Updated for C++ 20 vVY

A Tour of C++

Third Edition

Bjarne Stroustrup

C++ In-Depth Series Bjarne Stroustrup

FREE SAMPLE CHAPTER | o o @

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136816485
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136816485
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136816485

A Tour of C++
Third Edition

4 C++ In-Depth Series A
Bjarne Stroustrup, Series Editor

¢ C++ Template
Discoyering 7 : Metaprogramming
Modern C++

Visit informit.com/series/indepth for a complete list of available publications.

he C++ In-Depth Series is a collection of concise and focused books that
provide real-world programmers with reliable information about the C++
programming language.

Selected by the designer and original implementor of C++, Bjarne
Stroustrup, and written by carefully chosen experts in the field, each book
in this series presents either a single topic, at a technical level appropriate
to that topic, or a fast-paced overview, for a quick understanding of

broader language features. In either case, the series’ practical approach is
designed to lift professionals (and aspiring professionals) to the next level of
programming skill or knowledge.

Bay

Make sure to connect with us!
informit.com/socialconnect

Addison-Wesley inlll Fmin.co

the trusted technology learning source

http://Visitinformit.com/series/indepth
http://informit.com/socialconnect

A Tour of C++
Third Edition

Bjarne Stroustrup

vvAddison-Wesley

Boston ¢ Columbus ¢ New York ¢ San Francisco ¢ Amsterdam ¢ Cape Town
Dubai ¢ London ¢ Madrid ¢ Milan ¢ Munich ¢ Paris * Montreal ¢ Toronto ¢ Delhi ¢ Mexico City
Sdo Paulo ¢ Sydney ¢ Hong Kong ¢ Seoul ¢ Singapore ¢ Taipei * Tokyo

Cover photo by: Marco Pregnolato (Unsplash.com: @marco_pregnolato).
Author photo courtesy of Bjarne Stroustrup.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding inter-
ests), please contact our corporate sales department at corpsales @pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales @ pearsoned.com.

For questions about sales outside the U.S., please contact intlcs @pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2022938722

Copyright © 2023 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate con-
tacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions.
This book was typeset in Times and Helvetica by the author.

ISBN-13: 978-0-13-681648-5

ISBN-10: 0-13-681648-7

First printing, October 2022
ScoutAutomatedPrintCode

http://Unsplash.com:
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

Contents

Preface xi
1 The Basics 1
I.1 INtrodUCHIONeeiiiiiiiiiii et e 1
1.2 PrOZIAIMS ...eooveiiiiieiieeitesiteeieesite et eieesteesieesbeesanesateenbaesnseenaee e 2
1.3 FUNCHONS ..oiiiiiiiiiiiie ettt et e e et e enes 4
1.4 Types, Variables, and Arithmeticc.cccevveevviieniercieenienrieeneens 5
1.5 Scope and Lifetimeccccoecveeriiriiienieiieenieeieeseeeie e 9
1.6 CONSLANES ...eeeeuviieiiiieeiirieeeiieeeieeeeireeeeteeesvaeeetreeesaseeesseeasrseaanes 10
1.7 Pointers, Arrays, and Referencescccocevvveviercieeniensieennens 11
L8 TESES euriieiiiieeieee ettt ettt ettt e et e e e et e et e e ra e e treaenes 14
1.9 Mapping to Hardwarec.cocceeeveeviiiiiienieniienieeiceniee e 16
10 AQVICE ittt et 19
2 User-Defined Types 21
2.1 INtrodUCHON ...ccvviieiiie e 21
2.2 SHIUCLUIES ..vvviieeieiiiiiee ettt eeeeeee e e ettt e e e e e e aare e e e e eeaareeeeeeenneeeas 22
2.3 CLASSES et eeeeeee et e e et e e et e eaaaean 23
2.4 ENUMETAIONSoooeerieiirieeeeiieeeeeeeeeeeeeeeaeeeeeaeeeeeaeeeeeveeeeeaeeeeeneeeas 25
2.5 UNIONS eviiiiiieeeeeee et e e an 27

2.6 AQVICE oo 28

vi Contents

3 Modularity
3.1 INErOAUCHIONeouviiieniiiiieiiriieierteteeeeee ettt 29
3.2 Separate Compilationcccceeveereriienieiienieniinieieeeere e 30
3.3 NAMESPACES «.eveeuvevieneiriieienieenienitenteetenteeaeesbeestesbeetesbeenaesseenaesaeen 35
3.4 Function Arguments and Return Valuesc.ccoceeceeninenennee. 37
3.5 AQVICE oottt 42

4 Error Handling
4.1 INErOAUCTION ..eeruvieiiiriiieriieeieerite ettt ettt sttt e 43
4.2 EXCEPLIONS ..ueiuieiiriieiiniieieeteiteteeie et et enesneens 44
4.3 TNVATTIANES ..oovviiiiieniieeieenteeeeste ettt ettt st e st e b e saae s 45
4.4 Error-Handling AIternativescccceeveevieveeneenenceneneenneneens 47
4.5 ASSEITIONS .eouviiiiiiiiieiieniieeieesite ettt ettt et e st e b e 48
46 AQVICE oottt 51

5 Classes
5.1 INrodUCHION ..oveeuiiiiiiiieiieiceteeeteee ettt 53
5.2 CoNCIete TYPES c.evevveeuiieiieiieiienieetesieete sttt 54
5.3 ADBSLract TYPES uveevieiieiieiiiiiieeteseete ettt 60
5.4 Virtual FUNCHIONScc.eviiriiiiiniiieneeieseeeeeesteeee e 62
5.5 Class Hierarchiesc.cocoveriiviniininiinicnieenicieeteeeeeeee 63
5.6 AQVICE oottt 69

6 Essential Operations

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7 Templates

7.1
7.2
7.3
7.4
7.5

INErodUCtioNcc.coeeviiiiiiiiieieececeee e 71
COPY ANA MOVE ..ottt st 74
Resource Managementc..coceoeecvenieienieieneeneeneeneeseenneennes 78
Operator Overloadingccceceeievenieiinienenieneneeeseeeeens 80
Conventional OPErationscoeeceereereereereeneerueneesenieenreneens 81
User-Defined Literalsccceceeieiieniiicnieiinieeneeeseeeneens 84
AQVICE ettt e 85
INtrodUCHIONc..cviiieiiiiiiiieiecce e 87
Parameterized TYPEScooeriererienierieniieieneeteeeeec e 88
Parameterized OPerationsc...coceeceeveevieneenieneeneeneeneneenennees 93
Template MeChaniSmsccccceveereeieniniienieienceicecene e 99

AVICE .ot 102

29

43

53

71

87

8 Concepts and Generic Programming

8.1
8.2
8.3
8.4
8.5
8.6

INtrodUCtioncccovuiiiiniiiiiieiciccee e 103
CONCEPLS -eenveneeieenienieeteet ettt ettt ettt sttt sbe e b sbe e 104
Generic Programmingcccceeeeeereenienennieneenieneeneneeneseeens 112
Variadic Templatesccceeveeieniirieniniinieiencee e 114
Template Compilation Modelccccoceviriineinininncniineniene 117
AQVICE it 117

9 Library Overview

9.1
9.2
9.3
9.4

INErOAUCTION ..oeviiiiiiiiiiieecee ettt 119
Standard-Library Componentsccoccecereeceeneecieneecreneennenne 120
Standard-Library Organizationccccceeeeevveernieeneensieeneenneeens 121
AAVICE .ot 124

10 Strings and Regular Expressions

10.1
10.2
10.3
10.4
10.5

INtrodUCtioncccoviiiiniiiiiiiiciciccee e 125
STNZS ettt ettt sb ettt 125
SHNG VIBWS ..cnviiiiiieiinieenie sttt ettt 128
Regular EXPressionsc..cooeeiererienenienennieneeie e 130
AAVICE et 136

11 Input and Output

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9
11.10

12 Containers

12.1
12.2
12.3
12.4
12.5

INtrodUCtiONcocoeiiiiiniiiiiiieieec e 137
OUIPUL it 138
INPUL oo 139
J/O STALE ..ottt 141
I/0 of User-Defined TYPESscceeveevuieeenieieneeienecieneereeeenens 141
Output FOrmattingcoceeeeeeerieienieienieieneere e 143
STIEAIMS ...oviiiiiieiieiiete ettt et 146
C-SEYLE T/O ittt 149
File SYStemcocoviiiiiiiieiieece e 150
AAVICE et 154

INErOAUCHIONoiiiiiiiiiieeiee et e e 157
VECEOK oottt ettt ettt et e e et e e et e e e aveeeereeeetaeeeaseeeenreeennnes 158
BIST .ottt e e et e e et e e tr e e eareeeeareeas 162
FOrWard_lIStcoooviiiiiiiieiiie ettt et 164

vii

103

119

125

137

157

viii Contents

12.6
12.7
12.8
12.9

13 Algorithms

13.1
13.2
13.3
13.4
13.5
13.6
13.7

14 Ranges

14.1
14.2
14.3
14.4
14.5
14.6

UNOFAEIEU_MAP ...ecccevireeeiieeriieeeeteeerreeesteeeeseeessseeessseessnseeesseeens 165
ATIOCALOTS ..eeeuevieeiieeeiiieerieeesieeeeiteeesreeesbeeesseeessseeessseeesnseeennns 167
Container OVETVIEWcccveeeriieeeieiieeiieeesieeesereeeseseeesereeessseeesnsees 168
AAVICE oottt ettt re e e e e raeeeaes 170
INtrodUCHIONooiiiiiiieiiie e et 173
Use Of TEEIAtOISueeeeeviieeeiiie ettt eate e et 175
TEErator TYPES .eecveeueereriieierteneeteeeeee et 178
Use Of PrediCatescc.ueeeeviiiiiiieeiieceeiee ettt 181
AlZOrithm OVEIVIEWcc.oviiiiiiiiiiiiiiiiieneeee ettt 181
Parallel AlZOTithmscccccoviererieniiiinieieeecee e 183
AQVICE vttt ettt et et n 183
INtrOAUCHIONviiiiiieciiie e e e e ree e 185
VIBWS ettt ettt ettt e et e ete e et eesnta e e ensaeesseeennsaeennneas 186
(€15 115 F2110) £ SRS 188
PIPEINES ..ceeiiiiiiiiieii e 188
Concepts OVEIVIEWcceevvieuieriinieienieerenieetereeeere oo 190
AAVICE oottt ettt ere e e be e e araeeeaes 194

