

Practice

Cert Guide

Advance your IT career with hands-on learning

CompTIA®

Security+

SY0-601

OMAR SANTOS RON TAYLOR JOSEPH MLODZIANOWSKI

FREE SAMPLE CHAPTER

CompTIA[®] Security+ SY0-601 Cert Guide

Omar Santos Ron Taylor Joseph Mlodzianowski

CompTIA® Security+ SY0-601 Cert Guide

Copyright © 2022 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-677031-2

ISBN-10: 0-13-677031-2

Library of Congress Control Number: 2021935686

ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Pearson IT Certification cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. The authors and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief Mark Taub

Product Line Manager Brett Bartow

Executive Editor Nancy Davis

Development EditorChristopher A. Cleveland

Managing Editor Sandra Schroeder

Senior Project Editor Tonya Simpson

Copy Editor
Chuck Hutchinson

Indexer Erika Millen

Proofreader Abigail Manheim

Technical Editor Chris Crayton

Publishing Coordinator Cindy Teeters

Cover Designer Chuti Prasertsith

Compositor codeMantra

Contents at a Glance

Introduction xliv

Part I: Threats, Attacks, and Vulnerabilities	
CHAPTER 1	Comparing and Contrasting Different Types of Social Engineering Techniques 3
CHAPTER 2	Analyzing Potential Indicators to Determine the Type of Attack 29
CHAPTER 3	Analyzing Potential Indicators Associated with Application Attacks 61
CHAPTER 4	Analyzing Potential Indicators Associated with Network Attacks 95
CHAPTER 5	Understanding Different Threat Actors, Vectors, and Intelligence Sources 117
CHAPTER 6	Understanding the Security Concerns Associated with Various Types of Vulnerabilities 133
CHAPTER 7	Summarizing the Techniques Used in Security Assessments 171
CHAPTER 8	Understanding the Techniques Used in Penetration Testing 193
Part II: Architecture and Design	
CHAPTER 9	Understanding the Importance of Security Concepts in an Enterprise Environment 209
CHAPTER 10	Summarizing Virtualization and Cloud Computing Concepts 227
CHAPTER 11	Summarizing Secure Application Development, Deployment, and Automation Concepts 253
CHAPTER 12	Summarizing Authentication and Authorization Design Concepts 285
CHAPTER 13	Implementing Cybersecurity Resilience 311
CHAPTER 14	Understanding the Security Implications of Embedded and Specialized Systems 335
CHAPTER 15	Understanding the Importance of Physical Security Controls 367
CHAPTER 16	Summarizing the Basics of Cryptographic Concepts 391
Part III: Implei	mentation
CHAPTER 17	Implementing Secure Protocols 423
CHAPTER 18	Implementing Host or Application Security Solutions 447
CHAPTER 19	Implementing Secure Network Designs 483
CHADTED 20	Installing and Configuring Wireless Security Settings 547

CHAPTER 21	Implementing Secure Mobile Solutions 567	
CHAPTER 22	Applying Cybersecurity Solutions to the Cloud 595	
CHAPTER 23	Implementing Identity and Account Management Controls 619	
CHAPTER 24	Implementing Authentication and Authorization Solutions 651	
CHAPTER 25	Implementing Public Key Infrastructure 685	
Part IV: Operations and Incident Response		
CHAPTER 26	Using the Appropriate Tool to Assess Organizational Security 703	
CHAPTER 27	Summarizing the Importance of Policies, Processes, and Procedures for Incident Response 755	
CHAPTER 28	Using Appropriate Data Sources to Support an Investigation 781	
CHAPTER 29	Applying Mitigation Techniques or Controls to Secure an Environment 819	
CHAPTER 30	Understanding the Key Aspects of Digital Forensics 837	
Part V: Governance, Risk, and Compliance		
CHAPTER 31	Comparing and Contrasting the Various Types of Controls 865	
CHAPTER 32	Understanding the Importance of Applicable Regulations, Standards, or Frameworks That Impact Organizational Security Posture 875	
CHAPTER 33	Understanding the Importance of Policies to Organizational Security 893	
CHAPTER 34	Summarizing Risk Management Processes and Concepts 913	
CHAPTER 35	Understanding Privacy and Sensitive Data Concepts in Relation to Security 935	
Part VI: Final Preparation		
CHAPTER 36	Final Preparation 953	
	Glossary of Key Terms 955	
APPENDIX A	Answers to the "Do I Know This Already?" Quizzes and Review Questions 1023	
APPENDIX B	CompTIA Security+ (SY0-601) Cert Guide Exam Updates 1087	
	Index 1089	

Online Elements:

APPENDIX C Study Planner
Glossary of Key Terms

Table of Contents

Introduction xliv

Part I: Threats, Attacks, and Vulnerabilities

Chapter 1 Comparing and Contrasting Different Types of Social Engineering Techniques 3

```
"Do I Know This Already?" Quiz 3
Foundation Topics 7
Social Engineering Fundamentals 7
   Phishing and Spear Phishing 9
   Smishing 12
   Vishing 12
   Spam and Spam over Internet Messaging (SPIM) 13
   Dumpster Diving 13
   Shoulder Surfing 14
   Pharming 14
   Piggybacking or Tailgating 15
   Eliciting Information 15
   Whaling 16
   Prepending 17
   Identity Fraud 17
   Invoice Scams 17
   Credential Harvesting 18
   Reconnaissance 18
   Hoaxes 19
   Impersonation or Pretexting 19
   Eavesdropping 19
   Baiting 20
   Watering Hole Attack 20
   Typo Squatting 20
   Influence Campaigns, Principles of Social Engineering,
     and Reasons for Effectiveness 21
```

```
User Security Awareness Education 22
Chapter Review Activities 24
Review Key Topics 24
Define Key Terms 25
Review Questions 26
Analyzing Potential Indicators to Determine the Type of Attack 29
"Do I Know This Already?" Quiz 29
Foundation Topics 33
Malicious Software (Malware) 33
    Ransomware and Cryptomalware 33
   Trojans 35
   Remote Access Trojans (RATs) and Rootkits 35
   Worms 36
   Fileless Virus 37
   Command and Control, Bots, and Botnets 37
   Logic Bombs 39
   Potentially Unwanted Programs (PUPs) and Spyware 40
   Keyloggers 42
    Backdoors 43
   Malware Delivery Mechanisms 43
   You Can't Save Every Computer from Malware! 45
Password Attacks 45
   Dictionary-based and Brute-force Attacks 45
   Password Spraying 46
   Offline and Online Password Cracking 46
    Rainbow Tables 47
   Plaintext/Unencrypted 47
Physical Attacks 48
   Malicious Flash Drives 48
   Malicious Universal Serial Bus (USB) Cables 48
    Card Cloning Attacks 48
    Skimming 49
```

```
Adversarial Artificial Intelligence
    Tainted Training Data for Machine Learning
    Security of Machine Learning Algorithms 50
Supply-Chain Attacks 51
Cloud-based vs. On-premises Attacks
    Cloud Security Threats 52
    Cloud Computing Attacks 54
Cryptographic Attacks 55
    Collision 55
    Birthday 56
    Downgrade 56
Chapter Review Activities 57
Review Key Topics 57
Define Key Terms
Review Questions 59
Analyzing Potential Indicators Associated with Application
Attacks 61
"Do I Know This Already?" Quiz 61
Foundation Topics 67
Privilege Escalation 67
Cross-Site Scripting (XSS) Attacks 68
Injection Attacks 70
    Structured Query Language (SQL) Injection Attacks 70
    SQL Injection Categories 73
    Dynamic Link Library (DLL) Injection Attacks 74
    Lightweight Directory Access Protocol (LDAP) Injection Attacks 74
    Extensible Markup Language (XML) Injection Attacks 74
Pointer/Object Dereference 75
Directory Traversal 76
Buffer Overflows 77
    Arbitrary Code Execution/Remote Code Execution 78
Race Conditions 79
Error Handling 79
```

```
Improper Input Handling 80
    Compile-Time Errors vs. Runtime Errors 81
Replay Attacks 82
Request Forgeries 85
Application Programming Interface (API) Attacks 86
Resource Exhaustion 87
Memory Leaks 88
Secure Socket Layer (SSL) Stripping 88
Driver Manipulation 89
Pass the Hash 89
Chapter Review Activities 90
Review Key Topics
Define Key Terms
                  92
Review Ouestions 92
Analyzing Potential Indicators Associated with Network Attacks 95
"Do I Know This Already?" Quiz 95
Foundation Topics 98
Wireless Attacks 98
    Evil Twin Attacks 98
   Rogue Access Points 99
   Bluesnarfing Attacks 99
    Bluejacking Attacks 100
   Disassociation and Deauthentication Attacks 101
   Jamming Attacks 102
   Radio Frequency Identifier (RFID) Attacks 102
   Near-Field Communication (NFC) Attacks 102
   Initialization Vector (IV) Attacks 103
On-Path Attacks 103
Layer 2 Attacks 105
   Address Resolution Protocol (ARP) Poisoning Attacks 105
   Media Access Control (MAC) Flooding Attacks 106
   MAC Cloning Attacks 106
```

Best Practices to Protect Against Layer 2 Attacks 106

Domain Name System (DNS) Attacks 107 Domain Hijacking Attacks 108 DNS Poisoning Attacks 108 Uniform Resource Locator (URL) Redirection Attacks 110 Domain Reputation 110 Distributed Denial-of-Service (DDoS) Attacks 111 Malicious Code or Script Execution Attacks 113 Chapter Review Activities 114 Review Key Topics 114 Define Key Terms 115 Review Questions 115 Understanding Different Threat Actors, Vectors, and Intelligence Sources 117 "Do I Know This Already?" Quiz 117 Foundation Topics 120 Actors and Threats 120 Attributes of Threat Actors 122 Attack Vectors 122 Threat Intelligence and Threat Intelligence Sources 123 Structured Threat Information eXpression (STIX) and the Trusted Automated eXchange of Indicator Information (TAXII) 125 Research Sources 127 The MITRE ATT&CK Framework 128 Chapter Review Activities 129 Review Key Topics 129 Define Key Terms 130 Review Questions 131 **Understanding the Security Concerns Associated with Various Types** of Vulnerabilities 133 "Do I Know This Already?" Quiz 133 Foundation Topics 137 Cloud-based vs. On-premises Vulnerabilities 137 Other "Cloud"-based Concerns 143

Chapter 5

Chapter 6

Server Defense 144

File Servers 144

Network Controllers 144

Email Servers 145

Web Servers 146

FTP Server 147

Zero-day Vulnerabilities 149

Weak Configurations 150

Third-party Risks 155

Improper or Weak Patch Management 160

Patches and Hotfixes 161

Patch Management 163

Legacy Platforms 165

The Impact of Cybersecurity Attacks and Breaches 165

Chapter Review Activities 166

Review Key Topics 166

Define Key Terms 167

Review Questions 168

Chapter 7 Summarizing the Techniques Used in Security Assessments 171

"Do I Know This Already?" Quiz 171

Foundation Topics 175

Threat Hunting 175

Security Advisories and Bulletins 177

Vulnerability Scans 180

Credentialed vs. Noncredentialed 182

Intrusive vs. Nonintrusive 182

Common Vulnerability Scoring System (CVSS) 182

Logs and Security Information and Event Management (SIEM) 186

Security Orchestration, Automation, and Response (SOAR) 188

Chapter Review Activities 189

Review Key Topics 189

Define Key Terms 190

Review Questions 190

Chapter 8 Understanding the Techniques Used in Penetration Testing 193

"Do I Know This Already?" Quiz 193

Foundation Topics 197

Penetration Testing 197

Bug Bounties vs. Penetration Testing 202

Passive and Active Reconnaissance 203

Exercise Types 205

Chapter Review Activities 206

Review Key Topics 206

Define Key Terms 207

Review Questions 207

Part II: Architecture and Design

Chapter 9 Understanding the Importance of Security Concepts in an Enterprise Environment 209

"Do I Know This Already?" Quiz 209

Foundation Topics 213

Configuration Management 213

Data Sovereignty and Data Protection 214

Secure Sockets Layer (SSL)/Transport Layer Security (TLS)

Inspection 215

API Considerations 216

Data Masking and Obfuscation 216

Encryption at Rest, in Transit/Motion, and in Processing 218

Hashing 218

Rights Management 219

Geographical Considerations 220

Data Breach Response and Recovery Controls 220

Site Resiliency 221

Deception and Disruption 222

Fake Telemetry 223

DNS Sinkhole 223

Chapter Review Activities 224

Review Key Topics 224 Define Key Terms 225 Review Questions 225 Summarizing Virtualization and Cloud Computing Concepts 227 Chapter 10 "Do I Know This Already?" Quiz 227 Foundation Topics 231 Cloud Models 231 Public, Private, Hybrid, and Community Clouds 232 Cloud Service Providers 233 Cloud Architecture Components 234 Fog and Edge Computing 234 Thin Clients 235 Containers 236 Microservices and APIs 240 Infrastructure as Code 241 Serverless Architecture 243 Services Integration 246 Resource Policies 246 Transit Gateway 246 Virtual Machine (VM) Sprawl Avoidance and VM Escape Protection 247 Understanding and Avoiding VM Sprawl 247 Protecting Against VM Escape Attacks 248 Chapter Review Activities 250 Review Key Topics 250 Define Key Terms 251 Review Questions 251 Summarizing Secure Application Development, Deployment, and Automation Concepts 253 "Do I Know This Already?" Quiz 253 Foundation Topics 257 Software Development Environments and Methodologies 257 Application Provisioning and Deprovisioning 260 Software Integrity Measurement 261

Secure Coding Techniques 261

Core SDLC and DevOps Principles 263

Programming Testing Methods 266

Compile-Time Errors vs. Runtime Errors 266

Input Validation 267

Static and Dynamic Code Analysis 269

Fuzz Testing 269

Programming Vulnerabilities and Attacks 270

Testing for Backdoors 271

Memory/Buffer Vulnerabilities 271

XSS and XSRF 272

More Code Injection Examples 273

Directory Traversal 274

Zero-Day Attack 275

Open Web Application Security Project (OWASP) 276

Software Diversity 278

Automation/Scripting 278

Elasticity and Scalability 279

Chapter Review Activities 280

Review Key Topics 280

Define Key Terms 281

Review Questions 281

Chapter 12 Summarizing Authentication and Authorization Design Concepts 285

"Do I Know This Already?" Quiz 285

Foundation Topics 289

Authentication Methods 289

Directory Services 291

Federations 292

Attestation 294

Authentication Methods and Technologies 295

Time-Based One-Time Password (TOTP) 295

HMAC-Based One-Time Password (HOTP) 295

Disk Redundancy 315

Redundant Array of Inexpensive Disks 316

Short Message Service (SMS) 296 Token Key 297 Static Codes 298 Authentication Applications Push Notifications 299 Phone Call Authentication 299 Smart Card Authentication 300 Biometrics 300 Fingerprints 300 Retina 301 Iris 301 Facial 301 Voice 302 Vein 302 Gait Analysis 302 Efficacy Rates 302 False Acceptance 303 False Rejection 303 Crossover Error Rate 304 Multifactor Authentication (MFA) Factors and Attributes 304 Authentication, Authorization, and Accounting (AAA) 306 Cloud vs. On-premises Requirements 306 Chapter Review Activities 308 Review Key Topics Define Key Terms 308 Review Questions 308 Implementing Cybersecurity Resilience 311 "Do I Know This Already?" Quiz 311 Foundation Topics 315 Redundancy 315 Geographic Dispersal 315

```
Multipath 319
    Network Resilience 319
    Load Balancers 319
    Network Interface Card (NIC) Teaming 320
    Power Resilience 320
    Uninterruptible Power Supply (UPS) 320
    Generators 321
    Dual Supply 321
    Managed Power Distribution Units (PDUs) 322
Replication 323
    Storage Area Network 323
    Virtual Machines 324
On-premises vs. Cloud 325
Backup Types 326
    Full Backup 328
    Differential Backup 328
    Incremental Backup 328
Non-persistence 328
High Availability 329
Restoration Order 330
Diversity 331
    Technologies 331
    Vendors 331
    Crypto 331
    Controls 332
Chapter Review Activities 332
Review Key Topics 332
Define Key Terms 333
Review Questions 333
Understanding the Security Implications of Embedded and
Specialized Systems 335
"Do I Know This Already?" Quiz 335
```

Foundation Topics 339

```
Embedded Systems 339
Supervisory Control and Data Acquisition (SCADA)/Industrial Control
 Systems (ICS) 341
Internet of Things (IoT) 344
Specialized Systems 346
   Medical Systems 347
   Vehicles 347
   Aircraft 348
   Smart Meters 350
Voice over IP (VoIP) 351
Heating, Ventilation, and Air Conditioning (HVAC) 352
Drones 353
Multifunction Printers (MFP) 354
Real-Time Operating Systems (RTOS) 355
Surveillance Systems 355
System on a Chip (SoC) 356
Communication Considerations 357
   5G 357
   NarrowBand 358
   Baseband Radio 359
   Subscriber Identity Module (SIM) Cards 360
   Zigbee 360
Embedded System Constraints 361
   Power 361
   Compute 361
   Network 362
   Crypto 362
   Inability to Patch 362
   Authentication 363
   Range 363
   Cost 363
   Implied Trust 363
```

Chapter Review Activities 364 Review Key Topics 364 Define Key Terms 365 Review Ouestions 365 Chapter 15 Understanding the Importance of Physical Security Controls 367 "Do I Know This Already?" Quiz 367 Foundation Topics 370 Bollards/Barricades 370 Access Control Vestibules 372 Badges 373 Alarms 374 Signage 374 Cameras 375 Closed-Circuit Television (CCTV) 376 Industrial Camouflage 377 Personnel 377 Locks 378 USB Data Blockers 379 Lighting 380 Fencing 380 Fire Suppression 381 Sensors 381 Drones 382 Visitor Logs 383 Faraday Cages 383 Air Gap 384 Screened Subnet (Previously Known as Demilitarized Zone [DMZ]) 384 Protected Cable Distribution 385 Secure Areas 385 Secure Data Destruction 386 Chapter Review Activities 387 Review Key Topics 387 Define Key Terms 388

Review Questions 389

Chapter 16 Summarizing the Basics of Cryptographic Concepts 391

"Do I Know This Already?" Quiz 391

Foundation Topics 395

Digital Signatures 395

Key Length 396

Key Stretching 397

Salting 397

Hashing 398

Key Exchange 399

Elliptic-Curve Cryptography 399

Perfect Forward Secrecy 400

Quantum 401

Communications 401

Computing 402

Post-Quantum 402

Ephemeral 403

Modes of Operation 403

Electronic Code Book Mode 404

Cipher Block Chaining Mode 405

Cipher Feedback Mode 406

Output Feedback Mode 407

Counter Mode 408

Blockchain 409

Cipher Suites 410

Symmetric vs. Asymmetric Encryption 411

Lightweight Cryptography 414

Steganography 415

Audio Steganography 415

Video Steganography 416

Image Steganography 416

Homomorphic Encryption 417

Common Use Cases 417

Limitations 418

Chapter Review Activities 420
Review Key Topics 420
Define Key Terms 421
Review Questions 421

Part III: Implementation

Chapter 17 Implementing Secure Protocols 423

"Do I Know This Already?" Quiz 423

Foundation Topics 426

Protocols 426

Domain Name System Security Extensions 426

SSH 427

Secure/Multipurpose Internet Mail Extensions 428

Secure Real-Time Transport Protocol 430

Lightweight Directory Access Protocol over SSL 432

File Transfer Protocol, Secure 432

Secure (or SSH) File Transfer Protocol 434

Simple Network Management Protocol Version 3 434

Hypertext Transfer Protocol over SSL/TLS 436

IPsec 437

Authentication Header/Encapsulating Security Payloads 437

Tunnel/Transport 438

Post Office Protocol/Internet Message Access Protocol 438

Use Cases 439

Voice and Video 440

Time Synchronization 440

Email and Web 441

File Transfer 441

Directory Services 442

Remote Access 442

Domain Name Resolution 442

Routing and Switching 443

Network Address Allocation 443

Subscription Services 444

```
Chapter Review Activities 444
Review Key Topics 444
Define Key Terms 445
Review Ouestions 445
Implementing Host or Application Security Solutions 447
"Do I Know This Already?" Quiz 447
Foundation Topics 451
Endpoint Protection 451
    Antivirus 451
Antimalware 452
    Endpoint Detection and Response 452
    Data Loss Prevention 453
Next-Generation Firewall 453
Host-based Intrusion Prevention System
Host-based Intrusion Detection System 456
Host-based Firewall 457
Boot Integrity 458
    Boot Security/Unified Extensible Firmware Interface 459
    Measured Boot 459
    Boot Attestation 460
Database 461
    Tokenization 461
    Salting 462
    Hashing 463
Application Security 463
    Input Validations 464
    Secure Cookies 465
    Hypertext Transfer Protocol Headers 465
    End-to-End Headers 466
    Hop-by-Hop Headers 466
    Code Signing 466
    Allow List 467
    Block List/Deny List 467
```

```
Secure Coding Practices 468
                Static Code Analysis 468
                Manual Code Review 470
                Dynamic Code Analysis 470
                Fuzzing 471
            Hardening 471
                Open Ports and Services 471
                Registry 472
                Disk Encryption 473
                Operating System 473
                Patch Management 474
            Self-Encrypting Drive/Full-Disk Encryption 475
                OPAL 476
            Hardware Root of Trust 476
            Trusted Platform Module 477
            Sandboxing 478
            Chapter Review Activities 479
            Review Key Topics 479
            Define Key Terms 481
            Review Questions 481
Chapter 19
            Implementing Secure Network Designs 483
            "Do I Know This Already?" Quiz 483
            Foundation Topics 488
            Load Balancing 488
                Active/Active 488
                Active/Passive 488
                Scheduling 488
                Virtual IP 488
                Persistence 489
            Network Segmentation 489
                Application-Based Segmentation and Microsegmentation 489
                Virtual Local Area Network 490
                Screened Subnet 491
```

East-West Traffic 492

Intranets and Extranets 492

Zero Trust 494

Virtual Private Network 494

Remote Access vs. Site-to-Site 496

IPsec 497

IKEv1 Phase 1 498

IKEv1 Phase 2 501

IKEv2 504

SSL/TLS 505

HTML5 508

Layer 2 Tunneling Protocol 508

DNS 509

Network Access Control 510

Out-of-Band Management 510

Port Security 511

Broadcast Storm Prevention 512

Bridge Protocol Data Unit Guard 512

Loop Prevention 512

Dynamic Host Configuration Protocol Snooping 512

Media Access Control Filtering 513

Network Appliances 513

Jump Servers 514

Proxy Servers 514

Network-Based Intrusion Detection System/Network-Based Intrusion

Prevention System 516

NIDS 517

NIPS 518

Summary of NIDS vs. NIPS 519

Signature-Based 520

Heuristic/Behavior 521

Anomaly 521

Inline vs. Passive 523

HSM 524

Sensors 524

Collectors 525

Aggregators 526

Firewalls 526

Hardware vs. Software 534

Appliance vs. Host-based vs. Virtual 534

Access Control List 535

Route Security 535

Quality of Service 536

Implications of IPv6 536

Port Spanning/Port Mirroring 537

Monitoring Services 538

Performance Baselining 539

File Integrity Monitors 542

Chapter Review Activities 542

Review Key Topics 542

Define Key Terms 543

Review Questions 544

Chapter 20 Installing and Configuring Wireless Security Settings 547

"Do I Know This Already?" Quiz 547

Foundation Topics 551

Cryptographic Protocols 551

Wi-Fi Protected Access 2 (WPA2) 551

Wi-Fi Protected Access 3 (WPA3) 551

Counter-mode/CBC-MAC Protocol (CCMP) 552

Simultaneous Authentication of Equals 552

Wireless Cryptographic Protocol Summary 552

Authentication Protocols 553

802.1X and EAP 553

IEEE 802.1x 556

Remote Authentication Dial-In User Service (RADIUS)

Federation 556

Methods 557

Wi-Fi Protected Setup 558

Captive Portals 559

Installation Considerations 559

Controller and Access Point Security 562

Wireless Access Point Vulnerabilities 563

Chapter Review Activities 564

Review Key Topics 564

Define Key Terms 564

Review Questions 565

Chapter 21 Implementing Secure Mobile Solutions 567

"Do I Know This Already?" Quiz 567

Foundation Topics 570

Connection Methods and Receivers 570

RFID and NFC 571

More Wireless Connection Methods and Receivers 572

Secure Implementation Best Practices 573

Mobile Device Management 574

MDM Security Feature Concerns: Application and Content Management 576

MDM Security Feature Concerns: Remote Wipe, Geofencing, Geolocation, Screen Locks, Passwords and PINs, Full Device Encryption 578

Mobile Device Management Enforcement and Monitoring 581

Mobile Devices 585

MDM/Unified Endpoint Management 587

SEAndroid 588

Deployment Models 588

Secure Implementation of BYOD, CYOD, and COPE 589

Chapter Review Activities 591

Review Key Topics 591

Define Key Terms 592

Review Questions 592

Chapter 22 Applying Cybersecurity Solutions to the Cloud 595

"Do I Know This Already?" Quiz 595

Foundation Topics 598

Cloud Security Controls 598

Security Assessment in the Cloud 598

Understanding the Different Cloud Security Threats 598

Cloud Computing Attacks 601

High Availability Across Zones 603

Resource Policies 603

Integration and Auditing 604

Secrets Management 604

Storage 605

Permissions 605

Encryption 605

Replication 605

High Availability 606

Network 606

Virtual Networks 606

Public and Private Subnets 606

Segmentation 607

API Inspection and Integration 607

Compute 607

Security Groups 607

Dynamic Resource Allocation 607

Instance Awareness 608

Virtual Private Cloud Endpoint 608

Container Security 608

Summary of Cloud Security Controls 609

Solutions 611

CASB 611

Application Security 612

Next-Generation Secure Web Gateway 613

Firewall Considerations in a Cloud Environment 613

Cost 613 Need for Segmentation 613 Open Systems Interconnection Layers 614 Summary of Cybersecurity Solutions to the Cloud 614 Cloud Native Controls vs. Third-Party Solutions 615 Chapter Review Activities 615 Review Key Topics 615 Define Key Terms 616 Review Questions 616 Implementing Identity and Account Management Controls 619 "Do I Know This Already?" Quiz 619 Foundation Topics 623 Identity 623 Identity Provider (IdP) 623 Authentication 625 Authentication by Knowledge 625 Authentication by Ownership 625 Authentication by Characteristic Attributes 625 Certificates 626 Tokens 627 SSH Keys 628 Smart Cards 629 Account Types 629 Account Policies 633 Introduction to Identity and Access Management 633 Phases of the Identity and Access Lifecycle 633 Registration and Identity Validation 634 Privileges Provisioning 635 Access Review 635 Access Revocation 635

Password Management 636
Password Creation 636

Attribute-Based Access Control (ABAC) 638

Rights, Permissions, and Policies 640

Users, Groups, and Account Permissions 640

Permission Inheritance and Propagation 645

Chapter Review Activities 647

Review Key Topics 647

Define Key Terms 647

Review Questions 648

Chapter 24 Implementing Authentication and Authorization Solutions 651

"Do I Know This Already?" Quiz 651

Foundation Topics 655

Authentication Management 655

Password Keys 655

Password Vaults 655

Trusted Platform Module 656

Hardware Security Modules 656

Knowledge-Based Authentication 656

Authentication/Authorization 657

Security Assertion Markup Language 659

OAuth 661

OpenID and OpenID Connect 663

802.1X and EAP 664

LDAP 667

Kerberos and Mutual Authentication 668

Remote Authentication Technologies 670

Remote Access Service 670

RADIUS versus TACACS+ 672

Access Control Schemes 674

Discretionary Access Control 674

Mandatory Access Control 676

Role-Based Access Control 677

Attribute-Based Access Control 678

Rule-Based Access Control 678

Conditional Access 678

Privileged Access Management 678

Summary of Access Control Models 679

Access Control Wise Practices 680

Chapter Review Activities 681

Review Key Topics 681

Define Key Terms 682

Review Questions 682

Chapter 25 Implementing Public Key Infrastructure 685

"Do I Know This Already?" Quiz 685

Foundation Topics 688

Public Key Infrastructure 688

Key Management 688

Certificate Authorities 689

Certificate Attributes 691

Subject Alternative Name 693

Expiration 693

Types of Certificates 694

SSL Certificate Types 694

Certificate Chaining 696

Certificate Formats 697

PKI Concepts 698

Trust Model 698

Certificate Pinning 698

Stapling, Key Escrow, Certificate Chaining, Online vs. Offline CA 698

Chapter Review Activities 700

Review Key Topics 700

Define Key Terms 700

Review Questions 701

Part IV: Operations and Incident Response

Chapter 26 Using the Appropriate Tool to Assess Organizational Security 703

"Do I Know This Already?" Quiz 703

Foundation Topics 707

Network Reconnaissance and Discovery 707

tracert/traceroute 707

```
nslookup/dig 709
   ipconfig/ifconfig 710
   nmap 711
   ping/pathping 714
   hping 717
   netstat 718
   netcat 720
   IP Scanners 721
   arp 721
   route 723
   curl 724
   theHarvester 725
   sn1per 726
   scanless 727
   dnsenum 728
   Nessus 730
   Cuckoo 731
File Manipulation 732
   head 733
   tail 734
   cat 734
   grep 735
   chmod 736
   Logger 737
Shell and Script Environments 738
   SSH 739
   PowerShell 740
   Python 741
   OpenSSL 741
Packet Capture and Replay 742
   Tepreplay 742
   Tepdump 742
   Wireshark 743
```

