Quantum Computing Fundamentals

This page intentionally left blank

Quantum Computing Fundamentals

Dr. Chuck Easttom

[^0]Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@ pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@ pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@ pearson.com.
Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2021903471
Copyright © 2021 Pearson Education, Inc.
All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights \& Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-679381-6
ISBN-10: 0-13-679381-9
ScoutAutomatedPrintCode

Editor-in-Chief

 Mark TaubDirector, ITP Product
Manager
Brett Bartow

Executive Editor
James Manly
Development Editor
Christopher A. Cleveland

Managing Editor
 Sandra Schroeder

Project Editor

Mandie Frank
Copy Editor
Bart Reed
Indexer
Cheryl Ann Lenser
Proofreader
Donna Mulder
Technical Reviewers
Izzat Alsmadi, Renita Murimi

Editorial Assistant

Cindy Teeters
Designer
Chuti Prasertsith
Compositor
codeMantra

Credits

Cover ZinetroN/Shutterstock

Figure Number

Credit Attribution

Figure 12-1A
Figure 16-1
Figure 16-2
Figure 16-3
Figure 16-4
Figure 16-5
Figure 16-6
Figure 16-7
Figure 16-8
Figure 16-9
Figure 16-10
Figure 16-11
Figure 16-12
Figure 16-13
Figure 16-14
Figure 16-15
Figure 16-16
Figure 16-17
Figure 16-18
Figure 16-19
Figure 16-20
Figure 17-1
Figure 17-2
Figure 17-3
Figure 17-4
Figure 17-5
Figure 17-6
Figure 17-7
Figure 17-8
Figure 17-9
Figure 17-10
Figure 17-11
Unnumbered Figure 17-1
Screenshot © Microsoft Corporation
Screenshot of Microsoft QDK for Visual Studio Code © Microsoft 2021
Screenshot of New Q\# Program in Visual Studio Code © Microsoft 2021
Screenshot of Save Program in Visual Studio Code © Microsoft 2021
Screenshot of QDK Samples © Microsoft 2021
Screenshot of Q\# Random Number Generator © Microsoft 2021
Screenshot of Q\# Open Statements © Microsoft 2021
Screenshot of Operation QuantumPseudoRandomNumberGenerator © Microsoft 2021
Screenshot of Operation RandomNumberInRange © Microsoft 2021
Screenshot of Operation SampleRandomNumber © Microsoft 2021
Screenshot of Open Statements in Grover's Algorithm Code © Microsoft 2021
Screenshot of ReflectMarked © Microsoft 2021
Screenshot of ReflectUniform © Microsoft 2021
Screenshot of Additional Functions for Grover's algorithm © Microsoft 2021
Screenshot of Entry Point for Grover's Algorithm © Microsoft 2021
Screenshot of NumberofIterations Function © Microsoft 2021
Screenshot of Beginning of Deutsch-Jozsa © Microsoft 2021
Screenshot of Deutsch-Jozsa Entry Point © Microsoft 2021
Screenshot of IsConstant Function © Microsoft 2021
Screenshot of Remaining Functions for Deutsch-Jozsa © Microsoft 2021
Screenshot of Entanglement © Microsoft 2021
Screenshot of Quantum Inspire Editor © 2021 Quantum Inspire
Screenshot of Two Qubits © 2021 Quantum Inspire
Screenshot of CNOT Gate © 2021 Quantum Inspire
Screenshot of Hadamard Gate © 2021 Quantum Inspire
Screenshot of Multiple Gates © 2021 Quantum Inspire
Screenshot of Start a New Project © 2021 Quantum Inspire
Screenshot of New Project Editor © 2021 Quantum Inspire
Screenshot of Error Correction © 2021 Quantum Inspire
Screenshot of Grover's Algorithm © 2021 Quantum Inspire Screenshot of Grover's Algorithm Results © 2021 Quantum Inspire
Screenshot of Deutsch-Jozsa Algorithm © 2021 Quantum Inspire
Screenshot of CNOT Gate Symbol © 2021 Quantum Inspire

Dedication

As always, I dedicate my work to my wonderful wife Teresa. A quote from my favorite movie is how I usually thank her: "What truly is logic? Who decides reason? My quest has taken me to the physical, the metaphysical, the delusional, and back. I have made the most important discovery of my career-the most important discovery of my life. It is only in the mysterious equations of love that any logic or reasons can be found. I am only here tonight because of you. You are the only reason I am. You are all my reasons."

Table of Contents

Preface xvii
Part I Preparatory Material
Chapter 1: Introduction to Essential Linear Algebra 2
1.1 What Is Linear Algebra? 3
1.2 Some Basic Algebra 4
1.2.1 Groups, Rings, and Fields 6
1.3 Matrix Math 10
1.3.1 Matrix Addition and Multiplication 11
1.3.2 Matrix Transposition 13
1.3.3 Submatrix 14
1.3.4 Identity Matrix 15
1.3.5 Deeper Into the Matrix 16
1.4 Vectors and Vector Spaces 23
1.5 Set Theory 25
1.6 Summary 29
Test Your Skills 29
Chapter 2: Complex Numbers 32
2.1 What Are Complex Numbers? 32
2.2 Algebra of Complex Numbers 34
2.3 Complex Numbers Graphically 38
2.4 Vector Representations of Complex Numbers 45
2.5 Pauli Matrices 48
2.5.1 Algebraic Properties of Pauli Matrices 52
2.6 Transcendental Numbers 56
2.7 Summary 58
Test Your Skills 58
Chapter 3: Basic Physics for Quantum Computing 60
3.1 The Journey to Quantum 61
3.2 Quantum Physics Essentials 65
3.2.1 Basic Atomic Structure 65
3.2.2 Hilbert Spaces 68
3.2.3 Uncertainty 70
3.2.4 Quantum States 73
3.2.5 Entanglement 75
3.3 Summary 77
Test Your Skills 77
Chapter 4: Fundamental Computer Science for Quantum Computing 80
4.1 Data Structures 81
4.1.1 List 81
4.1.2 Binary Tree 88
4.2 Algorithms 88
4.2.1 Sorting Algorithms 90
4.3 Computational Complexity 93
4.3.1 Cyclomatic Complexity 93
4.3.2 Halstead Metrics 94
4.4 Coding Theory 95
4.5 Logic Gates 96
4.5.1 AND 96
4.5.2 OR 96
4.5.3 XOR 96
4.5.4 Application of Logic Gates 97
4.6 Computer Architecture 100
4.7 Summary 103
Test Your Skills 103
Chapter 5: Basic Information Theory 106
5.1 Basic Probability 107
5.1.1 Basic Probability Rules. 107
5.2 Set Theory 108
5.3 Information Theory 112
5.3.1 Theorem 1: Shannon's Source Coding Theorem 113
5.3.2 Theorem 2: Noisy Channel Theorem 113
5.3.3 Information Entropy 113
5.3.4 Information Diversity 116
5.4 Quantum Information 118
5.5 Summary 120
Test Your Skills 120
Part II Basic Quantum Computing
Chapter 6: Basic Quantum Theory 122
6.1 Further with Quantum Mechanics 123
6.1.1 Bra-Ket Notation. 123
6.1.2 Hamiltonian 124
6.1.3 Wave Function Collapse. 125
6.1.4 Schrödinger's Equation 128
6.2 Quantum Decoherence. 129
6.3 Quantum Electrodynamics 131
6.4 Quantum Chromodynamics 133
6.5 Feynman Diagram 134
6.6 Summary 136
Test Your Skills 136
Chapter 7: Quantum Entanglement and QKD 138
7.1 Quantum Entanglement 138
7.2 Interpretation 143
7.2.1 The Copenhagen Interpretation 144
7.2.2 The Many-Worlds Interpretation 144
7.2.3 Decoherent Histories 145
7.2.4 Objective Collapse Theory 145
7.3 QKE 146
7.3.1 BB84 Protocol 146
7.3.2 B92 Protocol 149
7.3.3 SARG04 149
7.3.4 Six-State Protocol 151
7.3.5 E91 151
7.3.6 Implementations 151
7.4 Summary 151
Test Your Skills 152
Chapter 8: Quantum Architecture 154
8.1 Further with Qubits 154
8.2 Quantum Gates 158
8.2.1 Hadamard Gate 159
8.2.2 Phase Shift Gates 161
8.2.3 Pauli Gates 161
8.2.4 Swap Gates 162
8.2.5 Fredkin Gate 163
8.2.6 Toffoli Gates 163
8.2.7 Controlled Gates 163
8.2.8 Ising Gates 164
8.2.9 Gottesman-Knill Theorem 165
8.3 More with Gates 166
8.4 Quantum Circuits 167
8.5 The D-Wave Quantum Architecture 169
8.5.1 SQUID 170
8.6 Summary 172
Test Your Skills 172
Chapter 9: Quantum Hardware 174
9.1 Qubits 174
9.1.1 Photons 175
9.1.2 Electron 177
9.1.3 Ions 178
9.1.4 NMRQC 179
9.1.5 Bose-Einstein Condensate Quantum Computing 179
9.1.6 GaAs Quantum Dots. 181
9.2 How Many Qubits Are Needed? 181
9.3 Addressing Decoherence 182
9.3.1 Supercooling 185
9.3.2 Dealing with Noise 185
9.3.3 Filtering Noise 186
9.4 Topological Quantum Computing 186
9.4.1 Basic Braid Theory 186
9.4.2 More on Braid Theory 187
9.4.3 More on Topological Computing 187
9.5 Quantum Essentials 187
9.5.1 Quantum Data Plane 187
9.5.2 Measurement Plane 188
9.5.3 Control Processor Plane 188
9.6 Quantum Networking 188
9.6.1 Tokyo QKD 188
9.6.2 Beijing-Shanghai Quantum Link 189
9.6.3 Micius Satellite 189
9.6.4 Distributed Quantum Computing 190
9.7 Summary 191
Test Your Skills 191
Chapter 10: Quantum Algorithms 194
10.1 What Is an Algorithm? 194
10.2 Deutsch's Algorithm 197
10.3 Deutsch-Jozsa Algorithm 199
10.4 Bernstein-Vazirani Algorithm 201
10.5 Simon's Algorithm 202
10.6 Shor's Algorithm 203
10.6.1 The Quantum Period-Finding Function. 206
10.7 Grover's Algorithm 209
10.8 Summary 211
Test Your Skills 211
Part III Quantum Computing and Cryptography
Chapter 11: Current Asymmetric Algorithms 212
11.1 RSA 213
11.1.1 RSA Example 1 215
11.1.2 RSA Example 2 215
11.1.3 Factoring RSA Keys 216
11.2 Diffie-Hellman 216
11.2.1 Elgamal 217
11.2.2 MQV 219
11.3 Elliptic Curve 219
11.3.1 ECC Diffie-Hellman 224
11.3.2 ECDSA 225
11.4 Summary 227
Test Your Skills 227
Chapter 12: The Impact of Quantum Computing on Cryptography 228
12.1 Asymmetric Cryptography 229
12.1.1 How Many Qubits Are Needed? 230
12.2 Specific Algorithms 231
12.2.1 RSA 231
12.2.2 Diffie-Hellman 231
12.2.3 ECC 232
12.2.4 Symmetric Ciphers 232
12.2.5 Cryptographic Hashes 232
12.3 Specific Applications 233
12.3.1 Digital Certificates 233
12.3.2 SSL/TLS 234
12.3.4 Public Key Infrastructure (PKI) 237
12.3.5 VPN 239
12.3.6 SSH 240
12.4 Summary 241
Test Your Skills 241
Chapter 13: Lattice-based Cryptography 244
13.1 Lattice-Based Mathematical Problems 245
13.1.1 Shortest Integer Problem 248
13.1.2 Shortest Vector Problem 248
13.1.3 Closest Vector Problem 248
13.2 Cryptographic Algorithms 249
13.2.1 NTRU 249
13.2.2 GGH 252
13.2.3 Peikert's Ring 253
13.3 Solving Lattice Problems 256
13.3.1 Lenstra-Lenstra-Lovász (LLL) 256
13.4 Summary 259
Test Your Skills 259
Chapter 14: Multivariate Cryptography 262
14.1 Mathematics 262
14.2 Matsumoto-Imai 264
14.3 Hidden Field Equations 266
14.4 Multivariate Quadratic Digital Signature Scheme (MQDSS) 268
14.5 SFLASH 269
14.6 Summary 271
Test Your Skills 271
Chapter 15: Other Approaches to Quantum Resistant Cryptography 274
15.1 Hash Functions 274
15.1.1 Merkle-Damgaard 275
15.1.2 SWIFFT 275
15.1.3 Lamport Signature 277
15.2 Code-Based Cryptography 279
15.2.1 McEliece 279
15.2.2 Niederreiter Cryptosystem 280
15.3 Supersingular Isogeny Key Exchange 281
15.3.1 Elliptic Curves 281
15.3.2 SIDH 285
15.4 Summary 289
Test Your Skills 289
Part IV Quantum Programming
Chapter 16: Working with Q\# 292
16.1 Basic Programming Concepts 292
16.1.1 Variables and Statements 292
16.1.2 Control Structures 295
16.1.3 Object-Oriented Programming 297
16.2 Getting Started with Q\# 298
16.3 Grover's Algorithm 303
16.3.1 Grover's Algorithm Reviewed 303
16.3.2 The Code for Grover's Algorithm 304
16.4 Deutsch-Jozsa Algorithm 307
16.4.1 Deutsch-Jozsa Algorithm Reviewed 308
16.4.2 The Code for Deutsch-Jozsa Algorithm 308
16.5 Bit Flipping. 310
16.6 Summary 311
Test Your Skills 311
Chapter 17: Working with QASM 314
17.1 Basic Programming Concepts 315
17.1.1 Instructions 315
17.1.2 Commands 319
17.2 Getting Started with QASM 319
17.3 Quantum Error Correction 320
17.4 Grover's Algorithm 322
17.4.1 Grover's Algorithm Reviewed 322
17.4.2 The Code for Grover's Algorithm 324
17.5 Deutsch-Jozsa Algorithm 326
17.5.1 Deutsch-Jozsa Algorithm Reviewed 326
17.5.2 The Code for the Deutsch-Jozsa Algorithm 326
17.6 Summary 328
Test Your Skills 328
Appendix: Answers to Test Your Skills Questions 330
Index 338