15 Pointers and Containers

15.1
15.2
15.3
15.4
15.5

16 Utilities

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

8T 0T L1 Te 3 103 s E USRS 195
POINEETS .eviiiieeieeie ettt ettt et beesnaeenes 196
CONLAINETS .veevrieiieriieeiieneeeieesteesteestteesteesreesbeesseesseesssessseessses 201
ALCINATIVES .eeuvvieiieriieeiienteeiiesteeieeeteesieesreebeesseesseesaseenaeesnsens 208
AGVICE vttt ettt te ettt e sae et e s be e s beebeesabeenaaesnne s 212
INtrOAUCHIONveiiiiiieiiie et e e 213
TIME eveieeiie ettt et ere e e e e sraeeenes 214
Function Adaptionc..cccceeeienieieniinienieeneerceeere e 216
TYPE FUNCHONS ..covviiiiieiiieiieiieeiceec et 217
SOUFCE_IOCALIONcoeeeiiiiiiieiiiiiieee ettt eeeeeraeeeeeen 222
mMove() ANd FOrWard()eeeevveeerreeerireeerieeeeereeesreeesereeesseeesseeens 223
Bit Manipulationcocceeeveeniiniienieeieeieeeeeeeee e 224
Exiting @ Programc..ccccooeeiiinieiininieniceneceeee e 225

AAVICE oottt e e 225

173

185

195

213

17 Numerics

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10

INErOAUCHIONoiiiiiiieiiiiceiee et 227
Mathematical FUNCtionsccceeeeiiiiiiieceiiieeeee e 228
Numerical Algorithmscccccccevviiriniiininiiniiicneeeeeeeene 229
Complex NUMDETScc.eoiiiiriiiinieniieenieeteseeie e 230
Random NUMDETSccooiiiiiiiiiieiiicciee e e 231
Vector ATItMELIC ...oovvieeiiiieiie e e e 233
Numeric LIimitsccoioeiiiiiiiiiiieiiceeee e 234
TYPE ALLASES ..ottt et 234
Mathematical CONSLANESc.cceevviieeiuiiieiiieeeiieeeeiree e eeree e 234
AAVICE i e e 235

18 Concurrency

18.1
18.2
18.3
18.4
18.5
18.6
18.8

INtrodUuCtioNcocoeiiiiiiiiiiiieieec e 237
Tasks and threadsccceecveeiiniiiniieienieeeececeeeee e 238
Sharing Datac..coceeoiiiiiniiieieeeeeceeeeeeee e 241
Waiting for EVENtsccccocieieiiiniiniieicieencceeneceeeeeeeeene 243
Communicating Taskscccceevievieniniininniniecnccceeeeeeene 245
COTOULINESeviniieiiiiieieniieteeeete ettt 250
AAVICE e 253

19 History and Compatibility

19.1
19.2
19.3
19.4
19.5

Module std

Index

Al
A2
A3
A4
A5

HISEOTY oot 255
C++ Feature EVOIUIONc.oovvvvieiiiiiiiiiiee et 263
C/C++ Compatibilitycceveeveerieieieieeeeeeee e 268
Bibliographyccccoceviriiiinieinteeee e 271
AQVICE .ot 274
INrOAUCHION .o 277
Use What Your Implementation Offersccccoceeveneenennenen. 278
USE HEAAETS ...t 278
Make Your Own module stdcoovvvveiieeieieiieeieiiieeeeeeeineeeeeen 278
AQVICE .ot 279

ix

227

237

255

277

281

This page intentionally left blank

Preface

When you wish to instruct,
be brief.
— Cicero

C++ feels like a new language. That is, I can express my ideas more clearly, more simply, and
more directly today than I could in C+4+98 or C++11. Furthermore, the resulting programs are bet-
ter checked by the compiler and run faster.

This book gives an overview of C++ as defined by C++20, the current ISO C++ standard, and
implemented by the major C++ suppliers. In addition, it mentions a couple library components in
current use, but not scheduled for inclusion into the standard until C++23.

Like other modern languages, C++ is large and there are a large number of libraries needed for
effective use. This thin book aims to give an experienced programmer an idea of what constitutes
modern C++. It covers most major language features and the major standard-library components.
This book can be read in just a day or two but, obviously, there is much more to writing good C++
than can be learned in that amount of time. However, the aim here is not mastery, but to give an
overview, to give key examples, and to help a programmer get started.

The assumption is that you have programmed before. If not, please consider reading a text-
book, such as Programming: Principles and Practice Using C++ (Second edition) [Strous-
trup,2014], before continuing here. Even if you have programmed before, the language you used or
the applications you wrote may be very different from the style of C++ presented here.

Think of a sightseeing tour of a city, such as Copenhagen or New York. In just a few hours, you
are given a quick peek at the major attractions, told a few background stories, and given some sug-
gestions about what to do next. You do not know the city after such a tour. You do not understand
all you have seen and heard; some stories may sound strange or even implausible. You do not
know how to navigate the formal and informal rules that govern life in the city. To really know a
city, you have to live in it, often for years. However, with a bit of luck, you will have gained a bit
of an overview, a notion of what is special about the city, and ideas of what might be of interest to
you. After the tour, the real exploration can begin.

xii Preface

This tour presents the major C++ language features as they support programming styles, such as
object-oriented and generic programming. It does not attempt to provide a detailed, reference-man-
ual, feature-by-feature view of the language. In the best textbook tradition, I try to explain a feature
before I use it, but that is not always possible and not everybody reads the text strictly sequentially.
I assume some technical maturity from my readers. So, the reader is encouraged to use the cross
references and the index.

Similarly, this tour presents the standard libraries in terms of examples, rather than exhaustively.
The reader is encouraged to search out additional and supporting material as needed. There is far
more to the C++ ecosystem than just the facilities offered by ISO standard (e.g., libraries, build sys-
tems, analysis tools, and development environments). There is an enormous amount of material (of
varying quality) available on the Web. Most readers will find useful tutorial and overview videos
from conferences such as CppCon and Meeting C++. For technical details of the language and
library offered by the ISO C++ standard, I recommend [Cppreference]. For example, when I men-
tion a standard-library function or class, its definition can easily be looked up, and by examining its
documentation, many related facilities can be found.

This tour presents C++ as an integrated whole, rather than as a layer cake. Consequently, I
rarely identify language features as present in C, C++98, or later ISO standards. Such information
can be found in Chapter 19 (History and Compatibility). I focus on fundamentals and try to be
brief, but I have not completely resisted the temptation to overrepresent novel features, such as
modules (§3.2.2), concepts (§8.2), and coroutines (§18.6). Slightly favoring recent developments
also seems to satisfy the curiosity of many readers who already know some older version of C++.

A programming language reference manual or standard simply states what can be done, but pro-
grammers are often more interested in learning how to use the language well. This aspect is partly
addressed in the selection of topics covered, partly in the text, and specifically in the advice sec-
tions. More advice about what constitutes good modern C++ can be found in the C++ Core Guide-
lines [Stroustrup,2015]. The Core Guidelines can be a good source for further exploration of the
ideas presented in this book. You may note a remarkable similarity of the advice formulation and
even the numbering of advice between the Core Guidelines and this book. One reason is that the
first edition of A Tour of C++ was a major source of the initial Core Guidelines.

Acknowledgments
Thanks to all who helped complete and correct the earlier editions of A Tour of C++, especially to
the students in my “Design Using C++” course at Columbia University. Thanks to Morgan Stan-
ley for giving me time to write this third edition. Thanks to Chuck Allison, Guy Davidson, Stephen
Dewhurst, Kate Gregory, Danny Kalev, Gor Nishanov, and J.C. van Winkel for reviewing the book
and suggesting many improvements.

This book was set using troff by the author using macros originating from Brian Kernighan.

Manhattan, New York Bjarne Stroustrup

12

Containers

It was new. It was singular. It was simple.
It must succeed!
— H. Nelson

e Introduction

* vector
Elements; Range Checking
¢ st
¢ forward_list
* map

* unordered_map

e Allocators

¢ Container Overview
e Advice

12.1 Introduction

Most computing involves creating collections of values and then manipulating such collections.
Reading characters into a string and printing out the string is a simple example. A class with the
main purpose of holding objects is commonly called a container. Providing suitable containers for
a given task and supporting them with useful fundamental operations are important steps in the
construction of any program.

To illustrate the standard-library containers, consider a simple program for keeping names and
telephone numbers. This is the kind of program for which different approaches appear ““simple and
obvious” to people of different backgrounds. The Entry class from §11.5 can be used to hold a
simple phone book entry. Here, we deliberately ignore many real-world complexities, such as the
fact that many phone numbers do not have a simple representation as a 32-bit int.

158 Containers Chapter 12

12.2 vector

The most useful standard-library container is vector. A vector is a sequence of elements of a given
type. The elements are stored contiguously in memory. A typical implementation of vector
(§5.2.2, §6.2) will consist of a handle holding pointers to the first element, one-past-the-last ele-
ment, and one-past-the-last allocated space (§13.1) (or the equivalent information represented as a
pointer plus offsets):

vector:

In addition, it holds an allocator (here, alloc), from which the vector can acquire memory for its ele-
ments. The default allocator uses new and delete to acquire and release memory (§12.7). Using a
slightly advanced implementation technique, we can avoid storing any data for simple allocators in
a vector object.