Forensics 744

dd 744

Memdump 745

WinHex 746

FTK Imager 747

Autopsy 747

Exploitation Frameworks 747

Password Crackers 748

Data Sanitization 750

Chapter Review Activities 750

Review Key Topics 750

Define Key Terms 752

Review Questions 752

Chapter 27 Summarizing the Importance of Policies, Processes, and Procedures for Incident Response 755

"Do I Know This Already?" Quiz 755

Foundation Topics 760

Incident Response Plans 760

Incident Response Process 761

Preparation 762

Identification 763

Containment 763

Eradication 764

Recovery 764

Lessons Learned 764

Exercises 765

Tabletop 765

Walkthroughs 766

Simulations 766

Attack Frameworks 767

MITRE ATT&CK 767

The Diamond Model of Intrusion Analysis 768

Cyber Kill Chain 770

```
Stakeholder Management 771
            Communication Plan 771
            Disaster Recovery Plan 772
            Business Continuity Plan 773
            Continuity of Operations Planning (COOP) 774
            Incident Response Team 775
            Retention Policies 776
            Chapter Review Activities 776
            Review Key Topics 776
            Define Key Terms 777
            Review Questions 778
Chapter 28
            Using Appropriate Data Sources to Support an Investigation 781
            "Do I Know This Already?" Quiz 781
            Foundation Topics 785
            Vulnerability Scan Output 785
            SIEM Dashboards 786
                Sensors 787
                Sensitivity 788
                Trends 788
                Alerts 788
                Correlation 788
            Log Files 789
                Network 790
                System 791
                Application 792
                Security 793
                Web 794
                DNS 795
                Authentication 796
                Dump Files 797
                VoIP and Call Managers 799
                Session Initiation Protocol Traffic 800
```

syslog/rsyslog/syslog-ng 800 journalctl 802 NXLog 803 Bandwidth Monitors 804 Metadata 805 Email 808 Mobile 808 Web 808 File 809 NetFlow/sFlow 809 NetFlow 809 sFlow 810 IPFIX 811 Protocol Analyzer Output 813 Chapter Review Activities 814 Review Key Topics 814 Define Key Terms 816 Review Questions 816

Chapter 29 Applying Mitigation Techniques or Controls to Secure an Environment 819

"Do I Know This Already?" Quiz 819

Foundation Topics 822

Reconfigure Endpoint Security Solutions 822

Application Approved Lists 822

Application Block List/Deny List 822

Quarantine 823

Configuration Changes 824

Firewall Rules 825

MDM 825

Data Loss Prevention 828

Content Filter/URL Filter 828

Update or Revoke Certificates 829

Isolation 830

```
Containment 830
            Segmentation 831
            SOAR 832
                Runbooks 833
                Playbooks 834
            Chapter Review Activities 834
            Review Key Topics 834
            Define Key Terms 835
            Review Questions 835
            Understanding the Key Aspects of Digital Forensics 837
Chapter 30
            "Do I Know This Already?" Quiz 837
            Foundation Topics 842
            Documentation/Evidence 842
                Legal Hold 842
                Video 842
                Admissibility 843
                Chain of Custody 844
                Timelines of Sequence of Events 844
                Timestamps 844
                Time Offset 845
                Tags 845
                Reports 846
                Event Logs 846
                Interviews 846
            Acquisition 847
                Order of Volatility 848
                Disk 848
                Random-Access Memory 848
                Swap/Pagefile 849
                Operating System 850
                Device 850
                Firmware 851
```

Snapshot 851 Cache 852 Network 852

Artifacts 853

On-premises vs. Cloud 853

Right-to-Audit Clauses 854

Regulatory/Jurisdiction 855

Data Breach Notification Laws 855

Integrity 856

Hashing 856

Checksums 857

Provenance 857

Preservation 858

E-discovery 858

Data Recovery 859

Nonrepudiation 859

Strategic Intelligence/Counterintelligence 860

Chapter Review Activities 860

Review Key Topics 860

Define Key Terms 862

Review Questions 862

Part V: Governance, Risk, and Compliance

Chapter 31 Comparing and Contrasting the Various Types of Controls 865

"Do I Know This Already?" Quiz 865

Foundation Topics 868

Control Category 868

Managerial Controls 868

Operational Controls 868

Technical Controls 868

Summary of Control Categories 869

Control Types 869

Preventative Controls 869

Detective Controls 869

Corrective Controls 870

Deterrent Controls 870

Compensating Controls 871

Physical Controls 871

Summary of Control Types 872

Chapter Review Activities 873

Review Key Topics 873

Define Key Terms 873

Review Questions 873

Chapter 32 Understanding the Importance of Applicable Regulations, Standards, or Frameworks That Impact Organizational Security Posture 875

"Do I Know This Already?" Quiz 875

Foundation Topics 878

Regulations, Standards, and Legislation 878

General Data Protection Regulation 879

National, Territory, or State Laws 879

Payment Card Industry Data Security Standard (PCI DSS) 881

Key Frameworks 881

Benchmarks and Secure Configuration Guides 885

Security Content Automation Protocol 885

Chapter Review Activities 889

Review Key Topics 889

Define Key Terms 889

Review Questions 890

Chapter 33 Understanding the Importance of Policies to Organizational Security 893

"Do I Know This Already?" Quiz 894

Foundation Topics 897

Personnel Policies 897

Privacy Policies 897

Acceptable Use 898

Separation of Duties/Job Rotation 898

Mandatory Vacations 898

Onboarding and Offboarding 899

Personnel Security Policies 900

Diversity of Training Techniques 900

User Education and Awareness Training 901

Third-Party Risk Management 902

Data Concepts 904

Understanding Classification and Governance 904

Data Retention 906

Credential Policies 906

Organizational Policies 908

Change Management and Change Control 909

Asset Management 909

Chapter Review Activities 910

Review Key Topics 910

Define Key Terms 910

Review Ouestions 911

Chapter 34 Summarizing Risk Management Processes and Concepts 913

"Do I Know This Already?" Quiz 913

Foundation Topics 917

Risk Types 917

Risk Management Strategies 918

Risk Analysis 919

Oualitative Risk Assessment 921

Quantitative Risk Assessment 922

Disaster Analysis 924

Business Impact Analysis 926

Disaster Recovery Planning 928

Chapter Review Activities 930

Review Key Topics 930

Define Key Terms 931

Review Questions 931

Chapter 35 Understanding Privacy and Sensitive Data Concepts in Relation to Security 935

"Do I Know This Already?" Quiz 935

Foundation Topics 940

Organizational Consequences of Privacy and Data Breaches 940

Notifications of Breaches 941

Data Types and Asset Classification 941

Personally Identifiable Information and Protected Health Information 943

PII 943

PHI 944

Privacy Enhancing Technologies 944

Roles and Responsibilities 945

Information Lifecycle 947

Impact Assessment 948

Terms of Agreement 948

Privacy Notice 949

Chapter Review Activities 949

Review Key Topics 949

Define Key Terms 949

Review Questions 950

Part VI: Final Preparation

Chapter 36 Final Preparation 953

Hands-on Activities 953

Suggested Plan for Final Review and Study 953

Summary 954

Glossary of Key Terms 955

Appendix A Answers to the "Do I Know This Already?" Quizzes

and Review Questions 1023

Appendix B CompTIA Security+ (SY0-601) Cert Guide Exam Updates 1087

Index 1089

Online Elements:

Appendix C Study Planner

Glossary of Key Terms

About the Authors

Omar Santos is an active member of the cybersecurity community, where he leads several industry-wide initiatives. He is a best-selling author and trainer. Omar is the author of more than 20 books and video courses, as well as numerous white papers, articles, and security configuration guidelines and best practices. Omar is a principal engineer of the Cisco Product Security Incident Response Team (PSIRT), Security Research and Operations, where he mentors and leads engineers and incident managers during the investigation and resolution of cybersecurity vulnerabilities.

Omar co-leads the DEF CON Red Team Village, is the chair of the Common Security Advisory Framework (CSAF) technical committee, is the co-chair of the Forum of Incident Response and Security Teams (FIRST) Open Source Security working group, and has been the chair of several initiatives in the Industry Consortium for Advancement of Security on the Internet (ICASI). His active role helps businesses, academic institutions, state and local law enforcement agencies, and other participants dedicated to increasing the security of their critical infrastructures. You can find additional information about Omar's current projects at h4cker.org and can follow Omar on Twitter @santosomar.

Ron Taylor has been in the information security field for more than 20 years working in various areas focusing on both offense and defense security roles. Ten of those years were spent in consulting. In 2008, he joined the Cisco Global Certification Team as an SME in information assurance. From there, he moved into a position with the Security Research and Operations group, where his focus was mostly on penetration testing of Cisco products and services. He was also involved in developing and presenting security training to internal development and test teams globally, and provided consulting support to many product teams as an SME on product security testing. His next role was incident manager for the Cisco Product Security Incident Response Team (PSIRT). Currently, Ron is a security architect specializing in the Cisco security product line. He has held a number of industry certifications, including GPEN, GWEB, GCIA, GCIH, GWAPT, RHCE, CCSP, CCNA, CISSP, PenTest+, and MCSE. Ron has also authored books and video courses, teaches, and is involved in organizing a number of cybersecurity conferences, including the BSides Raleigh, Texas Cyber Summit, Grayhat, and the Red Team Village at DEFCON.

Twitter: @Gu5G0rman

Linkedin: www.linkedin.com/in/-RonTaylor

Joseph Mlodzianowski is an information security aficionado and adventurer; he started multiple villages at RSA Conference, DEFCON, and BLACK HAT, among others, including founding the Red Team Village with the help of great friends. He has been in the information technology security field for more than 25 years working in infrastructure, security, networks, systems, design, offense, and defense. Joseph is currently an enterprise security architect of Cisco Managed Services. He spent more than 10 years in the Department of Defense as an operator, principal security network engineer, and SME designing and deploying complex technologies and supporting missions around the world in multiple theaters. He has consulted, investigated, and provided support for multiple federal agencies over the past 15 years. Joseph continues to contribute to content, reviews, and editing in the certification testing and curriculum process. He spent almost 15 years in the energy sector supporting refineries, pipelines, and chemical plants; specializing in industrial control networks; and building data centers. Joseph holds a broad range of certifications, including the Cisco CCIE, CNE, CSNA, CNSS-4012, CISSP, ITILv4, NSA IAM, NSA IEM, OIAC1180, FEMA IS-00317, ACMA, First Responder, Hazmat Certified, Member of Bexar County Sheriff's Office CERT, MCSE, and Certified Hacking Investigator. He also is a founding contributor to the CyManII | Cybersecurity Manufacturing Innovation Institute, a member of Messaging Malware Mobile Anti-Abuse Working Group (M3aawg.org), and founder of the Texas Cyber Summit and Grayhat Conferences. He believes in giving back to the community and supporting nonprofits.

Twitter: @Cedoxx

Linkedin: www.linkedin.com/in/mlodzianowski/

Dedication

I would like to dedicate this book to my lovely wife, Jeannette, and my two beautiful children	,
Hannah and Derek, who have inspired and supported me throughout the development	
of this book.	

—Omar

I would not be where I am today without the support of my family. Mom and Dad, you taught me the importance of work ethic and drive. Kathy, my wife of 20 years, you have supported me and encouraged me every step of the way. Kaitlyn, Alex, and Grace, you give me the strength and motivation to keep doing what I do.

-Ron

Without faith and spiritual guidance, none of us would be where we are. I would like to thank my Creator; Linda, my lovely wife of more than 20 years; and my daughter Lauren, for their unwavering support, patience, and encouragement while I work multiple initiatives and projects.

—Joseph

Acknowledgments

It takes a lot of amazing people to publish a book. Special thanks go to Chris Cleveland, Nancy Davis, Chris Crayton, and all the others at Pearson (and beyond) who helped make this book a reality. We appreciate everything you do!

About the Technical Reviewer

Chris Crayton is a technical consultant, trainer, author, and industry-leading technical editor. He has worked as a computer technology and networking instructor, information security director, network administrator, network engineer, and PC specialist. Chris has authored several print and online books on PC repair, CompTIA A+, CompTIA Security+, and Microsoft Windows. He has also served as technical editor and content contributor on numerous technical titles for several of the leading publishing companies. He holds numerous industry certifications, has been recognized with many professional and teaching awards, and has served as a state-level SkillsUSA final competition judge. Chris tech edited and contributed to this book to make it better for students and those wishing to better their lives.

We Want to Hear from You!

As the reader of this book, *you* are our most important critic and commentator. We value your opinion and want to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn't like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book's title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: community@informit.com

Introduction

Welcome to the *CompTIA Security+ SY0-601 Cert Guide*. The CompTIA Security+ certification is widely accepted as the first security certification you should attempt to attain in your information technology (IT) career. The CompTIA Security+ certification is designed to be a vendor-neutral exam that measures your knowledge of industry-standard technologies and methodologies. It acts as a great stepping stone to other vendor-specific certifications and careers. We developed this book to be something you can study from for the exam and keep on your bookshelf for later use as a security resource.

We would like to note that it's unfeasible to cover all security concepts in depth in a single book. However, the Security+ exam objectives are looking for a basic level of computer, networking, and organizational security knowledge. Keep this in mind while reading through this text, and remember that the main goal of this text is to help you pass the Security+ exam, not to be the master of all security. Not just yet, at least!

Good luck as you prepare to take the CompTIA Security+ exam. As you read through this book, you will be building an impenetrable castle of knowledge, culminating in hands-on familiarity and the know-how to pass the exam.

Goals and Methods

The number one goal of this book is to help you pass the SY0-601 version of the CompTIA Security+ certification exam. To that effect, we have filled this book and practice exams with hundreds of questions/answers and explanations, including two full practice exams. The exams are located in Pearson Test Prep practice test software in a custom test environment. These tests are geared to check your knowledge and ready you for the real exam.

The CompTIA Security+ certification exam involves familiarity with computer security theory and hands-on know-how. To aid you in mastering and understanding the Security+ certification objectives, this book uses the following methods:

- Opening topics list: This list defines the topics to be covered in the chapter.
- **Foundation Topics:** The heart of the chapter. The text explains the topics from a theory-based standpoint, as well as from a hands-on perspective. This includes in-depth descriptions, tables, and figures that are geared to build your knowledge so that you can pass the exam. Each chapter covers a full objective from the CompTIA Security+ exam blueprint.
- **Key Topics:** The Key Topic icons indicate important figures, tables, and lists of information that you should know for the exam. They are interspersed throughout the chapter and are listed in table format at the end of the chapter.

- **Key Terms:** Key terms without definitions are listed at the end of each chapter. See whether you can define them, and then check your work against the complete key term definitions in the glossary.
- **Review Questions:** These quizzes and answers with explanation are meant to gauge your knowledge of the subjects. If an answer to a question doesn't come readily to you, be sure to review that portion of the chapter.
- **Practice Exams:** The practice exams are included in the Pearson Test Prep practice test software. These exams test your knowledge and skills in a realistic testing environment. Take them after you have read through the entire book. Master one; then move on to the next.

Who Should Read This Book?

This book is for anyone who wants to start or advance a career in computer security. Readers of this book can range from persons taking a Security+ course to individuals already in the field who want to keep their skills sharp or perhaps retain their job due to a company policy mandating they take the Security+ exam. Some information assurance professionals who work for the Department of Defense or have privileged access to DoD systems are required to become Security+ certified as per DoD directive 8570.1.

This book is also designed for people who plan on taking additional security-related certifications after the CompTIA Security+ exam. The book is designed in such a way to offer an easy transition to future certification studies.

Although not a prerequisite, it is recommended that CompTIA Security+ candidates have at least two years of IT administration experience with an emphasis on security. The CompTIA Network+ certification is also recommended as a prerequisite. Before you begin your Security+ studies, it is expected that you understand computer topics such as how to install operating systems and applications, and networking topics such as how to configure IP, what a VLAN is, and so on. The focus of this book is to show how to secure these technologies and protect against possible exploits and attacks. Generally, for people looking to enter the IT field, the CompTIA Security+ certification is attained after the A+ and Network+ certifications.

CompTIA Security+ Exam Topics

If you haven't downloaded the Security+ certification exam objectives, do it now from CompTIA's website: https://certification.comptia.org/. Save the PDF file and print it out as well. It's a big document; review it carefully. Use the exam objectives list and acronyms list to aid in your studies while you use this book.

The following tables are excerpts from the exam objectives document. Table I-1 lists the CompTIA Security+ domains and each domain's percentage of the exam.

 Table I-1
 CompTIA Security+ Exam Domains

Domain	Exam Topic	% of Exam
1.0	Attacks, Threats, and Vulnerabilities	24%
2.0	Architecture and Design	21%
3.0	Implementation	25%
4.0	Operations and Incident Response	16%
5.0	Governance, Risk, and Compliance	14%

The Security+ domains are then further broken down into individual objectives. Table I-2 lists the CompTIA Security+ exam objectives and their related chapters in this book. It does not list the bullets and sub-bullets for each objective.

Table I-2 CompTIA Security+ Exam Objectives

Objective	Chapter(s)
1.1 Compare and contrast different types of social engineering techniques.	1
1.2 Given a scenario, analyze potential indicators to determine the type of attack.	2
1.3 Given a scenario, analyze potential indicators associated with application attacks.	3
1.4 Given a scenario, analyze potential indicators associated with network attacks.	4
1.5 Explain different threat actors, vectors, and intelligence sources.	5
1.6 Explain the security concerns associated with various types of vulnerabilities.	6
1.7 Summarize the techniques used in security assessments.	7
1.8 Explain the techniques used in penetration testing.	8
2.1 Explain the importance of security concepts in an enterprise environment.	9
2.2 Summarize virtualization and cloud computing concepts.	10
2.3 Summarize secure application development, deployment, and automation concepts.	11
2.4 Summarize authentication and authorization design concepts.	12
2.5 Given a scenario, implement cybersecurity resilience.	13
2.6 Explain the security implications of embedded and specialized systems.	14
2.7 Explain the importance of physical security controls.	15
2.8 Summarize the basics of cryptographic concepts.	16
3.1 Given a scenario, implement secure protocols.	17

Objective	Chapter(s)
3.2 Given a scenario, implement host or application security solutions.	18
3.3 Given a scenario, implement secure network designs.	19
3.4 Given a scenario, install and configure wireless security settings.	20
3.5 Given a scenario, implement secure mobile solutions.	21
3.6 Given a scenario, apply cybersecurity solutions to the cloud.	22
3.7 Given a scenario, implement identity and account management controls.	23
3.8 Given a scenario, implement authentication and authorization solutions.	24
3.9 Given a scenario, implement public key infrastructure.	25
4.1 Given a scenario, use the appropriate tool to assess organizational security.	26
4.2 Summarize the importance of policies, processes, and procedures for incident response.	27
4.3 Given an incident, utilize appropriate data sources to support an investigation.	28
4.4 Given an incident, apply mitigation techniques or controls to secure an environment.	29
4.5 Explain the key aspects of digital forensics.	30
5.1 Compare and contrast various types of controls.	31
5.2 Explain the importance of applicable regulations, standards, or frameworks that impact organizational security posture.	32
5.3 Explain the importance of policies to organizational security.	33
5.4 Summarize risk management processes and concepts.	34
5.5 Explain privacy and sensitive data concepts in relation to security.	35

Companion Website

Register this book to get access to the Pearson Test Prep practice test software and other study materials plus additional bonus content. Check this site regularly for new and updated postings written by the authors that provide further insight into the more troublesome topics on the exam. Be sure to check the box that you would like to hear from us to receive updates and exclusive discounts on future editions of this product or related products.

To access this companion website, follow these steps:

1. Go to www.pearsonitcertification.com/register and log in or create a new account.

- 2. On your Account page, tap or click the **Registered Products** tab, and then tap or click the **Register Another Product** link.
- **3.** Enter this book's ISBN (9780136770312).
- **4.** Answer the challenge question as proof of book ownership.
- **5.** Tap or click the **Access Bonus Content** link for this book to go to the page where your downloadable content is available.

Please note that many of our companion content files can be very large, especially image and video files.

If you are unable to locate the files for this title by following the preceding steps, please visit http://www.pearsonitcertification.com/contact and select the "Site Problems/Comments" option. Our customer service representatives will assist you.

Pearson Test Prep Practice Test Software

As noted previously, this book comes complete with the Pearson Test Prep practice test software containing two full exams. These practice tests are available to you either online or as an offline Windows application. To access the practice exams that were developed with this book, please see the instructions in the card inserted in the sleeve in the back of the book. This card includes a unique access code that enables you to activate your exams in the Pearson Test Prep software.

NOTE The cardboard sleeve in the back of this book includes a piece of paper. The paper lists the activation code for the practice exams associated with this book. Do not lose the activation code. On the opposite side of the paper from the activation code is a unique, one-time-use coupon code for the purchase of the Premium Edition eBook and Practice Test.

Accessing the Pearson Test Prep Software Online

The online version of this software can be used on any device with a browser and connectivity to the Internet including desktop machines, tablets, and smartphones. To start using your practice exams online, simply follow these steps:

- **1.** Go to www.PearsonTestPrep.com and select **Pearson IT Certification** as your product group.
- 2. Enter your email/password for your account. If you do not have an account on PearsonITCertification.com or InformIT.com, you will need to establish one by going to PearsonITCertification.com/join.

- **3.** On the My Products tab, tap or click the **Activate New Product** button.
- **4.** Enter this book's activation code and click **Activate**.
- **5.** The product will now be listed on your My Products tab. Tap or click the **Exams** button to launch the exam settings screen and start your exam.

Accessing the Pearson Test Prep Software Offline

If you wish to study offline, you can download and install the Windows version of the Pearson Test Prep software. There is a download link for this software on the book's companion website, or you can just enter this link in your browser:

http://www.pearsonitcertification.com/content/downloads/pcpt/engine.zip

To access the book's companion website and the software, simply follow these steps:

- **1.** Register your book by going to http://www.pearsonitcertification.com/register and entering the ISBN: 9780136770312.
- **2.** Respond to the challenge questions.
- 3. Go to your account page and select the Registered Products tab.
- 4. Click the Access Bonus Content link under the product listing.
- **5.** Click the **Install Pearson Test Prep Desktop Version** link under the Practice Exams section of the page to download the software.
- 6. Once the software finishes downloading, unzip all the files on your computer.
- **7.** Double-click the application file to start the installation, and follow the onscreen instructions to complete the registration.
- **8.** Once the installation is complete, launch the application and click the **Activate Exam** button on the My Products tab.
- **9.** Click the **Activate a Product** button in the Activate Product Wizard.
- **10.** Enter the unique access code found on the card in the sleeve in the back of your book and click the **Activate** button.
- **11.** Click **Next** and then the **Finish** button to download the exam data to your application.
- **12.** You can now start using the practice exams by selecting the product and clicking the **Open Exam** button to open the exam settings screen.

Note that the offline and online versions will synch together, so saved exams and grade results recorded on one version will be available to you on the other as well.

Customizing Your Exams

Once you are in the exam settings screen, you can choose to take exams in one of three modes:

- Study Mode
- Practice Exam Mode
- Flash Card Mode

Study Mode enables you to fully customize your exams and review answers as you are taking the exam. This is typically the mode you would use first to assess your knowledge and identify information gaps. Practice Exam Mode locks certain customization options, as it is presenting a realistic exam experience. Use this mode when you are preparing to test your exam readiness. Flash Card Mode strips out the answers and presents you with only the question stem. This mode is great for late-stage preparation when you really want to challenge yourself to provide answers without the benefit of seeing multiple-choice options. This mode will not provide the detailed score reports that the other two modes will, so it should not be used if you are trying to identify knowledge gaps.

In addition to these three modes, you will be able to select the source of your questions. You can choose to take exams that cover all of the chapters or you can narrow your selection to just a single chapter or the chapters that make up specific parts in the book. All chapters are selected by default. If you want to narrow your focus to individual chapters, simply deselect all the chapters and then select only those on which you wish to focus in the Objectives area.

You can also select the exam banks on which to focus. Each exam bank comes complete with a full exam of questions that cover topics in every chapter. You can have the test engine serve up exams from all banks or just from one individual bank by selecting the desired banks in the exam bank area.

There are several other customizations you can make to your exam from the exam settings screen, such as the time of the exam, the number of questions served up, whether to randomize questions and answers, whether to show the number of correct answers for multiple-answer questions, or whether to serve up only specific types of questions. You can also create custom test banks by selecting only questions that you have marked or questions on which you have added notes.

Updating Your Exams

If you are using the online version of the Pearson Test Prep software, you should always have access to the latest version of the software as well as the exam data. If you are using the Windows desktop version, every time you launch the software, it will check to see if there are any updates to your exam data and automatically download

any changes that were made since the last time you used the software. This requires that you are connected to the Internet at the time you launch the software.

Sometimes, due to many factors, the exam data may not fully download when you activate your exam. If you find that figures or exhibits are missing, you may need to manually update your exams.

To update a particular exam you have already activated and downloaded, simply select the **Tools** tab and click the **Update Products** button. Again, this is only an issue with the desktop Windows application.

If you wish to check for updates to the Pearson Test Prep exam engine software, Windows desktop version, simply select the **Tools** tab and click the **Update Application** button. This will ensure you are running the latest version of the software engine.

Premium Edition eBook and Practice Tests

This book also includes an exclusive offer for 80 percent off the Premium Edition eBook and Practice Tests edition of this title. Please see the coupon code included with the cardboard sleeve for information on how to purchase the Premium Edition.

Figure Credits

Cover image: TippaPatt/Shutterstock

Chapter opener image: Charlie Edwards/Photodisc/Getty Images

Figures 4-2 and 4-3 courtesy of Cisco Systems, Inc

Figure 5-1 © 2015-2021, The MITRE Corporation

Figure 7-5 courtesy of Cisco Systems, Inc

Figures 10-1, 10-7, 10-10 courtesy of Cisco Systems, Inc

Figure 10-8 © 2021, Amazon Web Services, Inc

Figure 12-3 courtesy of Secret Double Octopus

Figure 12-4 courtesy of Active-Directory-FAQ

Figure 12-5 courtesy of Robert Koczera/123RF

Figures 13-1 and 13-2 © AsusTek Computer Inc.

Figure 14-1 Raspberry Pi courtesy of handmadepictures/123RF

Figure 14-3 courtesy of CSS Electronics

Figure 14-4 courtesy of strajinsky/Shutterstock

Figure 14-5 courtesy of RingCentral

Figures 14-6 and 15-4 from rewelda/Shutterstock

Figure 15-1 courtesy of Kyryl Gorlov/123RF

Figure 15-2 courtesy of Aliaksandr Karankevich/123RF

Figures 16-9 and 16-10 courtesy of ssl2buy.com

Figure 17-1 courtesy of hostinger.com

Figure 17-3 courtesy of wiki.innovaphone.com

Figure 17-4 courtesy of Adaptive Digital Technologies

Figure 18-4 © Microsoft 2021

Figure 18-5 courtesy of Microsoft Corporation

Figure 18-7 courtesy of Checkmarx Ltd

Figure 19-1 courtesy of Cisco Systems, Inc

Figures 19-5, 19-8 through 19-11, 19-15, and 19-16 courtesy of Cisco Systems, Inc

Figure 19-21 © Microsoft 2021

Figures 20-2 and Figure 24-4 © Microsoft 2021

Figure 20-4 © D-Link Corporation

Figure 20-5 courtesy of Cisco Systems, Inc.

Figures 21-1 and 21-2 © 1992-2020 Cisco

Figures 23-1 and 23-2 courtesy of Cisco Systems, Inc

Figures 23-5 through 23-9 © Microsoft 2021

Figures 24-2 and 24-5 courtesy of Cisco Systems, Inc.