Preface

Writing a book is always a challenging project. But with a topic like quantum computing, it is much more so. If you cover too much, the reader will be overwhelmed and will not gain much from the book. If you cover too little, you will gloss over critical details. With quantum computing, particularly a book written for the novice, it is important to provide enough information without overwhelming. It is my sincere hope that I have accomplished this.

Clearly some readers will have a more robust mathematical background than others. Some of you will probably have some experience in quantum computing; however, for those of you lacking some element in your background, don't be concerned. The book is designed to give you enough information to proceed forward. Now this means that every single chapter could be much larger and go much deeper. In fact, I cannot really think of a single chapter that could not be a separate book!

When you are reading a section that is a new concept to you, particularly one you struggle with, don't be concerned. This is common with difficult topics. And if you are not familiar with linear algebra, Chapter 1, "Introduction to Essential Linear Algebra," will start right off with new concepts for youconcepts that some find challenging. I often tell students to not be too hard on themselves. When you are struggling with a concept and you see someone else (perhaps the professor, or in this case the author) seem to have an easy mastery of the topic, it is easy to get discouraged. You might think you are not suited for this field. If you were, would you not understand it as readily as others? The secret that no one tells you is that all of those "others," the ones who are now experts, struggled in the beginning, too. Your struggle is entirely natural. Don't be concerned. You might have to read some sections more than once. You might even finish the book with a solid general understanding, but with some "fuzziness" on specific details. That is not something to be concerned about. This is a difficult topic.

For those readers with a robust mathematical and/or physics background, you are likely to find some point where you feel I covered something too deeply, or not deeply enough. And you might be correct. It is quite difficult when writing a book on a topic such as this, for a novice audience, to find the proper level at which to cover a given topic. I trust you won't be too harsh in your judgment should you disagree with the level at which I cover a topic.

Most importantly, this book should be the beginning of an exciting journey for you. This is the cutting edge of computer science. Whether you have a strong background and easily master the topics in this book (and perhaps knew some already) or you struggle with every page, the end result is the same. You will be open to a bold, new world. You will see the essentials of quantum mechanics, understand the quantum computing revolution, and perhaps even be introduced to some new mathematics. So please don't get too bogged down in the struggle to master concepts. Remember to relish the journey!

Register your copy of Quantum Computing Fundamentals on the InformIT site for convenient access to updates and/or corrections as they become available. To start the registration process, go to informit. com/register and \log in or create an account. Enter the product ISBN (9780136793816) and click Submit. Look on the Registered Products tab for an Access Bonus Content link next to this product, and follow that link to access any available bonus materials. If you would like to be notified of exclusive offers on new editions and updates, please check the box to receive email from us.

Acknowledgments

There are so many people who made this book possible. Let me start with Professor Izzat Alsmadi (Texas A\&M-San Antonio) and Professor Renita Murimi (University of Dallas) who were gracious enough to provide technical review of each and every chapter. Chris Cleveland was the lead editor, and I must confess, I am not the easiest person to edit. His patience and careful eye for detail were essential to this book. I also want to thank Bart Reed for his work in copy editing. All the people working on this book have done an extremely good job helping me create a book that can be clear and accurate for the reader to learn this challenging topic.

About the Author

Dr. Chuck Easttom is the author of 31 books, including several on computer security, forensics, and cryptography. His books are used at more than 60 universities. He has also authored scientific papers (more than 70 so far) on digital forensics, cyber warfare, cryptography, and applied mathematics. He is an inventor with 22 computer science patents. He holds a Doctor of Science in cyber security (dissertation topic: a study of lattice-based cryptographic algorithms for post-quantum computing). He also has a Ph.D. in Technology, focusing on nanotechnology (dissertation title: "The Effects of Complexity on Carbon Nanotube Failures") and a Ph.D. in Computer Science (dissertation title: "On the Application of Graph Theory to Digital Forensics"). He also has three master's degrees (one in applied computer science, one in education, and one in systems engineering). He is a senior member of the IEEE and a senior member of the ACM (Association of Computing Machinery) as well as a member of IACR (International Association of Cryptological Research) and INCOSE (International Council on Systems Engineering). He is also a distinguished speaker of the ACM and a distinguished visitor of the IEEE Computer Society. He currently is an adjunct lecturer for Georgetown University.

Chapter 6

Basic Quantum Theory

Chapter Objectives

After reading this chapter and completing the quizzes, you will be able to do the following:

■ Use bra-ket notation
■ Understand the Hamiltonian operator

- Have a working knowledge of wave functions and the wave function collapse
- Recognize the role of Schrödinger's equation
- Know the role of quantum decoherence and its impact on quantum computing
- Have a generalized understanding of quantum electrodynamics
- Demonstrate basic knowledge of quantum chromodynamics

This chapter will introduce you to various aspects of quantum theory. Some of these topics were briefly touched on in Chapter 3, "Basic Physics for Quantum Computing." It is essential that you have a strong grasp of Chapters 1 through 3 in order to follow along in this chapter. The first issue to address is what precisely is quantum theory? It is actually a number of related theories, including quantum field theory, quantum electrodynamics (QED), and in some physicists' opinion, even quantum chromodynamics, which deals with quarks. In this chapter, the goal is to deepen the knowledge you gained in Chapter 3 and to provide at least a brief introduction to a range of topics that all fit under the umbrella of quantum theory.

In this chapter, it is more important than ever to keep in mind our goal. Yes, I will present a fair amount of mathematics, some of which may be beyond some readers. However, unless your goal is to do actual work in the field of quantum physics or quantum computing research, then what you need is simply a general comprehension of what the equations mean. You do not need to have the level of mathematical acumen that would allow you to actually do the math. So, if you encounter some math
you find daunting, simply review it a few times to ensure you get the general gist of it and move on. You can certainly work with qubits, Q\#, and other quantum tools later in this book without a deep understanding of how to do the mathematics.

6.1 Further with Quantum Mechanics

Chapter 3 introduced some fundamental concepts in quantum physics. This section expands our exploration of quantum mechanics a bit. In 1932, Werner Heisenberg was awarded the Nobel Prize in Physics for the "creation of quantum mechanics." I am not sure that one person can be solely credited with the creation of quantum mechanics, but certainly Heisenberg deserves that credit as much as anyone.

The publication that earned him the Nobel Prize was titled "Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations." This paper is rather sophisticated mathematically, and we won't be exploring it in detail here. The paper introduced a number of concepts that formed the basis of quantum physics. The interested reader can consult several resources, including the following:
https://arxiv.org/pdf/quant-ph/0404009.pdf
https://www.heisenberg-gesellschaft.de/3-the-development-of-quantum-mechanics-1925-ndash-1927.html
https://inis.iaea.org/collection/NCLCollectionStore/_Public/08/282/8282072.pdf

6.1.1 Bra-Ket Notation

Bra-ket notation was introduced a bit earlier, in Chapter 3. However, this notation is so essential to understanding quantum physics and quantum computing that we will revisit it, with more detail. Recall that quantum states are really vectors. These vectors include complex numbers. However, it is often possible to ignore the details of the vector and work with a representation of the vector. This notation is called Dirac notation or bra-ket notation.

A bra is denoted by $\langle V|$, and a ket is denoted by $|\mathrm{V}\rangle$. Yes, the terms are intentional, meaning braket, or bracket. But what does this actually mean? A bra describes some linear function that maps each vector in V to a number in the complex plane. Bra-ket notation is really about linear operators on complex vector spaces, and it is the standard way that states are represented in quantum physics and quantum computing. One reason for this notation is to avoid confusion. The term vector in linear algebra is a bit different from the term vector in classical physics. In classical physics, a vector denotes something like velocity that has magnitude and direction; however, in quantum physics, a vector (linear algebra vector) is used to represent a quantum state, thus the need for a different notation. It is important to keep in mind that these are really just vectors. Therefore, the linear algebra that you saw in Chapter 1, "Introduction to Essential Linear Algebra," applies.

6.1.2 Hamiltonian

It is important that you be introduced to the Hamiltonian. A Hamiltonian is an operator in quantum mechanics. It represents the sum of the kinetic and potential energies (i.e., the total energy) of all the particles in a given system. The Hamiltonian can be denoted by an $\mathrm{H},\langle\mathrm{H}\rangle$, or \hat{H}. When one measures the total energy of a system, the set of possible outcomes is the spectrum of the Hamiltonian. The Hamiltonian is named after William Hamilton. As you may surmise, there are multiple different ways of representing the Hamiltonian. In Equation 6.1, you see a simplified version of the Hamiltonian.
$\hat{H}=\hat{T}+\hat{v}$
EQUATION 6.1 The Hamiltonian
The \hat{T} represents the kinetic energy, and the \hat{v} represents the potential energy. The T is a function of p (the momentum), and V is a function of q (the special coordinate). This simply states that the Hamiltonian is the sum of kinetic and potential energies. This particular formulation is rather simplistic and not overly helpful. It represents a one-dimensional system with one single particle of mass, m . This is a good place to start understanding the Hamiltonian. Equation 6.2 shows a better formulation.
$\mathrm{H}_{\text {operator }}=-\frac{-h^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+v_{(x)}$

EQUATION 6.2 The Hamiltonian (Detailed)

Let us examine this formula to understand it. The simplest part is $\mathrm{V}(\mathrm{x})$, which simply represents potential energy. The x is the coordinate in space. Also rather simple to understand is the m , which is the mass. The $-\hbar^{2}$, as you will recall from Chapter 3, is the reduced Planck constant, which is the Planck constant $\mathrm{h}\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right) / 2 \pi$. The ∂ symbol indicates a partial derivative. For some readers, this will be quite familiar. If you are not acquainted with derivatives and partial derivatives, you need not master those topics to continue with this book, but a brief conceptual explanation is in order. It should also be noted that there are many other ways of expressing this equation. You can see an alternative way at https://support.dwavesys.com/hc/en-us/articles/360003684614-What-Is-the-Hamiltonian-.

With any function, the derivative of that function is essentially a measurement of the sensitivity of the function's output with respect to a change in the function's input. A classic example is calculating an object's position with respect to change in time, which provides the velocity. A partial derivative is a function of multiple variables, and the derivative is calculated with respect to one of those variables.

So, you should now have a general conceptual understanding of the Hamiltonian. Our previous discussion only concerned a single particle. In a system with multiple particles (as are most systems), the Hamiltonian of the system is just the sum of the individual Hamiltonians, as demonstrated in Equation 6.3.
$\hat{H}=\sum_{n=1}^{N} \hat{T}_{n}+\hat{V}$

EQUATION 6.3 Hamiltonian (Another View)

Let us delve a bit deeper into the Hamiltonian. Any operator can be written in a matrix form. Now recall our discussion of linear algebra in Chapter 1. The eigenvalues of the Hamiltonian are the energy levels of the system. For the purposes of this book, it is not critical that you understand this at a deep working level, but you should begin to see intuitively why linear algebra is so important for quantum physics.