We can initialize a vector with a set of values of its element type:

vector<Entry> phone_book = {
{"David Hume",123456},
{"Karl Popper",234567},
{"Bertrand Arthur William Russell",345678}

b
Elements can be accessed through subscripting. So, assuming that we have defined << for Entry, we
can write:

void print_book(const vector<Entry>& book)

{
for (int i = 0; i'=book.size(); ++i)
cout << book(i] << \n';

}

As usual, indexing starts at 0 so that book[0] holds the entry for David Hume. The vector member
function size() gives the number of elements.
The elements of a vector constitute a range, so we can use a range-for loop (§1.7):

void print_book(const vector<Entry>& book)

{

for (const auto& x : book) Il for "auto" see §1.4
cout << x << '\n';

}

When we define a vector, we give it an initial size (initial number of elements):

Section 12.2 vector 159

vector<int> vl = {1, 2, 3, 4}; /] size is 4

vector<string> v2; Il size is 0

vector<Shape:> v3(23); Il size is 23; initial element value: nullptr
vector<double> v4(32,9.9); Il size is 32; initial element value: 9.9

An explicit size is enclosed in ordinary parentheses, for example, (23), and by default, the elements
are initialized to the element type’s default value (e.g., nullptr for pointers and 0 for numbers). If
you don’t want the default value, you can specify one as a second argument (e.g., 9.9 for the 32 ele-
ments of v4).

The initial size can be changed. One of the most useful operations on a vector is push_back(),
which adds a new element at the end of a vector, increasing its size by one. For example, assuming
that we have defined >> for Entry, we can write:

void input()
{
for (Entry e; cin>>e;)
phone_book.push_back(e);
}

This reads Entrys from the standard input into phone_book until either the end-of-input (e.g., the
end of a file) is reached or the input operation encounters a format error.

The standard-library vector is implemented so that growing a vector by repeated push_back()s is
efficient. To show how, consider an elaboration of the simple Vector from Chapter 5 and Chapter 7
using the representation indicated in the diagram above:

template<typename T>
class Vector {
allocator<T> alloc; // standard-library allocator of space for Ts

T+ elem; /I pointer to first element
T* space; Il pointer to first unused (and uninitialized) slot
T last; Il pointer to last slot

public:
...
int size() const { return space-elem; } Il number of elements
int capacity() const { return last-elem; } Il number of slots available for elements
...
void reserve(int newsz); I increase capacity() to newsz
...
void push_back(const T& t); Il copy t into Vector
void push_back(T&& t); /I move t into Vector

I8
The standard-library vector has members capacity(), reserve(), and push_back(). The reserve() is
used by users of vector and other vector members to make room for more elements. It may have to
allocate new memory and when it does, it moves the elements to the new allocation. When
reserve() moves elements to a new and larger allocation, any pointers to those elements will now
point to the wrong location; they have become invalidated and should not be used.

Given capacity() and reserve(), implementing push_back() is trivial:

160 Containers Chapter 12

template<typename T>
void Vector<T>::push_back(const T& t)

{
if (capacity()<=size()) Il make sure we have space for t
reserve(size()==07?8:2:size()); // double the capacity
construct_at(space,t); 1l initialize *space to t ("place t at space")
++space;
}

Now allocation and relocation of elements happens only infrequently. I used to use reserve() to try
to improve performance, but that turned out to be a waste of effort: the heuristic used by vector is
on average better than my guesses, so now I only explicitly use reserve() to avoid reallocation of
elements when I want to use pointers to elements.

A vector can be copied in assignments and initializations. For example:

vector<Entry> book2 = phone_book;

Copying and moving vectors are implemented by constructors and assignment operators as
described in §6.2. Assigning a vector involves copying its elements. Thus, after the initialization
of book2, book2 and phone_book hold separate copies of every Entry in the phone book. When a
vector holds many elements, such innocent-looking assignments and initializations can be expen-
sive. Where copying is undesirable, references or pointers (§1.7) or move operations (§6.2.2)
should be used.

The standard-library vector is very flexible and efficient. Use it as your default container; that
is, use it unless you have a solid reason to use some other container. If you avoid vector because of
vague concerns about ‘“‘efficiency,” measure. Our intuition is most fallible in matters of the perfor-
mance of container uses.

12.2.1 Elements

Like all standard-library containers, vector is a container of elements of some type T, that is, a
vector<T>. Just about any type qualifies as an element type: built-in numeric types (such as char,
int, and double), user-defined types (such as string, Entry, list<int>, and Matrix<double,2>), and point-
ers (such as const char#, Shape*, and doublex). When you insert a new element, its value is copied
into the container. For example, when you put an integer with the value 7 into a container, the
resulting element really has the value 7. The element is not a reference or a pointer to some object
containing 7. This makes for nice, compact containers with fast access. For people who care about
memory sizes and run-time performance this is critical.

If you have a class hierarchy (§5.5) that relies on virtual functions to get polymorphic behavior,
do not store objects directly in a container. Instead store a pointer (or a smart pointer; §15.2.1).
For example:

vector<Shape> vs; Il No, don'’t - there is no room for a Circle or a Smiley (§5.5)
vector<Shape:> vps; 1l better, but see §5.5.3 (don’t leak)
vector<unique_ptr<Shape>> vups; /I OK

Section 12.2.2 Range Checking 161

12.2.2 Range Checking

The standard-library vector does not guarantee range checking. For example:

void silly(vector<Entry>& book)
{

int i = book[book.size()].number; Il book.size() is out of range
...
}

That initialization is likely to place some random value in i rather than giving an error. This is
undesirable, and out-of-range errors are a common problem. Consequently, I often use a simple
range-checking adaptation of vector:

template<typename T>
struct Vec : std::vector<T> {
using vector<T>::vector; Il use the constructors from vector (under the name Vec)

T& operator[](int i) { return vector<T>::at(i); } Il range check
const T& operator[](int i) const { return vector<T>::at(i); } // range check const objects; §5.2.1

auto begin() { return Checked_iter<vector<T>>{*this}; } /] see §13.1
auto end() { return Checked_iter<vector<T>>{xthis, vector<T>::end()}; }

b
Vec inherits everything from vector except for the subscript operations that it redefines to do range
checking. The at() operation is a vector subscript operation that throws an exception of type
out_of_range if its argument is out of the vector’s range (§4.2).

For Vec, an out-of-range access will throw an exception that the user can catch. For example:

void checked(Vec<Entry>& book)

{
try {
book[book.size()] = {"Joe",999999}; Il will throw an exception
...
}
catch (out_of range&) {
cerr << "range error\n";
}
}

The exception will be thrown, and then caught (§4.2). If the user doesn’t catch an exception, the
program will terminate in a well-defined manner rather than proceeding or failing in an undefined
manner. One way to minimize surprises from uncaught exceptions is to use a main() with a try-
block as its body. For example:

int main()

try {
Il your code

}

162 Containers Chapter 12

catch (out_of_range&) {
cerr << "range error\n";

}
catch (...) {

cerr << "unknown exception thrown\n";
}

This provides default exception handlers so that if we fail to catch some exception, an error mes-
sage is printed on the standard error-diagnostic output stream cerr (§11.2).

Why doesn’t the standard guarantee range checking? Many performance-critical applications
use vectors and checking all subscripting implies a cost on the order of 10%. Obviously, that cost
can vary dramatically depending on hardware, optimizers, and an application’s use of subscripting.
However, experience shows that such overhead can lead people to prefer the far more unsafe built-
in arrays. Even the mere fear of such overhead can lead to disuse. At least vector is easily range
checked at debug time and we can build checked versions on top of the unchecked default.

A range-for avoids range errors at no cost by implicitly accessing all elements in the range. As
long as their arguments are valid, the standard-library algorithms do the same to ensure the absence
of range errors.

If you use vector::at() directly in your code, you don’t need my Vec workaround. Furthermore,
some standard libraries have range-checked vector implementations that offer more complete
checking than Vec.

12.3 list
The standard library offers a doubly-linked list called list:
list:
—~
4| llinks links links links|e—»{ |

We use a list for sequences where we want to insert and delete elements without moving other ele-
ments. Insertion and deletion of phone book entries could be common, so a list could be appropri-
ate for representing a simple phone book. For example:

list<Entry> phone_book = {
{"David Hume",123456},
{"Karl Popper",234567},
{"Bertrand Arthur William Russell",345678}

b
When we use a linked list, we tend not to access elements using subscripting the way we com-
monly do for vectors. Instead, we might search the list looking for an element with a given value.
To do this, we take advantage of the fact that a list is a sequence as described in Chapter 13:

Section 12.3 list 163

int get_number(const string& s)

{
for (const auto& x : phone_book)
if (x.name==s)
return x.number;
return 0; // use 0 to represent "number not found"
}

The search for s starts at the beginning of the list and proceeds until s is found or the end of
phone_book is reached.