Figures 24-6 through 24-10 © Microsoft 2021

Figures 25-1 and 25-2 ©1998-2021 Mozilla Foundation

Figure 26-1 © OffSec Services Limited 2021

Figures 26-2, 26-5, 26-6, 26-10 through 26-15, 26-18, 26-19 © 2021 The Linux Foundation

Figures 26-3, 26-4, 26-7 through 26-9 © Microsoft 2021

Figure 26-16 © 2021 Tenable, Inc

Figure 26-17 © 2010-2020, Cuckoo Foundation

Figure 26-21 © Wireshark Foundation

Figure 26-22 © X-Ways Software Technology AG

Figure 27-3 courtesy of Cisco Systems, Inc

Figure 27-4 courtesy of Evolve IP, LLC

Figure 28-1 © 2021 Tenable, Inc

Figure 28-2 © 2021 LogRhythm, Inc

Figure 28-3 © MaxBelkov

Figure 28-4 © 1992-2020 Cisco

Figure 28-5, 28-6, 28-10, 28-11, and 28-18 © Microsoft 2021

Figures 28-7 through 28-9, 28-14, and 28-15 © 2021 The Linux Foundation

Figures 28-12 and 28-13 © 1992-2020 Cisco

Figure 28-16 © 2021 NXLog Ltd

Figure 28-20 © 2021 Solar Winds Worldwide, LLC

Figure 28-21 © 2003-2021 sFlow.org

Figure 28-22 © Plixer, LLC

Figure 28-23 © Microsoft 2021

Figures 29-1 and 29-2 © Microsoft 2021

Figure 33-1 © Microsoft 2021

Summarizing the Techniques Used in Security Assessments

This chapter starts by introducing threat hunting and how the threat-hunting process leverages threat intelligence. Then you learn about vulnerability management tasks, such as keeping up with security advisories and performing vulnerability scans. You also learn about the importance of collecting logs (such as system logs [syslogs]) and analyzing those logs in a Security Information and Event Management (SIEM) system. In addition, you learn how security tools and solutions have evolved to provide Security Orchestration, Automation, and Response (SOAR) capabilities to better defend your network, your users, and your organizations overall.

"Do I Know This Already?" Quiz

The "Do I Know This Already?" quiz enables you to assess whether you should read this entire chapter thoroughly or jump to the "Chapter Review Activities" section. If you are in doubt about your answers to these questions or your own assessment of your knowledge of the topics, read the entire chapter. Table 7-1 lists the major headings in this chapter and their corresponding "Do I Know This Already?" quiz questions. You can find the answers in Appendix A, "Answers to the 'Do I Know This Already?' Quizzes and Review Questions."

Table 7-1 "Do I Know This Already?" Section-to-Question Mapping

Foundation Topics Section	Questions
Threat Hunting	1–3
Vulnerability Scans	4–6
Syslog and Security Information and Event Management (SIEM)	7–8
Security Orchestration, Automation, and Response (SOAR)	9–10

CAUTION The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark that question as wrong for purposes of the self-assessment. Giving yourself credit for an answer you correctly guess skews your self-assessment results and might provide you with a false sense of security.

- 1. What is the act of proactively and iteratively looking for threats in your organization that may have bypassed your security controls and monitoring capabilities?
 - **a.** Threat intelligence
 - **b.** Threat hunting
 - c. Threat binding
 - d. None of these answers are correct.
- **2.** Which of the following provides a matrix of adversary tactics, techniques, and procedures that modern attackers use?
 - a. ATT&CK
 - b. CVSS
 - c. CVE
 - **d.** All of these answers are correct.
- **3.** Which identifier is assigned to disclosed vulnerabilities?
 - a. CVE
 - b. CVSS
 - c. ATT&CK
 - d. TTP
- **4.** Which broad term describes a situation in which a security device triggers an alarm, but no malicious activity or actual attack is taking place?
 - a. False negative
 - **b.** True negative
 - c. False positive
 - d. True positive

- **5.** Which of the following is a successful identification of a security attack or a malicious event?
 - a. True positive
 - b. True negative
 - c. False positive
 - d. False negative
- **6.** Which of the following occurs when a vulnerability scanner logs in to the targeted system to perform deep analysis of the operating system, running applications, and security misconfigurations?
 - a. Credentialed scan
 - b. Application scan
 - c. Noncredentialed scan
 - d. None of these answers are correct.
- 7. Which of the following are functions of a SIEM?
 - a. Log collection
 - b. Log normalization
 - c. Log correlation
 - **d.** All of these answers are correct.
- 8. Which solution allows security analysts to collect network traffic metadata?
 - a. NetFlow
 - b. SIEM
 - c. SOAR
 - d. None of these answers are correct.
- 9. Which solution provides capabilities that extend beyond traditional SIEMs?
 - a. SOAR
 - b. CVSS
 - c. CVE
 - d. IPFIX

- 10. Which of the following can be capabilities and benefits of a SOAR solution?
 - a. Automated vulnerability assessment
 - b. SOC playbooks and runbook automation
 - **c.** Orchestration of multiple SOC tools
 - d. All of these answers are correct.

Foundation Topics

Threat Hunting

No security product or technology in the world can detect and block all security threats in the continuously evolving threat landscape (regardless of the vendor or how expensive it is). This is why many organizations are tasking senior analysts in their computer security incident response team (CSIRT) and their security operations center (SOC) to hunt for threats that may have bypassed any security controls that are in place. This is why threat hunting exists.

Threat bunting is the act of proactively and iteratively looking for threats in your organization. This chapter covers details about threat-hunting practices, the operational challenges of a threat-hunting program, and the benefits of a threat-hunting program.

The threat-hunting process requires deep knowledge of the network and often is performed by SOC analysts (otherwise known as investigators, threat hunters, tier 2 or tier 3 analysts, and so on). Figure 7-1 illustrates the traditional SOC tiers and where threat hunters typically reside. In some organizations (especially small organizations), threat hunting could be done by anyone in the SOC because the organization may not have a lot of resources (analysts). The success of threat hunting completely depends on the maturity of the organization and the resources available.

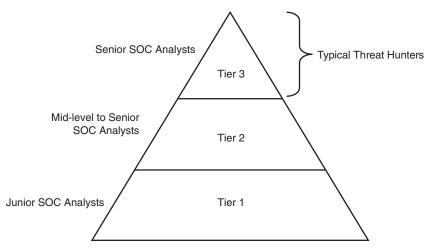


FIGURE 7-1 The SOC Tiers

Some organizations might have a dedicated team within or outside the SOC to perform threat hunting. However, one of the common practices is to have the hunters embedded within the SOC.

Threat hunters assume that an attacker has already compromised the network. Consequently, they need to come up with a hypothesis of what is compromised and how an adversary could have performed the attack. For the threat hunting to be successful, hunters need to be aware of the adversary tactics, techniques, and procedures (TTPs) that modern attackers use. This is why many organizations use MITRE's ATT&CK framework to be able to learn about the tactics and techniques of adversaries. Later in this chapter you learn more about how MITRE's ATT&CK can be used in threat hunting.

Threat hunting is not a new concept. Many organizations have performed threat hunting for a long time. However, in the last decade many organizations have adopted new ways to enhance the threat-hunting process with automation and orchestration.

Threat hunting is not the same as the traditional SOC incident response (reactive) activities. Threat hunting is also not the same as vulnerability management (the process of patching vulnerabilities across the systems and network of your organization, including cloud-based applications in some cases). However, some of the same tools and capabilities may be shared among threat hunters, SOC analysts, and vulnerability management teams. Tools and other capabilities such as data analytics, TTPs, vulnerability feeds, and *threat feeds* may be used across the different teams and analysts in an organization.

A high-level threat-hunting process includes the following steps:

- Step 1. Threat hunting starts with a trigger based on an anomaly, threat intelligence, or a hypothesis (what could an attacker have done to the organization?). From that moment you should ask yourself: "Do we really need to perform this threat-hunting activity?" or "What is the scope?"
- **Step 2.** Then you identify the necessary tools and methodologies to conduct the hunt.
- **Step 3.** Once the tools and methodologies are identified, you reveal new attack patterns, TTPs, and so on.
- **Step 4.** You refine your hunting tactics and enrich them using data analytics. Steps 2–3 can take one cycle or be iterative and involve multiple loops (depending on what you find and what additional data and research need to be done).

Step 5. A successful outcome could be that you identify and mitigate the threat. However, you need to recognize that in some cases this may not be the case. You may not have the necessary tools and capabilities, or there was no actual threat. This is why the success of your hunting program depends on the maturity of your capabilities and organization as a whole.

You can measure the maturity of your threat-hunting program within your organization in many ways. Figure 7-2 shows a matrix that can be used to evaluate the maturity level of your organization against different high-level threat-hunting elements.

These threat-hunting maturity levels can be categorized as easily as level 1, 2, and 3, or more complex measures can be used.

When it comes to threat intelligence and threat hunting, automation is key! Many organizations are trying to create threat *intelligence fusion* techniques to automatically extract threat intelligence data from heterogeneous sources to analyze such data. The goal is for the threat hunter and network defender to maneuver quickly—and faster than the attacker. This way, you can stay one step ahead of threat actors and be able to mitigate the attack.

Security Advisories and Bulletins

In Chapter 5, "Understanding Different Threat Actors, Vectors, and Intelligence Sources," you learned how vendors, coordination centers, security researchers, and others publish *security advisories* and bulletins to disclose vulnerabilities. Most of the vulnerabilities disclosed to the public are assigned *Common Vulnerability and Exposure (CVE)* identifiers. CVE is a standard created by MITRE (www.mitre.org) that provides a mechanism to assign an identifier to vulnerabilities so that you can correlate the reports of those vulnerabilities among sites, tools, and feeds.

NOTE You can obtain additional information about CVE at https://cve.mitre.org.

One of the most comprehensive and widely used vulnerability databases is the National Vulnerability Database (NVD) maintained by the National Institute of Standards and Technology (NIST). NVD provides information about vulnerabilities disclosed worldwide.

NOTE You can access the NVD and the respective vulnerability feeds at https://nvd.nist.gov.

Threat Hunting Maturity Level

	•			
		Initial (Minimal) Level 1	Intermediate Level 2	Innovative and Leading Level 3
S	Threat Intelligence and Data Collection	Limited access of threat intelligence and collection of data	High collection of certain types of threat intelligence and data	High collection of many types of threat intelligence and data
rel Element	Hypothesis Creation	Responds only to existing SIEM, IPS/IDS, firewall logs, etc.	Combines traditional logs with TTPs and threat intelligence	Combines traditional logs with TTPs and threat intelligence and develops automated threat risk scoring
/əl-dgiH gn	Tools and Techniques for Hunting Hypothesis Testing	Reactive alerts and SIEM searches	Simple tools and analytics leveraging some visualizations, but mostly a manual effort	Advanced search capabilities, visualizations, creating new tools and not depending on traditional tools
hreat Hunti	TTP Detection	None, only traditional SIEM reactive detection	Identification of indicators of compromise (IoCs) and new attack trends	Able to detect adversary TTPs, loCs, and create automation for the SOC to routinely detect them in the future
Τ	Analytics and Automation	None	Limited analytics and automation	Create automated tools for the SOC to routinely detect threats in the future

FIGURE 7-2 Threat-Hunting Maturity

Most mature vendors such as Microsoft, Intel, and Cisco publish security advisories and bulletins in their websites and are CVE Numbering Authorities (CNAs). CNAs can assign CVEs to disclosed vulnerabilities and submit the information to MITRE and subsequently to NVD.

NOTE You can find additional information about CNAs at https://cve.mitre.org/cve/cna.html.

The following links include examples of security advisories and bulletins published by different vendors:

- Cisco: https://www.cisco.com/go/psirt
- Microsoft: https://www.microsoft.com/en-us/msrc
- **Red Hat:** https://access.redhat.com/security/security-updates
- Palo Alto: https://security.paloaltonetworks.com

Vulnerability disclosures in security advisories are often coordinated among multiple vendors. Most of the products and applications developed nowadays use open-source software. Vulnerabilities in open-source software could affect hundreds or thousands of products and applications in the industry. In addition, vulnerabilities in protocols such as TLS, TCP, BGP, OSPF, and WPA could also affect numerous products and software. Patching open-source and protocol-related vulnerabilities among upstream and downstream vendors is not an easy task and requires good coordination. Figure 7-3 shows the high-level process of a coordinated vulnerability disclosure and underlying patching.

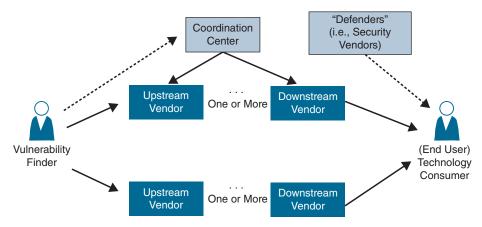


FIGURE 7-3 Coordinated Vulnerability Disclosures

The following steps are illustrated in Figure 7-3:

- 1. The finder (this can be anyone—a security researcher, customer, security company, an internal employee of a vendor) finds a security vulnerability and reports it to a vendor. The finder can also contact a vulnerability coordination center (such as www.cert.org) to help with the coordination and disclosure.
- 2. The upstream vendors triage and patch the vulnerability.
- **3.** There could be one or more downstream vendors that also need to patch the vulnerability. In some cases, the coordination center may also interact with downstream vendors in the notification.
- **4.** Security vendors (such as antivirus/antimalware, intrusion detection, and prevention technology providers) may obtain information about the vulnerability and create signatures or any other capabilities to help the end user detect and mitigate an attack caused by the vulnerability.
- **5.** The end user is notified of the patch and the vulnerability.

TIP The preceding process can take days, weeks, months, or even years! Although this process looks very simple in an illustration like the one in Figure 7-3, it is very complicated in practice. For this reason, the Forum of Incident Response and Security Teams (FIRST) has created a Multi-Party Coordination and Disclosure special interest group (SIG) to help address these challenges. You can obtain details about guidelines and practices for multiparty vulnerability coordination and disclosure at https://www.first.org/global/sigs/vulnerability-coordination/multiparty/.

Vulnerability Scans

Vulnerability management teams often use other tools such as vulnerability scanners and software composition analysis (SCA) tools. Figure 7-4 illustrates how a typical automated vulnerability scanner works.

The following are the steps illustrated in Figure 7-4. Keep in mind that vulnerability scanners are all different, but most follow a process like this:

- 1. In the discovery phase, the scanner uses a tool such as Nmap to perform host and port enumeration. Using the results of the host and port enumeration, the scanner begins to probe open ports for more information.
- 2. When the scanner has enough information about the open port to determine what software and version are running on that port, it records that information in a database for further analysis. The scanner can use various methods to make this determination, including banner information.

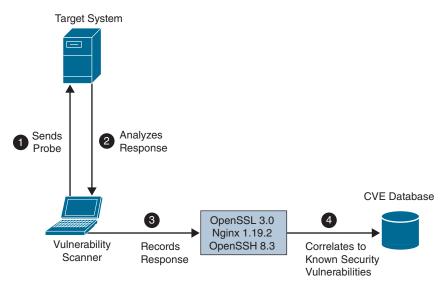


FIGURE 7-4 Coordinated Vulnerability Disclosures

- 3. The scanner tries to determine if the software that is listening on the target system is susceptible to any known vulnerabilities. It does this by correlating a database of known vulnerabilities against the information recorded in the database about the target services.
- 4. The scanner produces a report on what it suspects could be vulnerable. Keep in mind that these results are often false positives and need to be validated.

One of the main challenges with automated vulnerability scanners is the number of false positives and false negatives. *False positive* is a broad term that describes a situation in which a security device triggers an alarm, but no malicious activity or actual attack is taking place. In other words, false positives are false alarms, and they are also called benign triggers. False positives are problematic because by triggering unjustified alerts, they diminish the value and urgency of real alerts. Having too many false positives to investigate becomes an operational nightmare, and you most definitely will overlook real security events.

There are also *false negatives*, which is the term used to describe a network intrusion device's inability to detect true security events under certain circumstances—in other words, a malicious activity that is not detected by the security device.

A *true positive* is a successful identification of a security attack or a malicious event. A *true negative* occurs when the intrusion detection device identifies an activity as acceptable behavior and the activity is actually acceptable.

There are also different types of vulnerability scanners:

- Application scanners: Used to assess application-specific vulnerabilities and operate at the upper layers of the OSI model
- *Web application scanners*: Used to assess web applications and web services (such as APIs)
- *Network and port scanners*: Used to determine what TCP or UDP ports are open on the target system

Credentialed vs. Noncredentialed

To reduce the number of false positives, some vulnerability scanners have the capability to log in to a system to perform additional tests and see what programs, applications, and open-source software may be running on a targeted system. These scanners can also *review logs* on the target system. They can also perform *configuration reviews* to determine if a system may be configured in an unsecure way.

Intrusive vs. Nonintrusive

Vulnerability scanners sometimes can send numerous IP packets at a very fast pace (*intrusive*) to the target system. These IP packets can potentially cause negative effects and even crash the application or system. Some scanners can be configured in such a way that you can throttle the probes and IP packets that it sends to the target system in order to be *nonintrusive* and to not cause any negative effects in the system.

Common Vulnerability Scoring System (CVSS)

The Common Vulnerability Scoring System (or *CVSS*) is an industry standard used to convey information about the severity of vulnerabilities. In CVSS, a vulnerability is evaluated under three aspects, and a score is assigned to each of them. These three aspects (or groups) are the base, temporal, and environmental groups.

- The *base group* represents the intrinsic characteristics of a vulnerability that are constant over time and do not depend on a user-specific environment. This is the most important information and the only mandatory information to obtain for a vulnerability score.
- The *temporal group* assesses the vulnerability as it changes over time.
- The *environmental group* represents the characteristic of a vulnerability taking into account the organization's environment.

The CVSS score is obtained by taking into account the base, temporal, and environmental group information. The score for the base group is between 0 and 10, where 0 is the least severe and 10 is assigned to highly critical vulnerabilities (for example, for vulnerabilities that could allow an attacker to remotely compromise a system and get full control). Additionally, the score comes in the form of a vector string that identifies each of the components used to make up the score. The formula used to obtain the score takes into account various characteristics of the vulnerability and how the attacker is able to leverage these characteristics. CVSS defines several characteristics for the base, temporal, and environmental groups.

TIP You can read and refer to the latest CVSS specification documentation, examples of scored vulnerabilities, and a calculator at www.first.org/cvss.

The base group defines exploitability metrics that measure how the vulnerability can be exploited, and impact metrics that measure the impact on confidentiality, integrity, and availability. In addition to these two, a metric called scope change (S) is used to convey the impact on systems that are affected by the vulnerability but do not contain vulnerable code.

Exploitability metrics include the following:

- Attack Vector (AV): Represents the level of access an attacker needs to have to exploit a vulnerability. It can assume four values:
 - Network (N)
 - Adjacent (A)
 - Local (L)
 - Physical (P)
- Attack Complexity (AC): Represents the conditions beyond the attacker's control that must exist in order to exploit the vulnerability. The values can be one of the following:
 - Low (L)
 - High (H)
- **Privileges Required (PR):** Represents the level of privileges an attacker must have to exploit the vulnerability. The values are as follows:
 - None (N)
 - Low (L)
 - High (H)

- **User Interaction (UI):** Captures whether user interaction is needed to perform an attack. The values are as follows:
 - \blacksquare None (N)
 - Required (R)
- **Scope (S):** Captures the impact on systems other than the system being scored. The values are as follows:
 - Unchanged (U)
 - Changed (C)

The Impact metrics include the following:

- Confidentiality Impact (C): Measures the degree of impact to the confidentiality of the system. It can assume the following values:
 - **■** Low (L)
 - Medium (M)
 - High (H)
- Integrity Impact (I): Measures the degree of impact to the integrity of the system. It can assume the following values:
 - Low (L)
 - Medium (M)
 - High (H)
- Availability Impact (A): Measures the degree of impact to the availability of the system. It can assume the following values:
 - Low (L)
 - Medium (M)
 - High (H)

The temporal group includes three metrics:

■ Exploit code maturity (E): Measures whether or not public exploits are available

- Remediation Level (RL): Indicates whether a fix or workaround is available
- **Report Confidence (RC):** Indicates the degree of confidence in the existence of the vulnerability

The environmental group includes two main metrics:

- **Security Requirements (CR, IR, AR):** Indicate the importance of confidentiality, integrity, and availability requirements for the system
- Modified Base Metrics (MAV, MAC, MAPR, MUI, MS, MC, MI, MA): Allow the organization to tweak the base metrics based on specific characteristics of the environment

For example, a vulnerability that could allow a remote attacker to crash the system by sending crafted IP packets would have the following values for the base metrics:

- Access Vector (AV) would be Network because the attacker can be anywhere and can send packets remotely.
- Attack Complexity (AC) would be Low because it is trivial to generate malformed IP packets.
- Privilege Required (PR) would be None because no privileges are required by the attacker on the target system.
- User Interaction (UI) would also be None because the attacker does not need to interact with any user of the system in order to carry out the attack.
- Scope (S) would be Unchanged if the attack does not cause other systems to fail.
- Confidentiality Impact (C) would be None because the primary impact is on the availability of the system.
- Integrity Impact (I) would be None because the primary impact is on the availability of the system.
- Availability Impact (A) would be High because the device becomes completely unavailable while crashing and reloading.

CVSS also defines a mapping between a CVSS Base Score quantitative value and a qualitative score. Table 7-2 provides the qualitative-to-quantitative score mapping.

Rating	CVSS Base Score
None	0.0
Low	0.1–3.9
Medium	4.0-6.9
High	7.0-8.9
Critical	9.0–10.0
Medium High	4.0–6.9 7.0–8.9

Table 7-2 Qualitative-to-Quantitative Score Mapping

TIP Organizations can use the CVSS score as input to their own risk management processes to evaluate the risk related to a vulnerability and then prioritize the vulnerability remediation.

Logs and Security Information and Event Management (SIEM)

Security Information and Event Management (SIEM) is a specialized device or software used for **security monitoring**; it collects, correlates, and helps security analysts analyze logs from multiple systems. SIEM typically allows for the following functions:

- **Log collection:** This includes receiving information from devices with multiple protocols and formats, storing the logs, and providing historical reporting and log filtering. A *log collector* is software that is able to receive logs from multiple sources (*data input*) and in some cases offers storage capabilities and log analysis functionality.
- **Log normalization:** This function extracts relevant attributes from logs received in different formats and stores them in a common data model or template. This allows for faster event classification and operations. Nonnormalized logs are usually kept for archive, historical, and forensic purposes.
- Log aggregation: This function aggregates information based on common information and reduces duplicates.
- **Log correlation:** This is probably one of the most important SIEM functions. It refers to the capability of the system to associate events gathered by various systems, in different formats and at different times, and create a single actionable event for the security analyst or investigator. Often the quality of SIEM is related to the quality of its correlation engine.

■ **Reporting:** Event visibility is also a key functionality of SIEM. Reporting capabilities usually include real-time monitoring and historical base reports.

Most modern SIEMs also integrate with other information systems to gather additional contextual information to feed the correlation engine. For example, they can integrate with an identity management system to get contextual information about users or with NetFlow collectors to get additional flow-based information.

NOTE NetFlow is a technology created by Cisco to collect network metadata about all the different "flows" of traffic on your network. There's also the Internet Protocol Flow Information Export (*IPFIX*), which is a network flow standard led by the Internet Engineering Task Force (IETF). IPFIX was designed to create a common, universal standard of export for flow information from routers, switches, firewalls, and other infrastructure devices. IPFIX defines how flow information should be formatted and transferred from an exporter to a collector. IPFIX is documented in RFC 7011 through RFC 7015 and RFC 5103. Cisco NetFlow Version 9 is the basis and main point of reference for IPFIX. IPFIX changes some of the terminologies of NetFlow, but in essence they are the same principles of NetFlow Version 9.

Several commercial SIEM systems are available. Here's a list of some commercial SIEM solutions:

- Micro Focus ArcSight
- LogRhythm
- IBM QRadar
- Splunk

Figure 7-5 shows how SIEM can collect and process logs from routers, network switches, firewalls, intrusion detection, and other security products that may be in your infrastructure. It can also collect and process logs from applications, antivirus, antimalware, and other host-based security solutions.

Security operation center analysts and security engineers often collect *packet captures* during the investigation of a security incident. Packet captures provide the greatest detail about each transaction happening in the network. Full packet capture has been used for digital forensics for many years. However, most malware and attackers use encryption to be able to bypass and obfuscate their transactions. IP packet metadata can still be used to potentially detect an attack and determine the attacker's tactics and techniques.

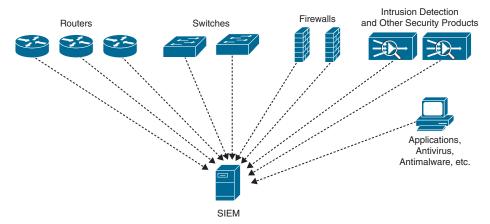


FIGURE 7-5 SIEM Collecting and Processing Logs from Disparate Systems

One of the drawbacks of collecting full packet captures in every corner of your network is the requirement for storage because packet captures in busy networks can take a significant amount of disk space. This is why numerous organizations often collect network metadata with NetFlow or IPFIX and store such data longer than when collecting packet captures.

Several sophisticated security tools also provide *user behavior analysis* mechanisms in order to potentially find insiders (internal attackers). Similarly, they provide insights of user behavior even if they do not present a security threat.

Organizations can also deploy *sentiment analysis* tools and solutions to help monitor customer sentiment and brand reputation. Often these tools can also reveal the intent and tone behind social media posts, as well as keep track of positive or negative opinions. Threat actors can also try to damage a company's reputation by creating fake accounts and bots in social media platforms like Twitter, Facebook, or Instagram. Attackers can use these fake accounts and bots to provide negative public comments against the targeted organization.

Security Orchestration, Automation, and Response (SOAR)

CSIRT analysts typically work in an SOC utilizing many tools to monitor events from numerous systems (firewalls, applications, IPS, DLP, endpoint security solutions, and so on). Typically, these logs are aggregated in a SIEM. Modern SOCs also use *Security Orchestration*, *Automation*, *and Response* (*SOAR*) systems that extend beyond traditional SIEMs.

The tools in the SOC are evolving and so are the methodologies. For example, now security analysts not only respond to basic cyber events but also perform threat hunting in their organizations. SOAR is a set of solutions and integrations designed to allow organizations to collect security threat data and alerts from multiple sources. SOAR platforms take the response capabilities of SIEM to the next level. SOAR solutions supplement, rather than replace, the SIEM. They allow the cybersecurity team to extend its reach by automating the routine work of cybersecurity operations.

TIP Unlike traditional SIEM platforms, SOAR solutions can also be used for threat and vulnerability management, security incident response, and security operations automation.

Deploying SOAR and SIEM together in solutions makes the life of SOC analysts easier. SOAR platforms accelerate incident response detection and eradication times because they can automatically communicate information collected by SIEM with other security tools. Several traditional SIEM vendors are changing their products to offer hybrid SOAR/SIEM functionality.

Another term adopted in the cybersecurity industry is Extended Detection and Response (XDR). XDR is a series of systems working together that collects and correlates data across hosts, mobile devices, servers, cloud workloads, email messages, web content, and networks, enabling visibility and context into advanced threats. The goal of an XDR system is to allow security analysts to analyze, prioritize, hunt, and remediate cybersecurity threats to prevent data loss and security breaches.

Chapter Review Activities

Use the features in this section to study and review the topics in this chapter.

Review Key Topics

Review the most important topics in the chapter, noted with the Key Topic icon in the outer margin of the page. Table 7-3 lists a reference of these key topics and the page number on which each is found.

Table 7-3 Key Topics for Chapter 7

Description	Page Number
Defining threat hunting	175
Understanding security advisories, bulletins, and what a CVE is	177
Understanding false positives and false negatives	181
Credentialed vs. Noncredentialed	182
Intrusive vs. Nonintrusive	182
Defining what SIEM is	186
Understanding the SOAR concept	188
	Defining threat hunting Understanding security advisories, bulletins, and what a CVE is Understanding false positives and false negatives Credentialed vs. Noncredentialed Intrusive vs. Nonintrusive Defining what SIEM is

Define Key Terms

Define the following key terms from this chapter, and check your answers in the glossary:

threat hunting, threat feeds, intelligence fusion, security advisories, Common Vulnerability and Exposures (CVE), false positives, false negatives, true positive, true negative, application scanners, web application scanners, network and port scanners, review logs, configuration reviews, intrusive, nonintrusive, CVSS, base group, temporal group, environmental group, Security Information and Event Management (SIEM), security monitoring, log collector, data input, Log aggregation, IPFIX, packet captures, user behavior analysis, sentiment analysis, Security Orchestration, Automation, and Response (SOAR)

Review Questions

Answer the following review questions. Check your answers with the answer key in Appendix A.

- 1. What type of vulnerability scanner can be used to assess vulnerable web services?
- **2.** What documents do vendors, vulnerability coordination centers, and security researchers publish to disclose security vulnerabilities?
- 3. What term is used to describe an organization that can assign CVEs to vulnerabilities?