It also is interesting to note the relationship between the Hamiltonian and the Lagrangian. First, it is necessary to define the Lagrangian. Joseph-Louis Lagrange developed Lagrangian mechanics in 1788. It is essentially a reformulation of classical mechanics. Lagrangian mechanics uses the Lagrangian function of the coordinates, the time derivatives, and the times of the particles.

In Hamiltonian mechanics, the system is described by a set of canonical coordinates. Canonical coordinates are sets of coordinates on a phase space, which can describe a system at any given point in time. You can, in fact, derive the Hamiltonian from a Lagrangian. We won't delve into that topic in this chapter, but the interested reader can learn more about that process, and other details about the Hamiltonian, at the following sources:
https://scholar.harvard.edu/files/david-morin/files/cmchap15.pdf
https://www.damtp.cam.ac.uk/user/tong/dynamics/four.pdf
https://authors.library.caltech.edu/89088/1/1.5047439.pdf

6.1.3 Wave Function Collapse

In physics, a wave function is a mathematical description of the quantum state of a quantum system. It is usually represented by the Greek letter psi, either lowercase (ψ) or uppercase (Ψ). A wave function is a function of the degrees of freedom for the quantum system. In such a system, degrees of freedom indicate the number of independent parameters that describe the system's state. As one example, photons and electrons have a spin value, and that is a discrete degree of freedom for that particle.

A wave function is a superposition of possible states. More specifically, it is a superposition of eigenstates that collapses to a single eigenstate based on interaction with the environment. Chapter 1 discussed eigenvalues and eigenvectors. An eigenstate is basically what physicists call an eigenvector.
Wave functions can be added together and even multiplied (usually by complex numbers, which you studied in Chapter 2, "Complex Numbers") to form new wave functions. Recall the dot product we discussed in Chapter 1; the inner product is just another term for the dot product. This is also sometimes called the scalar product. Recall the inner/dot product is easily calculated, as shown in Equation 6.4.

$\sum_{i=1}^{n} X_{i} Y_{i}$

EQUATION 6.4 Inner Product
The inner product of two wave functions is a measure of the overlap between the two wave functions' physical state.

This brings us to another important aspect of quantum mechanics: the Born rule. This postulate was formulated by Max Born and is sometimes called the Born law or the Born postulate. The postulate gives the probability that a measurement of a quantum system will produce a particular result. The simplest form of this is the probability of finding a particle at a given point. That general description will be sufficient for you to continue in this book; however, if you are interested in a deeper understanding, we will explore it now. The Born rule more specifically states that if some observable (position, momentum, etc.) corresponding to a self-adjoint operator A is measured in a system with a normalized wave function $|\psi\rangle$, then the result will be one of the eigenvalues of A . This should help you become more comfortable with the probabilistic nature of quantum physics.

For those readers not familiar with self-adjoint operators, a brief overview is provided. Recall from Chapter 1 that matrices are often used as operators. A self-adjoint operator on a finite complex vector space, with an inner product, is a linear map from the vector to itself that is its own adjoint. Note that it is a complex vector space. This bring us to Hermitian. Recall from Chapter 2 that Hermitian refers to a square matrix that is equal to its own conjugate transpose. Conjugate transpose means first taking the transpose of the matrix and then taking the complex conjugate of the matrix. Each linear operator on a complex Hilbert space also has an adjoint operator, sometimes called a Hermitian adjoint.

Self-adjoint operators have applications in fields such as functional analysis; however, in quantum mechanics, physical observables such as position, momentum, spin, and angular momentum are represented by self-adjoint operators on a Hilbert space.

This is also a good time to discuss Born's rule, which provides the probability that a measurement of a quantum system will yield a particular result. More specifically, the Born rule states that the probability density of finding a particular particle at a specific point is proportional to the square of the magnitude of the particle's wave function at that point. In more detail, the Born rule states that if an observable corresponding to a self-adjoint operator is measured in a system with a normalized wave function, the result will be one of the eigenvalues of that self-adjoint operator. There are more details to the Born rule, but this should provide you enough information. The interested reader can find more information at the following sources:
https://www.math.ru.nl/~landsman/Born.pdf
https://www.quantamagazine.org/the-born-rule-has-been-derived-from-simple-physical-principles-20190213/

Now let us return to the collapse of a wave function, which takes the superposition of possible eigenstates and collapses to a single eigenstate based on interaction with the environment. What is this interaction with the environment? This is one of the aspects of quantum physics that is often misunderstood by the general public. A common interaction with the environment is a measurement, which physicists often describe as an observation. This has led many to associate intelligent observation as a necessary condition for quantum physics, and thus all of reality. That is simply not an accurate depiction of what quantum physics teaches us.

What is termed an observation is actually an interaction with the environment. When a measurement is taken, that is an interaction that causes the wave function to collapse.

The fact that a measurement causes the wave function to collapse has substantial implications for quantum computing. When one measures a particle, one changes the state. As you will see in later chapters, particularly Chapter 8, "Quantum Architecture," and Chapter 9, "Quantum Hardware," this is something that quantum computing must account for.

The wave function can be expressed as a linear combination of the eigenstates (recall this is the physics term for eigenvectors you learned in Chapter 1) of an observable (position, momentum, spin, etc.). Using the bra-ket notation discussed previously, this means a wave function has a form such as you see in Equation 6.5.
$\psi>=\Sigma_{i} c_{i} \mid \phi_{i}$

EQUATION 6.5 Wave Function

This is not as complex as it seems. The Greek letter psi (ψ) denotes the wave function. The Σ symbol is a summation of what is after it. The $\phi \mathrm{i}$ represents various possible quantum states. The i is to enumerate through those possible states, such as $\phi 1, \phi 2, \phi 3$, etc. The c_{i} values (i.e., c1, c2, c3, etc.) are probability coefficients. The letter c is frequently used to denote these because they are represented by complex numbers.

Recall from Chapter 1 that if two vectors are both orthogonal (i.e., perpendicular to each other) and have a unit length (length 1), the vectors are said to be orthonormal. The bra-ket $\left\langle\phi_{i} \mid \phi_{j}\right\rangle$ forms an orthonormal eigenvector basis. This is often written as follows:

$$
\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{\mathrm{ij}}
$$

The symbol δ is the Kronecker delta, which is a function of two variables. If the variables are equal, the function result is 1 . If they are not equal, the function result is 0 . This is usually defined as shown in Equation 6.6.

$$
\delta_{i j}= \begin{cases}0 & \text { if } i \neq j, \\ 1 & \text { if } i=j .\end{cases}
$$

Now let us discuss the actual process of the wave collapse. Remember that for any observable, the wave function is some linear combination of the eigenbasis before the collapse. When there is some environmental interaction, such as a measurement of the observable, the function collapses to just one of the base's eigenstates. This can be described in the following rather simple formula:

$$
|\psi\rangle \rightarrow\left|\phi_{i}\right\rangle
$$

But which state will it collapse to? That is the issue with quantum mechanics being probabilistic. We can say that it will collapse to a particular eigenstate $\left|\phi_{k}\right\rangle$ with the Born probability (recall we discussed this earlier in this chapter) $P_{k}=\left|c_{k}\right|^{2}$. The value c_{k} is the probability amplitude for that specific eigenstate. After the measurement, all the other possible eigenstates that are not k have collapsed to 0 (put a bit more mathematically, $\mathrm{c}_{\mathrm{i}} \neq \mathrm{k}=0$).

Measurement has been discussed as one type of interaction with the environment. One of the challenges for quantum computing is that this is not the only type of interaction. Particles interact with other particles. In fact, such things as cosmic rays can interact with quantum states of particles. This is one reason that decoherence is such a problem for quantum computing.

6.1.4 Schrödinger's Equation

The Schrödinger equation is quite important in quantum physics. It describes the wave function of a quantum system. This equation was published by Erwin Schrödinger in 1926 and resulted in his earning the Nobel Prize in Physics in 1933. First, let us examine the equation itself and ensure you have a general grasp of it; then we can discuss more of its implications. There are various ways to present this equation; we will first examine the time-dependent version. You can see this in Equation 6.7.
$i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\hat{H}|\psi(t)\rangle$
EQUATION 6.7 Schrödinger Equation

Don't let this overwhelm you. All of the symbols used have already been discussed, and I will discuss them again here to refresh your memory.

Given that we are discussing a time-dependent version of the Schrödinger equation, it should be clear to most readers that the t represents time. Remember that the ∂ symbol indicates a partial derivative. So, we can see in the denominator that there is a partial derivative with respect to time. The \hbar, you will recall from Chapter 3 and from earlier in this chapter, is the reduced Planck constant, which is the Planck constant h ($6.626 \times 10^{-34} \mathrm{j} *$ s) / 2π. The ψ symbol we saw earlier in this chapter. You may also recall that the symbol \hat{H} denotes the Hamiltonian operator, which is the total energy of the particles in a system.

Before we examine the implications of the Schrödinger equation, let us first examine another form of the equation. You can see this in Equation 6.8.
$\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{8 \pi^{2} m}{h^{2}}(\mathrm{E}-\mathrm{V}) \psi=0$

EQUATION 6.8 Schrödinger (Another Form)

You already know that the ∂ symbol indicates a partial derivative. The 2 superposed above it means this is a second derivative (i.e., a derivative of a derivative). For those readers who don't have a solid calculus background, or who don't recall their calculus, a second derivative is actually common. A first derivative tells you the rate of change for some function. A second derivative tells you the rate of change for that rate of change that you found in the first derivative. Probably the most common example is acceleration. Speed is the change in position with respect to time. That is the first derivative. Acceleration is the change in speed, which is a second derivative. The ψ symbol denotes the wave function, which you should be getting quite familiar with by now. Another symbol you are familiar with is the h , for Planck's constant. Note in this form of the Schrödinger equation that it is the Planck constant, not the reduced Planck constant. The E is the kinetic energy, and the V is the potential energy of the system. The X is the position.

Remember that in the subatomic world, we have the issue of wave-particle duality. The Schrödinger equation allows us to calculate how the wave function changes in time.

6.2 Quantum Decoherence

Quantum decoherence is a very important topic and is, in fact, critical for quantum computing. Decoherence is directly related to the previous section on wave functions. Recall that a wave function is a mathematical representation of the state of a quantum system. As long as there exists a definite phase relation between the states, that system is coherent. Also, recall that interactions with the environment cause a wave function to collapse. If one could absolutely isolate a quantum system so that it had no interaction at all with any environment, it would maintain coherence indefinitely. However, only by interacting with the environment can it be measured; thus, data can be extracted.

What does it mean to have a definite phase relation between states? First, we must examine the concept of phase space, which is a concept from dynamical system theory. It is a space in which all the possible states of the system are represented. Each state corresponds to a unique point in the phase space. Each parameter of the system represents a degree of freedom. In turn, each degree of freedom is represented as an axis of a multidimensional space. If you have a one-dimensional system, it is a phase line. Twodimensional systems are phase planes.

Two values, p and q , play an important role in phase space. In classical mechanics, the p is usually momentum and the q the position. Now, in quantum mechanics, this phase space is a Hilbert space. Thus, the p and q are Hermitian operators in that Hilbert space. While momentum and position are the most common observables, and are most often used to define phase space, there are other observables such as angular momentum and spin.

To refresh your memory, a Hermitian operator is also called a self-adjoint operator. Remember, we are dealing with matrices/vectors, so the operators are themselves matrices. Most operators in quantum mechanics are Hermitian. Hermitian operators have some specific properties. They always have real eigenvalues, but the eigenvectors or eigenfunctions might include complex numbers. A Hermitian operator can be "flipped" to the other side if it appears in an inner product-something like what you see here:

$$
\langle f \mid A g\rangle=\langle\mathrm{Af} \mid \mathrm{g}\rangle
$$

Hermitian operators' eigenfunctions form a "complete set." That term denotes that any function can be written as some linear combination of the eigenfunctions.

In general, if we are dealing with a non-relativistic model, the dimensionality of a system's phase space is the number of degrees of freedom multiplied by the number of systems-free particles. Nonrelativistic spacetime is conceptually rather simple. Relativistic spacetime uses n dimensional space and m dimensional time. Non-relativistic spacetime fuses that into a single continuum. Put another way, it is simply ignoring the effects of relativity. At the subatomic level that is perfectly reasonable, as relativistic effects are essentially irrelevant.