Sometimes, we need to identify an element in a list. For example, we may want to delete an
element or insert a new element before it. To do that we use an iterator: a list iterator identifies an
element of a list and can be used to iterate through a list (hence its name). Every standard-library
container provides the functions begin() and end(), which return an iterator to the first and to one-
past-the-last element, respectively (§13.1). Using iterators explicitly, we can — less elegantly —
write the get_number() function like this:

int get_number(const string& s)

{
for (auto p = phone_book.begin(); p!=phone_book.end(); ++p)
if (p->name==s)
return p->number;
return 0; // use O to represent "number not found"
}

In fact, this is roughly the way the terser and less error-prone range-for loop is implemented by the

compiler. Given an iterator p, #p is the element to which it refers, ++p advances p to refer to the

next element, and when p refers to a class with a member m, then p->m is equivalent to (+p).m.
Adding elements to a list and removing elements from a list is easy:

void f(const Entry& ee, list<Entry>::iterator p, list<Entry>::iterator q)

{

phone_book.insert(p,ee); /I add ee before the element referred to by p
phone_book.erase(q); Il remove the element referred to by q

}

For a list, insert(p,elem) inserts an element with a copy of the value elem before the element pointed
to by p. Here, p may be an iterator pointing one-beyond-the-end of the list. Conversely, erase(p)
removes the element pointed to by p and destroys it.

These list examples could be written identically using vector and (surprisingly, unless you
understand machine architecture) often perform better with a vector than with a list. When all we
want is a sequence of elements, we have a choice between using a vector and a list. Unless you
have a reason not to, use a vector. A vector performs better for traversal (e.g., find() and count()) and
for sorting and searching (e.g., sort() and equal_range(); §13.5, §15.3.3).

164 Containers Chapter 12

12.4 forward_list

The standard library also offers a singly-linked list called forward_list:

forward_list:

~aJlink link link link —»f

,,,,,,,,

A forward_list differs from a (doubly-linked) list by only allowing forward iteration. The point of
that is to save space. There is no need to keep a predecessor pointer in each link and the size of an
empty forward_list is just one pointer. A forward_list doesn’t even keep its number of elements. If
you need the number of elements, count. If you can’t afford to count, you probably shouldn’t use a
forward_list.

12.5 map

Writing code to look up a name in a list of (name,number) pairs is quite tedious. In addition, a lin-
ear search is inefficient for all but the shortest lists. The standard library offers a balanced binary
search tree (usually a red-black tree) called map:

map: o

links
~ /
4 | aflinks
key:
value: links

links

In other contexts, a map is known as an associative array or a dictionary.
The standard-library map is a container of pairs of values optimized for lookup and insertion.
We can use the same initializer as for vector and list (§12.2, §12.3):

map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Bertrand Arthur William Russell",345678}

b
When indexed by a value of its first type (called the key), a map returns the corresponding value of
the second type (called the value or the mapped type). For example:

Section 12.5 map 165

int get_number(const string& s)

{

return phone_book[s];

}

In other words, subscripting a map is essentially the lookup we called get_number(). If a key isn’t
found, it is entered into the map with a default value for its value. The default value for an integer
type is 0 and that just happens to be a reasonable value to represent an invalid telephone number.

If we wanted to avoid entering invalid numbers into our phone book, we could use find() and
insert() (§12.8) instead of [].

12.6 unordered_map

The cost of a map lookup is O(log(n)) where n is the number of elements in the map. That’s pretty
good. For example, for a map with 1,000,000 elements, we perform only about 20 comparisons
and indirections to find an element. However, in many cases, we can do better by using a hashed
lookup rather than a comparison using an ordering function, such as <. The standard-library hashed
containers are referred to as ““‘unordered” because they don’t require an ordering function:

unordered_map: | rep—

hash table: |+>{ | ‘

For example, we can use an unordered_map from <unordered_map> for our phone book:

unordered_map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Bertrand Arthur William Russell",345678}
b
Like for a map, we can subscript an unordered_map:

int get_number(const string& s)

{

return phone_book[s];

}

The standard library provides a default hash function for strings as well as for other built-in and
standard-library types. If necessary, we can provide our own. Possibly, the most common need for
a custom hash function comes when we want an unordered container of one of our own types. A
hash function is often implemented as a function object (§7.3.2). For example:

166 Containers Chapter 12

struct Record {
string name;
int product_code;
...

b
struct Rhash { Il a hash function for Record
size_t operator()(const Record& r) const
{
return hash<string>()(r.name) " hash<int>()(r.product_code);
}
b

unordered_set<Record,Rhash> my_set; // set of Records using Rhash for lookup

Designing good hash functions is an art and often requires knowledge of the data to which it will be
applied. Creating a new hash function by combining existing hash functions using exclusive-or ()
is simple and often very effective. However, be careful to ensure that every value that takes part in
the hash really helps to distinguish the values. For example, unless you can have several names for
the same product code (or several product codes for the same name), combining the two hashes
provides no benefits.

We can avoid explicitly passing the hash operation by defining it as a specialization of the stan-
dard-library hash:

namespace std { Il make a hash function for Record

template<> struct hash<Record> {
using argument_type = Record;
using result_type = size_t;

result_type operator()(const Record& r) const

{

return hash<string>()(r.name) " hash<int>()(r.product_code);

}
b

}
Note the differences between a map and an unordered_map:

* A map requires an ordering function (the default is <) and yields an ordered sequence.

* A unordered_map requires an equality function (the default is ==); it does not maintain an

order among its elements.

Given a good hash function, an unordered_map is much faster than a map for large containers.
However, the worst-case behavior of an unordered_map with a poor hash function is far worse than
that of a map.

Section 12.7 Allocators 167

12.7 Allocators

By default, standard-library containers allocate space using new. Operators new and delete provide
a general free store (also called dynamic memory or heap) that can hold objects of arbitrary size
and user-controlled lifetime. This implies time and space overheads that can be eliminated in many
special cases. Therefore, the standard-library containers offer the opportunity to install allocators
with specific semantics where needed. This has been used to address a wide variety of concerns
related to performance (e.g., pool allocators), security (allocators that clean-up memory as part of
deletion), per-thread allocation, and non-uniform memory architectures (allocating in specific
memories with pointer types to match). This is not the place to discuss these important, but very
specialized and often advanced techniques. However, I will give one example motivated by a real-
world problem for which a pool allocator was the solution.

An important, long-running system used an event queue (see §18.4) using vectors as events that
were passed as shared_ptrs. That way, the last user of an event implicitly deleted it:

struct Event {
vector<int> data = vector<int>(512);
b

list<shared_ptr<Event>> q;

void producer()

{
for (int n = 0; n!=LOTS; ++n) {
lock_guard Ik {m}; Il m is a mutex; see §18.3
g.push_back(make_shared<Event>());
cv.notify_one(); Il cv is a condition_variable; see §18.4
}
}

From a logical point of view this worked nicely. It is logically simple, so the code is robust and
maintainable. Unfortunately, this led to massive fragmentation. After 100,000 events had been
passed among 16 producers and 4 consumers, more than 6GB of memory had been consumed.

The traditional solution to fragmentation problems is to rewrite the code to use a pool allocator.
A pool allocator is an allocator that manages objects of a single fixed size and allocates space for
many objects at a time, rather than using individual allocations. Fortunately, C++ offers direct sup-
port for that. The pool allocator is defined in the pmr (“polymorphic memory resource’) sub-
namespace of std:

pmr::synchronized_pool_resource pool; Il make a pool

struct Event {
vector<int> data = vector<int>{512,&pool}; // let Events use the pool

b

list<shared_ptr<Event>> q {&pool}; Il let q use the pool

168 Containers Chapter 12

void producer()

{
for (int n = 0; n!=LOTS; ++n) {
scoped_lock Ik {m}; /I mis a mutex (§18.3)
q.push_back(allocate_shared<Event,pmr::polymorphic_allocator<Event>>{&pool});
cv.notify_one();
}
}

Now, after 100,000 events had been passed among 16 producers and 4 consumers, less than 3MB of
memory had been consumed. That’s about a 2000-fold improvement! Naturally, the amount of
memory actually in use (as opposed to memory wasted to fragmentation) is unchanged. After elim-
inating fragmentation, memory use was stable over time so the system could run for months.
Techniques like this have been applied with good effects from the earliest days of C++, but gen-
erally they required code to be rewritten to use specialized containers. Now, the standard contain-
ers optionally take allocator arguments. The default is for the containers to use new and delete.
Other polymorphic memory resources include
* unsynchronized_polymorphic_resource; like polymorphic_resource but can only be used by
one thread.
* monotonic_polymorphic_resource; a fast allocator that releases its memory only upon its de-
struction and can only be used by one thread.
A polymorphic resource must be derived from memory_resource and define members allocate(),
deallocate(), and is_equal(). The idea is for users to build their own resources to tune code.

12.8 Container Overview

The standard library provides some of the most general and useful container types to allow the pro-
grammer to select a container that best serves the needs of an application:

Standard Container Summary
vector<T> A variable-size vector (§12.2)
list<T> A doubly-linked list (§12.3)
forward_list<T> A singly-linked list
deque<T> A double-ended queue
map<K,V> An associative array (§12.5)
multimap<K,V> A map in which a key can occur many times
unordered_map<K,V> A map using a hashed lookup (§12.6)
unordered_multimap<K,V> A multimap using a hashed lookup
set<T> A set (a map with just a key and no value)
multiset<T> A set in which a value can occur many times
unordered_set<T> A set using a hashed lookup
unordered_multiset<T> A multiset using a hashed lookup

The unordered containers are optimized for lookup with a key (often a string); in other words, they
are hash tables.

Section 12.8 Container Overview 169

The containers are defined in namespace std and presented in headers <vectors, <list>, <map>,
etc. (§9.3.4). In addition, the standard library provides container adaptors queue<T>, stack<T>, and
priority_queue<T>. Look them up if you need them. The standard library also provides more spe-
cialized container-like types, such as array<T,N> (§15.3.1) and bitset<N> (§15.3.2).