- **4.** What public database can anyone use to obtain information about security vulnerabilities affecting software and hardware products?
- 5. How many score "groups" are supported in CVSS?
- **6.** A vulnerability with a CVSS score of 4.9 is considered a ______ severity vulnerability.
- 7. What is the process of iteratively looking for threats that may have bypassed your security controls?

Index

Symbols	identity and access management
/ (dot-dot-slash) attack 76, 274–275	(IAM) 605, 633
; (semicolon) 73	implicit deny 680
' (single quotation mark) 73	least privilege 264, 630, 681, 908
_ (underscore) 740	mandatory 676, 679
0phtCrack 44	network 510-511
2FA (two-factor authentication) 298	permissions 640–645
5G communications 357–358	cloud computing 605, 610
802.1X standard 510, 553-556, 562,	inheritance 644-646
664–667, 673	open 150
	types of 646
Α	privileged access management (PAM)
A record (Address mapping record) 796	678, 679
AAA (authentication, authorization, and	role-based 677, 679
accounting) framework 306	rule-based 677, 678, 679
AAR (after action report) 928–929	summary of 679
ABAC (attribute-based access control)	user access recertification 645
638–645, 678, 679	vestibules 372–373
acceptable use policies (AUPs) 898, 900	access control entries (ACEs) 643
acceptance of risk 919	access control lists (ACLs) 490, 528,
access control. See also 802.1X standard;	535, 643, 831
identity; passwords	access points (APs)
access control entries (ACEs) 643	rogue 99
access control lists (ACLs) 490, 528,	security 562–563
535, 643, 831	accounting, AAA framework for 306
attribute-based 638-645, 678, 679	accounts 629-633. See also access
best practices 680-681	control; passwords
centralized versus decentralized 679	administrator 908
centralized/decentralized 640	auditing 635, 639
conditional access 678, 679	harvesting 18
delegation of access 662	permissions 640–645
discretionary 674-676, 679	cloud computing 605, 610
	inheritance 644–646

open 150	actors, threat
types of 646	attack vectors 122-123
policies 633	attributes of 122
root 908	types of 120–121
service 908	AD. See Active Directory (AD)
ACEs (access control entries) 643	additional or associated data (AEAD) 404
ACI (Application Centric Infrastructure)	Address mapping record (A record) 796
243	Address Resolution Protocol. See ARP
acknowledgement (ACK) packets 84	(Address Resolution Protocol)
ACLs (access control lists) 490, 528, 535,	address space layout randomization
643, 831	(ASLR) 76, 265, 272
acquisition, forensic	addresses
artifacts 853	IPv4 443–444
cache 852	IPv6 536–537
checksums 857	MAC (media access control) 101, 511
data breach notification laws	network address allocation 443-444
855–856	network address translation 501, 529, 562
definition of 847	virtual IP 488
device 850–851	administrator accounts 908
disk 848	admissibility, evidence 843
firmware 851	ADSP (Author Domain Signing
hashing 856–857	Practices) 110
integrity 856	ADUC (Active Directory Users and
network 852–853	Computers) 640
operating system 850	Advanced Encryption Standard (AES).
order of volatility 848	See AES (Advanced Encryption
on-premises versus cloud 853-854	Standard)
random-access memory (RAM)	Advanced IP scanner 721
848–849	advanced persistent threats (APTs) 35,
regulatory and jurisdictional 855	120–121, 451, 770
right-to-audit clauses 854	AE (authenticated encryption) 404
snapshot 851–852	AEAD (additional or associated data) 404
swap/pagefile 849–850	aerospace application-embedded systems
Active Directory (AD) 291–292	348–350
Active Directory Certificate Services	AES (Advanced Encryption Standard)
(AD CS) utility 691	412, 430, 475, 552
Active Directory Users and Computers	AES-GCM 498
(ADUC) 640	AES-GMAC 498
active reconnaissance 18, 204–205	AFL (American Fuzzy Lop) 269
active/active load balancing 488	after action report (AAR) 928–929
active/passive load balancing 488	aggregation, log 186
Activity Monitor 542	aggregators 526

Agile development methodology 258–259	ALTER DATABASE statement 71
agreement, terms of 948	ALTER TABLE statement 71
AH (Authentication Header) 437, 520	Alureon rootkit 35–36
AI (artificial intelligence) 50–51	always-on VPN functionality 495
AI (Asset Identification) 885, 941–942	Amazon Web Services (AWS) 232-233,
AICPA (American Institute of Certified	244, 603, 853, 870
Public Accountants) 883	American Fuzzy Lop (AFL) 269
AI/ML (artificial intelligence and	American Institute of Certified Public
machine learning) 50-51	Accountants (AICPA) 883
AIR (As-if Infinitely Ranged) integer	amplification attacks 112
model 77	analytics logs 383
air gaps 384, 385	Android Auto 347
air traffic control (ATC) 349-350	Angry IP scanner 721
aircraft systems 348–350	annualized loss expectancy (ALE) 922
AirMagnet 99	annualized rate of occurrence (ARO) 922
AIS (automated indicator sharing) 125	anomaly-based analysis 521-523
aisles, hot/cold 386	anonymization 945
alarms 374, 870	anti-forensics 770
ALE (annualized loss expectancy) 922	antimalware 452
alerts, SIEM 788	antivirus software 451
ALG (application-level gateway) 529	anycast addresses 537
algorithms 50–51	anything as a service (XaaS) 139, 232
Grover's 402	AP isolation 562
hashing 218-219, 856-857	Apache
Digital Signature Algorithm (DSA)	HTTP Server 146
396, 412	Mesos 240
Elliptic Curve Digital Signature	web servers 794
Algorithm (ECDSA) 551–552	APIs (application programming
Message Digest Algorithm 5 (MD5)	interfaces) 86
55, 219	API-based keyloggers 42
Secure Hash Algorithm (SHA) 55,	attacks 55, 85–86, 602
551–552	definition of 240–241
key generation 395	infrastructure as code 241–243
message authentication code (MAC) 410	inspection and integration 607, 610
online resources 498	micro-segmentation 240–241
public key 411	security considerations 216
scheduling 488	Shodan 203–204
Shor's 402	APP (Australia Privacy Principles) 220
signature verifying 395	Apple
signing 395	Apple Pay 462, 584
allocation, network address 443-444	CarPlay 347
allow lists 467, 578, 583, 822	macOS Activity Monitor 542

appliances, network 513–514. See also	programming testing methods
firewalls	compile-time errors 266–267
aggregators 526	fuzz testing 269–270
hardware security modules (HSMs) 524	input validation 80, 267-268
jump servers 514	penetration testing 266
network intrusion detection systems	runtime errors 266–267
(NIDSs) 517–518	static and dynamic code
advantages/disadvantages 519-520	analysis 269
anomaly-based analysis 521-523	stress testing 80, 266
definition of 519-520	scalability 279–280
heuristic-based analysis 521	secure coding 261–263
inline versus passive 523–524	software development environments
promiscuous mode 517	257–260
signature-based 520-521	software development lifecycle (SDLC
stateful pattern-matching	78, 261–262, 263–265, 468, 868
recognition 521	vulnerabilities and attacks 74-75
network intrusion prevention systems	API attacks 55, 85-86, 602
(NIPSs)	backdoors 149, 271, 275
advantages/disadvantages 519-520	buffer overflows 75–76, 77, 149,
anomaly-based analysis 521-523	271–272, 275
definition of 518-520	code injection 149, 273-274, 276
false positives/false negatives 519	cross-site request forgery (XSRF)
heuristic-based analysis 521	149, 272, 275
inline versus passive 523-524	cross-site scripting (XSS) 54, 68-70
signature-based 520-521	110, 149, 272, 275, 601
proxy servers 514–516	directory traversal 75–76, 149,
sensors 524–525	274–275, 276
application allow lists. See allow lists	DLL injection 74
application block/deny lists. See block/	driver manipulation 89
deny lists	error handling 79–82
Application Centric Infrastructure (ACI)	LDAP injection 74
243	memory/buffer 77-78, 88, 149,
application development. See also	271–272, 275
application security	pass the hash 89-90
application provisioning and	pointer dereferencing 75–76
deprovisioning 260	privilege escalation 67-68, 201, 770
automation and scripting 278-279	race conditions 79
diversity 278	remote code execution (RCE) 78,
elasticity 279–280	146, 149, 275
integrity measurement 261	replay 82–85
Open Web Application Security Project	request forgeries 85-86
(OWASP) 204, 276–277	resource exhaustion 87-88

SQL injection (SQLi) 54, 70–74, 273–274	application service providers (ASPs) 139,
SSL stripping 88–89	application-aware devices 518
summary of 275–276	application-based segmentation 489–490
XML injection 74–75	application-level gateways (ALGs) 529
zero-day attack 149, 275, 276	approved lists 822
application logs 792–793	AppScan 204
application management, mobile 576–578	APs (access points)
application programming interfaces. See	rogue 99
APIs (application programming	security 562–563
interfaces)	APT29 (Cozy Bear) 346
,	apt-get install snmp snmpwalk command
application scanners 182 application security 463–464, 475–	436
476, 612. <i>See also</i> application	17.7
development	APTs (advanced persistent threats) 120–121, 451, 770
allow lists 467, 578, 583, 822	
	archive.org 147 Arduino 340
application shielding 471 authentication 298	
	ARF (Asset Reporting Format) 885
block/deny lists 467–468, 822–823 code signing 466–467	ARO (annualized rate of occurrence) 922
8 8	ARP (Address Resolution Protocol)
disk encryption 473	poisoning 105, 722
dynamic code analysis 470–471	spoofing 513
fuzzing 471	arp command 721–722
hardening 471	artifacts, forensic 853
hardware root of trust 476–477	artificial intelligence and machine
Hypertext Transfer Protocol (HTTP)	learning (AI/ML) 50–51, 788
436–437, 465–466, 577	As-if Infinitely Ranged (AIR) integer
input validation 464	model 77
manual code review 470	ASLR (address space layout
mobile devices 581	randomization) 76, 265, 272
open ports/services 471–472	ASPs (application service providers) 139,
operating system 473–474	231
patch management 474–475	assertion parties (SAML) 659
registry 472	assertions 623
sandboxing 452, 478–479	assessments, security. See security
secure coding practices 468	assessments
secure cookies 465	Asset Identification (AI) 885, 941–942
self-encrypting drives (SEDs) 475–476	asset management 909–910
static code analysis 468–469	Asset Reporting Format (ARF) 885
Trusted Platform Module (TPM)	asset values 921, 922
477–478	asymmetric encryption 411–413
whitelisting 578 583	ATC (air traffic control) 349–350

ATT&CK framework (MITRE) 18,	by characteristic attributes 625–626
128–129, 176, 205, 223,	CIA (confidentiality, integrity,
767–768	availability) 289
Attack Complexity (AC) metric 183	cloud versus on-premises requirements
Attack Vector (AV) metric 183	306–307
attestation 294, 460–461	context-aware authentication 658
attribute-based access control (ABAC)	definition of 289–291, 625
638–645, 678, 679	directory services 291–292
audio steganography 415-416	embedded systems 363
auditing 635, 639	Extensible Authentication Protocol
audit logs 869–870	(EAP) 553-556, 664-667
audit trails 870	EAP-FAST 556, 666
cloud computing 604, 609	EAP-MD5 556, 666
auditors 947	EAP-TLS 556, 666
AUPs (acceptable use policies)	EAP-TTLS 556, 666
898, 900	LEAP 666
Australia Privacy Principles (APP) 220	PEAP 556, 666
802.1X standard 510, 553–556, 562,	federation 292–293, 556–557, 658
664–667, 673	hardware security modules (HSMs) 656
AAA framework 304–306	HMAC-based one-time password
attestation 294	(HOTP) 295–296
authenticated encryption (AE) 404	Kerberos 82–83, 89, 292, 553, 668–670,
authenticated modes 404	673
authentication applications 298	by knowledge 625, 656–657
biometric systems 300, 378, 625–626,	Lightweight Directory Access Protocol
869	(LDAP) 291, 442, 667–670
crossover error rate (CER) 304	injection attacks 74, 144
efficacy of 302	Lightweight Directory Access
errors with 626	Protocol over SSL (LDAPS) 432
false acceptance rate (FAR) 303, 626	logs 789–796
false rejection rate (FRR) 303, 626	multifactor 304–306, 657
fingerprints 300–301	mutual 668–670
gait analysis 302	OAuth 661–662
iris recognition 301	OpenID and OpenID Connect
retina scanning 301	663–664
vein authentication 302	by ownership 625
voice/speech recognition 302	phone call 299–300
captive portals 559	push notifications 299
Challenge-Handshake Authentication	remote
Protocol 673	Challenge-Handshake
challenge-response authentication	Authentication Protocol (CHAP)
(CRA) 571–572	670–672, 673
(- · · · · · · · · · - · · -	- · · · , - · -

RADIUS 556–557, 672–673	Availability Impact (I) metric 184
Remote Access Service (RAS)	avalanche effect 463
670–672	avoidance, risk 918
TACACS+ 672-673	awareness, risk 921
Security Assertion Markup Language (SAML) 659–661	AWS (Amazon Web Services) 244, 603, 853
Short Message Service (SMS) 296-297	Azure 232–233, 603, 853
single sign-on (SSO) 292, 373, 624,	
658–659	В
smart card 299-300, 629	backdoors 42-43, 149, 271, 275
static codes 298	background checks 899
summary of 673	backups 158
time-based one-time password (TOTP)	cloud 326
295	comparison of 326-327
token key 297	copy 326
Trusted Platform Module (TPM) 294,	differential 326, 328
655	disk 326
two-factor 298	full 326, 328–331
Wi-Fi Protected Setup (WPS) 558–559	image 326
authentication attacks 55, 602	incremental 326, 328
Authentication Header (AH) 437, 520	NAS (network-attached storage) 326
authentication servers 555, 665	offsite 327
authenticators 555, 665	online versus offline 326
Author Domain Signing Practices	snapshot 326
(ADSP) 110	tape 326
authorization 290, 306	badges 373, 382
authorized hackers 121	baiting 19
Auto (Android) 347	balancers, load 319-320
automated indicator sharing (AIS) 125	bandwidth monitors 804
automation	barricades 370–371
application development 278–279	base groups 182
auto-updates 474–475	baseband radio 359
facility 345	baselining 213, 539–542
autonomous underwater vehicles (AUVs)	Bash 113
353–354	Basic Encoding Rules (BER) 697
Autopsy 747, 850	basic input/output system (BIOS) 851
AUVs (autonomous underwater vehicles)	BCDR (business continuity and disaster
353–354	recovery) 139, 232
availability 289	BCPs (business continuity plans)
resource exhaustion 87–88	773–774, 929
restoration order 330–331	beamforming 560
site resiliency and 221–222	Bell-LaPadula 677

benchmarks 885–888	blue teams 205, 902
BER (Basic Encoding Rules) 697	Bluetooth 570-571
BGP (Border Gateway Protocol)	bluejacking 100, 570-571
hijacking 535–536	bluesnarfing 99–100, 570–571
BIA (business impact analysis) 773,	bollards 370–371
926–927	Boolean technique 74
Biba 677	boot integrity
binaries 278	boot attestation 460–461
binary planting 74	definition of 458-459
biometric systems 300, 378, 625–626, 869	measured boot 459-460
crossover error rate (CER) 304	Unified Extensible Firmware Interface
efficacy of 302	(UEFI) 459
errors with 626	Border Gateway Protocol (BGP)
false acceptance rate (FAR) 303, 626	hijacking 535–536
false rejection rate (FRR) 303, 626	bots and botnets 37-38, 111-112, 580
fingerprints 300–301	BPAs. See blanket purchase agreements
gait analysis 302	(BPAs); business partnership
iris recognition 301	agreements (BPAs)
retina scanning 301	BPDU (Bridge Protocol Data Unit)
vein authentication 302	guard 512
voice/speech recognition 302	bring-your-own-device (BYOD) 215, 572
BIOS (basic input/output system) 851	574–576, 581, 588–590, 826, 898
birthday attacks 56	broadcast storm prevention 512
BiSL (Business Information Services	BPDU guard 512
Library) 882	DHCP snooping 512-513
Bitcoin-related SMS scams 12	loop protection 512
BitTorrent 529	MAC filtering 513
black hat hackers 121	brute-force attacks 45, 749
black-box testing 80	buckets 605
blackhole DNS servers 223	buffer overflows 75–76, 77, 149, 271–272
Blackhole exploit kit 44, 111–112	275, 522
blacklisting 578, 583	bug bounties 202–203
blanket purchase agreements (BPAs) 903	BugCrowd 203
blind hijacking 84	building loss 925
blind SQL injection 73	burning 386
block all. See implicit deny	Burp Suite Professional 204
block ciphers 411	buses, controller area network (CAN)
blockchain 409–410	347–348
block/deny lists 467-468, 578, 583,	business continuity and disaster recovery
822–823	(BCDR) 139, 232
blocking 417	business continuity plans (BCPs)
Blowfish 412	773–774, 929

business impact analysis (BIA) 773,	card cloning attacks 48-49
926–927	CarPlay, Apple 347
business partnership agreements (BPAs)	carrier unlocking 584
903	CAs (certificate authorities) 466, 556,
BYOD. See bring-your-own-device	689–691, 829
(BYOD)	CASBs (cloud access security brokers)
	142–143, 611–612, 614
C	cat command 734–735
cables	CBC (Cipher Block Chaining) mode 405
locks 379	CBT (computer-based training) 901
malicious USB 48	CBWFQ (class-based weighted fair
CAC (Common Access Card) 629	queuing) 536
cache	CCE (Common Configuration
ARP cache poisoning 105	Enumeration) 886
caching proxy 514	CCleaner 51
DNS cache poisoning 108–110	CCPA (California Consumer Privacy Act)
forensic acquisition 852	214, 220, 880
Cain and Abel 44	CCSS (Common Configuration Scoring
California Consumer Privacy Act (CCPA)	System) 886
214, 220, 880	CCTV (closed-circuit television)
call management systems (CMSs) 351	376–377, 870
Call Manager log files 799–800	CD (continuous delivery) 279
CAM (content addressable memory) 106	CDP (clean desk policy) 23, 899, 900
cameras	Cellebrite 850–851
centralized versus decentralized 375	cellular connection methods and receivers
closed-circuit television (CCTV)	572–573
376–377, 870	Center for Internet Security (CIS) 164,
motion recognition 376	881, 883
object detection 376	centralized access control 640, 679
camouflage 265, 377	centralized cameras 375
CAN (controller area network) bus	centralized controllers 242
347–348	CER (Canonical Encoding Rules) 697
Canada, Personal Information Protection	CER (crossover error rate) 304, 626
and Electronic Data Act	.cer file extension 697
(PIPEDA) 220	CERT (Community Emergency
Canonical Encoding Rules (CER) 697	Response Team) 77
	certificate authorities (CAs) 466, 556,
capital expenditure (CapEx) 598	689–691, 829
captive portals 559	certificate revocation lists (CRLs) 533,
capture, packet. See packet capture and	689–690, 691, 829
replay	certificate signing requests (CSRs) 689
capture the flag 902	cerunicate signing requests (CSRS) 009

certificates 625, 626–627	CISA (Cybersecurity and Infrastructure
attributes 691–692	Security Agency) 353–354
chaining 696	Cisco
expiration 693	Application Centric Infrastructure
formats 697	(ACI) 243
pinning 698	Application Policy Infrastructure
Subject Alternative Name 693	Controller (APIC) 243
types of 694-696	Cisco Discovery Protocol (CDP) 107
updating/revoking 829-830	Email Security Appliance (ESA) 111
CFB (Cipher Feedback) mode 406	Identity Services Engine (ISE) 590
chain of custody 789, 844	Mutiny Fuzzing Framework 269
chain of trust 699	NetFlow 187, 525, 809–810
Challenge-Handshake Authentication	OpenDNS 509-510
Protocol (CHAP) 673	security advisories and bulletins 179
challenge-response authentication (CRA)	Talos 347
49–50, 102, 571–572	Umbrella 509
change management 909	Clark-Wilson 677
CHAP (Challenge-Handshake	class-based weighted fair queuing
Authentication Protocol) 82-83,	(CBWFQ) 536
670–672, 673	classification
characteristic attributes, authentication by	asset 941–942
625–626	data 904–905
Check Point 518	classless interdomain routing (CIDR)
checksums 857, 870	netblock 203–204
chief information officers (CIOs) 903	clean desk policy (CDP) 23, 899, 900
chief security officers (CSOs) 930	clean pipe 112
chkdsk command 157	clickjacking 84
chmod command 644-645, 736-737	client-based VPNs (virtual private
choose-your-own-device (CYOD) 588-	networks) 497
590	clientless VPNs (virtual private networks)
CI (continuous integration) 279	497, 507–508
CIA (confidentiality, integrity, availability)	clientless web access 507
221, 263, 289	clients, thin 235–236, 508
CIDR (classless interdomain routing)	client-side execution 267
netblock 203-204	client-side validation 268
CIOs (chief information officers) 903	clock, secure 477
Cipher Block Chaining (CBC) mode 405	cloning
Cipher Feedback (CFB) mode 406	MAC (media access control) 106
cipher suites 409–411	SIM (subscriber identity module) cards
CIRT. See incident response (IR) teams	580, 584
CIS (Center for Internet Security) 164,	closed-circuit television (CCTV)
881, 883	376–377, 870

cloud access security brokers (CASBs)	network 606-607, 610
142–143, 611–612, 614	resource policies 603, 609
cloud computing	secrets management 604, 609
advantages of 138	security groups 607, 611
attacks and vulnerabilities 52-55, 123,	storage 605, 610
137–143, 601–603	summary of 608–609
authentication 306-307	virtual private cloud endpoint 608,
backups 326	611
cloud access security brokers (CASBs)	security solutions
142–143, 611–612, 614	application security 612
cloud service providers (CSPs) 139,	cloud access security brokers
233, 598, 853–854	(CASBs) 611–612, 614
community cloud 140, 233	firewalls 613-614, 615
definition of 138	Secure Web Gateway (SWG) 613,
fog and edge computing 234-235	614
forensic acquisition 853-854	summary of 614-615
hybrid cloud 140, 233	storage
managed detection and response	encryption 605
(MDR) 234	high availability 606
managed service providers (MSPs)	permissions 605
233–234	replication 605
models 231–232	thin clients 235–236
off-premises versus on-premises	VPCs (virtual private clouds) 607, 608
services 234	611
private cloud 140, 232–233	Cloud Controls Matrix 884
public cloud 140, 232	Cloud Security Alliance (CSA) 139, 603,
resilience 325	884
security assessments 598	Cloud Service (Google) 603
attacks 601-603	cloud service providers (CSPs) 139, 233,
threats 598–600	598, 853–854
security controls 595, 598	Cloudflare 440
API inspection and integration 607,	cloudlets 235
610	Cluster Server 488
compute 607, 611	CMSs (call management systems) 351
container security 608–609	CMSS (Common Misuse Scoring
dynamic resource allocation	System) 887
607–608, 611	COBIT framework 882
high availability across zones 603,	code, infrastructure as 241–243
609	code security 261–263
instance awareness 608, 611	code camouflage 265
integration and auditing 604, 609	code checking 79, 265
native versus third-party 615	code injection 149, 273–274, 276

code reuse 179, 270	communications
code signing 466-467, 695, 696	communication plans 771-772
dynamic code analysis 470–471	embedded systems
manual code review 470	5G 357–358
static code analysis 468-469	baseband radio 359
cold aisles 386	NarrowBand 358
cold sites 222	subscriber identity module (SIM)
collection, log 186	cards 360
collisions 55–56, 463	Zigbee 360–361
command-and-control (C2) servers	community cloud 140, 233
37–38, 107	Community Emergency Response Team
commands. See individual commands	(CERT) 77
comment delimiters 73	community ports 491
Common Access Card (CAC) 629	company policies 878–879
Common Configuration Enumeration	compensating controls 871, 872
(CCE) 886	compilers 278
Common Configuration Scoring System	compile-time errors 81-82, 266-267
(CCSS) 886	compliance, software 918
Common Misuse Scoring System	computer certificates 696
(CMSS) 887	computer incident response teams. See
common names (CNs) 692	incident response (IR) teams
Common Object Request Broker	computer-based training (CBT) 901
Architecture (CORBA) 86	Concealment 415
Common Platform Enumeration (CPE)	concentrators, VPN 495
886	conditional access 678, 679
Common Remediation Enumeration	confidence tricks 19
(CRE) 886	Confidential information 905, 941–942
Common Security Advisory Framework	Confidentiality Impact (C) metric 184
(CSAF) 164	configuration management 164, 213
Common Vulnerabilities and Exposures	configuration reviews 182
(CVEs), Wi-Fi 78, 125, 146, 177,	mitigation techniques 824
571, 886	certificates, updating/revoking
Common Vulnerability Reporting	829–830
Framework (CVRF) 164	content filter/URL filter 828-829
Common Vulnerability Scoring System	data loss prevention (DLP) 825-826
(CVSS) 182–186, 886	firewall rules 825
Common Weakness Enumeration (CWE)	mobile device management (MDM)
75, 886	825–826
Common Weakness Scoring System	secure configuration guides 885–888
(CWSS) 887	weak configurations 150–155

connection methods and receivers	managerial 868
Bluetooth 570–571	operational 868, 869
cellular 572–573	physical 871–872
Global Positioning System (GPS)	preventative 869, 872
572, 584	technical 868, 869
near-field communication (NFC)	convert command 156
570–571	cookie hijacking 465
Radio frequency identification (RFID)	cookies 465
571–572	cookies, secure 465
satellite communications (SATCOM) 573	COOPs (continuity of operations plans) 774–775, 929
secure implementation best practices 573–574	Coordinated Universal Time (UTC) 440 845
containers 236–240, 608–609	COPE (corporate-owned, personally
containment, incident response (IR)	enabled) environments 572, 588
763–764, 830–831	copy backups 326
content addressable memory (CAM) 106	CORBA (Common Object Request
content filters 533, 828–829	Broker Architecture) 86
content management 576–578	corporate incidents 775
context-aware authentication 658	corporate-owned, personally enabled
continuity of operations plans (COOPs)	(COPE) environments 572,
774–775, 929	588–590
continuous delivery (CD) 279	corrective controls 870, 872
continuous deployment 279	correlation, log 186
continuous integration (CI) 279	correlation, Security Information and
continuous monitoring 139, 278	Event Management (SIEM)
continuous validation 278	788–789
Control Objectives for Information	Counter (CTR) mode 404, 408–409
and Related Technology	counterintelligence 860
(COBIT) 882	Counter-mode/CBC-MAC protocol
control systems, diversity in 332	(CCMP) 552
controller area network (CAN) bus	counters, secure 477
347–348	county names, certificate 692
controller-pilot data link communications	cover-files 416
(CPDLC) 349–350	Cozy Bear 346
controllers 562–563, 946	CPE (Common Platform Enumeration)
controls. See also physical security	886
compensating 871, 872	CRA (challenge-response authentication)
corrective 870, 872	49–50, 102, 571–572
detective 869–870, 872	cracking passwords 46
deterrent 870–871, 872	