So, when the system interacts with the environment, each environmental degree of freedom contributes another dimension to the phase space of the system. Eventually, the system becomes decoupled. There is actually a formula for this called the Wigner quasi-probability distribution. This is sometimes called the Wigner-Ville distribution or just the Wigner function. The details may be a bit more than are needed in this book; however, the general outline is certainly something we can explore. Eugene Wigner first introduced this formula in 1932 to examine quantum modifications to classical mechanics. The purpose was to link the wave function we have studied in Schrödinger's equation to a probability distribution in phase space.

Equation 6.9 shows the Wigner distribution.

$$
W(x, p) \stackrel{\operatorname{def}}{=} \frac{1}{\pi \hbar} \int_{-\infty}^{\infty} \psi^{*}(x+y) \psi(x-y) e^{2 i p y / \hbar} d y
$$

EQUATION 6.9 Wigner Distribution

By this point, you should not be daunted by complex-looking equations, and much of this equation use symbols you already know. But let us briefly examine them. Obviously, the W is the Wigner distribution. X is usually position and p momentum, but they could be any pair (frequency and time of a signal, etc.). Of course, ψ is the wave function, and \hbar is the reduced Planck constant. We discussed the \int symbol earlier in the book; it denotes integration. For our purposes, you don't have to have a detailed knowledge of the Wigner distribution, nor do you have to be able to "do the math." Rather, you just need a general understanding of what is happening.

In classical mechanics, a harmonic oscillator's motion could be completely described by a point in the phase space with the particle position x and momentum p . In quantum physics, this is not the case. Recall from Chapter 3 our discussion of Heisenberg's uncertainty principle. You cannot know with
precision the position and momentum simultaneously, but by measuring x , p , or their linear combination on a set of identical quantum states, you can realize a probability density associated with these observables (x and p). The Wigner function accomplishes this goal. Our goal is to understand decoherence. The Wigner distribution shows the decoupling process because it shows the probability of various states.

6.3 Quantum Electrodynamics

Quantum electrodynamics (QED) is a topic that may be considered too advanced for an introductory book. The goal is simply for you to acquire a generalized understanding of the topic, and I believe that is an achievable goal. QED is the relativistic quantum field theory that applies to electrodynamics. It is the first theory wherein quantum mechanics and relativity are in full agreement. QED provides a mathematical description of phenomena that involve electrically charged particles.

Let us begin by defining the quantum field theory (QFT). QFT combines classical field theory, special relativity, and quantum mechanics. At this point, you should have a general working knowledge of quantum mechanics. Therefore, we will turn our attention to classical field theory and special relativity, providing a brief description of each.

Classical field theory describes how one or more fields interact with matter, via field equations. An easy-to-understand example is with weather patterns. The wind velocity at a given time can be described by a vector. Each vector describes the direction and movement of the air at a particular point. The set of all such vectors in a particular area at a given point in time would be a vector field. Over time, we would expect these vectors to change. This is the essence of a classical field theory. Maxwell's equations of electromagnetic fields were among the first rigorous field theories.

Special relativity is something you are likely familiar with. In case you need a bit of a refresher, it essentially gives us two concepts. The first is that the laws of physics are invariant; there are no privileged reference points. Also, the speed of light in a vacuum is constant.

The development of quantum electrodynamics began with the study of the interaction between light and electrons. When this research began, the only field known was the electromagnetic field, so it was an obvious place to begin. The term quantum electrodynamics was posited by Paul Dirac in 1927 in his paper "The quantum theory of the emission and absorption of radiation."

Classical electromagnetism would describe the force between two electrons as being an electric field produced by each electron's position. The force itself can be calculated using Coulomb's law. However, quantum field theory visualizes the force between electrons arising from the exchange of virtual photons.

Quantum electrodynamics is the fundamental theory that describes the interaction of light and matter. To be a bit more mathematically robust, the charged particles that provide the source for the electromagnetic fields are described by relativistic equations of motion (more specifically, the Klein-Gordon equation for integer spin and the Dirac equation for a spin). Let us briefly examine these equations.

Keep in mind that for the purposes of this book, you need not become an expert in these equations. You only need a general understanding of what they do.

Klein-Gordon is a relativistic wave equation that is actually related to the Schrödinger equation, so it will at least look a bit familiar to you. Equation 6.10 provides the equation.
$\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi-\nabla^{2} \psi+\frac{m^{2} c^{2}}{\hbar^{2}} \psi=0$.
EQUATION 6.10 Klein-Gordon Equation

Now, much of this you already know. Refreshing your memory a bit, ψ is the wave function, \hbar is the reduced Planck constant, and m is mass. We have also discussed second derivatives and partial differential equations previously in this book. The c is the velocity of light in centimeters per second. I think you can already see some connection between this and Einstein's famous $\mathrm{E}=\mathrm{mc}^{2}$. I have yet to explain one other symbol, ∇. This one actually shows up frequently in quantum physics. This is the Laplace operator, sometimes called the Laplacian. It is sometimes denoted by $\nabla \nabla$ and sometimes by ∇^{2}. The definition of the Laplacian might seem a bit confusing to you. It is a second-order differential operator defined as the divergence of the gradient. In this case, the term gradient is a vector calculus term. It refers to a scalar-valued function f of several variables that is the vector field. The Laplacian of that vector field at some point is the vector whose components are partial derivatives of the function f at point p .

Hopefully, this general explanation did not leave you totally confused. Recall from the introduction that you need not master all of the mathematics presented in this chapter. Just make sure you understand the general idea. So what is that general idea? The Klein-Gordon equation is a relativistic wave function that describes the motion for the field, as it varies in time and space.

The Dirac equation for the spin is also a relativistic wave function. It describes particles such as electrons and quarks. It should be noted that electrons and quarks are the particles that constitute ordinary matter and are known as fermions. We will have much more to say about quarks in the section on quantum chromodynamics. The spin number describes how many symmetrical facets a particle has in one full rotation. Thus, a spin of $1 / 2$ means the particle has to be rotated twice (i.e., 720 degrees) before it has the same configuration as when it started. Protons, neutrons, electrons, neutrinos, and quarks all have a spin of $1 / 2$, and that is enough for you to move forward with the rest of this book. However, for some readers, you not only want to see more of the math, but by this point in this text you have become accustomed to it. So, in the interest of not disappointing those readers, Equation 6.11 presents the Dirac equation as Paul Dirac originally proposed it.
$\left(\beta m c^{2}+c \sum_{n=1}^{3} \alpha_{n} p_{n}\right) \psi(x, t)=i \hbar \frac{\partial \psi(x, t)}{\partial t}$
EQUATION 6.11 Dirac Equation

Again, you see the now-familiar partial differential symbol, the reduced Planck constant, and the wave function-all of which should be quite familiar to you by now. You also see mc^{2}, and I anticipate most readers realize this is mass and the velocity of light, just as it is in $E=\mathrm{mc}^{2}$. In this equation, the x and t are space and time coordinates, respectively. The p values that are being summed ($\mathrm{p} 1, \mathrm{p} 2$, and p 3) are components of the momentum. The symbols α and β are 4×4 matrices. These are 4×4 matrices because they have four complex components (i.e. using complex numbers). Such objects are referred to in physics as a bispinor.

After our rather extensive excursions into the math of QED, let us complete this section with a return to the essential facts of QED. Electrodynamics, as the name suggests, is concerned with electricity. However, quantum electrodynamics provides a relativistic explanation of how light and matter interact. It is used to understand the interactions among electrically charged elementary particles, at a fundamental level. It is a very important part of quantum physics.

6.4 Quantum Chromodynamics

Strictly speaking, one could study quantum computing without much knowledge of quantum chromodynamics (QCD). However, this underpins the very structure of matter; therefore, one should have a basic idea of the topic. QCD is the study of the strong interaction between quarks and gluons. Quarks are the particles that make up protons and neutrons (also called hadrons). At one time, it was believed that protons and neutrons were fundamental particles; however, it was discovered that they are in turn made up of quarks. The names for the quarks are frankly whimsical, and not too much attention should be paid to the meanings of the names. Quarks have properties such as electric charge, mass, spin, etc. Combining three quarks can product a proton or neutron. There are six types of quarks. The whimsical nature of nomenclature will become clear here. The types are referred to as "flavors," and these flavors are up, down, strange, charm, bottom, and top. Figure 6.1 illustrates the families of quarks.

First Generation	Second Generation	Third Generation
u	c	t
Up	Charm	Top
d	s	b
Down	Strange	Bottom

FIGURE 6.1 Quarks

Evidence for the existence of quarks was first found in 1968 at the Stanford Linear Accelerator Center. Since that time, experiments have confirmed all six flavors of quarks. Therefore, these are not simply hypothetical constructs, but the actual building blocks of hadrons, and have been confirmed by multiple experiments over several decades. As one example, a proton is composed of two up quarks and one down quark. The gluons mediate the forces between the quarks, thus binding them together.

The next somewhat whimsical nomenclature comes with the concept of color charge. This has no relation at all to the frequency of light generating visible colors. The term color, along with the specific labels of red, green, and blue, is being used to identify the charge of a quark. However, this term has had far-reaching impact. That is why the study of the interaction between quarks and gluons is referred to as chromodynamics.

There are two main properties in QCD. The first is color confinement. This is a result of the force between two color charges as they are separated. Separating the quarks in a hadron will require more energy the further you separate them. If you do indeed have enough energy to completely separate the quarks, they actually spontaneously produce a quark-antiquark pair, and the original hadron becomes two hadrons.

The second property is a bit more complex. It is called asymptotic freedom. In simple terms, it means that the strength of the interactions between quarks and gluons reduces as the distance decreases. That might seem a bit counterintuitive. And as I stated, it is complex. The discoverers of this aspect of QCD—David Gross, Frank Wilczek, and David Politzer—received the 2004 Nobel Prize in Physics for their work.

6.5 Feynman Diagram

For those readers who are a bit exhausted from all the mathematics presented in this chapter, there is help for you. Richard Feynman created the Feynman diagrams to provide a pictorial representation of the mathematical expressions used to describe the behavior of subatomic particles. This is a much easier way to at least capture the essence of what is occurring. Let us first look at the basic diagram symbols used and then see how they work together (see Table 6.1).

TABLE 6.1 Feynman Diagram Symbols

Description

A fermion (i.e., electron, positron, quark, etc.) is drawn as a straight line with an arrow pointing to the direction of the spin.
An antifermion is drawn as a straight line with an arrow pointing to the direction of the spin, with the primary difference being the line over the f.
A photon is drawn as a wavy line.

Therefore, if you wish to draw two electrons with opposite spin, colliding and producing a photon, you can use Feynman diagrams without any math, as demonstrated in Figure 6.2.

FIGURE 6.2 Feynman diagram of electrons colliding

This is just a very brief introduction to Feynman diagrams, but you will find these useful as you learn more about quantum interactions.

6.6 Summary

This chapter explored many concepts. It is really an extension of Chapter 3 and the application of some of the elements of Chapter 1. This is likely to be one of the more difficult chapters for many readers, and it is strongly suggested that you read it more than once. While many topics were explored, some are absolutely critical for your understanding of quantum computing. The bra-ket notation is used throughout quantum computing, so ensure you are quite comfortable with it. Hamiltonians also play a prominent role in quantum computing. Quantum decoherence is actually a substantial impediment to the progress of quantum computing. To fully understand decoherence, you need to understand the wave function and associated equations. Quantum electrodynamics and quantum chromodynamics were presented to help round out your basic introduction to quantum theory. However, those two topics are a bit less critical for you to move forward with quantum computing.