The standard containers and their basic operations are designed to be similar from a notational
point of view. Furthermore, the meanings of the operations are equivalent for the various contain-
ers. Basic operations apply to every kind of container for which they make sense and can be effi-
ciently implemented:

Standard Container Operations (partial)

value_type The type of an element
p=c.begin() p points to first element of c; also cbegin() for an iterator to const
p=c.end() p points to one-past-the-last element of c;
also cend() for an iterator to const
k=c.size() k is the number of elements in ¢
c.empty() Is c empty?

k=c.capacity()
c.reserve(k)

k is the number of elements that ¢ can hold without a new allocation
Increase the capacity to k; if k<=c.capacity(), c.reserve(k) does nothing

c.resize(k) Make the number of elements k;

added elements have the default value value_type{}
clk] The kth element of c; zero-based; no range guaranteed checking
c.at(k) The kth element of c; if out of range, throw out_of_range

c.push_back(x)
c.emplace_back(a)
g=c.insert(p,x)
g=c.erase(p)

Add x at the end of c; increase the size of ¢ by one

Add value_type{a} at the end of c; increase the size of ¢ by one
Add x before pin ¢

Remove element at p from ¢

c=c2
b=(c==c2)
x=(c<=>c2)

Assignment: copy all elements from c2 to get c==c2
Equality of all elements of ¢ and c2; b==true if equal
Lexicographical order of ¢ and c2:

x<0 if ¢ is less than ¢2, x==0 if equal, and 0<x if greater than.
I=, <, <=, >, and >= are generated from <=>

This notational and semantic uniformity enables programmers to provide new container types that
can be used in a very similar manner to the standard ones. The range-checked vector, Vector (§4.3,
Chapter 5), is an example of that. The uniformity of container interfaces allows us to specify algo-
rithms independently of individual container types. However, each has strengths and weaknesses.
For example, subscripting and traversing a vector is cheap and easy. On the other hand, vector ele-
ments are moved to different locations when we insert or remove elements; list has exactly the
opposite properties. Please note that a vector is usually more efficient than a list for short sequences
of small elements (even for insert() and erase()). I recommend the standard-library vector as the
default type for sequences of elements: you need a reason to choose another.

Consider the singly-linked list, forward_list, a container optimized for the empty sequence
(§12.3). An empty forward_list occupies just one word, whereas an empty vector occupies three.
Empty sequences, and sequences with only an element or two, are surprisingly common and useful.

170 Containers Chapter 12

An emplace operation, such as emplace_back() takes arguments for an element’s constructor and
builds the object in a newly allocated space in the container, rather than copying an object into the
container. For example, for a vector<pair<int,string>> we could write:

v.push_back(pair{1,"copy or move"}); // make a pair and move it into v
v.emplace_back(1,"build in place"); 1 build a pair in v

For simple examples like this, optimizations can result in equivalent performance for both calls.

12.9 Advice

[1] An STL container defines a sequence; §12.2.

[2] STL containers are resource handles; §12.2, §12.3, §12.5, §12.6.

[3] Use vector as your default container; §12.2, §12.8; [CG: SL.con.2].

[4] For simple traversals of a container, use a range-for loop or a begin/end pair of iterators;
§12.2, §12.3.

[51 Use reserve() to avoid invalidating pointers and iterators to elements; §12.2.

[6] Don’t assume performance benefits from reserve() without measurement; §12.2.

[71 Use push_back() or resize() on a container rather than realloc() on an array; §12.2.

[8] Don’t use iterators into a resized vector; §12.2 [CG: ES.65].

[91 Do not assume that [] range checks; §12.2.

[10] Use at() when you need guaranteed range checks; §12.2; [CG: SL.con.3].

[11] Use range-for and standard-library algorithms for cost-free avoidance of range errors;
§12.2.2.

[12] Elements are copied into a container; §12.2.1.

[13] To preserve polymorphic behavior of elements, store pointers (built-in or user-defined);
§12.2.1.

[14] Insertion operations, such as insert() and push_back(), are often surprisingly efficient on a
vector; §12.3.

[15] Use forward_list for sequences that are usually empty; §12.8.

[16] When it comes to performance, don’t trust your intuition: measure; §12.2.

[17] A map is usually implemented as a red-black tree; §12.5.

[18] An unordered_map is a hash table; §12.6.

[19] Pass a container by reference and return a container by value; §12.2.

[20] For a container, use the ()-initializer syntax for sizes and the {}-initializer syntax for
sequences of elements; §5.2.3, §12.2.

[21] Prefer compact and contiguous data structures; §12.3.

[22] A list is relatively expensive to traverse; §12.3.

[23] Use unordered containers if you need fast lookup for large amounts of data; §12.6.

[24] Use ordered containers (e.g., map and set) if you need to iterate over their elements in order;
§12.5.

[25] Use unordered containers (e.g., unordered_map) for element types with no natural order (i.e.,
no reasonable <); §12.5.

[26] Use associative containers (e.g., map and list) when you need pointers to elements to be sta-
ble as the size of the container changes; §12.8.

Section 12.9 Advice 171

[27] Experiment to check that you have an acceptable hash function; §12.6.

[28] A hash function obtained by combining standard hash functions for elements using the exclu-
sive-or operator (*) is often good; §12.6.

[29] Know your standard-library containers and prefer them to handcrafted data structures; §12.8.

[30] If your application is suffering performance problems related to memory, minimize free store
use and/or consider using a specialized allocator; §12.7.

This page intentionally left blank

Token

container 169
not-equal operator

7

literal operator 85

string literal 3
$,regex 131
%

modulus operator

remainder operator
%=, operator 7

address-of operator

pointer 11

reference to 12
&&, rvalue reference

char 8

digit separator 6
(,regex 131
(), call operator 94
(?: pattern 134
), regex 131

7
7

77

11

Index

Knowledge is of two kinds.
We know a subject ourselves,

or we know where

we can find information on it.

contents-of operator 11
iterator 179

multiply operator 7
operator 220

pointer 11

regex 131
#=, scaling operator 7
x?lazy 132
+

iterator 192

plus operator 7

regex 131

string concatenation 125

++
increment operator 7
iterator 179, 192
+=
iterator 192
operator 7
string append 126
+?lazy 132

iterator 192
minus operator 7

decrement operator 7
iterator 192

— Samuel Johnson

282

Index

-=, iterator 192

-

member access 23
operator 220
return type 40

member access 23
regex 131

..., variadic template 114
/, divide operator 7

// comment 2

/=, scaling operator 7
:public 61

<<

<=>

>>

output operator 3, 84
output ostream 138

container 169
less-than-or-equal operator 7

container 169
spaceship operator 81

container 169
less-than operator 7

0 60

and== 7
assignment 17
auto 8

container 169
default 56
initializer 7
initializer narrowing 8
string assignment 126

=and 7
container 169
equal operator 7
iterator 192
string 126

container 169
greater-than operator 7

container 169
greater-than-or-equal operator

input istream 139
input operator 84

?,regex 131
?: operator 82

??lazy 132
[,regex 131
[&] 95
= 9%

7

[[1] attribute syntax 263
I

array 11
array 203
auto 41
iterator 192
string 126

subscript operator 25
subscripting 169
\, backslash 3

], regex 131
“,regex 131
{,regex 131
{

format() argument 144
grouping 2
initializer 8
{}?lazy 132
|
pipeline 188
regex 131
},regex 131
“, destructor 57
0
= 60
nullptr NULL 14

A

%A, format() 146
abort() 225

abs() 228
abstract class 60
access

., member 23
-> member 23
accumulate() 229

acquisition RAII, resource 197

Ada 208
adaptor
function 216
lambdaas 216
range 187
address, memory 16
address-of operator & 11
adjacent_difference() 229
aims, C++11 261
Alexander Fraser 259
algorithm 173
container 175
lifting 113
numerical 229
parallel 183
standard library 181
<algorithm> 123,182
alias

—A-

template 100
type 234
using 100
alignas 263
alignof 263
allocation 57
allocator new, container 167
almost container 201
alnum, regex 133
alpha, regex 133
[[:alpha:]] letter 133
alternatives, error handling 47
Annemarie 127
ANSIC++ 260
any 211
Anya 208
append +=, string 126
argument
{}, format() 144
constrained 89
constrained template 90
default function 38
default template 108
function 37
lambdaas 96
order, format() 145
passing, function 72

type 90
value 90
arithmetic

conversions, usual 7
operator 7
vector 233
Arithmetic example 108, 219
ARM 260
array
0 n
array vs. 203

array 202
[203
data() 203
initialize 202
size() 203
vs.array 203

vs. vector 203
<array> 123
asin() 228
assembler 257
assert(), assertion 49
assertion

assert() 49

expect() 48

static_assert 50
assignable_from, concept 190
assignment

= 17

Index

= string 126
copy 72,75
initialization and 18
move 72,78
assignment-to-string-literal, removed 267
associate type 222
associative array — see map
async() launch 247
at() 161
atan() 228
atan2() 228
atexit() 225
atomic 243
AT&T Bell Laboratories 260
attribute
[[carries_dependency]] 263
[[deprecated]] 264
[[fallthrough]] 264
[[likelyl] ~ 265
[[maybe_unused]] 264
[[nodiscard]] 98, 264
[[noreturn]] 263
[[no_unique_address]] 265
syntax, [[]] 263
[[unlikely]] 265
auto
0 4
= 8
conceptand 110
return type 40
auto_ptr, removed 267

B

1%B, format() 146
b, format() 145
back_inserter() 175
backslash\ 3
bad_variant_access 210
base
and derived class 61
destructor for 65
basic_string 128
BCPL 269
begin() 83,163, 169, 175
beginner, book for 1
Bell Laboratories, AT&T 260
beta() 228
bibliography 271
bidirectional_iterator, concept 192
bidirectional_range, concept 193
binary search 182
binding, structured 41
bit manipulation =~ 224
bit_cast 224
bit-field, bitset and 204