CRE (Common Remediation	definition of 391
Enumeration) 886	digital signatures 395-396, 520
CREATE DATABASE statement 70	diversity in 331
CREATE INDEX statement 71	elliptic-curve cryptography (ECC)
CREATE TABLE statement 71	399–400
credentials	encryption 159, 362
credentialed vulnerability scans 182,	cloud computing 605, 610
349–350	data at rest 218
harvesting 18	data in transit/motion 218
policies 906–908	data in use/processing 218
crimeware 44	disk 473
criminal syndicates 120	entropy 419
Critical information 942	homomorphic 417
critical systems, identification of 929	international mobile subscriber
CRLs (certificate revocation lists) 533,	identity (IMSI) 49, 358, 584
689–690, 691, 829	mobile device management (MDM)
crossover error rate (CER) 304, 626	578-580
cross-site request forgery (XSRF) 85-86,	symmetric/asymmetric 411-413
149, 272, 275, 602	vulnerabilities 150–151
cross-site scripting (XSS) 54, 68-70, 110,	entropy 419
149, 272, 275, 464, 601	keys
.crt file extension 697	ephemeral 403
cryptography 396. See also encryption;	key exchanges 399
hashing; secure protocols	key signing keys (KSKs) 427
algorithms 498	length of 396
blockchain 409-410	password 655
cipher suites 409–411	personal unblocking keys (PUKs)
common use cases 417–418	360
cryptographic attacks	public/private 436–437
birthday 56	Secure Shell (SSH) 625, 628
collision 55–56	stretching 397
cryptographic protocols 551	zone signing keys (ZSKs) 427
Advanced Encryption Standard	lightweight 414–415
(AES) 552	limitations of 418–420
Counter-mode/CBC-MAC protocol	modes of operation 403-409
(CCMP) 552	authenticated 404
Simultaneous Authentication of	Cipher Block Chaining (CBC) 405
Equals (SAE) 551, 552	Cipher Feedback (CFB) 406
summary of 552	counter 404
Wi-Fi Protected Access 2 (WPA2)	Counter (CTR) 408–409
551	Electronic Code Book (ECB) 404
Wi-Fi Protected Access 3 (WPA3)	Output Feedback (OFB) 407
551–552	unauthenticated 404

perfect forward secrecy 400-401	cyber kill chain 770–771
post-quantum 402	Cybersecurity and Infrastructure Security
Public Key Cryptography Standards	Agency (CISA) 353–354
(PKCS) 412	Cybersecurity Framework (CSF) 882, 884
quantum 401–402	cybersecurity insurance 918
communications 401-402	cybersecurity resilience. See resilience
computing 402	CYOD (choose-your-own-device) 588
definition of 401	
salting 397-398, 462-463	D
steganography 415	DAC (discretionary access control)
audio 415–416	674–676, 679
homomorphic 417	DAEAD (deterministic authenticated
image 416–417	encryption with associated data)
video 416	404
cryptomalware 33–34	DAI (Dynamic ARP Inspection) 105
CSA (Cloud Security Alliance) 139, 603,	dark web 124–125, 143
884	Darkleech 146–147
CSAF (Common Security Advisory	dashboards, SIEM 786-789
Framework) 164	DAST (dynamic application security
CSF (Cybersecurity Framework) 882, 884	testing) 470–471
CSIRT. See incident response (IR) teams	data at rest 156, 218
CSOs (chief security officers) 930	data blockers, USB 379-380
CSPs (cloud service providers) 139, 233,	data breaches
598, 853–854	data types and asset classification
CSRF (cross-site request forgery) 602	941–942
CSRs (certificate signing requests) 689	fines 940
CTR (Counter) mode 404, 408–409	identity theft 940
Cuckoo 731–732	impact assessment 948
curl command 724–725	information lifecycle 947-948
custodians, data 946	intellectual property theft 940
custody, chain of 789, 844	notifications of 855-856, 941
CVE (Common Vulnerability and	personally identifiable information
Exposure) 78, 125, 146, 177, 886	(PII) 943
CVE Numbering Authorities (CNAs) 179	privacy enhancing technologies
CVRF (Common Vulnerability Reporting	944–945
Framework) 164	privacy notices 949
CVSS (Common Vulnerability Scoring	protected health information (PHI)
System) 182–186, 886	944
CWE (Common Weakness Enumeration)	reputation damage from 940
75, 886	response and recovery controls
CWSS (Common Weakness Scoring	220–221
System) 887	

security roles and responsibilities	security 793
945–947	Session Initiation Protocol (SIP)
terms of agreement 948	800
data classification 904-905	syslog/rsyslog/syslog-ng 800–801
data controllers 946	system 791–792
data custodians/stewards 946	Voice over Internet Protocol (VoIP)
data destruction, secure 386-387	799–800
Data Encryption Standard (DES) 412	web server 794
data exfiltration 907-908	metadata 805-806
data exposure 267	in email 808
data governance 904-905	in files 809
data in transit/motion 156, 218	on mobile devices 808
data in use/processing 156, 218	on web pages 808-809
data input 186	NetFlow 809–810
data labeling 676	protocol analyzers 813
data loss prevention (DLP) 139, 214-215,	Security Information and Event
453, 582, 586, 699, 825–826, 871	Management (SIEM)
data masking 216-218, 945	alerts 788
data minimization 944-945	correlation 788-789
data owners 946	dashboards 786–789
data privacy. See privacy breaches	sensitivity 788
data privacy officers (DPOs) 905	sensors 787
data processors 946	trends 788
data protection 214–215	sFlow 810–811
data protection officers (DPOs) 947	vulnerability scan output 785–786
data recovery 859	data sovereignty 214–215
data retention policies 775-776, 906	data types 941–942
data sanitization 748–749	databases 461–462
data sources	DC (direct current) 380
bandwidth monitors 804	DCOM (Distributed Component Object
Internet Protocol Flow Information	Model) 86
Export (IPFIX) 811–813	DCS (distributed control systems) 343
log files 789	DCT (Discrete Cosine Transforms) 417
application 792–793	dd utility 744–745
authentication 789–796	DDoS (distributed denial-of-service)
Call Manager 799–800	attacks 37–38, 54, 111–113, 601
Domain Name System (DNS)	dead box forensic collection 858
795–796	dead code 270
dump files 797	Dead Peer Detection (DPD) 501
journaletl 802	deauthentication attacks 101
network 790	decentralized access control 640, 679
NXLog 803–804	decentralized cameras 375

decentralized trust models 698	development environments 257–260
deception and disruption techniques	development lifecycle. See software
fake telemetry 223	development lifecycle (SDLC)
honeyfiles 223	devices, forensic acquisition 850-851
honeypots 221–223	devices, mobile. See mobile solutions
DeepSound 415	DevOps 259, 263–265, 278–279
defense in depth 264	DevSecOps 259, 278–279
defrag command 158	DFIR (Digital Forensics and Incident
defragmentation 158	Response) 744
degaussing 387	DHCP (Dynamic Host Configuration
delegation of access 662	Protocol) 443
DELETE statement 70	snooping 512–513
delivery	starvation attack 513
continuous 279	diagrams, configuration 213
malware 43-45	Diamond Model of Intrusion Analysis
demilitarized zones (DMZs) 384, 491	768–770
denial-of-service (DoS) attacks 88, 122,	dictionary attacks 45, 749
267, 601, 770	differential backups 326, 328
deny lists 467–468, 578, 583, 822–823	Diffie-Hellman 500–501
Department of Defense (DoD) security	dig command 709-710
standards 674	DigiCert 691
deployment, continuous 279	digital forensics. See forensics, digital
deprovisioning, application 260	Digital Millennium Copyright Act 220
DER (Distinguished Encoding Rules)	digital rights management (DRM) 67,
697	219–220
dereferencing, pointer 75–76	digital signal processors (DSPs) 359
DES (Data Encryption Standard) 412	Digital Signature Algorithm (DSA) 396
design constraints, embedded systems 361	412
authentication 363	digital signatures 395-396, 520
compute 361–362	digital video recorders (DVRs)
cost 363	376–377
crypto 362	direct current (DC) 380
implied trust 363	directory services 291-292, 442
inability to patch 362	directory traversal 75-76, 149, 274-275,
network 362	276
power 361	disablement 635, 639
range 363	disassociation attacks 101
destruction and disposal services 387	disaster analysis 924–925
detective controls 869-870, 872	disaster recovery plans (DRPs) 330-331
deterministic authenticated encryption	772–773, 926, 928–930
with associated data (DAEAD) 404	disclosures, public 940
deterrent controls 869, 870–871, 872	discovery of identity 623–624

discovery tools	DKIM (Domain Keys Identified Mail)
	110, 426
9	DLL (dynamic link library) injection 74,
1 6	274
e	DLP (data loss prevention) 139,
	214–215, 453, 582, 586, 699,
netcat 720–721	825–826, 871
netstat 718–720	DLT (Distributed Ledger Technology)
nmap 711–714	409
nslookup 709–710	DMARC (Domain-based Message
pathping 716–717	Authentication, Reporting &
ping 714–716	Conformance) 111
ping6 716	DMSSEC (Domain Name System
tracert/traceroute 707-709	Security Extensions) 796
Discrete Cosine Transforms (DCT) 417	DMZs (demilitarized zones) 384, 491
discretionary access control (DAC)	DNS (Domain Name System) 442-443
674–676, 679	attacks 54
Disk Cleanup 157	cloud-based 601
Disk Defragmenter 158	DDoS (distributed denial-of-
disks	service) 37–38, 54, 111–113, 601
backups 326	DNS amplification attack 112
encryption 473	DNS poisoning 108–110, 223
forensic acquisition of 848	domain hijacking 108
hardening 157–159	domain name kiting 109–110
redundancy	domain reputation 110–111
definition of 315–316	prevalence of 107
multipath 319	URL redirection attacks 110
	DNS Security Extensions (DNSSEC)
• •	108, 426–427
	DNS sinkholes 223
· · · · · · · · · · · · · · · · · · ·	logs 795–796
,	OpenDNS 509–510
	dnsenum 728–729, 796
697	DNSSEC (Domain Name System
Distributed Component Object Model	Security Extensions) 108, 426–427
	442–443
	Docker 237–240
· · · · · · · · · · · · · · · · · · ·	docker images command 237
, , , , ,	docker ps command 238
	docker search command 239
409	Document Object Model (DOM)
diversity 278, 331–332	68–69
	definition of 707 dig 709–710 hping 717 ifconfig 710–711 ipconfig 710 netcat 720–721 netstat 718–720 nmap 711–714 nslookup 709–710 pathping 716–717 ping 714–716 ping6 716 tracert/traceroute 707–709 Discrete Cosine Transforms (DCT) 417 discretionary access control (DAC) 674–676, 679 Disk Cleanup 157 Disk Defragmenter 158 disks backups 326 encryption 473 forensic acquisition of 848 hardening 157–159 redundancy definition of 315–316 multipath 319 Redundant Array of Inexpensive Disks (RAID) 315–316 Redundant Array of Inexpensive Disks (RAID) 869 self-encrypting 475–476 Distinguished Encoding Rules (DER) 697 Distributed Component Object Model (DCOM) 86 distributed control systems (DCS) 343 distributed denial-of-service (DDoS) attacks 37–38, 54, 111–113, 601 Distributed Ledger Technology (DLT) 409

documentation, forensic	DTP (Dynamic Trunking Protocol) 106
admissibility of 843	dual parity, striping with (RAID) 316, 318
chain of custody 844	dual power supplies 321
event logs 845–846	dual supply power 321–322
interviews 846–847	due care 900
legal hold 842	due diligence 900
reports 846	due process 900
tagging of 845–846	dump files 797
timelines and sequence of events	dumpster diving 13
844–845	duties, separation of 898, 900
time offset 844	DV (domain validation) certificates 694
timestamps 844	DVRs (digital video recorders) 376–377
video 842–843	dynamic application security testing
DOM (Document Object Model) 68-69	(DAST) 470–471
Domain Keys Identified Mail (DKIM)	Dynamic ARP Inspection (DAI) 105
110, 426	dynamic code analysis 269, 470–471
domain name kiting 109-110	Dynamic Host Configuration Protocol.
domain name resolution 442–443	See DHCP (Dynamic Host
Domain Name System. See DNS	Configuration Protocol)
(Domain Name System)	dynamic link library (DLL) injection 74,
domain reputation 110-111	274
domain validation (DV) certificates 694	dynamic resource allocation 607-608, 611
Domain-based Message Authentication,	Dynamic Trunking Protocol (DTP) 106
Reporting & Conformance	
(DMARC) 111	E
DoS (denial-of-service) attacks 88, 601,	EAP (Extensible Authentication Protocol)
770	553–556, 664–667
DPD (Dead Peer Detection) 501	EAP-FAST 556, 666
DPOs (data privacy officers) 905	EAP-MD5 556, 666
Dragonfly 101, 552	EAP-TLS 556, 666
driver manipulation 89	EAP-TTLS 556, 666
drives. See disks	LEAP 666
DRM (digital rights management) 67,	PEAP 556, 666
219–220	Easter eggs 39–40
drones 205, 353–354, 382–383	east-west traffic 492
DROP INDEX statement 71	ECB (Electronic Code Book) 404
DROP TABLE statement 71	ECC (elliptic-curve cryptography)
DRPs (disaster recovery plans) 772-773,	399–400
926, 928–930	ECDSA (Elliptic Curve Digital Signature
DSA (Digital Signature Algorithm) 396,	Algorithm) 551–552
412	edge computing 234–235
DSPs (digital signal processors) 359	e-discovery 858–859

EDR (endpoint detection and response)	NarrowBand 358
452–453	subscriber identity module (SIM)
education, user 22-24, 899, 901-902	cards 360
EEA (European Economic Area) 214, 220	Zigbee 360–361
EER (equal error rate). See crossover	constraints 361
error rate (CER)	authentication 363
eEye Digital Security, Retina Web	compute 361–362
Security Scanner 204	cost 363
EFS (Encrypting File System) 694	crypto 362
EIGamal 412	implied trust 363
elasticity 279–280	inability to patch 362
electrical metallic tubing (EMT) 385	network 362
electromagnetic (EM) frequency band	power 361
102	range 363
Electronic Code Book (ECB) 404	definition of 339
electronic locks 379	drones 353-354
electronic serial numbers (ESNs) 49, 584	Field-Programmable Gate Array
eliciting information 15-16	(FPGA) 340
Elliptic Curve Digital Signature	heating, ventilation, and air
Algorithm (ECDSA) 551-552	conditioning (HVAC) 352-353
elliptic-curve cryptography (ECC) 399-	industrial control systems (ICSs)
400	341–343
elliptic-curve techniques 412	Internet of Things (IoT) 38, 98, 113,
EM (electromagnetic) frequency band	344–346, 358, 414
102	medical systems 347
email	multifunction printers (MFPs) 354
attack vectors 122	Raspberry Pi 339
certificates 696	real-time operating systems (RTOSs)
email protocol port numbers 441	355
email servers 145	smart meters 350
metadata in 808	supervisory control and data
Spam 13	acquisition (SCADA) 341-343
SPIM (Spam over Internet Messaging)	surveillance systems 355-356
13	system on a chip (SoC) 356-357
synchronization 440	vehicles 347-348
Email Security Appliance (ESA) 111	Voice over Internet Protocol (VoIP)
embedded systems	350, 799–800
aircraft 348–350	emergency preparedness logs 383
Arduino 340	EMT (electrical metallic tubing) 385
communication considerations	Encapsulating Security Payload (ESP)
5G 357–358	437, 503, 520
baseband radio 359	EnCase 850–851

Encrypting File System (EFS) 694	configuration management 213,
encryption 159, 362	215–216
cloud computing 605, 610	data masking 216–218
data at rest 218	data protection 214–215
data in transit/motion 218	data sovereignty 214–215
data in use/processing 218	deception and disruption techniques
disk 473	fake telemetry 223
entropy 419	honeyfiles 223
homomorphic 417	honeypots 221–223
international mobile subscriber identity	digital rights management (DRM)
(IMSI) 49, 358, 584	219–220
mobile device management (MDM)	DNS sinkholes 223
578–580	encryption 218
modes of operation 403-409	hashing 218–219
authenticated 404	response and recovery controls
Cipher Block Chaining (CBC) 405	220–221
Cipher Feedback (CFB) 406	site resiliency 221–222
Counter (CTR) 404, 408–409	enterprise resource planning (ERP) 883
Electronic Code Book (ECB) 404	entropy 419
Output Feedback (OFB) 407	enumerations 886
unauthenticated 404	env command 739
symmetric/asymmetric 411–413	environmental disaster 924
vulnerabilities 150–151	environmental groups 182
end of life (EOL) 904	environmental variables 740
end of service life (EOSL) 904	environments, software development
end users 947	257–260
endpoint detection and response (EDR)	known 198
452–453	partially known 199
endpoint DLP systems 214	unknown 198–199
endpoint protection 451	EOL (end of life) 904
endpoint security solutions 822	EOSL (end of service life) 904
approved lists 822	ephemeral keys 403
block/deny lists 467–468, 578, 583,	equal error rate. See crossover error rate
822–823	(CER)
quarantine 823–824	eradication phase, incident response (IR)
end-to-end headers (HTTP) 466	764
energy management, SCADA control	ERP (enterprise resource planning) 883
systems 342–343	error handling 79–82
engagement, rules of 200	compile-time errors 81–82, 266–267
enterprise environments	error-based technique 74
API considerations 216	input handling 80
	runtime errors 81–82, 266–267

exploitation frameworks 747–748, 770	Federal Aviation Administration (FAA)
Extended Detection and Response (XDR)	348–349, 353, 382–383
189	Federal Information Security
extended validation (EV) certificates 694	Management Act (FISMA) 776
Extensible Authentication Protocol. See	Federal Risk and Authorization
EAP (Extensible Authentication	Management Program
Protocol)	(FedRAMP) 599
Extensible Configuration Checklist	Federal Trade Commission (FTC) 17,
Description Format (XCCDF)	221
885	federated identity management (FIM)
Extensible Markup Language (XML)	658
injection 74–75, 273–274	federation 292-293, 623-624, 658, 672
external actors 122	FedRAMP (Federal Risk and
external risk 917. See also risk	Authorization Management
management	Program) 599
extinguishers, fire 381	fencing 380–381
extranets 492–493, 899	FFmpeg 416
	FIDO (Fast Identity Online) 297
F	Field-Programmable Gate Array (FPGA)
f8-mode (SRTP) 430	340
FAA (Federal Aviation Administration)	file and code repositories 127
348–349, 353, 382–383	file integrity monitors 542
facility automation 345	file manipulation 732–733
facility codes 373	cat command 734–735
fail-closed 927	chmod command 736-737
fail-open 927	grep command 735-736
failure, single point of 156, 926	head command 733
failure in time (FIT) 926	logger command 737-738
fake telemetry 223	tail command 734
false acceptance rate (FAR) 303, 626	file servers 144
false negatives 181, 519, 520	file transfer 440
false positives 181, 518, 520	File Transfer Protocol. See FTP (File
false rejection rate (FRR) 303, 626	Transfer Protocol)
Faraday cages 383, 562–563	fileless viruses 37
FAST (Flexible Authentication via Secure	files
Tunneling) 556	log 789
Fast Identity Online (FIDO) 297	application 792–793
FAT 850	authentication 789-796
FDE (full-disk encryption) 473, 475–476	Call Manager 799–800
fdisk -l command 157	Domain Name System (DNS)
FEAT command 433	795–796
	dump files 797

journaletl 802	rules 528, 825
network 790	unified threat management (UTM) 524
NXLog 803–804	virtual 534–535
security 793	web application 531
Session Initiation Protocol (SIP)	wireless security 562
800	firmware
syslog/rsyslog/syslog-ng 800–801	firmware over-the-air (OTA) updates
system 791–792	583
Voice over Internet Protocol (VoIP)	forensic acquisition of 851
799–800	FIRST (Forum of Incident Response and
web server 794	Security Teams) 180
metadata in 809	FISMA (Federal Information Security
filtering	Management Act) 776
content/URL 533, 828-829	FIT (failure in time) 926
MAC (media access control) 513	flash drives, malicious 47-48
packet 528	Flexible Authentication via Secure
financial information. See personally	Tunneling (FAST) 556
identifiable information (PII)	flood, disaster analysis for 925
Financial Services Information Sharing	flooding, MAC (media access control) 106
and Analysis Center (FS-ISAC)	FM200 381
124	fog computing 234–235
fines 940	footprinting 205
fingerprint authentication 300-301	Forcepoint 533
fire	Forefront Identity Manager 658
disaster analysis for 924-925	Foremost 415
suppression 381	Forensic Toolkit (FTK) 747, 850-851
firewalls 146, 198	forensics, digital
appliance 534	acquisition
application-level gateway (ALG) 529	artifacts 853
in cloud 613-614, 615	cache 852
configuration 529–533	checksums 857
content URL/filtering 533	data breach notification laws
hardware versus software 534	855–856
host-based 457-458, 534	definition of 847
multihomed connections 532	device 850–851
NAT gateway 529	disk 848
network-based application layer 530	firmware 851
next-generation firewall (NGFW)	hashing 856–857
453–454, 524	integrity 856
packet filtering 528	network 852-853
personal 534	operating system 850
purpose of 526–528	order of volatility 848

on-premises versus cloud 853–854	frameworks
random-access memory (RAM)	exploitation 747–748
848–849	IT security 881–884
regulatory and jurisdictional 855	FreeBSD 676
right-to-audit clauses 854	frequency distributions 159
snapshot 851-852	FRR (false rejection rate) 303, 626
swap/pagefile 849-850	fsck command 158
data recovery 859	FTC (Federal Trade Commission) 17,
definition of 744, 837	221
Digital Forensics and Incident	FTK (Forensic Toolkit) 747, 850-851
Response (DFIR) 744	FTP (File Transfer Protocol)
documentation/evidence	FTP servers 147–148
admissibility of 843	FTPS (File Transfer Protocol, Secure)
chain of custody 844	432–433
event logs 846	SFTP (Secure File Transfer Protocol)
interviews 846–847	434
legal hold 842	full backups 326, 328-331
reports 846	full tunnel mode, SSL/TLS VPN 508
tagging of 845–846	full-disk encryption (FDE) 473, 475–476
timelines and sequence of events	functions, hash 218-219
844–845	fuzz testing 80, 269–270, 471
video 842–843	fuzzers 269–270
e-discovery 858–859	
nonrepudiation 859-860	G
preservation 858	gait analysis 302
provenance 857–858	Galois Message Authentication Code
strategic intelligence/	(GMAC), AES in 498
counterintelligence 860	Galois/Counter Mode (GCM) 498,
tools	551–552
Autopsy 747	gamification 902
dd 744–745	gapping 384
FTK Imager 747	gateways
memdump 745	application-level 529
WinHex 746	NAT 529
forgeries, request 85–86	transit 246–247
formats, certificate 697	GCM (Galois/Counter Mode) 498,
Forum of Incident Response and Security	551–552
Teams (FIRST) 180	GDPR (General Data Protection
forward proxy 516	Regulation) 42, 214, 220, 356, 434
forward secrecy 400-401	453, 760, 855, 878–879, 947
FPGA (Field-Programmable Gate	general-purpose I/O GPIO framework
Array) 340	extension (GpioClx) 477

generators 321	groups
generic accounts 629	base 182
Generic Routing Encapsulation (GRE)	environmental 182
520	security 607, 611
geofencing 572–573, 578–580	temporal 182
geographic dispersal 315	Grover's algorithm 402
geolocation 578-580, 639	guards 377
geotagging 572-573, 584, 586, 639	guest accounts 629
GitHub repositories 8, 18, 127,	Guidelines for Evidence Collection and
203, 258	Archiving 848
GitLab 127, 258	
Global Positioning System (GPS)	Н
572, 584	HA (high availability) 329-330
Global Regular Expression Print (grep)	across zones 603, 609
735–736	cloud computing 605, 610
GMAC (Galois Message Authentication	HackerOne 203
Code), AES in 498	hackers 121. See also penetration testing
Gnutella 530	hacktivists 120, 122
Golden SAML attacks 293	hands-on activities 953
Google	hard disks
Cloud 233, 603, 853	backups 326
Google Pay 584	encryption 473
Kubernetes 239–240	forensic acquisition of 848
OAuth 2.0 292	hardening 157–159
Secret Manager 604	redundancy
governance, risk, and compliance (GRC)	definition of 315–316
880, 904–905	multipath 319
GpioGlx (general-purpose I/O GPIO	Redundant Array of Inexpensive
framework extension) 477	Disks (RAID) 315-316
GPOs (group policy objects) 474	self-encrypting 475-476
GPS (Global Positioning System) 572,	hardening
584	applications 471
Gramm-Leach-Bliley (GLB) Act 880	hard disks 157–159
GraphQL 86	operating systems 473–474
gray hat hackers 121	hardware root of trust 476-477
gray-box testing 80	hardware security modules (HSMs) 478,
GRC (governance, risk, and compliance)	524, 587, 656
880, 904–905	Hardware Shield 851
GRE (Generic Routing Encapsulation)	hashcat 749
520	HashCorp Nomad 240
grep command 735–736	Hashed Message Authentication Mode
group policy objects (GPOs) 474	(HMAC) 295–296, 551–552

Hashed Message Authentication Mode (HMAC) 295–296 Message Digest Algorithm 5 (MD5) 55, 219 padding 463 pass the hash 89–90 salting 47, 82 Secure Hash Algorithm (SHA) 55, 463, 551–552 SHA-256 463 HAVA (Help America Vote Act) 880 head command 733 Hall MESSAGE Authentication Mode) 295–296, 551–552 HMAC-based one-time password (HOTP) 295–296 HMI (human-machine interface) 341 hoaxes 19 holds, legal 842 HOME environment variable 740 homomorphic encryption 417 homomorphic steganography 417
Message Digest Algorithm 5 (MD5) 55, 219 padding 463 pass the hash 89–90 salting 47, 82 Secure Hash Algorithm (SHA) 55, 463, 551–552 SHA-256 463 HAVA (Help America Vote Act) 880 Mode) 295–296, 551–552 HMAC-based one-time password (HOTP) 295–296 HMI (human-machine interface) 341 hoaxes 19 holds, legal 842 HOME environment variable 740 homomorphic encryption 417 homomorphic steganography 417
55, 219 padding 463 pass the hash 89–90 salting 47, 82 Secure Hash Algorithm (SHA) 55, 463, 551–552 SHA-256 463 HAVA (Help America Vote Act) 880 homomorphic encryption 417 head command 733 Mode) 295–296, 551–552 HMAC-based one-time password (HOTP) 295–296 HMI (human-machine interface) 341 hoaxes 19 holds, legal 842 HOME environment variable 740 homomorphic encryption 417 homomorphic steganography 417
pass the hash 89–90 salting 47, 82 HMI (human-machine interface) 341 Secure Hash Algorithm (SHA) 55, 463, hoaxes 19 551–552 holds, legal 842 SHA-256 463 HOME environment variable 740 HAVA (Help America Vote Act) 880 homomorphic encryption 417 head command 733 homomorphic steganography 417
salting 47, 82 Secure Hash Algorithm (SHA) 55, 463, 551–552 SHA-256 463 HOME environment variable 740 HAVA (Help America Vote Act) 880 homomorphic encryption 417 head command 733 HMI (human-machine interface) 341 hoaxes 19 HOME environment variable 740 homomorphic steganography 417
Secure Hash Algorithm (SHA) 55, 463, hoaxes 19 551–552 holds, legal 842 SHA-256 463 HOME environment variable 740 HAVA (Help America Vote Act) 880 homomorphic encryption 417 head command 733 homomorphic steganography 417
551–552 holds, legal 842 SHA-256 463 HOME environment variable 740 HAVA (Help America Vote Act) 880 homomorphic encryption 417 head command 733 homomorphic steganography 417
SHA-256 463 HOME environment variable 740 HAVA (Help America Vote Act) 880 homomorphic encryption 417 head command 733 homomorphic steganography 417
HAVA (Help America Vote Act) 880 homomorphic encryption 417 head command 733 homomorphic steganography 417
head command 733 homomorphic steganography 417
headers, HTTP (Hypertext Transfer honeyfiles 223
Protocol) 465–466 honeypots 221–223
Health Insurance Portability and hop-by-hop headers (HTTP) 466
Accountability Act (HIPAA) 453, horizontal privilege escalation 67–68
880, 940, 944 host command 716
heat maps 559 host intrusion detection systems (HIDS)
heating, ventilation, and air conditioning 215, 456, 578, 586
(HVAC) 352–353 host intrusion prevention systems
Help America Vote Act (HAVA) 880 (HIPSs) 454–455, 523 heuristic-based analysis 521 host security. <i>See also</i> application security
heuristic-based intrusion heuristic-based intrusion antimalware 452
detection 521 antivirus software 451
HID Global 629 boot integrity
HIDSs (host intrusion detection systems) boot attestation 460–461
215, 456, 578, 586 definition of 458–459
high availability (HA) 329–330 measured boot 459–460
across zones 603, 609 Unified Extensible Firmware
cloud computing 605, 610 Interface (UEFI) 459
hijacking data loss prevention (DLP) 453
BGP 535–536 databases 461–462
blind 84 endpoint 451, 452–453
cookie 465 hashing 463
session 54, 83, 465, 601

host intrusion detection systems	IaC (infrastructure as code) 241-243, 260
(HIDS) 215, 456, 578, 586	IACS 342
host intrusion prevention systems (HIPSs) 454–455, 523	IACS (industrial automation and control systems) 342, 343
host-based firewalls 457-458	IAM (identity and access management)
next-generation firewall (NGFW)	633
453–454	identity and access lifecycle 633-635
salting 462–463	account audits 635
Host-based IPSs (HIPSs) 523	disablement 635
hot aisles 386	privileges provisioning 635
hot sites 221	registration and identity validation
hotfixes and patches 160-164, 179-180,	633–635
362, 474–475	policy 605
HOTP (HMAC-based one-time	IBM
password) 295–296	AppScan 204
hotspots 585	Data Encryption Standard (DES) 412
hping command 717	QRadar 526
Hping.org 717	IC (integrated circuit) cards 373
HSMs (hardware security modules) 478,	ICCIDs (unique serial numbers) 360
524, 587, 656	ICS-CERT (Industrial Control Systems
HTTP (Hypertext Transfer Protocol)	Cyber Emergency Response
465–466, 577	Team) 362
HTML5 505-508	ICSs (industrial control systems) 353-354
HTTPS 82, 268, 436–437, 577	identification phase, incident response
human resources (HR) personnel 901	(IR) 763
human-machine interface (HMI) 341	identity. See also authentication;
HUMINT (human intelligence) 18	certificates; passwords
HVAC (heating, ventilation, and air	discovery of 623-624
conditioning) 352–353	federation 623
hybrid attacks 749	identity and access management (IAM)
hybrid cloud 140, 233	633–635
hyper-jacking 248	identity and access lifecycle 633-635
Hypertext Transfer Protocol. See HTTP	policy 605
(Hypertext Transfer Protocol)	identity fraud 17, 638
hypervisors 325	baiting 19
attacks 601	credential harvesting 18
hypervisor-based keyloggers 42	hoaxes 19
	identity theft 940
I	impersonation/pretexting 19
IA (information assurance). See risk	invoice scams 17
management	reconnaissance 18
IaaS (infrastructure as a service) 139, 231,	typo squatting 20, 44
603, 853	watering hole attacks 20, 85