Test Your Skills

REVIEW QUESTIONS

1. Why does the reduced Planck constant use 2π ?
a. 2π denotes the radius of the atom.
b. 2π is 360 degrees in radians.
c. 2π accounts for quantum fluctuations.
d. 2π is a derivative of Einstein's universal constant.
2. In quantum mechanics, what does the Greek letter psi represent?
a. The Hamiltonian
b. The reduced Planck constant
c. The wave function
d. Superposition of states
3. What would be most helpful in determining the probability of finding a particle at a given point?
a. Born's rule
b. Hamiltonian
c. Reduced Planck constant
d. Wave function
4. Which of the following is the most accurate description of the wave function collapse?
a. The various possible quantum states coalesce into a single quantum state.
b. The probabilities coalesce to a single actuality based on an observer.
c. The bra-ket $\left\langle\phi_{i} \mid \phi_{j}\right\rangle$ forms an orthonormal eigenvector basis.
d. The superposition of possible eigenstates collapses to a single eigenstate based on interaction with the environment.
5. When using the Kronecker delta and inputting two eigenstates that are the same, what will be the output?
a. The sum of the eigenstates
b. 1
c. The superposition of the eigenstates
d. 0
6. Schrödinger's equation is used to describe what?
a. Superposition of eigenstates
b. Eigenstates
c. The wave function
d. The Hamiltonian operator
7. What equation is most closely related to the decoupling that occurs during decoherence?
a. Hamiltonian
b. Schrödinger equation
c. Wigner function
d. Klein-Gordon
8. Which of the following is a wave function related to quantum electrodynamics that describes the motion for the field as it varies in time and space?
a. Hamiltonian
b. Schrödinger equation
c. Wigner function
d. Klein-Gordon
9. What is a bispinor?
a. A 4×4 matrix with complex components
b. Superposition of two eigenstates
c. The product of the Dirac equation
d. The product of the Wigner function

A

abelian groups, 9, 282, 286
absolute zero, 185
abstract algebra, sets of numbers and, 6-8
abstraction, 297
addition
of complex numbers, 35
identity element of, 8
of matrices, 11
of vectors, 47
Adleman, Leonard, 213
AES standard, 232
aether, 61
affine transformations, 264
Ajtai, Milos, 249
Ajtai cryptographic primitive, 248
algebra
books on, 4
of complex numbers, 34-37
defined, 4-5
algebraic numbers, 56
algorithms. See also computational complexity; quantum algorithms
asymmetric
Diffie-Hellman, 216-217, 231
ECDH (elliptic curve Diffie-Hellman), 224-225
ECDSA (elliptic curve Digital Signature Algorithm), 225-226
Elgamal, 217-218
elliptic curves, 219-224, 232
MQV, 219
quantum computing impact on, 228-232
RSA, 213-216, 231
books on, 88
bubble sort, 91-92
code-based cryptography
McEliece cryptosystem, 279-280
Niederreiter cryptosystem, 280-281
coding theory, 95
as correct, 195
defined, 88, 195
efficacy of, 89-90
Euclidean, 92-93, 195-196
hash-based, 230, 232-233
Lamport signature, 277-278
Merkle-Damgaard construction, 275
requirements for, 274-275
SWIFFT, 275-277
lattice-based cryptography
GGH, 252-253
history of, 249
lattice reduction algorithms, 256-258
NTRU, 249-252
Peikert's Ring, 253-256
multivariate cryptography
HFE (Hidden Field Equations), 266-268

Matsumoto-Imai algorithm, 264-266
MQDSS, 268-269

SFLASH, 269-270
summary of, 270
qubits needed to crack, 181-182, 230-231
quick sort, 90-91
recursive, 197
symmetric, quantum computing impact on, 232
types of, 90
Algorithms, Fourth Edition (Sedgewick), 88
Analytische Zahlentheorie (Bachmann), 89
AND logic gate, 97
AND operation, 96
angle between vectors, 19
antifermions, 134
anyons, 187
architecture. See computer architecture;
quantum architecture
area under curves, 72-73
Argand, Jean Pierre, 41
Argand diagrams, 41
array data type, 293
arrays
lists as, 82
queues as, 83
assembly code, 100-101
associativity
defined, 5, 8
of sets, 28,111
asymmetric cryptography, 95
Diffie-Hellman, 216-217, 231
Elgamal, 217-218
elliptic curves, 219-224
ECDH (elliptic curve Diffie-Hellman), 224-225
ECDSA (elliptic curve Digital Signature Algorithm), 225-226
quantum computing impact on, 232
MQV, 219
quantum computing impact on, 228-232
RSA, 213-216
examples of, 215
factoring keys, 216
key generation process, 213-214
quantum computing impact on, 231
asymptotic analysis, 89
asymptotic freedom, 134
atomic orbitals, 65-68
atomic structure, 65-68
Bohr model, 65
orbitals, 65-68
Pauli exclusion principle, 68
azimuthal quantum number, 65

B

B92 protocol, 149
Babbage, Charles, 81
Bachmann, Paul, 89
balanced functions, 198
basis vectors, 25, 50, 154-155
BB84 protocol, 146-149
Beijing-Shanghai link, 189
Bell, John, 140
Bell's inequality, 140-142
Bennet, Charles, 146, 149
Berger-Parker index, 117
Bernstein-Vazirani algorithm, 201-202
Big O notation, 89
bigInt data type, 293
bijective, 158-159, 264
binary Goppa codes, 280
binary operations
AND, 96
OR, 96
XOR, 96-97
binary trees, 88
birthday problem, 277
bispinors, 133
bit flipping, 310
black bodies, 62
black body radiation, 62-63
Bloch sphere, 156-157
Bohm, David, 75, 140
Bohr, Neils, 144
Bohr model, 65
Boltzmann constant, 118
bool data type, 293
Born, Max, 126, 155
Born rule, 126, 155-156
Bose-Einstein condensate quantum
computing, 179-180
bosons, 179-180
bounded queues, 84
BPP (bounded-error probabilistic polynomial time) problems, 201
BQP (bounded-error quantum polynomial time) problems, 201
Brahmagupta, 33
braid groups, 187
braid theory, 186-187
bra-ket notation, 74, 123, 155
Brassard, Gilles, 146
bubble sort algorithm, 91-92

C

CA (certificate authority), 237-238
"Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?" (Einstein et al.), 139
canonical coordinates, 125
Cartesian coordinate system, 38-39, 69
Cauchy, Augustin-Louis, 69
Cauchy sequences, 69-70
Cayley, Arthur, 4
Cayley-Hamilton Theorem, 21
certificate authority (CA), 237-238
certificate revocation list (CRL), 237

Chaitin, Gregory, 57
Chaitin's constant, 57
channels, 112, 113
characteristic function, 255
checksums, 95
chromodynamics, 134
Cirac, Ignacio, 179
circuits. See quantum circuits
circular polarization, 176
circular queues, 84
circularly linked lists, 87
CISC (complex instruction set) processors, 100
classes, 297
Closest Vector Problem (CVP), 230, 245, 248-249
closure, 8
code rate, 113
code-based cryptography, 230, 279
McEliece cryptosystem, 279-280
Niederreiter cryptosystem, 280-281
coding theory, 95
coefficients of quantum states, 74
coherence length, 176
collision entropy, 118
collision resistance, 275
color charge, 134
color confinement, 134
column matrices, 11
column vectors, 10
commands (in QASM), 319
comments, 302
commutativity
in abelian groups, 9, 282
defined, 5
matrix multiplication and, 13, 74
of multiplication, 74
of sets, 28,111

complement

in probability, 107
of sets, 27, 110
completeness, 69
complex conjugates
defined, 36,156
graphical representation, 44

complex numbers

addition/subtraction, 35
algebra of, 34-37
complex conjugates, 36, 44
defined, 6, 34
distance between points, 41-43
division, 36-37
graphical representation, 38-44
length of, 40-41
multiplication, 35-36
Pauli matrices
properties of, 52-56
representation of, 48-52
polar coordinates, 47-48
vector representation, 45-48
complex plane, 41
complexity classes, 201
compression, 95
computational complexity
cyclomatic complexity, 93-94
defined, 93
Halstead metrics, 94
computer architecture, 100-102
computer performance, 102
computer science
algorithms
books on, 88
bubble sort, 91-92
defined, 88
efficacy of, 89-90
Euclidean, 92-93
quick sort, 90-91
types of, 90
binary operations
AND, 96
OR, 96
XOR, 96-97
coding theory, 95
computational complexity
cyclomatic complexity, 93-94
defined, 93
Halstead metrics, 94
computer architecture, 100-102
data structures
binary trees, 88
defined, 81
double-linked lists, 87
linked lists, 86-87
lists, 81-83
queues, 83-84
stacks, 85-86
defined, 80-81
history of, 81
logic gates
AND, 97
defined, 96
electricity in, 99
history of, 97
NAND, 98-99
NOR, 99
OR, 97-98
XOR, 98
conditional entropy, 115
conditional probability, 108
conditional quantum entropy, 119
congruence in modulus operations, 204-205
conjugate transpose
defined, 49, 126, 167
unitary matrices and, 159
conjugations, 294
consistent histories interpretation, 145
constant functions, 198
continuous entropy, 115
control processor plane, 188
control structures, 295-296
controlled gates, 163-164
Copenhagen interpretation, 144
counting numbers. See natural numbers
CPU architecture, 101
CRCs (cyclic redundancy checks), 95
CRL (certificate revocation list), 237
"Cryptanalysis of the Quadratic Zero-Testing of GGH" (Brakerski et al.), 253
cryptography, 95 . See also quantum-resistant cryptography
applications
digital certificates, 233-234
PKI (public key infrastructure), 237-238
SSH (Secure Shell), 240
SSL/TLS, 234-236
VPNs (virtual private networks), 239
asymmetric
Diffie-Hellman, 216-217, 231
ECDH (elliptic curve Diffie-Hellman), 224-225
ECDSA (elliptic curve Digital Signature Algorithm), 225-226
Elgamal, 217-218
elliptic curves, 219-224, 232
MQV, 219
quantum computing impact on, 228-232
RSA, 213-216, 231
symmetric, quantum computing impact on, 232
curves, area under, 72-73
CVP (Closest Vector Problem), 230, 245, 248-249
cyclic groups, 9, 282, 286
cyclic lattices, 20, 247
cyclic redundancy checks (CRCs), 95
cyclomatic complexity, 93-94
cyclotomic polynomials, 254

D

d orbitals, 66-67
data compression, 95
data structures
binary trees, 88
defined, 81
double-linked lists, 87
linked lists, 86-87
lists, 81-83
queues, 83-84
stacks, 85-86
data types in Q\#293
Davisson, Clinton, 64
Davisson-Germer experiment, 64
de Barros, Charles, 253
de Broglie, Louis, 64
de Moivre, Abraham, 208
de Moivre number, 160, 208
De Morgan's laws, 28, 112
decoherence, 129-131, 182-186
mechanics of, 182-184
noise amplification, 185-186
noise filtering, 186
supercooling, 185
decoherent histories interpretation, 145
degrees, radian conversion, 48, 71
degrees of freedom, 125, 156-157, 182-183
dequeuing, 83
derivatives, 124, 129
Descartes, Rene, 69
destinations, 112
determinant
of matrices, 17-19, 247
of Pauli matrices, 52-53
determination, probability versus, 65
Deutsch, David, 197
Deutsch-Jozsa algorithm, 199-200, 308, 326

Q\# code for, 308-310
QASM code for, 326-327
Deutsch's algorithm, 197-199
difference of sets, 26-27, 110
differential entropy, 115
differentiation, 73
Diffie, Whitfield, 216
Diffie-Hellman, 216-217, 231
digital certificates, 233-234
PKI (public key infrastructure), 237-238
revoking, 237
Digital Signature Algorithm, 225
Diophantus, 33
Dirac, Paul, 74, 131
Dirac equation, 132-133
Dirac notation, 74, 123, 155
discrete logarithm problem, 223-224, 231
disjoint sets, 110
distance between points for complex
numbers, 41-43
distributed quantum computing, 190
distributivity
defined, 5
of sets, 28, 112
DiVencenzo, David, 177
diversity metrics in information theory, 116-118
division of complex numbers, 36-37
Dominance index, 117
dot products
inner products and, 52, 69, 125-126, 166-167
in lattice-based mathematics, 247
of vectors, 19-20
double complement of sets, 27, 110
double data type, 293
double-linked lists, 82, 87
double-slit experiment, 61-62
D-Wave architecture, 169-171
quantum annealing, 169-170
SQUIDs, 170-171

E

E91 protocol, 151
Earnshaw, Samuel, 178
Earnshaw's theorem, 178
ECC (elliptic curve cryptography), 219-224
ECDH (elliptic curve Diffie-Hellman), 224-225
ECDSA (elliptic curve Digital Signature Algorithm), 225-226
mathematics of, 281-284
super-singular elliptic curve cryptography, 230, 281, 285-288
ECDH (elliptic curve Diffie-Hellman), 224-225
ECDLP (Elliptic Curve Discrete Logarithm Problem), 223-224
ECDSA (elliptic curve Digital Signature Algorithm), 225-226
efficacy of algorithms, 89-90
eigenfunctions of Hermitian operators, 130
eigenstates, 73, 125-128
eigenvalues
defined, 20-23
of Hamiltonian, 125
of Pauli matrices, 53-54
in quantum states, 73
eigenvectors
defined, 20-23
of Pauli matrices, 54-56
in quantum states, 73
Einstein, Albert, 63, 75, 76, 139
Ekera, Martin, 231
Ekert, Artur, 151
electricity in logic gates, 99
electromagnetism, 131
electron spin quantum number, 65
electrons
atomic orbitals, 65-68
Pauli exclusion principle, 68
for physical qubits, 177-178
Elements (Euclid), 204
Elgamal, Taher, 217