283

284 Index

bitset 204
and bit-field 204
and enum 204
blank, regex 133

block
as function body, try 161
try 44

body, function 2

book for beginner 1

bool 6

Boolean, concept 191
bounded_range, concept 193
break 15

Brian Kernighan 259

buffer overrun 200

built-in type 21

byte, std::byte 224

C

Cc 257
and C++ compatibility 268
Classic 269
difference from 268
K&R 269
style 269
with Classes 256
with Classes language features
with Classes standard library
C++
ANSI 260
compatibility, Cand 268
Core Guidelines 262
core language 2
evolution 256
history 255
ISO 260
meaning 257
model 262
modern 262
pronunciation 257
standard, ISO 2
standard library 2
standardization 260
style 269
timeline 256
use 262
users, number of 262
C++03 260
C++0x, C++11 257, 260
C++11
aims 261
C++0x 257,260
language features 263
library components 265
C++14 261

language features 264
library components 266
C++17 261
language features 264
library components 266
C++20 1,185,261
concept 104
language features 265
library components 266
module 33
C++98 260
standard library 259
Cll 268
C+23, spanstream 149
C89and C99 268
C99,C89 and 268
calendar 214
call operator () 94
callback 217
capacity() 159, 169
capture list 95
[[carries_dependency]] attribute
cast 59
catch
clause 44
every exception 161
catch(...) 161
cbegin() 83
ceil() 228
cend() 83
cerr 138
char 6
8
character sets, multiple 128
check
compile-time 50
run-time 48
Checked_iter example 174
checking
costof range 162
template definition 109
chrono, namespace 214
<chrono> 123,214, 243
cin 139
class 23,54
abstract 60
and struct 25
base and derived 61
concrete 54
hierarchy 63
interface 23
member 23
scope 9
template 88
ClassicC 269
clause, requires 105

263

-C-

clear(), iostream 141

C-library header 123

clock 214

clock timing 243

<cmath> 123,228

cntrl, regex 133

code complexity, function and 5

comment, // 2

common_reference_with, concept 190

common_type_t 190, 221

common_view 187

common_with, concept 190

communication, task 245

comparison operator 7, 81

compatibility, C and C++ 268

compilation
model, template 117
separate 30

compiler 2

compile-time
check 50
computation 218
evaluation 10
if 101

complex 55,230

<complex> 123,228, 230

complexity, function and code 5

components
C++11 library 265
C++14 library 266
C++17 library 266
C++20 library 266

computation, compile-time 218

concatenation +, string 125

concept 89
assignable_from 190
bidirectional_iterator 192
bidirectional_range 193
Boolean 191
bounded_range 193
common_reference_with 190
common_with 190
constructible_from 191
contiguous_iterator 192
contiguous_range 193
convertible_to 190
copy_constructible 191
default_initializable 191
derived_from 190
destructible 191
equality_comparable 190
equality_comparable_with 190
equivalence_relation 191
floating_point 190
forward_iterator 192
forward_range 193

Index

input_iterator 192
input_or_output_iterator 192
input_range 193

integral 190

invocable 191

mergeable 192
mopyable 191

movable 191
move_constructible 191
output_iterator 192
output_range 193
permutable 192
predicate 191
random_access_iterator 192
random_access_range 193
range 185

range 193

regular 191
regular_invocable 191
relation 191

same_as 190
semiregular 191
sentinel_for 192
signed_integral 190
sized_range 193
sized_sentinel_for 192
sortable 192
strict_weak_order 191
swappable 190
swappable_with 190
three_way_comparable 190
three_way_comparable_with 190
totally_ordered 190
totally_ordered_with 190
unsigned_integral 190
view 193

concept 104

and auto 110

and type 111

and variable 111

based overloading 106
C++20 104

definition of 107

in <concepts> 190

in <iterator> 190

in <ranges> 190
static_assertand 108

concepts

use 104
iterator 192
range 193
type 190

<concepts> 123

conceptin 190

concrete

class 54

285

286 Index

type 54
concurrency 237
condition, declaration in 67
condition_variable 244

notify_one() 245

wait() 244
<condition_variable> 244
const

immutability 10

member function 56
constant

expression 10

mathematical 234
const_cast 59
consteval, immutability 10
constexpr

function 10

if 101

immutability 10
const_iterator 179

constrained
argument 89
template 90

template argument 90
constructible_from, concept 191
construction, order of 67
constructor 24

and destructor 258

copy 72,75

default 56

delegating 264

explicit 73

inherited 161

inheriting 264

initializer-list 58

invariant and 45

move 72,77
consumer() example, producer()
container 57, 88, 157

>= 169
= 169
> 169

= 169

< 169
<= 169
<=> 169
I= 169

algorithm 175
allocator new 167
almost 201

objectin 160
operation 83
overview 168
return 176
specialized 201
standard library 168

244

contents-of operator * 11
contiguous_iterator, concept 192
contiguous_range, concept 193
conventional operation 81
conversion 73

explicit type 59

narrowing 8
conversions, usual arithmetic 7
convertible_to, concept 190
cooperative multitasking example 251
copy 74

assignment 72,75

constructor 72,75

costof 76

elision 40, 72

elision 78

memberwise 72
copy() 182
copy_constructible, concept 191
copy_if() 182
Core Guidelines, C++ 262
core language, C++ 2
co_return 250
coroutine 250, 259

generator 250

promise_type 253
cos() 228
cosh() 228
cost

of copy 76

of range checking 162
count() 182
count_if() 181-182
Courtney 208

cout 138
output 3
co_yield 250
<cstdlib> 123
C-style
error handling 228
/0 149
string 13
CTAD 93

D

:d, format() 145
\d, regex 133
\D, regex 133

d,regex 133
dangling pointer 196
data

member 23
race 239
data(), array 203

D&E 256

deadlock 242
deallocation 57
debugging template 113
declaration 6

function 4

in condition 67

interface 29

using 36
declarator operator 12
decltype 263
decltype() 218
decrement operator -- 7
deduction

guide 210

guide 92

return type 40
default

= 56

constructor 56

function argument 38

member initializer 74

operation 72

template argument 108
=default 72
defaultfloat 143
default_initializable, concept 191
definition

checking, template 109

implementation 30

of concept 107
delegating constructor 264
=delete 73
delete

naked 58

operator 57
delete[], operator 57
Dennis Ritchie 259
deprecated

feature 267

strstream 148, 267
[[deprecated]] attribute 264
deque 168
derived class, base and 61
derived_from, concept 190
destructible, concept 191
destruction, order of 67
destructor 57,72

Y

constructor and 258

for base 65

for member 65

virtual 65
dictionary — see map
difference from C 268
digit

[[:digit:]] 133

Index

separator’ 6
digit, regex 133
[:digit:]] digit 133
directive, using 36
directory_iterator ~ 151-152
distribution, random 231
divide operator / 7
domain error 228
double 6
double-checked locking 243
Doug Mcllroy 259
drop_view 187
duck typing 117
duration 214
duration_cast 214
dynamic memory 57
dynamic_cast 67
is instance of 67
iskindof 67

E

e 234
EDOM macro 228
element requirements 160
elision, copy 40, 72
emplace_back() 169
empty() 169
enable_if 221
enable_if_t 221
encapsulation 72
end() 83,163,169, 175
endl 154
engine, random 231
enum
bitsetand 204
class enumeration 26
enumeration 25

using 26
enumeration

enum 25

enumclass 26
equal operator == 7

equality preserving 192
Equality_comparable example 108
equality_comparable, concept 190
equality_comparable_with, concept 190
equal_range() 182
equivalence_relation, concept 191
ERANGE macro 228
erase() 163,169
errno 228
error

domain 228

handling 43

handling alternatives 47

287

288 Index

handling, C-style 228

range 200, 228

recovery 47

run-time 44
error-code, exception vs 47
error_code 153
essential operation 72
evaluation

compile-time 10

order of 8

event driven simulation example 251

evolution, C++ 256
Example, expect() 48
example
Arithmetic 108,219
Checked_iter 174
cooperative multitasking 251
Equality_comparable 108
event driven simulation 251
finally() 98
find_all() 176
Hello, World! 2
Number 108
producer() consumer() 244
Rand_int 231
Sentinel 193
Sequence 109
sum() 104
task 253
tau 235
Value_type 109
Vec 161

Vector 22-23, 29, 33-34, 57-58, 73,75, 77,

88-89, 91-92, 100
exception 44
and main() 161
catch every 161
specification, removed 267
vs error-code 47
exclusive_scan() 229
execution policy 183
exists() 150
exit, program 225
exit() termination 225

exp() 228

exp2() 228

expect()
assertion 48
Example 48

explicit type conversion 59
explicit constructor 73
exponential_distribution 231

export
module 33
removed 267
expression

constant 10

fold 115

lambda 95

requires 106
extension() 152
extern template 264

F

fabs() 228
facilities, standard library 120
[[fallthrough]] attribute 264
feature
deprecated 267
removed 267
features
C with Classes language 258
C++11 language 263
C++14 language 264
C++17 language 264
C++20 language 265
file
header 31
opena 151
system operation 153
type 154
file_name(), source_location 222
<filesystem> 150
filesystem_error 153
filter() 189
filter_view 186
final 264
Final_action 98
finally() example 98
find() 175,182
find_all() example 176
find_if() 181-182
fixed 143
floating-point literal 6
floating_point, concept 190
floor() 228
fold expression 115
for
statement 12
statement, range 12
format, output 143-144
format()
%A 146
argument {} 144
argument order 145