identity providers (IdPs) 292, 623–624,	communication plans //I-//2
661	continuity of operations plans
Secure Shell (SSH) keys 628	(COOPs) 774–775, 929
smart cards 629	cyber kill chain 770–771
tokens 627–628	data retention policies 775–776
Identity Services Engine (ISE) 590	definition of 760–761
IdPs (identity providers) 292, 623–624,	Diamond Model of Intrusion Analysis
661	768–770
IDSs (intrusion detection systems). See	disaster recovery plans (DRPs)
HIDSs (host intrusion detection	772–773
systems); network intrusion	exercises
detection systems (NIDSs)	simulations 766-767
IEEE 802.1X standard 510, 553-556,	tabletop 765–766
562, 664–667, 673	walkthrough 766
IETF (Internet Engineering Task Force)	incident response teams 175, 760,
IPFIX (Internet Protocol Flow	775–776
Information Export) 187	MITRE ATT&CK framework 18,
RFC (request for comments) 128	128–129, 176, 205, 223, 767–768
ifconfig command 710–711	process and lifecycle
IIS (Internet Information Services) 146,	containment 763–764
697, 794	eradication 764
IKE (Internet Key Exchange)	identification 763
IKEv1 Phase 1 negotiation 498-501	lessons learned 764–765
IKEv1 Phase 2 negotiation 501–503	overview of 761–762
IKEv2 504–505	preparation 762–763
image backups 326	recovery 764
image steganography 416–417	stakeholder management 771-772
IMAP (Internet Message Access Protocol)	incident response (IR) teams 175, 760,
438–439	775–776
IMEI (international mobile equipment	incremental backups 326, 328
identity) 49, 584	indicators of compromise (IoCs) 123,
immutability 263	762, 832, 853
impact assessment 184, 920, 921, 948	industrial automation and control systems
impersonation 19	(IACS) 342, 343
implicit deny 528, 680	industrial camouflage 377
impossible travel time 639	Industrial Control Systems Cyber
IMSI (international mobile subscriber	Emergency Response Team
identity) encryption 358, 584	(ICS-CERT) 362
in-band SQL injection 73	industrial control systems (ICSs)
incident response (IR) plans	341–343, 353–354
business continuity plans (BCPs)	Industry 4.0 342
773–774, 929	influence campaigns 21

information assurance (IA). See risk	integrity 289
management	boot
information lifecycle 947–948	boot attestation 460-461
Information Sharing and Analysis Centers	definition of 458–459
(ISACs) 123–125	measured boot 459-460
Information Society Directive 220	Unified Extensible Firmware
information systems security officers	Interface (UEFI) 459
(ISSOs) 930, 947	forensic acquisition 856
Information Technology Infrastructure	integrity control 378
Library (ITIL) 882	measurement of 184, 261, 887
information technology operations 263	Intel Hardware Shield 851
InfraGard 128	intellectual property theft 917, 940
infrastructure as a service (IaaS) 139, 231,	intelligence
603, 853	automated indicator sharing (AIS) 125
infrastructure as code (IaC) 241-243, 260	Information Sharing and Analysis
inherent risk 921	Centers (ISACs) 123-125
inheritance, of permissions 644-646	intelligence fusion 177
Initial Contact 501	MITRE ATT&CK framework 18,
initialization vectors (IVs) 103, 403	128–129, 176, 205, 223, 767–768
injection 70	research sources 127-128
code 149, 273–274, 276	strategic 860
DLL (dynamic link library) 74	Structured Threat Information
LDAP (Lightweight Directory Access	eXpression (STIX) 125-127
Protocol) 74, 144	Trusted Automated eXchange of
SQL (Structured Query Language) 54,	Indicator Information (TAXII)
70–74, 273–274, 464	125–127
XML (Extensible Markup Language)	vulnerability databases 125
74–75	interconnection security agreements
inline prevention detection systems (IPSs)	(ISAs) 903
523–524	intermediate certificate authorities 696
input handling 79–82	internal actors 122
input validation 80, 81, 267-268, 464	internal information 905
INSERT INTO statement 70	internal risk 917. See also risk
inspection, API 607, 610	management
instance awareness 608, 611	international mobile equipment identity
insurance, cybersecurity 918	(IMEI) 49, 584
integer overflows 77, 271	international mobile subscriber identity
integrated circuit (IC) cards 373	(IMSI) 49, 358, 584
integration	International Organization for
API 607, 610	Standardization (ISO) 881, 884,
cloud computing 604, 609	893
continuous 279	Internet Engineering Task Force (IETF)

IPFIX (Internet Protocol Flow	Domain Name System (DNS)
Information Export) 187	795–796
RFC (request for comments) 128	dump files 797
Internet Information Services (IIS) 146,	journaletl 802
697, 794	network 790
Internet Key Exchange. See IKE (Internet	NXLog 803–804
Key Exchange)	security 793
Internet Message Access Protocol (IMAP) 438–439	Session Initiation Protocol (SIP) 800
Internet of Things (IoT) 38, 98, 113,	syslog/rsyslog/syslog-ng 800–801
344–346, 358, 414	system 791–792
Internet Protocol. See IP (Internet	Voice over Internet Protocol (VoIP)
Protocol)	799–800
Internet Protocol Flow Information	web server 794
Export (IPFIX) 187, 524, 811–813	metadata
Internet Security Association and Key	in email 808
Management Protocol (ISAKMP)	in files 809
497	on mobile devices 808
Internet service providers (ISPs) 808	types of 805–806
interviews, forensic 846–847	on web pages 808-809
Intigriti 203	NetFlow 809–810
intranets 492–493	protocol analyzers 813
intrusion detection systems. See host	Security Information and Event
intrusion detection systems	Management (SIEM)
(HIDS)	alerts 788
intrusion detection systems (IDSs).	correlation 788–789
See network intrusion detection	dashboards 786–789
systems (NIDSs)	sensitivity 788
intrusion phase, cyber kill chain 770	sensors 787
intrusion prevention systems. See host	trends 788
intrusion prevention systems	sFlow 810–811
(HIPSs)	vulnerability scan output 785–786
intrusive scans 182	invoice scams 17
Investigate 509–510	IoCs (indicators of compromise) 123,
investigations, data sources for	762, 832, 853
bandwidth monitors 804	IoT (Internet of Things) 38, 98, 113,
Internet Protocol Flow Information	344–346, 358, 414
Export (IPFIX) 811–813	IP (Internet Protocol). See also IPsec
log files 789	addresses
application 792–793	IPv4 443–444
authentication 789–796	IPv6 536–537
Call Manager 799–800	virtual 488

configuration management 213	ISAs (interconnection security
IP proxy 514	agreements) 903
IP scanners	ISE (Identity Services Engine) 590
arp command 721–722	ISO (International Organization for
Cuckoo 731–732	Standardization) 881, 884, 893
curl command 724-725	isolation 491, 562, 830
definition of 721	ISPs (internet service providers) 808
dnsenum 728-729	ISSOs (information systems security
Nessus 730–731	officers) 930, 947
route command 723-724	issuers, certificate 692
scanless 727–728	IT contingency planning (ITCP) 929
sn1per 726–727	IT security frameworks 881–884
theHarvester 725–726	ITIL (Information Technology
IP-Box 850-851	Infrastructure Library) 882
ipconfig command 710	ITU-T X.690 encoding formats 697
IPFIX (Internet Protocol Flow	IVs (initialization vectors) 103, 403
Information Export) 187, 524,	
811–813	J
IPsec 247, 437–438, 497. See also IKE	jamming 102, 561–562
(Internet Key Exchange)	Japan's Personal Information Protection
attributes 501-502	Act (JPIPA) 220
Authentication Header (AH) 437	JavaScript Object Notation (JSON)
Encapsulating Security Payload (ESP)	injection 273–274
437, 503	JavaScript-based keyloggers 43
IKEv1 Phase 1 negotiation 498-501	job rotation 898, 900
IKEv1 Phase 2 negotiation 501-503	John the Ripper 44, 749
IKEv2 504–505	journalctl 802
modes 438, 503	jump servers 514
passthrough 501	jurisdictional forensic intervention 855
IPSs (intrusion prevention systems). See	,
HIPSs (host intrusion prevention	K
systems); network intrusion	Kali forensics 850
detection systems (NIDSs)	Kali Linux 415, 953
IR. See incident response (IR) plans	Katacoda 239
iris recognition 301	KBA (knowledge-based authentication)
ISACA COBIT framework 882	625, 656–657
ISACs (Information Sharing and Analysis	KDC (key distribution center) 668
Centers) 123–125	KE (Key Exchange) 500
ISAKMP (Internet Security Association	Kerberoasting TGS 292
and Key Management Protocol)	Kerberos 82–83, 89, 292, 553, 668–670,
497	673

kernel-based keyloggers 42	laws 879–880
Key Exchange (KE) 500	Layer 2 attacks
.key file extension 697	ARP cache poisoning 105
key recovery agents 699	MAC cloning attacks 106
key signing keys (KSKs) 427	MAC flooding attacks 106
keyloggers 42–43, 108, 113	security best practices 106–107
keys 688	Layer 2 Forwarding Protocol (L2F) 508
ephemeral 403	Layer 2 security 512
escrow 699	Bridge Protocol Data Unit (BPDU)
generation algorithms for 395	guard 512
key distribution center (KDC) 668	DHCP snooping 512–513
key exchanges 399	loop protection 512
key signing keys (KSKs) 427	MAC filtering 513
length of 396	Layer 2 Tunneling Protocol (L2TP) 494,
mobile device management (MDM)	505-508
577–578	LCP (Link Control Protocol) 44
password 655	LDAP (Lightweight Directory Access
personal unblocking keys (PUKs) 360	Protocol)
Public Key Cryptography Standards	injection attacks 144, 273-274, 291,
(PKCS) 412	442, 667–670
public/private 436–437	Lightweight Directory Access Protocol
Secure Shell (SSH) 625, 628	over SSL (LDAPS) 432
stretching 397	LDAPS (Lightweight Directory Access
zone signing keys (ZSKs) 427	Protocol over SSL) 432
kiting, domain name 109–110	leaks, memory 78, 88
knowledge-based authentication (KBA)	LEAP (Lightweight EAP) 666
625, 656–657	least functionality 152
known environment/white box testing	least privilege 264, 630, 681, 908
198, 468–469	least significant bit (LSB) steganography
KSKs (key signing keys) 427	416–417
Kubernetes 239–240, 279–280	least-trusted zones 825
	ledgers, public 409–410
L	legacy platforms 165
L0phtCrack 47	legal hold 842
L2F (Layer 2 Forwarding Protocol) 508	lessons learned phase, incident response
L2TP (Layer 2 Tunneling Protocol) 494,	(IR) 764–765
505–508	libraries, third-party 265
LANG environment variable 740	licensing 918
last known good configuration (LKGC)	lifecycle
329	identity and access 633–635
lateral movement 201, 770	account audits 635
lateral traffic 492	disablement 635

privileges provisioning 635	locality attribute (certificates) 692
registration and identity validation	Lockheed Martin 770
633–635	locks and lockout programs 378-379,
incident response (IR)	579, 639
containment 763–764	log collectors 186
eradication 764	log files 789
identification 763	aggregation 186
lessons learned 764–765	analytics 383
overview of 761–762	application 792–793
preparation 762–763	audit 869–870
recovery 764	authentication 789-796
information 947-948	Call Manager 799–800
penetration testing 199-202	collection of 186
lighting, security 380	correlation of 186
lightweight cryptography 414-415	Domain Name System (DNS) 795-796
Lightweight Cryptography Project 415	dump files 797
Lightweight Directory Access Protocol.	emergency preparedness 383
See LDAP (Lightweight Directory	event 845–846
Access Protocol)	journaletl 802
Lightweight Directory Access Protocol	network 790, 852–853
over SSL (LDAPS) 432	normalization of 186
Lightweight EAP (LEAP) 666	NXLog 803–804
Link Control Protocol (LCP) 44	review 182
Linux	risk 920
Kali Linux 415	security 383, 793
Linux Kernel 236	Session Initiation Protocol (SIP) 800
System Monitor 542	syslog/rsyslog/syslog-ng 800–801
lists	system 791–792
allow 467, 578, 583, 822	visitor 383
block/deny 467-468, 822-823	Voice over Internet Protocol (VoIP)
certificate revocation 829	799–800
live boot media 329	web server 794
live box forensics 858	logger command 737–738
load balancers 319-320	logic bombs 39–40
load balancing	logistics, SCADA control systems 343
active/active 488	loop protection 512
active/passive 488	LS_COLORS environment variable 740
definition of 488	LsaLogonUser 90
scheduling 488	LSASS (Local Security Authority
Virtual IP address 488	Subsystem Service) 47–48
Local Security Authority Subsystem Service (LSASS) 47–48	LSB (least significant bit) steganography 416–417

M	Trojans 35, 104, 113
MaaS (monitoring as a service) 139, 232	worms 36–37
MAC (mandatory access control) 588, 676, 679, 905	MAM (mobile application management) 585–587
MAC (media access control) 511 addresses 511	managed detection and response (MDR) 234
cloning attacks 106 filtering 513	managed power distribution units (PDUs) 322–323
flooding attacks 106 spoofing 101	managed security service providers (MSSPs) 233–234
MACB (Modified, Accessed, Changed, and Birth) times 844	managed service providers (MSPs) 233–234
machine certificates 696	management
machine learning. See AI/ML (artificial	managerial controls 868
intelligence and machine learning)	roles and responsibilities 945–947
macOS Activity Monitor 542	Management Information Bases
macros 113	(MIBs) 436
MACs (message authentication codes)	mandatory access control. See MAC
399, 410	(mandatory access control)
MAIL environment variable 740	mandatory vacation policies 900
malicious software. See malware	man-in-the-middle (MITM) attacks.
Maltego 203	See on-path (man-in-the-middle)
malware 113	attacks
antimalware 452	manipulating files. See file manipulation
backdoors 42-43	manual code review 470
bots and botnets 37-38, 111-112	manufacturing, SCADA control systems
cryptomalware 33–34	342
definition of 33	mapping
delivery mechanisms 43-45	many-to-one 690
fileless viruses 37	one-to-one 690
keyloggers 42–43	masking, data 945
logic bombs 39–40	Mavituna Security Netsparker 204
malvertising 40	maximum transmission unit (MTU)
mobile device security countermeasures	discovery 717
580	MBR (master boot record) 35–36, 851
permanent damage from 45	MD5 algorithm 55, 219
potentially unwanted programs (PUPs) 40–42	MDM (mobile device management) 152 574–576, 825–826, 908
ransomware 33–34, 111–112	application and content management
spyware 40–42	576–578
time bombs 39	

bring-your-own-device (BYOD) 215,	static random-access memory (SRAM)
572, 574–576, 581, 588–590, 826,	340
898	virtual 850
choose-your-own-device (CYOD) 588–590	vulnerabilities 77–78, 149, 271–272, 275
corporate-owned, personally enabled (COPE) 572, 588–590	memory-injection-based keyloggers 43 Men & Mice Logeater 796
enforcement and monitoring 581–585	Mentor Nucleus RTOS 347
metadata 808	message authentication codes (MACs)
mobile application management	399, 410
(MAM) 585–587	Message Digest Algorithm 5 (MD5) 55,
SEAndroid 588	219
security concerns and countermeasures	metadata
578–581	in email 808
unified endpoint management (UEM)	in files 809
587–588	on mobile devices 808
virtual desktop infrastructure (VDI)	types of 805-806
589	on web pages 808-809
MDR (managed detection and response)	Meterpreter scripts 90
234	MFA (multifactor authentication)
mean time between failures (MTBF) 926	304–306, 579, 656–657
mean time to failure (MTTF) 926	MFPs (multifunction printers) 354
mean time to repair (MTTR) 926	MicroSD hardware security modules
measured boot 459-460	(HSMs) 587
Measurement System Analysis (MSA) 904	microsegmentation 240–241, 489–490
MEC (multi-access edge computing) 235	microservices 236–240
media access control. See MAC (media	Microsoft
access control)	Active Directory (AD) 291–292
medical systems 347	Azure 232–233, 603, 853
MEIDs (mobile equipment identifiers)	Cluster Server 488
49, 584	Defender Antivirus 823–824
memdump 745	Disk Defragmenter 158
memorandum of understanding (MOU)	Exchange 145
903	Forefront Identity Manager 658
memory management 265. See also buffer	Internet Information Services (IIS) 146
overflows	MS-CHAP 670–671
ARP cache poisoning 105	security advisories and bulletins 179
content addressable 106	Security Bulletins 146
leaks 78, 88, 271	SQL Server 273 Visual Pagin for Applications (VPA)
random-access memory (RAM) 849–850	Visual Basic for Applications (VBA) 113
849–830 runtime 477	
Tullulle #//	Web Application Proxy 516

Windows Defender Firewall 457	mobile solutions
Windows Server 144	Common Vulnerabilities and
Mimikatz 90	Exposures (CVEs) 571
minimal privilege 681	connection methods and receivers 570
minimization, data 944-945	Bluetooth 570-571
mirroring 316, 318, 537–538	cellular 572–573
mission-essential functions 929	Global Positioning System (GPS)
mitigation 919, 921. See also segmentation	572, 584
configuration changes 824	near-field communication (NFC)
certificates, updating/revoking	570–571
829–830	radio frequency identification
content filter/URL filter 828-829	(RFID) 571–572
data loss prevention (DLP) 828	satellite communications
firewall rules 825	(SATCOM) 573
mobile device management (MDM)	secure implementation best
825–826	practices 573–574
containment 763–764, 830–831	mobile application management
endpoint security solutions 822	(MAM) 585–587
application approved lists 822	mobile device management (MDM)
application block list/deny list	215, 574–576
822–823	application and content
approved lists 822	management 576–578
block/deny lists 467-468, 578, 583,	bring-your-own-device (BYOD)
822–823	572, 574–576, 581, 588–590, 826,
quarantine 823–824	898
isolation 830	choose-your-own-device (CYOD)
Security Orchestration, Automation,	588–590
and Response (SOAR) 188–189,	corporate-owned, personally
832	enabled (COPE) 572, 588–590
playbooks 834	enforcement and monitoring
runbooks 833	581–585
MITRE Corporation 18, 458	mobile application management
ATT&CK framework 18, 128–129,	(MAM) 585–587
176, 205, 223, 767–768	SEAndroid 588
Common Vulnerabilities and	security concerns and
Exposures (CVE) 125, 146, 177	countermeasures 578–581
Common Weakness Enumeration 75	unified endpoint management
PRE-ATT&CK framework 18	(UEM) 587–588
MMS (Multimedia Messaging Service)	virtual desktop infrastructure (VDI
583, 585	589
mobile equipment identifiers (MEIDs) 49, 584	Modified, Accessed, Changed, and Birth (MACB) times 844

Modified Base Metrics 185 Mutiny Fuzzing Framework 269 moisture detection systems 382 mutual authentication 668-670 MySQL 273 monitoring 537–538 bandwidth 804 N continuous 139, 278 file integrity monitors 542 NAC (network access control) 510–511, mobile device management (MDM) 871. See also 802.1X standard 581-585 name resolution 442–443 monitoring as a service (MaaS) 139, naming conventions 213 232 NarrowBand 358 performance baselining 539–542 NarrowBand-Internet of Things motion detection 382, 869-870 (NB-IoT) 358 motion recognition 376 NAS (network-attached storage) 326, 375 MOU (memorandum of understanding) NAT (network address translation) 443–444, 501, 529, 562 moves, MAC 511 Nation State attacks 346 MSA (Measurement System Analysis) 904 National Cyber Awareness System MS-CHAP 670–671 (NCAS) 576 MSPs (managed service providers) 233– National Institute of Standards and Technology (NIST) 884 MSSPs (managed security service cloud computing defined by 139 providers) 233-234 Cybersecurity Framework (CSF) 884 MTBF (mean time between failures) 926 Digital Signature Algorithm (DSA) 396 MTTF (mean time to failure) 926 firewall guidelines 825 MTTR (mean time to repair) 926 isolation guidelines 830 MTU (maximum transmission unit) mobile device security guidelines 826 discovery 717 National Vulnerability Database multi-access edge computing (MEC) 235 (NVD) 125, 177, 199 multicast addresses 537 NIST Cybersecurity Framework (CSF) multifactor authentication (MFA) 882 304–306, 579, 656–657 Protecting Controlled Unclassified multifunction printers (MFPs) 354 Information 828 multihomed connections 532 Risk Management Framework (RMF) Multimedia Messaging Service (MMS) 884 583, 585 National Security Agency (NSA) 55, 498 Multi-Party Coordination and Disclosure National Vulnerability Database (NVD) special interest group 180 125, 177, 199 multiparty risks 918 NAT-T (NAT Traversal) 501 multipath I/O 319 NB-IoT (NarrowBand-Internet of multitenancy 601 Things) 358 Multi-User Multiple Input (MU-MIMO) NCAS (National Cyber Awareness 560-561 System) 576

nCircle WebApp360 204	delivery mechanisms 43-45
NDA (nondisclosure agreement) 901	fileless viruses 37
near-field communication (NFC) 50, 100,	keyloggers 42-43
102–103, 570–571	logic bombs 39–40
negatives, false 181, 519, 520	permanent damage from 45
Nessus 204, 730–731	potentially unwanted programs
net time command 669	(PUPs) 40–42
netcat command 720-721	ransomware 33–34, 111–112
NetFlow 187, 525, 809-810	spyware 40–42
netstat command 668, 718-720	time bombs 39
NetStumbler 99	Trojans 35–36, 104, 113
network access control (NAC) 510-511,	worms 36–37
871. See also 802.1X standard	on-path attacks 54, 84-85, 103, 602
network ACLs (access control lists) 535	password attacks
network address translation (NAT) 443-	brute-force 45
444, 501, 529, 562	dictionary-based 45
network and port scanners 182	password cracking 46
network attached storage (NAS) 375	password spraying 45
network attacks. See also network design,	plaintext/unencrypted 47–48
secure	rainbow tables 47
DDoS (distributed denial-of-service)	replay attacks 82–85
113	script execution 113
DNS (Domain Name System)	wireless 98
DDoS (distributed denial-of-	bluejacking 100
service) 37–38, 54, 111–113, 601	bluesnarfing 99-100
DNS amplification attack 112	disassociation and deauthentication
DNS poisoning 108–110	101
domain hijacking 108	evil twin 98–99
domain name kiting 109–110	initialization vector (IV) 103
domain reputation 110–111	jamming 102, 561–562
prevalence of 107	near-field communication (NFC)
URL redirection attacks 110	102–103
Layer 2	radio frequency identification
ARP cache poisoning 105	(RFID) 49, 102
MAC cloning attacks 106	rogue access points 99
MAC flooding attacks 106	network controllers 144
security best practices 106–107	network design, secure. See also firewalls;
malware 113	network attacks; network
backdoors 42–43	reconnaissance; network resilience
bots and botnets 37–38, 111–112	access control lists (ACLs) 535, 643,
cryptomalware 33–34	831
definition of 33	broadcast storm prevention 512

Bridge Protocol Data Unit (BPDU)	out-of-band management 510–511
guard 512	port security 511, 537–538
DHCP snooping 512–513	route security 535-536
loop protection 512	IPv6 536–537
MAC filtering 513	port spanning/port mirroring
DLP (data loss prevention) systems 215	537–538
Domain Name System (DNS) 509-510	quality of service (QoS) 536
load balancing	virtual private networks (VPNs) 507,
active/active 488	606
active/passive 488	always-on VPN functionality 495
definition of 488	clientless versus client-based 497
scheduling 488	concentrators 495
Virtual IP address 488	definition of 494
monitoring services 538–539	description of 494-496
file integrity monitors 542	example of 494-495
performance baselining 539-542	HTML5 508
network access control (NAC) 510-511	IKEv1 Phase 1 negotiation 498–501
network appliances 513-514	IKEv1 Phase 2 negotiation 501-503
aggregators 526	IKEv2 504–505
hardware security modules (HSMs)	IPsec 497
524	Layer 2 Tunneling Protocol (L2TP)
jump servers 514	508
network intrusion detection systems	remote-access 496-497
(NIDSs) 215, 223, 517–524, 870.	site-to-site 495, 496–497
See also network reconnaissance	split tunneling 495–496
network intrusion prevention	SSL (Secure Sockets Layer) 505-
systems (NIPSs) 99, 519, 869	508
network-based intrusion prevention	network forensic analysis tools (NFATs)
system (NIPS) 518-524	852–853
proxy servers 514–516	network interface card (NIC) teaming
sensors 524–525	320
network segmentation	network intrusion detection systems
application-based 489–490	(NIDSs) 99, 215, 223, 517–
east-west traffic 492	518, 870. See also network
example of 489	reconnaissance
extranets 492–493	advantages/disadvantages 519-520
intranets 492–493	anomaly-based analysis 521-523
microsegmentation 489-490	definition of 519–520
screened subnets 491	heuristic-based analysis 521
virtual local-area networks (VLANs)	inline versus passive 523-524
490–491	promiscuous mode 517
zero trust 494	signature-based 519-520

stateful pattern-matching recognition	NFA1s (network forensic analysis tools)
521	852-853
network intrusion prevention systems	NFC (near-field communication) 50,
(NIPSs) 99, 519, 869	570-571
network logs 790	NFC (near-field communication) attacks
Network Policy Server (NPS) 495	102–103
network reconnaissance 18, 770	NGFW (next-generation firewall)
active 204–205	453–454, 524
definition of 707	nginx 236, 794
dig 709–710	NGIPSs (next-generation IPS systems)
hping 717	523
ifconfig 710–711	NIC (network interface card) teaming
ipconfig 710	320
netcat 720–721	NIDSs (network intrusion detection
netstat 718–720	systems) 99, 215, 223, 517–518,
nmap 711–714	869, 870. See also network
nslookup 709–710	reconnaissance
passive 203–204	advantages/disadvantages 519-520
pathping 716–717	anomaly-based analysis 521-523
ping 714–716	definition of 519–520
ping6 716	heuristic-based analysis 521
tracert/traceroute 707–709	inline versus passive 523–524
network resilience	promiscuous mode 517
definition of 319	signature-based 519–520
load balancers 319-320	stateful pattern-matching recognition
network interface card (NIC) teaming	521
320	Nikto 204
network segmentation. See segmentation	Nimda 37
Network Time Protocol (NTP) 112, 440,	NIPSs (network intrusion prevention
490, 790	systems) 99, 523, 869
Network Time Security (NTS) 440	advantages/disadvantages 519-520
network video recorders (NVRs) 375	anomaly-based analysis 521-523
network-attached storage (NAS) 326	definition of 518-520
network-based application layer firewalls	false positives/false negatives 519
530	heuristic-based analysis 521
New Technology File System (NTFS)	inline versus passive 523-524
156, 646, 850. See also permissions	signature-based 520-521
Nexpose 204	NIST (National Institute of Standards
next-generation firewall (NGFW) 453-	and Technology) 396, 881
454, 524	Nmap 204, 527, 711–714
next-generation IPS systems (NGIPSs)	noise detection 382
523	Nomad 240

nonces 82–83, 500 noncredentialed vulnerability scans 182	OEM (original equipment manufacturer) 459
nondisclosure agreements (NDAs) 901	OFB (Output Feedback) mode 407
nonintrusive vulnerability scanners 182	offboarding policies 575, 899, 900
non-persistence 328–329	Office of Personnel Management (OPM)
nonrepudiation 859–860	attack 300–301
normalization 186, 273–274	
	offline password grading 46
NoSQL databases 273–274 notifications	offline password cracking 46
	off-premises services 234
of privacy and data breaches 941	offsite storage 327
public 940	Off-The-Record Messaging 400–401
push 299	OIDC (OpenID Connect) 663–664
Novec 1230 381	OIDs (object identifiers) 691
NPS (Network Policy Server) 495	OLDPWD environment variable 740
NSA (National Security Agency) 55, 498	onboarding policies 575, 899, 900
nslookup command 709–710	one-time passwords (OTPs) 627
NT LAN Manager (NTLM) 89	HMAC-based 295–296
NTFS (New Technology File System)	time-based 295
156, 646, 850. See also permissions	one-to-one mapping 690
NTLM (NT LAN Manager) 89	one-way functions 219
NTP (Network Time Protocol) 112, 440,	online backups 326
490	Online Certificate Status Protocol
NTS (Network Time Security) 440	(OCSP) 691, 698
Nucleus RTOS 347	online password cracking 46
null pointer dereferences 75, 271–272	on-path (man-in-the-middle) attacks 54,
NVD (National Vulnerability Database)	84–85, 103, 602
125, 177, 199	on-premises environments, vulnerabilities
NVRs (network video recorders) 375	in 137–143
NXLog 803–804	on-premises services 234
C .	Opal 476
0	Open Checklist Interactive Language
Oakley 497	(OCIL) 885
OAS (OpenAPI Specification) 87	Open Network Environment 882
OAuth 292, 578, 661–662	open permissions 150
obfuscation 79, 265, 770	open ports/services 471–472
object detection 376	Open Source Security Testing
object identifiers (OIDs) 691	Methodology Manual (OSSTMM)
OCIL (Open Checklist Interactive	199
Language) 885	Open Systems Interconnection (OSI)
OCSP (Online Certificate Status	model 103, 614, 615
Protocol) 691, 698	Open vSwitch Database Management
110(0001) 0/1, 0/0	Protocol (OVSDB) 243

