed updates, 556–557
ScoreManager script, Prospector,

1001–1006
Updraft Coding Challenge

filling in blanks, 1192–1194
starting, 1191–1192

uroboros game build example
brainstorming/ideation

collection phase, 115
collision phase, 116–117
discussion phase, 117
expansion phase, 114–115
rating phase, 117

idea cards, 115
idea collisions, 116–117

usability testing, 184

V
Valkyria Chronicles, direct player guidance, 233
variables, 384

application variables, 397
bool variables, 386
char variables, 387
color variables, 393–395
debugging, 517–518
declaring, 385
defining, 385
float variables, 387
generic methods (< >), 398
instance variables/functions, 390
int variables, 386
iteration variables, Loop Examples project,

428
naming, 402
naming in Unity, 376
quaternion variables/functions, 395–396
screen variables, 397
static class variables/functions, 390–392
statically typed variables, 384–385
string variables, 388
SystemInfo variables, 397

Z05_Bond_Index_p1203-1252.indd 1249 29/06/22 3:20 PM

1250 VARIABLES

Vector3 instance variables/functions, 393
vection/speed, Mission Demolition, 710–716
Vector3

instance variables/functions, 393
linear interpolation, 567

Vectorized Playing Cards, 2
Vertical Slices, 118–119, 122–123
VFX Graph, particle systems, 80
view frustum, 634
views (multiple), Mission Demolition, 745–751
vision, five aesthetic senses, 49–51
visual arts (procedural), 80

particle systems, 80
procedural animation, 81
procedural environments, 82
shaders, 81–82

visual design, indirect player guidance,
236–239

visual play environments, 82
brightness, 83
resolution, 83
screen size/resolution, 83

Visual Studio
Attach to Unity button, repairing, 513
C# scripting

autocompleteing scripts, 365–366
script appearance, 365–366
spacing, 375

JetBrains Rider, 328–329
MonoDevelop, 329
VS Professional/Enterprise, 329
Unity, connections, 366
VSCode, 328
VSComm, 328–329
VSMac, 328–329

volume, player-controlled game volume, 84
VRO (Vertical Re-Orchestration), 78–79

W
walking animations, Dungeon Delver,

1054–1055
Walt Disney Imagineering, visual design and

indirect player guidance, 236–237
Warcraft III, game mods, 92
Warframe, gameplay as art, 93
Warshmallows, playtesting, 179–180
weapon GameObjects, Space SHMUP, 844–851
WeaponDefinition class, SpaceSHMUP

dictionaries, 838–842
serializable, 834–838

weapons
balancing with Google Sheets, 219–220

calculating average damage, 222
charting average damage, 223–224
duplicating weapon data, 225–226
example of, 227–228
percent chance for each shot, 220–221
rebalancing weapons, 226–227
showing overall damage, 224–225

Dray (hero), Dungeon Delver, 1059–1061
WebGL module

installing, 903–904
Prospector, 1013–1016
switching to, 904–905

website (Unity), changes to, 324
weighted distributions, 215–216
weighted probabilities, Google Sheets,

216–217
Werewolf, player relationships, 47
Westwood Studios, Blade Runner, 63–64
while loops, 424, 425, 426–428
whiteboards

markers, brainstorming/ideation (expansion
phase), 115

prototyping, 155
Windows

debugging, 507–508, 511–513
force quitting applications, 509

Wittgenstein, Ludwig
games, defined, 14
Philosophical Investigations, 14

Wizards of the Coast
Dungeons & Dragons, 27, 59

cultural narratives, 93–94
cumulative outcomes, 76
dynamic narratives, 85
emergent narratives, 87
gameplay as art, 93
outcomes, 26
progression tables, 48

Magic: The Gathering, 113
Wong, Yin Yin

focused prototyping/testing, 152–153
word puzzles, 253
word/image puzzles, 254
word/logic puzzles, 254
working conditions, game companies,

292–293
worksheets, BDC, 272–273

Daily Scrum worksheets, 283–285
Main worksheets, 273–280

Z05_Bond_Index_p1203-1252.indd 1250 29/06/22 4:05 PM

1251ZORK, INTERACTIVE FICTION

Person Charts, 282–283
Task Rank Charts, 280–282

World of Warcraft
Damage Per Second (DPS) calculators, 95
parallel play interaction pattern, 44

Wright, Will
Spore, 81

written rules, 46

X
X-Wing

aesthetic goals, 53–54
procedural music, 78–79

Y
Yager Development, Spec Ops: The Line, plots

versus free will, 57

Z
zero-indexed arrays/lists, 440
Zimmerman, Eric

meaningful play, 147
Rules of Play, 71

Zork, interactive fiction, 86

Z05_Bond_Index_p1203-1252.indd 1251 29/06/22 3:20 PM

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	PART I: Game Design and Paper Prototyping
	1 Thinking Like a Designer
	You Are a Game Designer
	Bartok: A Game Design Exercise
	The Definition of Game
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