:%B 146
b 145
d 145
0 145

precision 145
X145

<format> 123, 144
forward() 116,223
forwarding, perfect 224
forward_iterator, concept 192
forward_list 168
singly-linked list 164
<forward_list> 123
forward_range, concept 193
Fraser, Alexander 259
free store 57

friend 193
<fstream> 123, 147
__func__ 264

function 2

adaptor 216

and code complexity 5

argument 37

argument, default 38

argument passing 72

body 2

body, try block as 161

const member 56

constexpr 10

declaration 4

implementation of virtual 62

mathematical 228

member 23

name 5

object 94

overloading 5

return value 37

template 93

type 217

value return 72
function 217

and nullptr 217
<functional> 123
function_name(), source_location
fundamental type 6
future

and promise 245

member get() 245
<future> 123,245

G

garbage collection 79
Gavin 208
ged() 229
generator
coroutine 250
type 221
generic programming 103, 112, 258
get<>()
by index 207
by type 207

222

Index

get(), future member 245
getline() 140

graph, regex 133

greater-than operator > 7
greater-than-or-equal operator >= 7
greedy match 132, 135

grouping, {} 2

guide, deduction 92

Guidelines, C++ Core 262

H

half-open sequence 182
handle 24,58

resource 75, 198
hardware, mapping to 16
hash table 165
hash<>, unordered_map 84

header
C-library 123
file 31

problems 32
standard library 121, 123
unit 279
heap 57
Hello, World! example 2
hexfloat 143
hierarchy
class 63
navigation 67
history, C++ 255
HOPL 256

I
if
compile-time 101
constexpr 101
statement 14
ifstream 147
immutability
const 10
consteval 10
constexpr 10
implementation
definition 30
inheritance 66
iterator 178
of virtual function 62
push_back() 159
string 127
import 3
and #include 277
#include and 34
module 33

289

290 Index

in-class member initialization 264
#include 3,31

and import 34

importand 277
inclusive_scan() 229
incompatibility, voidx 270
increment operator ++ 7
index, get<>() by 207
infinite range 185
inheritance 61

implementation 66

interface 65

multiple 259
inherited constructor 161
inheriting constructor 264
initialization

and assignment 18

in-class member 264
initialize 58

array 202
initializer

= 7

{+ 8

default member 74

lambdaas 97-98

narrowing, = 8
initializer-list constructor 58
initializer_list 58
inline 55

namespace 264
inlining 55
inner_product() 229
input

istream >> 139

of user-defined type 141

operator >> 84

string 140
input_iterator, concept 192
input_or_output_iterator, concept 192
input_range, concept 193
insert() 163, 169
instantiation 89
instantiation time, template 117
instruction, machine 16

int 6
output bits of 204
int32_t 234

integer literal 6
integral, concept 190
interface
class 23
declaration 29
inheritance 65
invalidation 159
invariant 45
and constructor 45

invocable, concept 191
invoke_result_t 221
/O 138

C-style 149

iteratorand 179

state 141
<iomanip> 143
<ios> 123,143
iostream

clear() 141

kinds of 146

setstate() 141

unget() 141
<iostream> 3,123
iota() 229
is

instance of, dynamic_cast 67

kind of, dynamic_cast 67
is_arithmetic_v =~ 218
is_base_of v 218
is_constructible_v 218
is_directory() 151
is_integral_v 218
ISO

C++ 260

C++ standard 2
ISO-14882 260
is_same_of v 218
istream 138

>> input 139
<istream> 139
istream_iterator 179
istringstream 147
iterator ~ 83-84, 175

= 192

+ 192

- 192

+= 192

= 192

- 192

++ 179,192
® 179

[192

and /O 179

concepts 192

implementation 178
iterator 163,179
<iterator>, conceptin 190
iterator_t 109
iter_value_t 109

J

join(), thread 238
join_view 187

-K-

K

Kernighan, Brian 259
key and value 164
kinds of iostream 146

K&R C 269
\l, regex 133
\L, regex 133
lambda

as adaptor 216
as argument 96
as initializer ~ 97-98
expression 95
language
and library 119
features, C with Classes 258
features, C++11 263
features, C++14 264
features, C++17 264
features, C++20 265
launch, async() 247
lazy
+? 132
{37 132
2?7 132
#7132
match 132, 135
lem() 229
leak, resource 67,78, 197
less-than operator < 7

less-than-or-equal operator <= 7
letter, [[:alpha:]] 133
library

algorithm, standard 181
C with Classes standard 259
C++98 standard 259
components, C++11 265
components, C++14 266
components, C++17 266
components, C++20 266
container, standard 168
facilities, standard 120
language and 119
non-standard 119
standard 119

lifetime, scope and 9

lifting algorithm 113

[[likely]] attribute 265

<limits> 217, 234

line(), source_location 222

linker 2

list
capture 95

Index

forward_list singly-linked 164
list 162,168

literal
", string 3
floating-point 6
integer 6
operator " 85
raw string 130
suffix, s 127

suffix, sv 129
type of string 127
UDL, user-defined 84
user-defined 264
literals
string_literals 127
string_view_literals 129
In10 234
In2 234
local scope 9
lock, reader-writer 242
locking, double-checked 243
log() 228
log10() 228
log2() 228
log2e 234
longlong 263
lower, regex 133

M

machine instruction 16

macro
EDOM 228
ERANGE 228
main() 2

exceptionand 161
make_pair() 207
make_shared() 199
make_unique() 199
management, resource 78, 197
manipulation, bit 224
manipulator 143
map 164, 168

and unordered_map 166
<map> 123
mapped type, value 164
mapping to hardware 16
match

greedy 132,135

lazy 132,135
mathematical

constant 234

function 228

function, standard 228

functions, special 228
<math.h> 228

291

292 Index

Max Munch rule 132 return values 41
[[maybe_unused]] attribute 264 multiply operator * 7
Mcllroy, Doug 259 multiset 168
meaning, C++ 257 mutex 241
member <mutex> 241

access . 23

access -> 23

class 23 N

data 23

destructor for 65 \n, newline 3

. naked
function 23

. delete 58
function, const 56 new 58

initialization, in-class 264

initializer, default 74
memberwise copy 72
mem_fn() 217

name, function 5
namespace scope 9
namespace 35

mem. 7 chrono 214
y inline 264
address 16 pmr 167
dynamic 57 std 3,36, 121
resource, polymorphic 167 views ’ 18’8
safety 196 i
narrowing

<memory> 123,197, 199
merge() 182
mergeable, concept 192
midpoint() 229

= initializer =~ 8
conversion 8
navigation, hierarchy 67

i new

x)l:ifl operator= 7 container allocator 167
C++ 262 naked 58
template compilation 117 newl&%e\rritor ; 57

modern C++ 262 4

modularity 29 Nicholas 126

module [[nodiscard]] attribute 98, 264
C++20 33 noexcept 50
export 33 noexcept() 263 .
import 33 nonhomogeneous operation 108
standard library 123 non-memory resource 79
std 34,277 non-standard library 119

Norah 208
[[noreturn]] attribute 263
normal_distribution 231
notation
regular expression 131
template 105
not-equal operator |= 7
notify_one(), condition_variable 245
[[no_unique_address]] attribute 265

std.compat 277
modulus operator % 7
month 214
mopyable, concept 191
movable, concept 191
move 72,77

assignment 72,78

constructor 72,77
move() 78, 182,223

move_constructible, concept 191 r,:l(ml_(a 0 ,%Ll,ﬁ tr 14
moved-from ' P
object 78 nullptr 13
functionand 217
state 224 NULLO 14
move-only type 223 number

multi-line pattern 131
multimap 168
multiple
character sets 128
inheritance 259

of C++ users 262

random 231
Number 108

example 108
<numbers> 234

-N-

<numeric> 229
numerical algorithm 229
numeric_limits 234

O

0, format() 145
object 6
function 94
in container 160
moved-from 78
object-oriented programming 63, 258
ofstream 147
openafile 151
operation
container 83
conventional 81
default 72
essential 72
file system 153
nonhomogeneous 108

path 152
operator

-=> 220

+= 7

%= 7
#0220

7 82

&, address-of 11
(), call 94

#, contents-of 11
--, decrement 7
/,divide 7
==,equal 7

>, greater-than 7
>=, greater-than-or-equal 7
++, increment 7
>> input 84

<, less-than 7

<=, less-than-or-equal 7
" literal 85

-, minus 7

%, modulus 7

multiply 7

I=, not-equal 7
<<,output 3,84
+,plus 7

%, remainder 7
#=, scaling 7

/=, scaling 7

<=>, spaceship 81
[1, subscript 25
arithmetic 7
comparison 7, 81
declarator 12
delete[]] 57

delete 57
new 57
overloaded 57
overloading 80
relational 81
user-defined 57
optimization, short-string
optional 210
order
format() argument

of construction 67

of destruction 67
of evaluation 8
of, public private
ostream 138
<<,output 138
<ostream> 138
ostream_iterator 179
ostringstream 147
out_of_range 161
output 138
bits of int 204
cout 3
format 143-144
of user-defined type
operator << 3, 84
ostream << 138
string 140
output_iterator, concept
output_range, concept

overloaded operator 57

overloaded() 210
overloading

conceptbased 106

function 5

operator 80
override 61
overrun, buffer 200

overview, container 168

ownership 197
owning 196

P

packaged_task thread
par 183

parallel algorithm 183
parameterized type 88
partial_sum() 229
par_unseq 183

passing data to task 239

path 151
operation 152
pattern 130
(72 134
multi-line 131

Index

127

145

23

141

192
193

247

293

294 Index

perfect forwarding 224 R
permutable, concept 192 R" 130
phone_book example 158 race, data 239

pi 234
pipeline | 188 RAIl 58,98, 259
and resource management 45

plus operator + 7)
pmr, namespace 167 and try-block 48
and try-statement 45

pomtgr 11 17 resource acquisition 197
11 scoped_lock and 241-242
dangling 196 Rand_int example 231
smart 84, 197, 220 randCZIrinstribution 231
policy, execution 183 engine 231
polymorphic
number 231
ineznoryggsource 167 <random> 123, 231
pow()y P 298 random_access_iterator, concept 192

random_access_range, concept 193
random_device 233
random_engine seed()
range
checking, costof 162
checking Vec 161
concepts 193
error 200, 228
for statement 12
range

precision, format() 145
precison() 143
precondition 45
predicate 94, 181
type 218

predicate, concept 191
print,regex 133

printf() 149

private order of, public 23

roblems, header 32
grocedural programming 2 adaptor 187

concept 193
producer() (2:onsumer() example 244 concept 185

pI‘Ogr;glt 225 infinite 185
programming range-checking, span 200

range-for, spanand 200
<ranges> 123,185
conceptin 190
range_value_t 109
raw string literal 130
reader-writer lock 242
recovery, error 47
recursive_directory_iterator 152
reduce() 229
reference 18
&&, rvalue 77

generic 103, 112, 258
object-oriented 63, 258
procedural 2
promise
future and 245
member set_exception() 245
member set_value() 245
promise_type, coroutine 253
pronunciation, C++ 257
ptrdiff_t 234
public private order of 23

punct, regex 133 gaéue 1278
pure virtual 60 regex

purpose, template 103 9 131
push_back() 58, 163, 169 [131
implementation 159 + 131
push_front() 163 131
? 131
Q " 131
131
quick_exit() termination 225 131
131