Open vSwitch (OVS) 243	benchmarks and secure configuration
Open Vulnerability and Assessment	guides 885–888
Language (OVAL) 164, 885	data sanitization 748–749
Open Web Application Security	exploitation frameworks 747-748
Project. See OWASP (Open Web	file manipulation 732–733
Application Security Project)	cat command 734–735
Open1X 554	chmod command 736-737
OpenAPI Specification (OAS) 87	grep command 735-736
OpenCv 416	head command 733
OpenDNS 509–510	logger command 737-738
OpenFlow 243, 882	tail command 734
OpenID 663–664	IP scanners
open-source intelligence (OSINT) 7-8,	arp command 721-722
18, 120–121, 124, 203	Cuckoo 731–732
OpenSSL 236, 741–742	curl command 724-725
OPENSSL_CONF environment variable	definition of 721
740	dnsenum 728–729
operating systems (OSs)	Nessus 730–731
forensic acquisition 850	route command 723-724
hardening 473–474	scanless 727–728
trusted operating systems (TOSs) 905	sn1per 726–727
operation, modes of (encryption)	theHarvester 725-726
authenticated 404	IT security frameworks 881-884
Cipher Block Chaining (CBC) 405	network reconnaissance
Cipher Feedback (CFB) 406	definition of 707
Counter (CTR) 404, 408–409	dig 709–710
Electronic Code Book (ECB) 404	hping 717
Output Feedback (OFB) 407	ifconfig 710–711
unauthenticated 404	ipconfig 710
operational controls 868, 869	netcat 720–721
operational expenditure (OpEx) 598	netstat 718–720
operational technology (OT) 113	nmap 711–714
The Orange Book 674	nslookup 709–710
order of volatility 848	pathping 716–717
organization attribute (certificates) 692	ping 714–716
organizational incidents 775	ping6 716
organizational security. See also forensics,	tracert/traceroute 707–709
digital; incident response (IR)	packet capture and replay
plans	definition of 742
	Tcpdump 742–743

Tepreplay 742	reputation damage 940
Wireshark 743	security roles and responsibilities
password crackers 748–749	945–947
policies	terms of agreement 948
acceptable use 898, 900	regulations and standards
asset management 909-910	company policies 878-879
breadth and scope of 897	General Data Protection Regulation
change management/change control	(GDPR) 214, 220, 878–879, 947
909	laws 879–880
classification and governance	Payment Card Industry Data
904–905	Security Standard (PCI DSS) 881
clean desk policy 23, 899, 900	shell and script environments
credential 906–908	definition of 738–740
data retention 906	OpenSSL 741–742
definition of 893	PowerShell 740
due care 900	Python 741
due diligence 900	Secure Shell (SSH) 739–740
due process 900	organizational units (OUs) 692
job rotation 898, 900	organizational validation (OV) certificates
mandatory vacations 898-899, 900	694
onboarding/offboarding 899, 900	organized crime 120
privacy 897	original equipment manufacturer (OEM)
procedures versus 893	459
separation of duties 898, 900	orthogonal frequency-division multiple
user education and awareness	access (OFDMA) 561
training 901–902	OSI (Open Systems Interconnection)
privacy and data breach consequences	model 103, 614, 615
data types and asset classification	OSINT (open-source intelligence) 7–8,
941–942	18, 120–121, 124, 203
fines 940	OSSTMM (Open Source Security
identity theft 940	Testing Methodology Manual) 199
impact assessment 948	OT (operational technology) 113
information lifecycle 947–948	OTA (over-the-air) technology 572–573,
intellectual property theft 940	583, 585
notifications 941	OTPs. See one-time passwords (OTPs)
personally identifiable information	out-of-band management 510–511
(PII) 943	out-of-band SQL injection 73
privacy enhancing technologies	Output Feedback (OFB) mode 407
944–945	outsourced code development 155
privacy notices 949	OV (organizational validation) certificates
protected health information (PHI)	694

OVAL (Open Vulnerability and	PADs (packet assemblers/disassemblers)
Assessment Language) 164, 885	137–138
overflows	Paessler PRTG 561–562
buffer 75–76, 77, 149, 271–272, 275, 522	pagefiles, forensic acquisition of 849–850 palette modification 417
integer 77, 271	Palo Alto security advisories and bulletins
over-the-air (OTA) technology 572-573,	179
583, 585	PAM (privileged access management)
OVS (Open vSwitch) 243	678, 679
OVSDB (Open vSwitch Database	PAMs (pluggable authentication modules) 670
Management Protocol) 243	0,70
OWASP (Open Web Application Security Project) 204, 276–277	PAMs (Programmable Attribute Maps) 851
OWASP Proactive Controls 276–277	PANs (personal area networks) 570
OWASP Testing Project 276	PAP (Password Authentication Protocol)
OWASP Web Security Testing Guide	670–671
199	parity, striping with (RAID) 316, 318
top 10 vulnerabilities in web	partially known environment 199
applications 70	passive prevention detection systems
Top 10 Web Application Security Risks	(IPSs) 523–524
277	passive reconnaissance 203-204
Zed Attack Proxy 204	pass-the-hash attacks 89-90
owners, data 946	Password Authentication Protocol (PAP)
ownership, authentication by 625	670–671
	password crackers 748-749
P	passwords
P12/PFX format 697	attacks
PaaS (platform as a service) 139, 232, 853	brute-force 45
PAC (proxy autoconfiguration) file 515	dictionary-based 45
packet assemblers/disassemblers (PADs)	password cracking 46
137–138	password spraying 45
packet capture and replay 187	plaintext/unencrypted 47-48
definition of 742	rainbow tables 47
Tepdump 742-743	cracking 748–749
Tcpreplay 742	creating 636–638
Wireshark 743	definition of 636
packet filtering 528	HMAC-based one-time password
packet sniffers 559	(HOTP) 295–296
PacketFence 510	mobile device management (MDM)
packet-switching exchanges (PSEs)	579, 582
137–138	one-time passwords (OTPs) 627
padding 463	<u>-</u>

Password Authentication Protocol	unknown environment 198-199
(PAP) 670–671	Penetration Testing Execution Standard
password keys 655	(PTES) 199
password vaults 655	Perfect Forward Secrecy (PFS) 399-400,
policies 906–907	502
system-generated 638	performance baselining 539-542
time-based one-time password (TOTP)	Performance Monitor tool 540-542
295	Performance tool 539
user-generated 638	permissions 640–645
Pastebin 18	cloud computing 605, 610
patches and hotfixes 160-164, 179-180,	inheritance 644–646
362, 474–475	open 150
PATH environment variable 740	privilege creep 645
pathping command 716–717	types of 646
pattern-matching, stateful 521	persistence 201
payment methods, mobile 584, 586	personal area networks (PANs) 570
PCI DSS (Payment Card Industry Data	personal firewalls 534
Security Standard) 453, 881	personal identification numbers (PINs)
PDS (protective distribution system) 385	360, 579
PDUs (power distribution units) 322–323	Personal Identity Verification (PIV) cards
Peach 270	629
PEAP (Protected Extensible	Personal Information Protection and
Authentication Protocol) 554, 556,	Electronic Documents Act
666	(PIPEDA) 220, 880
Pearson Test Prep practice test 954	personal unblocking keys (PUKs) 360
peer to peer (P2P) networks 143	personally identifiable information (PII)
PEM (Privacy-enhanced Electronic Mail)	82, 216–218, 268, 577, 856, 897,
697	901, 943
.pem file extension 697	person-made disasters 924
penetration testing 121, 266	personnel policies 377–378
active reconnaissance 204-205	acceptable use 898, 900
advantages of 197–198	breadth and scope of 897
bug bounties versus 202–203	clean desk policy 23, 899, 900
cleanup 202	data retention 906
definition of 193, 197	definition of 893
exercise types 205–206	due care 900
known environment 198	due diligence 900
lifecycle 199–202	due process 900
methodologies 199	job rotation 898, 900
partially known environment 199	mandatory vacations 898-899, 900
passive reconnaissance 203-204	onboarding/offboarding 575, 899, 900
post-exploitation techniques 201	personnel credential policy 906–908

privacy 897	screened subnets 384
procedures versus 893	secure areas 385–386
separation of duties 898, 900	secure data destruction 386-387
summary of 900	sensors 381–382
PFS (Perfect Forward Secrecy) 399–400,	signage 374–375
502	USB data blockers 379-380
pharming 14–15, 109	visitor logs 383
PHI (protected health information) 856,	PIA (Privacy Impact Assessments) 948
944	piggybacking 15
phishing 9–12, 902	PII (personally identifiable information)
phone call authentication 299-300	82, 216–218, 268, 577, 856, 897,
physical controls 871–872	901, 943
physical security 872	ping command 714–716
access control vestibules 372-373	Ping of Death 88
air gap 384	ping6 command 716
alarms 374	PINs (personal identification numbers)
attacks	360, 579
card cloning 48–49	PIPEDA (Personal Information
cloud-based attacks 52-55, 601-603	Protection and Electronic
malicious flash drives 48	Documents Act) 220, 880
malicious USB cables 48	PIR (Post Incident Review) 764–765
skimming 49–50	PIV (Personal Identity Verification) cards
supply-chain attacks 51	629
badges 373, 382	pivoting 201
bollards/barricades 370-371	PKCS (Public Key Cryptography
cameras	Standards) 412
centralized versus decentralized 375	PKI (public key infrastructure) 84-85,
closed-circuit television (CCTV)	556
376–377	certificate authorities (CAs) 556,
motion recognition 376	689–691, 829
object detection 376	certificates
drones 382-383	attributes 691–692
Faraday cages 383–384	chaining 696
fencing 380–381	expiration 693
fire suppression 381	formats 697
industrial camouflage 377	pinning 698
lighting 380	Subject Alternative Name 693
locks 378–379	types of 694–696
personnel 377–378	definition of 685
physical locks 379	key escrow 699
protected cable distribution system 385	key management 688

key recovery agent 699	PNAC. See 802.1X standard
stapling 698	pointer dereferencing 75–76, 271–272
trust model 698	point-of-sale (POS) systems 353
PKIX (Public Key Infrastructure	Point-to-Point Tunneling Protocol
Exchange) 694	(PPTP) 494, 558
plaintext 47–48	poisoning
plans	ARP (Address Resolution Protocol)
business continuity 773–774, 929	105, 722
communication 771–772	DNS (Domain Name System) 108-110
disaster recovery 772-773, 926	policies 878–879
incident response (IR)	account 633
business continuity plans (BCPs)	asset management 909-910
773–774, 929	change management/change control
communication plans 771-772	909
continuity of operations planning	classification and governance 904-905
(COOP) 774–775	credential 906–908
cyber kill chain 770–771	data retention 775–776, 906
data retention policies 775-776	definition of 893
definition of 760–761	group policy objects (GPOs) 474
Diamond Model of Intrusion Analysis 768–770	Identity and Access Management (IAM) 605
disaster recovery plans (DRPs)	personnel
772–773, 926	acceptable use 898, 900
exercises 765–767	breadth and scope of 897
incident response teams 760,	clean desk policy 23, 899, 900
775–776	due care 900
MITRE ATT&CK framework	due diligence 900
128–129, 176, 205, 223,	due process 900
767–768	job rotation 898, 900
process and lifecycle 761-765	mandatory vacations 898–899, 900
stakeholder management 771–772	onboarding/offboarding 575, 899,
platform as a service (PaaS) 139, 232, 853	900
platform configuration registers (PCRs)	personnel credential policy
294	906–908
playbooks 834	privacy 897
PLCs (programmable logic controllers)	separation of duties 898, 900
341, 343	summary of 900
pluggable authentication modules (PAMs)	procedures versus 893
670	resource 246, 603, 609
PlugX RAT 35	user education and awareness training
PMBOK (Project Management Body of	901–902
Knowledge) 882	POP (Post Office Protocol) 438-439

port security 106, 511. See also 802.1X standard open ports 471–472 port numbers 441 port spanning/port mirroring 537–538 port taps 538 port-based network access control (PNAC) 553–554 protocols associated with 152–154 Switched Port Analyzer (SPAN) 537–538	PREMIS (Preservation Metadata Implementation Strategies) 805 preparation phase, incident response (IR) 762–763 prepending 17 preservation, forensic 858 Preservation Metadata Implementation Strategies (PREMIS) 805 preshared key (PSK) 103, 551, 557–558 pretexting 19 preventative controls 869, 872
vulnerabilities 151	principals 623
portals, captive 559	printenv command 739
PortSwigger Burp Suite Professional 204	Privacy Act of 1974 879, 897
POS (point-of-sale) systems 353	privacy breaches 220. See also identity
positives, true/false 181–182, 518, 520	data types and asset classification
POST (power-on self-test) 851	941–942 fines 940
Post Incident Review (PIR) 764–765	identity theft 940
Post Office Protocol (POP) 438–439	•
post-exploitation techniques 201 post-quantum cryptography 402	impact assessment 948 information lifecycle 947–948
potentially unwanted programs (PUPs)	intellectual property theft 940
40–42	notifications of 941
power distribution units (PDUs) 322–323	personally identifiable information
power loss 925	(PII) 943
power resilience	privacy enhancing technologies
definition of 320	944–945
dual supply 321–322	privacy notices 949
generators 321	privacy policies 897
managed power distribution units (PDUs) 322–323	protected health information (PHI) 944
uninterruptible power source (UPS) 320–321	reputation damage from 940 security roles and responsibilities
power-on self-test (POST) 851	945–947
PowerShell 113, 630, 740	terms of agreement 948
PPTP (Point-to-Point Tunneling	privacy enhancing technologies 944–945
Protocol) 494, 558	Privacy Impact Assessments (PIA) 948
PRE-ATT&CK 18	Privacy-enhanced Electronic Mail (PEM)
predictive analysis 127	697
preferred roaming list (PRL) 572	private cloud 140, 232–233

Private information 942	protocol analyzers 813
private information sharing centers 124	protocols. See individual protocols
private keys 436	provenance, forensic 857-858
private subnets 606, 610	provisioning, application 260
privilege	proximity readers 373, 382
creep 645	proxy autoconfiguration (PAC) file 515
escalation 67-68, 201, 770, 941	proxy servers 514–516
least 681	forward proxy 516
minimal 681	reverse proxy 506-507, 516
provisioning 635	transparent proxy 516
privileged access management (PAM)	PSEs (packet-switching exchanges) 137–138
678, 679	pseudo-anonymization 945
Privileges Required (PR) metric 183	pseudocodes 79
PRNG (pseudorandom number	pseudorandom number generator
generator) 49–50, 102, 571–572	(PRNG) 49–50, 102, 571–572
procedures, policies versus 879, 893	PSK (preshared key) 103, 551, 557-558
production 260	PTES (Penetration Testing Execution
Programmable Attribute Maps (PAMs)	Standard) 199
851	public cloud 140, 232
programmable logic controllers (PLCs)	public incidents 775
341, 343	public information 905
programming testing methods	public information sharing centers 124
compile-time errors 266–267	public key algorithms 411
fuzz testing 269–270	Public Key Cryptography Standards
input validation 80, 267–268	(PKCS) 412
penetration testing 266	public key infrastructure. See PKI (public
runtime errors 266–267	key infrastructure)
static and dynamic code analysis 269	Public Key Infrastructure Exchange
stress testing 80, 266	(PKIX) 694
programming vulnerabilities. See	public keys 437
vulnerabilities	public ledgers 409–410
Project Management Body of Knowledge	public notifications and disclosures 941
(PMBOK) 882	public subnets 606, 610
promiscuous mode 517	PUKs (personal unblocking keys) 360
promiscuous ports 491	pulping 386
Proprietary information 942	pulverizing 387
protected cable distribution system 385	PUPs (potentially unwanted programs)
Protected Extensible Authentication	40–42
Protocol (PEAP) 554, 556, 666	purple team 205–206
protected health information (PHI) 856,	push notifications 299
944	PWD environment variable 740
protective distribution system (PDS) 385	Python 113, 741

Q	Rapid STP 512
QKD (quantum key distribution)	Rapid7 Nexpose 204
401–402	RAs (registration authorities) 690
QoS (quality of service) 536	RAS (Remote Access Service) 670-672
QRadar 526	Raspberry Pi 339
qualitative risk management 921–922,	RATs (remote access Trojans) 148
923	RBAC (role-based access control) 677,
qualitative-to-quantitative score mapping	679, 899
186	RC4 (Rivest Cipher 4) 412
quality assurance (QA) 260, 261	RCE (remote code execution) 78, 146,
quality of service (QoS) 536	149, 275
Qualys 204	RCS (Rich Communication Services) 585
quantitative risk management 922–923	RCSA (risk control self-assessment) 920
quantum cryptography 401–402	RDBMS (relational database management
communications 401–402	system) 273
computing 402	RDP (Remote Desktop Protocol) 472
definition of 401	readers, proximity 373, 382
quantum key distribution (QKD)	Real-Time Monitoring Tool (RTMT)
401–402	799
quarantine 823–824	real-time operating systems (RTOSs) 347,
quick mode, IKE 501	355
	Real-Time Transport Protocol (RTP)
R	152. See also Secure Real-Time
race conditions 79	Transport Protocol (SRTP)
Radamsa 269	reception desks 378
radio, baseband 359	recertification, user access 645
radio frequency identification (RFID)	reconnaissance. See network
attacks 49, 102, 571–572	reconnaissance
radio frequency interference (RFI)	Recon-ng 203
383–384	recovery 764, 859
RADIUS (Remote Authentication	disaster recovery planning 928–930
Dial-In User Service) 556-557,	recovery point objective (RPO) 929
672–673	recovery time objective (RTO) 929
RAID (Redundant Array of Inexpensive	restoration order 330–331
Disks) 315–316, 869	Red Hat security advisories and bulletins
Rainbow Series 674	179
rainbow tables 47	red teams 205, 902
RainbowCrack 47	redaction 945
RAM (random-access memory), forensic	redirection attacks, URL 110
acquisition of 848-849	reduced sign-on 656
22 24 111 112	
ransomware 33–34, 111–112 rapid application development (RAD) 262	redundancy 926–927 definition of 315

disk	Reliable Event Logging Protocol (RELP)
definition of 315–316	800
multipath 319	relying parties (SAML) 659
Redundant Array of Inexpensive	Remediation Level (RL) metric 185
Disks (RAID) 315–316	remote access 442
diversity of 331–332	Remote Access Service (RAS) 670–672
geographic dispersal 315	remote access Trojans (RATs) 148
network	remote-access VPNs 496-497
definition of 319	remote authentication
load balancers 319-320	Challenge-Handshake Authentication
network interface card (NIC)	Protocol (CHAP) 670-672, 673
teaming 320	RADIUS 556–557, 672–673
power	Remote Access Service (RAS) 670-672
definition of 320	TACACS+ 672-673
dual supply 321–322	Remote Authentication Dial-In User
generators 321	Service (RADIUS) 556–557,
managed power distribution units	672–673
(PDUs) 322–323	remote code execution (RCE) 78, 146,
uninterruptible power source (UPS)	149, 275
320–321	Remote Desktop Connection 152
Redundant Array of Inexpensive Disks	Remote Desktop Protocol (RDP) 472
(RAID) 315–316, 869	remote terminal units (RTUs) 341
refactoring, driver 89	remote wipe 579, 582
reference architecture 884	remotely operated underwater vehicles
Reflected XSS attacks 68	(ROVs) 353–354
reflection 112	removable media 123
regedit command 472	replay, packet
registers, risk 920	definition of 742
registration, identity 633–635	replay attacks 82–85
registration authorities (RAs) 690	Tepdump 742–743
registry 472	Tepreplay 742
regulations and standards	Wireshark 743
company policies 878–879	replication
General Data Protection Regulation	cloud computing 605, 610
(GDPR) 214, 220, 878–879, 947	storage area networks (SANs) 323
laws 879–880	virtual machines (VMs) 324–325
Payment Card Industry Data Security	escape attacks 248–249
Standard (PCI DSS) 881	sprawl avoidance 247–248
regulatory forensic intervention 855	Report Confidence (RC) metric 185
	1
relational database management system (RDBMS) 273	reports
(KDDWIS) 2/3	after action report (AAR) 928–929 baseline 539–542

forensic 846	on-premises versus cloud 325
SIEM (Security Information and Event	redundancy
Management) 187	definition of 315
repositories, file/code 127	disk 315–319
Representational State Transfer (REST)	diversity of 331–332
86	geographic dispersal 315
reputation 110-111, 940	network 319-320
request for comments (RFC) 128	power 320–323
request forgeries 85–86	Redundant Array of Inexpensive
residual risk 919, 921	Disks (RAID) 315-316, 869
resilience 221–222	replication
backups	storage area networks (SANs) 323
cloud 326	virtual machines (VMs) 247-249,
comparison of 326–327	324–325
copy 326	restoration order 330-331
differential 326, 328	scalability 279-280, 328
disk 326	resolution, domain name 442-443
full 326, 328–331	resource allocation, dynamic 607-608,
image 326	611
incremental 326, 328	resource exhaustion 87-88
NAS (network-attached storage)	resource policies 246, 603, 609
326	resource records (RRs) 795
offsite storage 327	response and recovery controls 220-22
online versus offline 326	REST (Representational State Transfer
snapshot 326	86
tape 326	RESTful APIs 240
definition of 311	restoration 158, 330-331
high availability (HA) 329-330	retention, risk 919
network	retention policies 775-776, 906
definition of 319	retina scanning 301
load balancers 319-320	Retina Web Security Scanner 204
network interface card (NIC)	reuse, code 270
teaming 320	reverse proxy 506–507, 516
non-persistence 328–329	revert to known state 329
power	review, exam 953–954
definition of 320	review logs 182
dual supply 321–322	reviews, configuration 182
generators 321	revoking certificates 829
managed power distribution units	RFC (request for comments) 128
(PDUs) 322–323	RFI (radio frequency interference)
uninterruptible power source (UPS) 320–321	383–384

RFID (radio frequency identification) attacks 49, 102, 571–572	RMF (Risk Management Framework) 884
Rich Communication Services (RCS)	robot sentries 378
583, 585	rogue access points 99
riding, session 602	role-based access control (RBAC) 677,
rights management 219–220, 640–645	679, 899
right-to-audit clauses 854	role-based training 902
Rijndael. See Advanced Encryption	roles and responsibilities, security 945–
Standard (AES)	947
risk management 155, 913	rolling codes 102
business impact analysis 926–927	root accounts 150, 908
disaster analysis 924–925	root certificate authorities 696
disaster recovery planning 928-930	root certificates 696
external versus internal risk 917	root of trust 476–477
residual risk 919	route command 723-724
risk assessment 919-921	route security 443, 535–536
control risk 921	IPv6 536–537
inherent risk 921	port spanning/port mirroring 537–538
qualitative 921-922, 923	quality of service (QoS) 536
quantitative 922–923	Routing and Remote Access Service
residual risk 921	(RRAS) 495
risk appetite 921	ROVs (remotely operated underwater
risk awareness 921	vehicles) 353-354
risk control assessment 920	RPO (recover point objective) 929
risk control self-assessment (RCSA)	RRAS (Routing and Remote Access
920	Service) 495
risk matrix/heat map 920	RRs (resource records) 795
risk mitigation 921	RSA 412
steps of 919–920	rsyslog 800–801
risk avoidance 918	RTMT (Real-Time Monitoring Tool)
Risk Management Framework (RMF)	799
884	RTO (recovery time objective) 929
risk matrix/heat map 920	RTOSs (real-time operating systems) 347
risk mitigation 919	355
risk registers 920	RTP (Real-Time Transport Protocol)
risk transference 918	152. See also Secure Real-Time
risk types 917–918	Transport Protocol (SRTP)
strategies for 918–919	RTUs (remote terminal units) 341, 343
supply chain risk management (SCRM)	rule-based access control 677, 678, 679
920	runbooks 833
third-party risks 155–160	runtime errors 81–82, 266–267
risky login 639	runtime memory 477