Elgamal algorithm, 217-218
elliptic curve cryptography (ECC)
ECDH (elliptic curve Diffie-Hellman), 224-225
ECDSA (elliptic curve Digital Signature Algorithm), 225-226
mathematics of, 219-224, 281-284
quantum computing impact on, 232
super-singular elliptic curve cryptography, 230, 281, 285-288
elliptic curve Diffie-Hellman (ECDH), 224-225
elliptic curve Digital Signature Algorithm (ECDSA), 225-226

Elliptic Curve Discrete Logarithm Problem (ECDLP), 223-224
elliptical polarization, 176
encapsulation, 297
encryption. See cryptography
energy, Hamiltonian formulation, 124-125
ENIAC, 81
enqueuing, 83
entanglement, 75-76, 138-143, 151, 310
entropy
in information theory, 113-116
defined, 114
diversity metrics, 116-118
formulas, 116
types of, 114-116
in quantum information theory, 119
in thermodynamics, 113
as uncertainty, 114
environment, interference from, 183-184
EPR paradox, 75, 139-140, 142-143
equal matrices, 11
equations
BB84 protocol
qubit states, 148
tensor product, 147, 148
Bell's inequality, 141
complex numbers
complex division, 37
complex multiplication, 37
division example answer, 37
multiplying by complex conjugate, 36
simplification, step 1, 37
simplification, step 2, 37
consistent histories, 145
cX gate matrix, 163
Dirac equation, 132
diversity metrics
collision entropy, 118
Gibbs entropy, 118
Hartley entropy, 117
Re'nyi entropy, 117
Shannon-Weaver index, 117
Shannon-Weaver index, form 2, 117
dot product, 19
entropy
conditional entropy, 115
conditional quantum entropy, 119
joint entropy, 115
limiting density of discrete points
(LDDP), 115
list of, 116
mutual information, 115
Shannon entropy, 114
von Neuman entropy, 119
error correction, 320-321
F_{i} function, state after, 199
Fourier transform, 71, 73, 160
Gram-Schmidt process
coefficients, 257
projection operator, 257
Hadamard transform, 150, 198, 200
state after, 199, 200
Hamiltonian
detailed, 124
simplified, 124
in systems, 125
HFE (Hidden Field Equations)
decryption process, 267-268
encryption process, 267
inner product, 126, 167
inverse quantum Fourier transform, 208
Ising XX coupling gate, 165
Ising YY couplling gate, 165
Ising ZZ coupling gate, 165
Kirchoff's black body energy, 62
Klein-Gordon equation, 132
Kronecker delta, 51, 127
lattices
cyclic, 247
definition of, 245
GGH algorithm, 252
NTRU key generation steps, 250-251
NTRU truncated polynomial ring, 250
matrices
3x2 matrix, 13
3×3 matrix, 17
3×3 matrix determinant, part 1, 17
3×3 matrix determinant, part 2,18
3×3 matrix determinant, part 3,18
3×3 matrix determinant, part 4, 18
5×5 matrix, 14
Hadamard, 159
multiplication, 13, 16
noncommutative matrices, 13, 74
removing rows and columns, 15
submatrix, 15
transposition, 13
unitary, 159
unitary conjugate transpose, 159
Matsumoto-Imai algorithm
bijective map, 265
encryption process, 265
inverted field, 265
isomorphism, 265
MQDSS system, 268
multivariate polynomial, 263
nth cyclotomic polynomial, 254
Pauli equation, 50
Pauli matrices, 51
applying Kronecker delta, 51
compact form, 50
Kronecker delta with, 51
phase shift gate, 161
Planck's law, 63
position and momentum, 73
primitive roots of unity, 254
probability
conditional probability, 108
independent event probability, 108
union of mutually exclusive events, 107
union of non-mutually exclusive events, 107
quantum energy, 63
quantum Fourier transform (QFT), 160, 161, 207
roots of unity, 254
SARG04 protocol
encoding, 149
qubit states, 150
Schrödinger's equation, 128, 129
SFLASH
exponent h, 269
public key, 269
univariate map, 269
Shor's algorithm
initializing registers, 207
quantum function, 207
Shor's error correction code, 175
singlet state, 140
spin matrices, 75
univariate polynomial, 263
wave function, 127, 182
Wigner distribution, 130, 184
error detection and correction, 95. See also quantum error correction
ether, 61
Euclid, 204
Euclidean algorithm, 92-93, 195-196
Euclidean space, 69
Euler, Leonhard, 56
Euler's number, 56, 157
Euler's totient, 213-214
Everett, Hugh, 144-145
excited states, 177
expansion by minors, 17
expression statements, 294
extension fields, 263, 266-267

F

f orbitals, 67-68
factoring
integers, 213-216
RSA keys, 216
fail statements, 294
fermions, 68, 132, 134, 180
Feynman diagrams, 134-135
FFT (fast Fourier transform), 275
field theory, 131
fields, 10, 262, 282
FIFO (first in, first out), 83, 85
filtering noise, 186
finite fields, 282
first derivatives, 129
Fisher information, 115-116
flux qubits, 169
FOIL method, 35-36
for loops, 295-296
formulas. See equations
Fourier transforms, 71-73, 160-161, 207-208
Fredkin, Edward, 163

Fredkin gates, 163
functions, 295
functors, 306

G

GaAs (gallium arsenide) quantum dots, 181
Galois fields, 282
Gap Closest Vector Problem (GapCVP), 249
Gap Shortest Vector Problem
(GapSVP), 248
gauge bosons, 179-180
Gauss, Carl, 204
general number sieve, 213
generators of groups, 9
Germer, Lester, 64
GGH algorithm, 252-253
Gibbs entropy, 118
Gini-Simpson index, 117
gluons, 133-134
Goldreich, Oded, 252
Goldwasser, Shafi, 252
Goppa, Valerii, 280
Goppa codes, 280
Gottesman, Daniel, 165-166
Gottesman-Knill theorem, 165-166
gradients, 132
Gram-Schmidt process, 257
graph theory, 94
graphical representation
of Cauchy sequence, 70
of complex numbers, 38-44
Grassman, Hermann, 4
greatest common denominator, finding, 92-93
Gross, David, 134
groups
abelian, 9, 282, 286
cyclic, 9, 282, 286
defined, 282
properties of, 8
subgroups, 245-246
Grover, Lov, 209
Grover's algorithm, 209-210, 232, 303-304, 322-323

Q\# code for, 304-307
QASM code for, 324-325

H

Hadamard, Jacques, 100
Hadamard matrices, 99-100, 159-160
Hadamard transform (gate), 99-100, 150, 159-161, 198-199
hadrons, 133, 180
Hahn, C. 253
Halevi, Shai, 252
Halstead, Maurice, 94
Halstead metrics, 94
Hamilton, William, 124
Hamiltonian formulation, 124-125
Hamming codes, 279
handshake process (SSL/TLS), 235-236
hardware. See quantum hardware
Harris, Randy, 64
Hartley, Ralph, 117
Hartley entropy, 117
hash-based algorithms, 230, 232-233
Lamport signature, 277-278
Merkle-Damgaard construction, 275
requirements for, 274-275
SWIFFT, 275-277
head (in queues), 83
Heisenberg, Werner, 70, 123, 144
Heisenberg uncertainty principle, 70-73, 130-131
Hellman, Martin, 216
Hermite, Charles, 56
Hermitian matrices, 49, 126, 129-130, 167
Hermitian transpose, 156

Hertz, 71
Hertz, Heinrich, 62-63
heterogeneous lists, 82
HFE (Hidden Field Equations), 266-268
hidden variable hypothesis, 76, 140
Hilbert, David, 52, 56, 155
Hilbert spaces, 52, 68-70, 126, 129, 155
Hippasus, 33
history
of computer science, 81
of information theory, 106
of irrational numbers, 33
of lattice-based cryptography, 249
of logic gates, 97
of natural numbers, 32-33
of negative numbers, 5-6, 33
of number systems, 32-34
of quantum physics
black body radiation, 62-63
nature of light, 61-62
photoelectric effect, 63-64
of rational numbers, 33
of zero, 33
Hoffstein, Jeffery, 249
homeomorphism, 187
homogenous histories, 145
homogenous lists, 82
Hopf, Heinz, 157
Hopf fibration, 157
Huygens, Christian, 61
hyperspheres, 157
idempotence, 257
identity elements, 8
identity matrices, 15-16
if statements, 295
imaginary numbers
on Cartesian coordinate system, 39
defined, 6, 33-34
symbol of, 34
Imai, Hideki, 264
immutables, 294
"Incoherent and Coherent Eavesdropping in the 6-state protocol of Quantum Cryptography" (Bechmann-Pasquinnucc and Gisn), 151
independent event probability, 108
indicator function, 255
information source
defined, 112
Shannon's source coding theorem, 113
information theory. See also probability
diversity metrics, 116-118
entropy, 113-116
defined, 114
diversity metrics, 116-118
formulas, 116
types of, 114-116
history of, 106
importance of, 106
noisy channel theorem, 113
quantum information theory, 118-119
Shannon's source coding theorem, 113
terminology, 112
inheritance, 297
inhomogeneous histories, 145
injective, 158-159, 264
inner products, 52, 69, 125-126, 166-167
Instruction Set Architecture (ISA), 100
instructions (in computer architecture), 100
instructions (in QASM), 315-318
instructions per cycle, 102
int data type, 293
integers
as abelian group, 9
as cyclic group, 9
defined, 5-6
factoring, 213-216
greatest common denominator, 92-93
as group, 8
as ring, 9
set of, 7
symbol of, 34
integration, 72-73
Internet Protocol Security
(IPsec), 239
interpretations
Copenhagen, 144
decoherent histories, 145
many-worlds, 144-145
objective collapse theory, 145-146
purpose of, 143-144
summary of, 146
intersection of sets, 26, 110
An Introduction to the Analysis of Algorithms, Second Edition (Sedgewick), 88
inverse images, 285
Inverse Simpson index, 117
invertibility, 8
involutory matrices, 51
ions for physical qubits, 178-179
IPsec (Internet Protocol Security), 239
irrational numbers
defined, 6
history of, 33
symbol of, 34
irreducible polynomials, 263
ISA (Instruction Set Architecture), 100
Ising, Ernst, 164
Ising gates, 164-165
isogeny, 285
isometric, 285
isomorphisms, 246, 264
iterations, 294
j-invariant of elliptic curves, 285
joint entropy, 115
joint probability, 108
Josephson, Brian, 169
Josephson junctions, 169
joules, 64
K

Kane, Bruce, 179
kelvin scale, 185
kernels, 285
key exchange. See QKE (quantum key exchange)

Kirchoff, Gustav, 62
Klein-Gordon equation, 132
Kline, Morris, 4
Knill, Emanuel, 165-166
Koblitz, Neil, 220, 282
Kronecker, Leopold, 51
Kronecker delta, 51, 127

L

Lagrange, Joseph-Louis, 125
Lagrangian formulation, 125
Lamport, Leslie, 277-278
Lamport signature algorithm, 277-278
Landau, Edmund, 89
Laplacian, 132
lattice reduction algorithms, 256-258
lattice-based cryptography
algorithms
GGH, 252-253
history of, 249
lattice reduction, 256-258
NTRU, 249-252
Peikert's Ring, 253-256
problems used in, 230, 245, 248-249
lattice-based mathematics
CVP (Closest Vector Problem), 245, 248-249
definition of lattices, 245-246
SIS (Short Integer Solution), 248
SVP (Shortest Vector Problem), 245, 248
vectors in, 245-247
lattices
cyclic, 20, 247
defined, 245-246
LDDP (limiting density of discrete points), 115
Lee, H. 253
Leibniz, Gottfried, 81, 96
length
of complex numbers, 40-41
of vectors, $16,19,68$
leptons, 180
LIFO (last in, first out), 85
light, nature of, 61-62
limiting density of discrete points (LDDP), 115
line coding, 95
linear algebra. See also matrices; sets; vectors
books on, 4
defined, 3-4
importance of, 2
in quantum mechanics, 73-74, 123
linear codes, 279
linear dependence, 25
linear equations, 3
linear functions. See linear transformations
linear independence, 25
linear mapping. See linear transformations
Linear Optical Quantum Computing (LOQC), 176
linear polarization, 175-176
linear transformations, 16
linearly dependent vectors, 245
linearly independent vectors, 245
linked lists, 82-83, 86-87