S	Common Vulnerability Scoring
SaaS (software as a service) 138, 231, 444,	System (CVSS) 182–186
853	false negative 181
SAE (Simultaneous Authentication of	false positives 181
Equals) 101, 551, 552	how it works 180-181
safes 385	intrusive versus nonintrusive 182
salting 47, 82, 397–398, 462–463	noncredentialed 182
SAM (Security Accounts Manager) 89	SCAP (Security Content Automation
SAML (Security Assertion Markup	Protocol) 883, 885–888
Language) 659–661	scheduling algorithms 488
Samsung 476	SCP (secure copy) 456
SAN (Subject Alternative Name) field	screen locks 579
694–695	screened subnets 384, 491
sandboxing 266, 452, 478–479	script environments 278–279
sanitization, data 748-749	definition of 738–740
sanitizing mobile devices 579	OpenSSL 741–742
SANs (storage-area networks) 142, 323	PowerShell 740
Santos, Omar 953	Python 741
Sarbanes-Oxley (SOX) 880, 882	Secure Shell (SSH) 739–740
SASE (Secure Access Service Edge) 582	script kiddies 120
SAST (static application security testing) 468–469	SCRM (supply chain risk management) 166, 920
SATCOM (satellite communications) 573	Scrum 258
SCADA (supervisory control and data	SDLC (software development lifecycle)
acquisition) systems 341-343	78, 261–262, 263–265, 468, 868
scalability 279-280, 328	SDN (software-defined networking)
scanless 727–728	241–243, 882
scans	SDV (software-defined visibility) 243
biometric. See biometric systems	SD-WAN (software-defined wide-area
IP scanners	network) 246
arp command 721–722	Seagate Technology 476
Cuckoo 731–732	SEAndroid 588
curl command 724-725	search engine optimization (SEO) 808
definition of 721	SEC (Securities and Exchange
dnsenum 728–729	Commission) 941
Nessus 730–731	SECaaS (security as a service) 139
route command 723–724	secrecy, forward 400–401
scanless 727–728	Secret information 905, 941–942
sn1per 726–727	Secret Manager 604
theHarvester 725–726	secrets management 604, 609
vulnerability 785–786	Secure Access Service Edge (SASE) 582 secure areas 385–386

secure copy (SCP) 456	security assessments. See also SIEM
Secure File Transfer Protocol (SFTP)	(Security Information and Event
434, 441	Management)
Secure Hash Algorithm (SHA) 55, 463,	in cloud 598
551–552	attacks 601-603
Secure Key Exchange Mechanism	threats 598-600
(SKEME) 497	risk 919–921
secure protocols. See also individual	control risk 921
protocols	inherent risk 921
definition of 426	qualitative 921–922, 923
use cases	quantitative 922–923
directory services 442	residual risk 921
domain name resolution 442-443	risk appetite 921
email and web 440	risk awareness 921
file transfer 441	risk control assessment 920
network address allocation 443-444	risk control self-assessment (RCSA)
remote access 442	920
routing and switching 443	risk matrix/heat map 920
subscription services 444	risk mitigation 921
time synchronization 440	steps of 919-920
voice and video 440	security advisories and bulletins
Secure Real-Time Transport Protocol	177–180
(SRTP) 152, 430–431	Security Orchestration, Automation,
Secure Shell (SSH) 427–428, 625, 628,	and Response (SOAR) 188-189,
739–740	832
Secure Sockets Layer (SSL) 82-83, 436,	threat hunting 175–180
441	vulnerability scans
certificate types 694–696	credentialed versus noncredentialed
SSL-based VPNs 505-508	182
Transport Layer Security Inspection	false negatives 181
(TLSI) 215–216	false positives 181
Secure Web Gateway (SWG) 613, 614	how it works 180–181
Secure/Multipurpose Internet Mail	intrusive versus nonintrusive 182
Extensions (S/MIME) 428–429	Security Content Automation Protocol
Securities and Exchange Commission	(SCAP) 883, 885–888
(SEC) 941	security controls
Security Accounts Manager (SAM) 89	cloud
security administrators 947	API inspection and integration 607,
security as a service (SECaaS) 139	610
Security Assertion Markup Language	compute 611
(SAML) 292, 659–661	high availability across zones 603, 609

integration and auditing 604, 609	east-west traffic 492
network 606-607, 610	example of 489
resource policies 603, 609	extranets 492–493
secrets management 604, 609	intranets 492–493
storage 605, 610	microsegmentation 489-490
cloud computing	screened subnets 491
compute 607	virtual local-area networks (VLANs)
container security 608-609	490–491
dynamic resource allocation	zero trust 494
607–608, 611	Segmented Integer Counter Mode
instance awareness 608, 611	(SRTP) 430
native versus third-party 615	SEH (structured exception handling) 81,
security groups 607, 611	267
security solutions 611-614	SELECT statement 70
summary of 608-609	self-encrypting drives (SEDs) 475-476
virtual private cloud endpoint 608,	self-signed certificates 695, 698
611	SELiux (Security-Enhanced Linux) 588
security incident response simulations	semi-authorized hackers 121
(SIRS) 766–767	semicolon (;) 73
security incident response team (SIRT).	Sender Policy Framework (SPF) 110, 426
See incident response (IR) teams	sensitive data exposure 82
Security Information and Event	Sensitive information 942
Management. See SIEM	sensors 345, 381–382, 524–525, 787
(Security Information and Event	sentiment analysis 188
Management)	Sentinel 204
security logs 383, 793	SEO (search engine optimization) 808
security officers 947	separation of duties 898, 900
Security Onion 953	serial numbers, certificate 692
security operations centers (SOCs) 123,	serverless architecture 243-244
175–176, 223, 379, 760, 762, 776	servers 144
Security Orchestration, Automation, and	authentication 665
Response (SOAR) 188–189, 832	command-and-control [C2] 108
playbooks 834	email 145
runbooks 833	file 144
security posture assessments (SPAs) 539	FTP 147–148
Security Requirements metrics 185	hardening 159–160
Security-Enhanced Linux (SELinux) 588,	jump 514
676	Microsoft Cluster Server 488
SEDs (self-encrypting drives) 475–476	network controllers 144
segmentation 607, 610, 831–832	Network Time Protocol (NTP) 490
application-based 489–490	proxy 514–516
in cloud 613, 615	forward proxy 516

reverse proxy 506–507, 516	SHELL environment variable 740
transparent proxy 516	shielding, application 471
virtual network computing (VNC) 632	shimming, driver 89
web	Shodan 203–204
log files 794	Shor's algorithm 402
vulnerabilities 146–147	Short Message Service (SMS) 12,
server-side execution 267	296–297, 583, 585
server-side request forgery (SSRF) 85-86	shoulder surfing 14
server-side validation 268	shredding 386
service accounts 629, 908	side-channel attacks 54, 602
service nxlog start command 803	sideloading 581
service providers (SPs) 292, 623, 661	SIEM (Security Information and Event
service set identifiers (SSIDs) 98, 205,	Management) 186-188, 526,
532	869–870
service-level agreements (SLAs) 53,	alerts 788
273–274, 600, 902–903	correlation 788–789
services, open 471–472	dashboards 786–789
services integration 246	sensitivity 788
session hijacking 54, 83, 465, 601	sensors 787
Session Initiation Protocol (SIP) 351,	trends 788
431, 800	SIFT workstation 850
session replay 83	signage 374–375
session riding 54, 602	signatures, digital 395-396, 466-467, 520
session theft 83	signature verifying algorithms 395
SET (Social Engineering Toolkit) 10	signature-based intrusion detection
SFC (System File Checker) command	519–520
158	signing algorithms 395
sFlow 810–811	SIM (subscriber identity module) cards
SFTP (Secure File Transfer Protocol)	49, 360, 580, 584
434, 441	Simple Network Management Protocol
SHA (Secure Hash Algorithm) 55,	version 3 (SNMPv3) 434–436, 443
551–552	Simple Object Access Protocol (SOAP)
shadow IT 121	86
share permissions 646. See also	simulations 766–767
permissions	Simultaneous Authentication of Equals
shared accounts 629	(SAE) 101, 551, 552
shell and script environments	single loss expectancy (SLE) 922
definition of 738–740	single point of failure 156, 926
OpenSSL 741–742	single quotation mark (') 73
PowerShell 740	single sign-on (SSO) 292, 373, 624,
Python 741	658–659
Secure Shell (SSH) 739–740	sinkholes, DNS 223

SIP (Session Initiation Protocol) 351,	social engineering attacks
431, 800	description of 7–9
SIRS (security incident response	dumpster diving 13
simulations) 766–767	eliciting information 15–16
SIRT. See incident response (IR) teams	hybrid warfare 22
site resiliency 221–222	identity fraud 17
site surveys 559, 561–562	baiting 19
sites, physical 385	credential harvesting 18
site-to-site configuration 495	hoaxes 19
site-to-site VPNs 496–497	impersonation/pretexting 19
SKEME (Secure Key Exchange	invoice scams 17
Mechanism) 497	reconnaissance 18
SKEYID 500	typo squatting 20, 44
skimming 49–50	watering hole attacks 20, 85
SLAs (service-level agreements) 53,	influence campaigns 21
273–274, 600, 902–903	pharming 14–15
SLE (single loss expectancy) 922	phishing and spear phishing 9–12
Sleuth Kit 850	piggybacking 15
smart cards 299-300, 625, 629	prepending 17
smart devices 345	principles of 21
smart factories 342	reasons for effectiveness 21
smart meters 350	shoulder surfing 14
S/MIME (Secure/Multipurpose Internet	smishing 12
Mail Extensions) 428–429	Spam 13
smishing 12	Spam over Internet Messaging (SPIM)
SMS (Short Message Service) 12,	13
296–297, 583, 585	tailgating 15
sn1per 726–727	user security awareness education 22-24
snapshots 326, 851–852	vishing 12–13
SNMPv3 (Simple Network Management	war-dialing 13
Protocol version 3) 434–436, 443	whaling 9, 16–17
snmpwalk v3 command 436	Social Engineering Toolkit (SET) 10
snooping, DHCP 512–513	social media
SOAP (Simple Object Access Protocol)	attacks and vulnerabilities 22, 123, 143
86	as research source 128
SOAR. See Security Orchestration,	social media analysis 899
Automation, and Response	SOCs (security operations centers) 123,
(SOAR)	175–176, 223, 379, 760, 762, 776
SOC (System and Organization Controls)	software application development. See
884	application development
SoC (system on a chip) 356-357,	software as a service (SaaS) 138, 231, 444,
477, 571	853

software compliance/licensing 918	compute 361–362
software development environments	cost 363
257–260	crypto 362
software development lifecycle (SDLC)	implied trust 363
78, 261–262, 263–265, 468, 868	inability to patch 362
software diversity 278	network 362
software integrity measurement 261	power 361
Software of Unknown Providence	range 363
(SOUP) 347	drones 353–354
software-defined networking (SDN)	heating, ventilation, and air
241–243, 882	conditioning (HVAC) 352-353
software-defined visibility (SDV) 243	medical systems 347
software-defined wide-area network	multifunction printers (MFPs) 354
(SD-WAN) 246	real-time operating systems (RTOSs)
SolarWinds 721, 789	355
solid-state drives (SSDs), forensic	smart meters 350
acquisition of 848	surveillance systems 355-356
SOUP (Software of Unknown	system on a chip (SoC) 356-357
Providence) 347	vehicles 347-348
sovereignty, data 214-215	Voice over Internet Protocol (VoIP)
SOX (Sarbanes-Oxley) 880, 882	350, 799–800
Spam 13	speech recognition 302
Spam over Internet Messaging (SPIM) 13	SPF (Sender Policy Framework) 110, 426
SpamCop 13	SPI (stateful packet inspection) 528, 562
SPAN (Switched Port Analyzer) ports	SpiderFoot 203
537–538	SPIM (Spam over Internet Messaging) 13
spanning, port 537–538	split tunneling 495–496
Spanning Tree Protocol (STP) 105, 512	Splunk 526
spanning-tree portfast bpduguard	spoofing
command 512	ARP (Address Resolution Protocol)
SPAs (security posture assessments) 539	105, 513
specialized embedded systems 346–347	MAC (media access control) 101, 106
aircraft 348–350	sprawl avoidance 247–248
communication considerations	spraying, password 45
5G 357–358	SPs (service providers) 292, 623, 661
baseband radio 359	spyware 40–42
NarrowBand 358	SQL (Structured Query Language) 273
subscriber identity module (SIM)	SQL injection (SQLi) 54, 70–74,
cards 360	273–274, 464, 602
Zigbee 360–361	SQL Server 273
constraints 361	SquidProxies 514
authentication 363	

SRAM (static random-access memory) 340	static application security testing (SAST) 468–469
SRTP (Secure Real-Time Transport	static code analysis 269, 468–469
Protocol) 152, 430–431	static codes 298
SSAE (Statement on Standards for	static random-access memory (SRAM)
Attestation Engagements) 881,	340
883, 884	Stegais 415
SSDs (solid-state drives), forensic	steganography 415
acquisition of 848	audio 415–416
SSH (Secure Shell) 427–428, 625, 628,	homomorphic 417
739–740	image 416–417
ssh command 427	video 416
SSIDs (service set identifiers) 98, 205,	Steghide 415
532	stego-files 416
SSL (Secure Sockets Layer) 82-83, 436,	stewards, data 946
441	sticky sessions 489
certificate types 694–696	STIX (Structured Threat Information
SSL-based VPNs 505–508	eXpression) 125–127
stripping 88–89	storage
Transport Layer Security Inspection	cloud 610
(TLSI) 215–216	encryption 605
SSL Inspection (SSSI) 215	high availability 605
SSO (single sign-on) 292, 373, 624,	permissions 605
658–659	replication 605
SSRF (server-side request forgery) 85–86	secure 477
SSSI (SSL Inspection) 215	storage DLP systems 215
staging 259	vulnerabilities 156
stakeholder management 771–772	storage-area networks (SANs) 142, 323
standard load 540	Stored (persistent) XSS attacks 68
standards. See regulations and standards	stored procedures 273
stapling 698	STP (Spanning Tree Protocol) 105, 512
starvation attack, DHCP 513	strategic intelligence 860
state actors 120–121	stream ciphers 410
state laws 879-880	stress testing 80, 266
stateful packet inspection (SPI) 528, 562	stretching, key 397
stateful pattern-matching recognition 521	striping (RAID) 316, 317–318
stateless packet inspection 528	with dual parity 316, 318
Statement on Standards for Attestation	with parity 316, 318
Engagements (SSAE) 881, 883,	stripe and mirror 316, 319
884	stripping, SSL 88–89
statements, SQL (Structured Query	structured exception handling (SEH) 81
Language) 70	267

Structured Query Language. See SQL	system integration 155
(Structured Query Language)	system logs 791–792
Structured Threat Information	System Monitor 542
eXpression (STIX) 125-127	system on a chip (SoC) 356-357, 477, 571
Stuxnet 363	system owners 946–947
Subject Alternative Name (SAN) 693,	System Restore 158
694–695	systemd 802
subnets	system-generated passwords 638
public/private 606, 610	systeminfo command 161
screened 384, 491	
subscriber identity module (SIM) cards	Т
49, 360, 580, 584	tables, rainbow 47
substitution 216, 416–417	tabletop exercises 765–766
supervisory control and data acquisition	TACACS+ (Terminal Access Controller
(SCADA) systems 341–343	Access Control System Plus)
supplicants 555, 665	672–673
supply chains	tactics, techniques, and procedures
attacks 51, 123, 156	(TTPs) 128, 176, 767, 809
business partnership agreements	tags, evidence 845–846
(BPAs) 903	tail command 734, 795
supply chain risk management (SCRM)	tailgating 15
166, 920	Talos 347
surge protectors 159	tamper resistance 477
surveillance systems 355–356	tape backups 326
surveys, site 559, 561–562	taps, port 538
svStrike 850–851	TAXII (Trusted Automated eXchange of
Swagger (OpenAPI) 87	Indicator Information) 125-127
swap files, forensic acquisition of 849–850	TCB (trusted computing base) 676
SWG (Secure Web Gateway) 613, 614	TCG (Trusted Computing Group), Opal
Switched Port Analyzer (SPAN) ports	476
537–538	Tel 241
switching 443	TCP (Transmission Control Protocol)
symmetric encryption 411–413	503
synchronization 82–83	Tepdump 742–743
email and web 440	TCP/IP hijacking 84
time 440	Tepreplay 742
synchronization (SYN) packets 84	TCSEC (Trusted Computer System
syslog 800–801	Evaluation Criteria) 674
syslog-ng 800–801	teaming, network interface card (NIC)
System and Organization Controls (SOC)	320
884	teams, incident response (IR) 760,
System Information 161	775–776

Teardrop 88	runtime errors 266–267
technical controls 868, 869	static and dynamic code analysis 269
Technical Guide to Information	stress 80, 266
Security Testing and Assessment	white-box 80
(NIST) 199	tethering 584
TEE (trusted execution environment)	TGTs (ticket-granting tickets) 668
476	THC Hydra 749
telemetry, fake 223	theft
temperature sensors 382	disaster analysis 925
temporal groups 182	identity 940
Temporal Key Integrity Protocol	intellectual property 917
(TKIP) 552	mobile device 580
temporary files 157	session 83
Tenable Network Security Nessus 204	theHarvester 203, 725-726
TERM environment variable 740	thin clients 235–236, 508
Terminal Access Controller Access	"third countries" 220
Control System Plus (TACACS+)	third-party destruction and disposal
672–673	services 387
terms of agreement 948	third-party libraries 265
testing 259	third-party risks 155–160
black-box 80	threat actors
compile-time errors 266–267	attack vectors 122-123
fuzz 80, 269–270	attributes of 122
gray-box 80	types of 120–121
input validation 80, 267–268	threat feeds 176
known environment/white box	threat hunting 175–180
468–469	threat intelligence
penetration 121, 266	automated indicator sharing (AIS) 125
active reconnaissance 204-205	Information Sharing and Analysis
advantages of 197–198	Centers (ISACs) 123–125
bug bounties versus 202-203	MITRE ATT&CK framework
cleanup 202	128–129
definition of 193, 197	research sources 127-128
exercise types 205–206	Structured Threat Information
known environment 198	eXpression (STIX) 125-127
lifecycle 199–202	Trusted Automated eXchange of
methodologies 199	Indicator Information (TAXII)
partially known environment 199	125–127
passive reconnaissance 203-204	vulnerability databases 125
post-exploitation techniques 201	threat maps 127
rules of engagement 200	threat modeling 264
unknown environment 198–199	thumbprint algorithm 692

ticket-granting tickets (1G1s) 668	traffic
tickets, Kerberos 668	east-west 492
time 844–845	lateral 492
delay 74	training, user 22-24, 899, 901-902
offset 844	Transaction Signature (TSIG) 108
synchronization 440	transference of risk 918
time bombs 39	transit gateways 246–247
time of check (TOC) attacks 79	transitive trust 577–578
time of use (TOU) attacks 79	Transmission Control Protocol (TCP)
time-based logins 639	503
time-based one-time password (TOTP)	transparent proxy 516
295	Transport Layer Security Inspection
timestamps 82-83, 844	(TLSI) 215–216
Time Machine 158	Transport Layer Security (TLS) 82-83,
time-to-live (TTL) 795	88, 108, 351, 410, 436, 441, 556,
TKIP (Temporal Key Integrity Protocol)	577, 656, 698
552	transport mode, IPsec 438, 503
TLS (Transport Layer Security) 82-83,	traversal, directory 75–76, 149, 274–275,
88, 108, 351, 410, 436, 441, 556,	276
577, 656, 698	Triple DES 412
TLSI (Transport Layer Security	TRNG (true random number generators)
Inspection) 215–216	477
TMSAD (Trust Model for Security	Trojans 35, 104, 108, 113
Automation Data) 887	true random number generators
TOC (time of check) attacks 79	(TRNGs) 477
token key 297	trust
token-based authentication 297	models 698
tokenization 218, 461–462, 945	root of 476–477
tokens 461, 625, 627–628	transitive 577–578
Top 10 Web Application Security Risks	Trusted Computer System Evaluation
277	Criteria (TCSEC) 674
Top Secret information 905, 941–942	zero 494
TOS (trusted operating system) 160, 905	Trust Model for Security Automation
ToS (type of service) bits 536	Data (TMSAD) 887
Toshiba 476	Trusted Automated eXchange of
TOTP (time-based one-time password)	Indicator Information (TAXII)
295	125–127
TOU (time of use) attacks 79	trusted computing base (TCB) 676
TPM (Trusted Platform Module) 294,	Trusted Computing Group (TCG) 476
459–460, 477–478, 524, 655	trusted execution environment (TEE)
traceroute command 707–709	476
tracert command 707-709	trusted operating system (TOS) 160, 905

Unified Extensible Firmware Interface Trusted Platform Module (TPM) 294, 459-460, 477-478, 524, 655 (UEFI) 459, 851 trusted zones 825 unified threat management (UTM) 495, trustworthy computing 39-40 524 uniform resource locators (URLs) Try-SQL Editor 71 TSIG (Transaction Signature) 108 redirection attacks 110 TTLS (Tunneled Transport Layer URL hijacking 44 Security) 556 uninterruptible power source (UPS) TTPs (tactics, techniques, and 320-321 procedures) 128, 176, 767, 809 union operator 73 tunnel mode, IPsec 438, 503 unique serial numbers (ICCIDs) 360 Tunneled Transport Layer Security Universal Serial Bus. See USB (Universal (TTLS) 556 Serial Bus) tunneling 495-496, 505-508, 556 **UNIX 144** two-factor authentication (2FA) 298 unknown environment 198-199 unmanned aerial vehicles (UAVs) Twofish 412 two-person integrity control 378 353-354 UPDATE statement 70 Type I errors 626 Type II errors 626 updates, exam 02.0004-02.0026 UPN (User Principal Name) 696 type of service (ToS) bits 536 typo squatting 20, 44 UPS (uninterruptible power source) 320-321 U URLs (uniform resource locators) filtering 828-829 UAC (User Account Control) 67 redirection attacks 110 UAs (user agents) 800 URL hijacking 44 UAVs (unmanned aerial vehicles) US Computer Emergency Readiness 353-354 Team (US-CERT) 576 ubuntu keyword 239 US Office of Personnel Management UDP (User Datagram Protocol) 503 (OPM) attack 300-301 UEFI (Unified Extensible Firmware USB (Universal Serial Bus) Interface) 459, 851 condoms 379 UEM (unified endpoint management) data blockers 379-380 587–588, 825 malicious flash drives 47-48 Umbrella 509 malicious USB cables 48 unauthenticated modes 404 USB OTG (USB On-The-Go) 583 unauthorized hackers 121 USB sticks 123 Unclassified information 941–942 US-DMCA (Digital Millennium underscore () 740 Copyright Act) 220 unicast addresses 537 use case analysis 882 unified endpoint management (UEM) user access recertification 645 587–588, 825

User Account Control (UAC) 67	vertical privilege escalation 67
user accounts. See accounts	vestibules, access control 372–373
user agents (UAs) 800	video
user behavior analysis 188	forensic video analysis 842-843
user certificates 696	secure 440
User Datagram Protocol (UDP) 503	steganography 416
user education 899, 901–902	virtualization 606, 610. See also VPNs
USER environment variable 740	(virtual private networks)
User Interaction (UI) metric 184	APIs (application programming
User Principal Name (UPN) 696	interfaces)
user security awareness education 22–24	definition of 240–241
user-controlled input 464	infrastructure as code 241–243
user-generated passwords 638	micro-segmentation 240-241
users command 631–632	cloud computing
UTC (Coordinated Universal Time) 845	cloud models 231–232
UTM (unified threat management) 495,	cloud service providers (CSPs) 233
524	community cloud 233
	fog and edge computing 234–235
V	hybrid cloud 233
vacations, mandatory 898-899, 900	managed detection and response
validation	(MDR) 234
continuous 278	managed service providers (MSPs)
identity 633-635	233–234
input 267–268, 464	off-premises versus on-premises
validity dates, certificate 692	services 234
variables, environmental 740	private cloud 232-233
/var/log directory 791	public cloud 232
vaults 385, 655	thin clients 235–236
VBA (Visual Basic for Applications) 113	VPCs (virtual private clouds) 607,
VDEs (virtual desktop environments)	608, 611
139, 232	containers 236–240
VDIs (virtual desktop infrastructures)	definition of 247
139, 232	firewalls 534–535
vectors, attack 122-123	IP addresses 488
vehicle systems 347–348	memory 850
vein authentication 302	microservices 236–240
vendor management 155, 156, 331,	resource policies 246
902–903	serverless architecture 243–244
ver command 161	services integration 246
Veracode Web Application Security 204	transit gateways 246–247
Verisign 112, 577	VDEs (virtual desktop environments)
version control 258, 279	139, 232

VDIs (virtual desktop infrastructures) Layer 2 Tunneling Protocol (L2 139, 232, 589 508	TP)
VLANs (virtual local-area networks) remote-access 496–497	
•	06 40"
VMs (virtual machines) 324–325 site-to-site configuration 495, 4	70 -1 97
attacks 248–249, 601 split tunneling 495–496	
sprawl avoidance 247–248 SSL-based 505–508	
VNC (virtual network computing) VPN concentrators 495 servers 632 vulnerabilities	
VPCs (virtual private clouds) 607, 608, backdoors 149, 271, 275	
cloud-based versus on-premises	
viruses 137–143	,
antivirus software 451 code injection 149, 273–274, 27	
fileless 37 cross-site request forgery (XSRI	1) 149,
vishing 12–13 272, 275	
visitor logs 383 cross-site scripting (XSS) 54, 68	- 70,
Visual Basic for Applications (VBA) 113 110, 149, 272, 275, 601	
VLANs (virtual local-area networks) dark web 143	
490–491, 831 directory traversal 149, 274–275	, 276
VMs (virtual machines) 324–325 error handling 79–82	
attacks 248–249, 601 compile-time errors 81–82	
sprawl avoidance 247–248 input handling 79–82	
VNC (virtual network computing) servers runtime errors 81–82	
impact of cybersecurity breache	s and
voice, secure 440 attacks 165–166	
voice recognition 302 legacy platforms 165	
VoIP (Voice over Internet Protocol) 350, memory/buffer 77–78, 149, 271	-272,
799–800 275	
volatility, order of 848 peer to peer (P2P) networks 14:	;
VPCs (virtual private clouds) 607, 608, remote code execution (RCE) 7	8, 146,
611 149, 275	
VPNs (virtual private networks) 99 server defense 144	
always-on functionality 495 email servers 145	
clientless versus client-based 497, 507 file servers 144	
definition of 494 FTP servers 147–148	
description of 494–496 network controllers 144	
example of 494–495 web servers 146–147	
example of 494–495 web servers 146–147 HTML5 508 social media 143	
1	
HTML5 508 social media 143 IKEv1 Phase 1 negotiation 498–501 summary of 149–150, 275–276	
HTML5 508 social media 143 IKEv1 Phase 1 negotiation 498–501 summary of 149–150, 275–276	

weak patch management 160-164	web of trust 698
zero-day 149, 275, 276, 522	web pages, metadata from 808-809
vulnerability scans 180–181, 559	web protocol port numbers 441
Common Vulnerability Scoring System	web servers
(CVSS) 182–186	logs 794
false negative 181	vulnerabilities 146–147
false positives 181	Web Services Description Language
intrusive versus nonintrusive 182	(WSDL) documents 87
noncredentialed 182	web synchronization 440
output 785–786	WebApp360 204
VUPEN Web Application Security	webification 507
Scanner 204	Websense 533
	WebSploit 72, 238, 953
W	weighted random early detection
w command 631	(WRED) 536
WADL (Web Application Description	WEP (Wired Equivalent Privacy) 102
Language) documents 87	WER (Windows Error Reporting) 853
WAF (web application firewall) 198, 531	Western Digital 476
walkthrough exercises 766	whaling 9, 16–17
WannaCry 34, 37	white box testing 468–469
WAP (Wireless Application Protocol)	white hat hackers 121
558, 585	white teams 206
WAPs (wireless access points) 98, 101,	white-box testing 80
513, 559	WhiteHat Sentinel 204
war driving 205	whitelisting 578, 583
war flying 205	who command 631-632
war-dialing 13	whoami command 632
warm sites 221	whois 108, 203
waterfall development methodology	Wi-Fi
257–258	vulnerabilities and exposures 571
watering hole attacks 20, 85	Wi-Fi ad hoc 584
weak configurations 150–155	Wi-Fi Analyzers 559, 561
weak defaults 346	Wi-Fi direct 584
weak patch management 160-164	Wi-Fi disassociation attack 101
wearables 345	WPA2 (Wi-Fi Protected Access 2)
Web Application Description Language	551
(WADL) documents 87	WPA3 (Wi-Fi Protected Access 3) 551
web application firewall (WAF) 198, 531	WPS (Wi-Fi Protected Setup)
Web Application Proxy 516	558–559
web application scanners 182	Wigle 205
Web form-grabbing keyloggers 43	wildcard certificates 694–695

Windows Defender Firewall 457	Wi-Fi Protected Access 3 (WPA3)
Windows Error Reporting (WER) 853	551–552
Windows Event Viewer 791–792, 846	installation considerations
Windows Performance Monitor 540–542	AP isolation 562
Windows Performance tool 539	captive portals 559
Windows PowerShell 630	controller and access point security
WinGate 514	562–563
WinHex 746	firewalls 562
Wired Equivalent Privacy (WEP) 102	heat maps 559
wireless access points (WAPs) 98, 101,	IEEE 802.1X standard 562
513, 559	Multi-User Multiple Input
Wireless Application Protocol (WAP)	(MU-MIMO) 560–561
558, 585	orthogonal frequency-division
wireless LAN (WLAN) controllers 558	multiple access (OFDMA) 561
wireless networks 547, 557-558	site surveys 559, 561–562
attacks 98, 122	Wi-Fi Analyzer tools 559
bluejacking 100	Wi-Fi Protected Setup (WPS)
bluesnarfing 99–100	558–559
disassociation and deauthentication	wireless access point (WAP)
101	placement 559
evil twin 98–99	Wireless Transport Layer Security
initialization vector (IV) 103	(WTLS) 558
jamming 102, 561–562	Wireshark 539, 559, 743
mobile device security	WLAN (wireless LAN) controllers 558
countermeasures 580	workstations, hardening 159–160
near-field communication (NFC)	WORM (write once read many) device
102–103	789
radio frequency identification	worms 36–37
(RFID) 49, 102	WPA2 (Wi-Fi Protected Access 2)
rogue access points 98–99	551
authentication protocols	WPA3 (Wi-Fi Protected Access 3) 551
556–557	WPS (Wi-Fi Protected Setup)
cryptographic protocols 551	558–559
Advanced Encryption Standard	wrap 77
(AES) 552	write once read many (WORM) devices
Counter-mode/CBC-MAC protocol	789
(CCMP) 552	WSDL (Web Services Description
Simultaneous Authentication of	Language) documents 87
Equals (SAE) 551, 552	WTLS (Wireless Transport Layer
summary of 552	Security) 558
•	• •
Wi-Fi Protected Access 2 (WPA2)	wuapp.exe 161
551	

X

X.509 standard 694 X.690 encoding formats 697 XaaS (anything as a service) 139, 232 XCCDF (Extensible Configuration Checklist Description Format) 885 XDR (Extended Detection and Response) 189 Xiao 415 XML (Extensible Markup Language) XML injection 74–75, 273–274 XSD (XML Schema Definition) 86 XXE (XML External Entity) 74 XSRF (cross-site request forgery) 85–86, 149, 272, 275 XSS (cross-site scripting) 54, 68–70, 110, 149, 272, 275, 464, 601 Xways 850-851 X-Ways Software Technology AG 746 XXE (XML External Entity) 75

Υ

YOLO (You Only Look Once) 376 YubiKey 297

Z

Zed Attack Proxy 204
zero trust 494
zero-day vulnerabilities 149, 275, 276, 522
Zigbee 360–361
Zimbra 145
zombies 111–112
zones
high availability across 603, 609
zone signing keys (ZSKs) 427
zone transfers 109
ZSKs (zone signing keys) 427
Zune 850–851