Liouville, Joseph, 56
lists, 81-83
double-linked lists, 87
linked lists, 86-87
queues, 83-84
stacks, 85-86
LLL (Lenstra-Lenstra-Lova'sz) lattice reduction algorithm, 256-258
logic gates. See also quantum logic gates
AND, 97
defined, 96, 166
electricity in, 99
history of, 97
NAND, 98-99
NOR, 99
OR, 97-98
reversible, 158-159
XOR, 98
logical qubits. See quantum logic gates
LOQC (Linear Optical Quantum Computing), 176

Loss, Daniel, 177
Loss-DiVencenzo quantum computers, 177
lossless compression, 95
lossy compression, 95

M

Mach-Zehnder interferometer, 176
magnetic quantum number, 65
manifolds, 187
many-worlds interpretation, 144-145
"A Mathematical Theory of Communication" (Shannon), 106
The Mathematical Theory of Communication (Shannon and Weaver), 112

Mathematics for the Nonmathematician (Kline), 4
Mathieu, Emile, 178
Mathieu function, 178-179
matrices. See also vectors
addition, 11
cyclic lattices, 20
defined, 4, 10
determinant of, 17-19
eigenvalues, 20-23
Hadamard, 99-100, 159-160
identity, 15-16
involutory, 51
multiplication, 11-13, 74
notation, 10
Pauli matrices
in controlled gates, 164
properties of, 52-56
representation of, 48-52, 161-162
properties of, 14
quantum state representation, 2
submatrices, 14-15
transformations of vectors, 20-21
transposition, 13-14
types of, 11
unimodular, 20, 247
Matsumoto, Tsutomu, 264
Matsumoto-Imai algorithm, 264-266
McCabe, Thomas, 93-94
McEliece, Robert, 230, 279
McEliece cryptosystem, 230, 279-280
measurement
in BB84 protocol, 148-149
of particles, 127
of qubits, 157
symbol of, 168
measurement plane, 188
measurement problem, 146
merge sort, quick sort versus, 90
Merkle, Ralph, 230, 275
Merkle-Damgaard construction, 230, 232-233, 275
mesons, 180

Micius satellite, 189-190
microarchitecture, 101
Microsoft Quantum Development Kit, 298-300
Microsoft.Quantum.Canon namespace, 301
Microsoft.Quantum.Convert namespace, 301
Microsoft.Quantum.Intrinsic namespace, 305
Microsoft.Quantum.Math namespace, 301
Microsoft.Quantum.Measurement namespace, 301
millennium prize problems, 93
Miller, Victor, 220, 282
min-entropy, 118
modern algebra, sets of numbers and, 6-8
Modern Physics, Second Edition (Harris), 64
modulus operations, 204-205
momentum, 64, 70, 73
Moody, Benjamin, 216
"MQ Challenge: Hardness Evaluation of Solving Multivariate Quadratic Problems" (IACR), 268
MQDSS (Multivariate Quadratic Digital Signature Scheme), 268-269
MQV, 219
multiplication
commutativity of, 74
of complex numbers, 35-36
identity element of, 8
of identity matrices, 15-16
of matrices, 11-13, 74
of vectors, 19-20, 23-25
multivariate cryptography, 230
algorithms
HFE (Hidden Field Equations), 266-268
Matsumoto-Imai algorithm, 264-266
MQDSS, 268-269
SFLASH, 269-270
summary of, 270
mathematics of, 262-264
multivariate polynomials, 263

Multivariate Quadratic Digital Signature

 Scheme (MQDSS), 268-269mutual information, 115

N

Nakashima, Akira, 97
namespaces, 300-302
NAND logic gate, 98-99
natural numbers
defined, 5, 32-33
history of, 32-33
set of, 7
symbol of, 34
negative numbers, history of, 5-6, 33
NESSIE (New European Schemes for Signatures, Integrity and Encryption) project, 269
networking. See quantum networking
neutrons, 133
Newton, Isaac, 61, 96
Niederreiter, Harald, 280
Niederreiter cryptosystem, 280-281
NMRQC (nuclear magnetic resonance quantum computing), 179
no-cloning theorem, 119
noise
amplification, 185-186
filtering, 186
noisy channel theorem, 113
nonlocality, 139, 140
non-relativistic spacetime, 130
NOR logic gate, 99
norm of vectors, 16, 20, 69, 245, 248
normalizers, 165-166
no-teleportation theory, 118-119
NTRU (N-th degree Truncated polynomial Ring Units), 249-252
key generation process, 250-251
polynomial rings, 249-250
standards, 251-252
nuclear magnetic resonance quantum computing (NMRQC), 179
number systems
history of, 32-34
properties of, 5
symbols of, 34
numbers. See also complex numbers
algebraic, 56
sets of, 6-8
transcendental, 56-57
types of, 5-6, 32-34
vectors as, 23

0

objective collapse theory, 145-146
object-oriented programming, 297
objects, 297
observations, 127
OCSP (Online Certificate Status Checking Protocol), 237
Omega notation, 89
operations. See also names of specific operations (addition, subtraction, etc.)
in fields, 10
in groups, 8-9
on integer set, 7
on natural number set, 7
on real number set, 6-7
in rings, 9
on vectors, 24-25
optimization problems, 170
OR logic gate, 97-98
OR operation, 96
oracles, 199, 304
orbital quantum number, 65
orbitals. See atomic orbitals order
in groups, 286
in sets, 27, 110
orthogonal vectors, 20, 247
orthonormal vectors, $20,127,154-155$
Overhauser effect, 181

P

p orbitals, 66
P vs. NP problem, 93
Pan, Jian-Wei, 189
parallelogram law, 47
parameters, 295
partial derivatives, 124
particles. See also wave-particle duality; names of types of particles (protons, neutrons, etc.)
defined, 64
entanglement, 75-76, 138-143
Feynman diagrams, 134-135
light as, 61-62
measurement, 127
position versus momentum, 70
quasiparticles, 187
types of, 179-180
wavelengths of, 64
Patarin, Jacques, 266
Paul, Wolfgang, 178
Paul ion traps, 178-179
Pauli, Wolfgang, 50, 68
pauli data type, 293
Pauli equation, 50
Pauli exclusion principle, 68
Pauli gates, 161-162
Pauli groups, 165-166
Pauli matrices
in controlled gates, 164
properties of, 52-56
representation of, 48-52, 161-162
Peano, Giuseppe, 4

Peikert's Ring, 253-256
period-finding function in Shor's algorithm, 206-209
phase shift gates, 161
phase space, 129-130
photoelectric effect, 63-64
photons
defined, 63
entanglement, 151
in Feynman diagrams, 134
measurement in BB84 protocol, 148-149
in noise filtering, 186
for physical qubits, 175-177
physical qubits, 174-182
Bose-Einstein condensate quantum computing, 179-180
correlation with logical qubits, 175
electrons for, 177-178
GaAs quantum dots, 181
ions for, 178-179
NMRQC, 179
number needed, 181-182, 230-231
photons for, 175-177
summary of, 181
physics. See also quantum physics
black body radiation, 62-63
entropy in, 113
nature of light, 61-62
photoelectric effect, 63-64
Pipher, Jill, 249
pivot points in quick sorts, 90-91
PKCS (Public-Key Cryptography Standards), 238

PKI (public key infrastructure), 237-238
PKIX (Public-Key Infrastructure X.509), 238
Planck, Max, 62-63, 64
Planck's constant, 63, 64, 71, 124
Podolsky, Boris, 75, 139
points, distance between, 41-43
polar coordinates, 47-48
polarization of photons, 175-176
Politzer, David, 134
polymorphism, 297
polynomial rings, 249-250, 253-254, 276
polynomial time, 212-213
polynomials, 263, 276
pop (in stacks), 85
position, momentum versus, 70, 73
post-quantum cryptography. See quantumresistant cryptography
power sets, 27-28, 111
powers in cyclic groups, 9
PP (probabilistically polynomial) problems, 201
primitive elements of groups, 9
primitive roots of unity, 254
principal quantum number, 65
printer buffers, 87
printer queues, 84
probabilistically polynomial (PP) problems, 201
probability
in atomic orbitals, 65-68
in Bell's inequality, 142
defined, 107
determination versus, 65
Heisenberg uncertainty principle, 70-73
importance of, 106-107
in qubits, 155-157
rules of, 107-108
in wave function collapse, 128
programming languages
concepts in
comments, 302
control structures, 295-296
functions, 295
object-oriented programming, 297
statements, 293-294
variables, 292-293

Q\#
bit flipping, 310
data types, 293
Deutsch-Jozsa algorithm code, 308-310
Grover's algorithm code, 304-307
program structure, 294-295
statement types, 294
with Visual Studio Code, 298-303
QASM (Quantum Assembly Language), 314-315
commands, 319
Deutsch-Jozsa algorithm code, 326-327
error correction, 320-322
Grover's algorithm code, 324-325
instructions, 315-318
project creation, 319-320
projection operators, 257
properties
of groups, 8
of matrices, 14
of number systems, 5
of Pauli matrices, 52-56
of sets, 28, 111-112
of vector spaces, 246
protons, 133
public key infrastructure (PKI), 237-238
Public-Key Cryptography Standards (PKCS), 238
Public-Key Infrastructure X. 509 (PKIX), 238
push (in stacks), 85
Pythagoras, 33

Q

Q\# programming language
bit flipping, 310
data types, 293
Deutsch-Jozsa algorithm code, 308-310
Grover's algorithm code, 304-307
program structure, 294-295
statement types, 294
with Visual Studio Code, 298-303

QASM (Quantum Assembly Language), 314-315

commands, 319
Deutsch-Jozsa algorithm code, 326-327
error correction, 320-322
Grover's algorithm code, 324-325
instructions, 315-318
project creation, 319-320
QCD (quantum chromodynamics), 133-134
QDK (Quantum Development Kit), 298-300
QED (quantum electrodynamics), 131-133
QFT (quantum field theory), 131
QFT (quantum Fourier transform), 160-161, 207-208

QKE (quantum key exchange)

B92 protocol, 149
BB84 protocol, 146-149
E91 protocol, 151
implementations, 151
purpose of, 146
resources for information, 151
SARG04 protocol, 149-150
six-state protocol, 151
Tokyo QKD, 188
quanta, 62-63
quantum algorithms
Bernstein-Vazirani algorithm, 201-202
defined, 197
Deutsch-Jozsa algorithm, 199-200, 308, 326
Q\# code for, 308-310
QASM code for, 326-327
Deutsch's algorithm, 197-199
Grover's algorithm, 209-210, 303-304, 322-323
Q\# code for, 304-307
QASM code for, 324-325
Shor's algorithm, 203-209
example of, 205-206
modulus operations in, 204-205
quantum period-finding function in, 206-209
Simon's algorithm, 202-203
quantum annealing, 169-170
quantum architecture
D-Wave, 169-171
quantum annealing, 169-170
SQUIDs, 170-171
quantum circuits, 167-169
diagrams, 168-169
quantum gate notation, 167-168
reversible, 167
quantum logic gates
controlled, 163-164
Fredkin, 163
Gottesman-Knill theorem, 165-166
Hadamard, 159-161
Ising, 164-165
notation, 167-168
operation of, 166-167
Pauli, 161-162
phase shift, 161
reversible, 158-159
swap, 162-163
Toffoli, 163
qubits
defined, 154
mathematics of, 154-158
measurement, 157
probabilities, 155-157
qubit states, 154-155
Quantum Assembly Language (QASM), 314-315
commands, 319
Deutsch-Jozsa algorithm code, 326-327
error correction, 320-322
Grover's algorithm code, 324-325
instructions, 315-318
project creation, 319-320
quantum bits. See qubits
quantum chromodynamics (QCD), 133-134
quantum circuits, 167-169
diagrams, 168-169
quantum gate notation, 167-168
reversible, 167
quantum data plane, 187
Quantum Development Kit (QDK), 298-300
quantum dots, 177, 181
quantum electrodynamics (QED), 131-133
quantum error correction
decoherence and, 184
in QASM, 320-322
quantum field theory (QFT), 131
quantum Fourier transform (QFT), 160-161, 207-208
quantum hardware
decoherence mitigation, 182-186
mechanics of decoherence, 182-184
noise amplification, 185-186
noise filtering, 186
supercooling, 185
quantum computer components, 187-188
quantum networking, 188-190
Beijing-Shanghai link, 189
distributed quantum computing, 190
Micius satellite, 189-190
Tokyo QKD, 188
qubits
Bose-Einstein condensate quantum computing, 179-180
correlation of physical and logical qubits, 175
electrons for, 177-178
GaAs quantum dots, 181
ions for, 178-179
NMRQC, 179
number needed, 181-182, 230-231
photons for, 175-177
physical realization of, 174-182
summary of, 181
size of computers, 184
topological quantum computing, 186-187
quantum information theory, 118-119
entropy in, 119
qubits, 118-119
resources for information, 119
quantum key exchange (QKE)
B92 protocol, 149
BB84 protocol, 146-149
E91 protocol, 151
implementations, 151
purpose of, 146
resources for information, 151
SARG04 protocol, 149-150
six-state protocol, 151
Tokyo QKD, 188
quantum logic gates
controlled, 163-164
correlation of physical and logical qubits, 175
Fredkin, 163
Gottesman-Knill theorem, 165-166
Hadamard, 99-100, 159-161
Ising, 164-165
matrix representation, 2
notation, 167-168
operation of, 166-167
Pauli, 161-162
phase shift, 161
in QASM, 316
reversible, 158-159
swap, 162-163
Toffoli, 163
quantum mechanics. See quantum physics
quantum networking, 188-190
Beijing-Shanghai link, 189
distributed quantum computing, 190
Micius satellite, 189-190
Tokyo QKD, 188
quantum oracles, 304
quantum period-finding function in Shor's algorithm, 206-209
quantum physics
atomic structure, 65-68
Bohr model, 65
orbitals, 65-68
Pauli exclusion principle, 68
books on, 64
bra-ket notation, 74, 123
decoherence, 129-131
entanglement, 75-76, 138-143
Feynman diagrams, 134-135
Fourier transforms, 71-73
Hamiltonian formulation, 124-125
Heisenberg uncertainty principle, 70-73
Hilbert spaces, 68-70
history of
black body radiation, 62-63
nature of light, 61-62
photoelectric effect, 63-64
interpretations
Copenhagen, 144
decoherent histories, 145
many-worlds, 144-145
objective collapse theory, 145-146
purpose of, 143-144
summary of, 146
QCD (quantum chromodynamics), 133-134
QED (quantum electrodynamics), 131-133
QKE (quantum key exchange)
B92 protocol, 149
BB84 protocol, 146-149
E91 protocol, 151
implementations, 151
purpose of, 146
resources for information, 151
SARG04 protocol, 149-150
six-state protocol, 151
quantum states, 73-75
resources for information, 123
Schrödinger's equation, 128-129
wave function collapse, 125-128
quantum states
coefficients of, 74
vector representation, 2, 46, 73-75, 123
quantum theory
defined, 122
QCD (quantum chromodynamics), 133-134
QED (quantum electrodynamics), 131-133
"The quantum theory of the emission and absorption of radiation" (Dirac), 131
quantum wells, 177
quantum wires, 177
quantum-resistant cryptography
code-based cryptography, 230, 279
McEliece cryptosystem, 279-280
Niederreiter cryptosystem, 280-281
hash-based algorithms, 230, 232-233
Lamport signature, 277-278
Merkle-Damgaard construction, 275
requirements for, 274-275
SWIFFT, 275-277
lattice-based cryptography
GGH, 252-253
history of, 249
lattice reduction algorithms, 256-258
NTRU, 249-252
Peikert's Ring, 253-256
problems used in, 230, 245, 248-249
multivariate cryptography, 230
HFE (Hidden Field Equations), 266-268
mathematics of, 262-264
Matsumoto-Imai algorithm, 264-266
MQDSS, 268-269

SFLASH, 269-270
summary of algorithms, 270
standards, 229
super-singular elliptic curve cryptography, 230, 281, 285-288
symmetric cryptography, 232
quantum-safe cryptography. See quantumresistant cryptography
"Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations" (Heisenberg), 123
quarks, 133-134
quasiparticles, 187
qubit allocations, 294
qubit data type, 293

qubit states

BB84 protocol, 148-149
SARG04 protocol, 150
six-state protocol, 151
vector representation, 154-155
qubits
correlation of physical and logical qubits, 175
defined, 118-119, 154
flux, 169
logic gates. See quantum logic gates
mathematics of, 154-158
measurement, 157
probabilities, 155-157
qubit states, 154-155
no-cloning theorem, 119
no-teleportation theory, 118-119
physical realization of, 174-182
Bose-Einstein condensate quantum computing, 179-180
electrons for, 177-178
GaAs quantum dots, 181
ions for, 178-179
NMRQC, 179
number needed, 181-182, 230-231
photons for, 175-177
summary of, 181
SQUIDs, 170-171
supercooling, 185
queues, 83-84
quick sort algorithm, 90-91

R

RA (registration authority), 238
radians, degree conversion, 48, 71
range data type, 293
rational numbers
defined, 6
as field, 10
history of, 33
symbol of, 34
real numbers
on Cartesian coordinate system, 38
defined, 6, 33-34
in Euclidean space, 69
set of, 6-7
symbol of, 34
receivers, 112
recursive algorithms, 90, 197
reduced Planck constant, 71
registration authority (RA), 238
relativistic spacetime, 130
Re'nyi entropy, 117-118
repeat statements, 294
result data type, 293
return statements, 294
reversible logic gates, 158-159
reversible quantum circuits, 167
revoking digital certificates, 237
Rijindael algorithm, 232
Ring Learning With Errors (RLWE), 253-254
rings
defined, 9, 249, 276
polynomial, 249-250, 253-254, 276

RISC (reduced instruction set) processors, 100
Rivest, Ron, 213
RLWE (Ring Learning With Errors), 253-254
roots of unity, 160, 208, 254
Rosen, Nathan, 75, 139
row matrices, 11
row vectors, 10
RSA, 213-216
examples of, 215
factoring keys, 216
key generation process, 213-214
quantum computing impact on, 231
qubits needed to crack, 181-182, 230-231
Rydberg, Johannes, 177
Rydberg formula, 177-178
Rydberg states, 177

S

s orbitals, 65-66
sampling problems, 170
SARG04 protocol, 149-150
scalar products. See inner products
scalar values, 17
scalars
defined, 11
eigenvalues, 20-23
matrix multiplication by, 11
vector multiplication by, 23-25
in vector space, 16
scaling vectors, 23-25
Schechter, L. M. 253
Schlafi, Ludwig, 69
Schrödinger, Erwin, 128, 143
Schrödinger's cat, 144
Schrödinger's equation, 128-129
second derivatives, 129
Secure Shell (SSH), 240
Secure Socket Layer (SSL), 234-236

Sedgewick, Robert, 88
self-adjoint operators, 126, 129-130, 156
set theory, 25-28, 108-112
sets
defined, 25, 108
lists as, 82
notation, 25-26, 109
order in, 27, 110
power sets, 27-28
properties of, 28, 111-112
relationships, 26-27, 109-110
subsets, 27, 110-111
sets of numbers, 6-8
fields, 10
groups
abelian, 9
cyclic, 9
properties of, 8
rings, 9
SFLASH, 269-270
Shamir, Adi, 213
Shannon, Claude, 106, 112, 116
Shannon diversity index, 116-117
Shannon entropy, 114
Shannon's source coding theorem, 113
Shannon-Weaver index, 116-117
shells, 65
Shor, Peter, 88, 203, 216
Shor's algorithm, 88, 203-209
Diffie-Hellman and, 217
example of, 205-206
modulus operations in, 204-205
quantum computing impact on, 231
quantum period-finding function in, 206-209
RSA and, 216
Shor's error correction code, 175
Short Integer Solution (SIS), 248
Shortest Vector Problem (SVP), 230, 245, 248

SIDH (supersingular isogeny Diffie-Hellman), 285-288
signal function, 255
Silverman, Joseph, 249
Simon's algorithm, 202-203
Simpson index, 117
singlet state, 139
SIS (Short Integer Solution), 248
six-state protocol (SSP), 151
Sliding Windowed Infinite Fast Fourier
Transform (SWIFFT), 275-277
sorting algorithms
bubble sort, 91-92
quick sort, 90-91
types of, 90
special relativity, 131
spin number, 132
square matrices
defined, 11
determinant of, 17
Hermitian, 49
unitary, 49
square roots
imaginary numbers and, 6, 33-34
of swap gates, 163
SQUIDs (superconducting qubits), 170-171
SSH (Secure Shell), 240
SSL (Secure Socket Layer), 234-236
SSP (six-state protocol), 151
stacks, 85-86
state space, 68
state vectors, 68
statements
defined, 293-294
in Q\#294
Stewart, Balfour, 62
string data type, 293
subgroups, 245-246
submatrices, 14-15
subsets, 27, 110-111
subspaces, 25
subtraction of complex numbers, 35
superconducting qubits (SQUIDs), 170-171
supercooling, 185
super-singular elliptic curve cryptography, 230, 281, 285-288
surjective, 158-159, 264, 285
SVP (Shortest Vector Problem), 230, 245, 248
swap gates, 162-163
SWIFFT (Sliding Windowed Infinite Fast
Fourier Transform), 275-277
symbols
of measurement, 168
of number systems, 34
of Pauli matrices, 50-51
of quantum gates, 167-168
symmetric cryptography, 95
quantum computing impact on, 232

T

tail (in queues), 83
teleportation, 118-119
temperatures in quantum computing, 185
tensor products
in BB84 protocol, 147-148
defined, 20
in lattice-based mathematics, 247
Theory of Extension (Grassman), 4
Theta notation, 89
time-bin encoding, 176
TLS (Transport Layer Security), 234-236
Toffoli, Tommaso, 163
Toffoli gates, 163
Tokyo QKD, 188
topological quantum computing, 186-187
torsion subgroups, 286
transcendental numbers, 56-57
transformations of vectors, 20-21
transmitters, 112
transmons, 161
Transport Layer Security (TLS), 234-236
transposition
conjugate transpose, 49
of matrices, 13-14
transverse waves, 175-176
trapdoor functions, 263
tuple data type, 293

U

unbounded queues, 84
uncertainty
entropy as, 114
Heisenberg uncertainty principle, 70-73, 130-131
unimodular matrices, 20, 247
union
in probability, 107
of sets, 26,109
unit data type, 293
unit vectors, 16, 20, 68
unitary mapping, 166
unitary matrices
conjugate transpose and, 159
defined, 49
univariate polynomials, 263
universal gates, 99
using statements, 296

V

variable declaration statements, 294
variables, 292-293
vector spaces
defined, 16, 24-25
Hilbert spaces, 52, 68-70
in lattice-based mathematics, 246-247
linear dependence/independence, 25
properties of, 246
subspaces, 25
tensor products, 147-148
vectors
addition, 47
angle between, 19
basis, 25, 50, 154-155
complex number representation, 45-48
CVP (Closest Vector Problem), 230, 245, 248-249
defined, 10, 19
dot product of, 19-20
eigenvectors, 20-23
in lattice-based mathematics, 245-247
length of, $16,19,68$
as numbers, 23
orthogonal, 20
orthonormal, 20, 127, 154-155
polar coordinates, 47-48
quantum state representation, 2, 46, 73-75, 123
scalar multiplication of, 23-25
SVP (Shortest Vector Problem), 230, 245, 248
transformations of, 20-21
Visual Studio Code, 298-303
von Neuman entropy, 119
VPNs (virtual private networks), 239
quantum decoherence, 129-131
Schrödinger's equation, 128-129
wave function, 182
wave function collapse, 125-128
Weaver, Warren, 112
Wessel, Caspar, 41
Wigner, Eugene, 130
Wigner distribution, 130-131, 183-184
Wilczek, Frank, 134
world lines, 187

X

X. 509 digital certificates, 233-234

XOR logic gate, 98
XOR operation, 96-97

Y

Ylonen, Tatu, 240
Young, Thomas, 61

Z

zero, history of, 33
zero matrices, 11
Zollar, Peter, 179
z-plane, 41

W

Walsh-Hadamard transformation. See Hadamard transform (gate)
Washington, Lawrence, 220
wavelengths of particles, 64
wave-particle duality, 62, 63-64
waves
Dirac equation, 132-133
Fourier transforms, 71-73
Klein-Gordon equation, 132
light as, 61-62

[^0]: A Addison-Wesley
 Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
 Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