131
131

—~—H e~

b 131

| 131

alnum 133
alpha 133
blank 133
cntrl 133

\D 133

\d 133

d 133

digit 133
graph 133

\L 133

\I 133

lower 133
print 133
punct 133
regular expression 130
repetition 132

s 133

\s 133

\S 133
space 133
\u 133

\U 133
upper 133
\W 133

\w 133
w133
xdigit 133

<regex> 123,130
regular expression 130
regex_iterator 135
regex_search 130
register, removed 267
regular
expression notation 131
expression regex 130
expression <regex> 130
regular, concept 191
regular_invocable, concept 191
reinterpret_cast 59
relation, concept 191
relational operator 81
remainder operator % 7
remove_const_t 221
removed
assignment-to-string-literal 267
auto_ptr 267
exception specification 267
export 267
feature 267
register 267
repetition, regex 132
replace() 182
string 126
replace_if() 182

Index

request_stop() 249
requirement, template 104
requirements 105
element 160
requires
clause 105
expression 106
reserve() 159, 169
resize() 169
resource
acquisition RAIl 197
handle 75, 198
leak 67,78,197
management 78, 197
management, RAIl and 45
non-memory 79
retention 79

safe 262

safety 78
rethrow 46
return

container 176

function value 72

type -> 40

type auto 40

type deduction 40

type, suffix 263

type suffix 40

type, void 4

value, function 37

values, multiple 41
returning results from task 240
reverse_view 187
rieman_zeta() 228
Ritchie, Dennis 259
rule

Max Munch 132

of zero 73

run-time
check 48
error 44
rvalue

reference 78
reference && 77

S

s literal suffix 127
\S, regex 133
\s,regex 133
s,regex 133

safe
resource 262
type 262
safety

memory 196

295

296 Index

resource 78
same_as, concept 190
saving space 27

scaling
operator /= 7
operator #= 7

scanf() 149
scientific 143

scope
and lifetime 9
class 9
local 9

namespace 9
scoped_lock 197

and RAIl 241-242

unique_lock and 245
scoped_lock() 242
scope_exit 98
search, binary 182
seed(), random_engine
semiregular, concept 191
Sentinel example 193
sentinel_for, concept 192
separate compilation 30
sequence 174

half-open 182
Sequence example 109
set 168
<set> 123
set_exception(), promise member 245
setstate(), iostream 141
set_value(), promise member 245
SFINAE 221
shared_lock 242
shared_mutex 242
shared_ptr 197
sharing data task 241
short-string optimization 127
sightseeing tour
signed_integral, concept 190
SIMD 183
Simula 251, 255
sin() 228
singly-linked list, forward_list 164
sinh() 228
size of type 6
size() 83, 169

array 203
sized_range, concept 193
sized_sentinel_for, concept 192
sizeof 6
sizeof() 217
size_t 100, 234
smart pointer 84, 197, 220
smatch 130
sort() 173,182

sortable, concept 192
source_location
file_name() 222
function_name() 222
line() 222
space, saving 27
space, regex 133
spaceship operator <=> 81
span
and range-for 200
range-checking 200
string_view and 200
spanstream C+23 149
special mathematical functions 228
specialization 89
specialized container 201
sph_bessel() 228
split_view 187

sqrt() 228
<sstream> 123, 147
standard

ISOC++ 2

library 119

library algorithm 181

library, C++ 2

library, C with Classes 259

library, C++98 259

library container 168

library facilities 120

library header 121, 123

library module 123

library std 121

library suffix 121

mathematical function 228
standardization, C++ 260
state

/0 141

moved-from 224
statement

for 12

if 14

range for 12

switch 15

while 14
static_assert 234

and concept 108

assertion 50
static_cast 59
std

module 34,277

namespace 3,36, 121

standard library 121

sub-namespaces 121
std::byte byte 224
std.compat, module 277
<stdexcept> 123

-S-
std.h 278
stem() 152
STL 259

stopping thread 248
stop_requested() 249
stop_source 249
stop_token 248
store, free 57
strict_weak_order, concept 191
string

C-style 13

literal " 3

literal, raw 130

literal template argument 91

literal, type of 127

Unicode 128

string 125
[126
= 126
append += 126
assignment = 126

concatenation + 125

implementation 127

input 140

output 140

replace() 126

substr() 126
<string> 123, 125
string_literals, literals 127
stringstream 147
string_view 128

and span 200
string_view_literals, literals 129
strstream deprecated 148, 267
struct 22

classand 25

unionand 27
structured binding 41
style

C++ 269

C 269
subclass, superclass and 61
sub-namespaces, std 121
subscript operator [] 25
subscripting, [] 169
substr(), string 126
suffix 84

return type 263

return type 40

s literal 127

standard library 121

sv literal 129

time 214
sum() example 104
superclass and subclass 61
sv literal suffix 129

Index

swap() 84

swappable, concept 190
swappable_with, concept 190
switch statement 15
synchronized_pool_resource 167
syncstream 149
sync_with_stdio() 149

syntax, [[]] attribute 263
system_clock 214

T

table, hash 165
tagged union 28

take() 189
take_view 186-187
tanh() 228

task

and thread 238
communication 245
passing datato 239
returning results from 240
sharing data 241

task example 253

tau example 235

TC++PL 256

template
argument, string literal ~ 91
type safty 90

template 87
..., variadic 114
alias 100

argument, constrained 90
argument, default 108
class 88
compilation model 117
constrained 90
debugging 113
definition checking 109
extern 264
function 93
instantiation time 117
notation 105
purpose 103
requirement 104
variable 99
virtual 94
terminate() termination 225
termination 48
exit() 225
quick_exit() 225
terminate() 225
this 76
[this] and [*this] 95
thread
join() 238

297

298 Index

packaged_task 247

stopping 248

task and 238
<thread> 123, 238
thread_local 264

three_way_comparable, concept 190
three_way_comparable_with, concept

time 214

suffix 214

template instantiation 117
timeline, C++ 256
time_point 214
time_zone 216
timing, clock 243
to hardware, mapping 16
totally_ordered, concept 190
totally_ordered_with, concept 190
tour, sightseeing
transform_reduce() 229
transform_view 187
translation unit 32
try

block 44

block as function body 161
try-block, RAIl and 48
try-statement, RAIl and 45
type 6

alias 234

argument 90

associate 222

built-in 21

conceptand 111

concepts 190

concrete 54

conversion, explicit 59

file 154

function 217

fundamental 6

generator 221

get<>() by 207

input of user-defined 141

move-only 223

of string literal 127

output of user-defined 141

parameterized 88

polymorphic 60

predicate 218

safe 262

safty template 90

sizeof 6

user-defined 21
typename 88, 177
<type_traits> 218
typing, duck 117

U

\U, regex 133
\u, regex 133
UDL, user-defined literal 84
uint_least64_t 234
unget(), iostream 141
Unicode string 128
uniform_int_distribution 231
uninitialized 8
union 27

and struct 27

and variant 28

tagged 28
unique_copy() 173,182
unique_lock 242,244

and scoped_lock 245
unique_ptr 68, 197
[[unlikely]] attribute 265
unordered_map 165, 168

hash<> 84

map and 166
<unordered_map> 123
unordered_multimap 168
unordered_multiset 168
unordered_set 168
unsigned 6
unsigned_integral, concept 190
upper, regex 133
use

C++ 262

concept 104
user-defined

literal 264

literal UDL 84

operator 57

type 21

type, input of 141

type, output of 141
using

alias 100

declaration 36

directive 36

enum 26
usual arithmetic conversions 7
<utility> 123,206

\%

valarray 233
<valarray> 233

value 6
argument 90
keyand 164

mapped type 164
return, function 72

-V-

values, multiple return 41
Value_type example 109
value_type 100, 169

variable 5-6
conceptand 111
template 99

variadic template ... 114

variant 209

unionand 28
Vec

example 161

range checking 161
vector arithmetic 233

Vector example ~ 22-23, 29, 33-34, 57-58, 73,75, 77,

88-89, 91-92, 100
vector 158, 168
array vs. 203
<vector> 123
vector<bool> 201
vectorized 183
vformat() 146
view 186
view, concept 193
views, namespace 188
virtual 60
destructor 65

function, implementation of

function table vibl 62
pure 60
template 94
void= incompatibility 270
void return type 4
vibl, virtual function table

\%

w, regex 133

\W, regex 133

\w, regex 133

wait(), condition_variable
weekday 214

WG21 256

while statement 14
whitespace 139

X

X, format() 145
X3J16 260
xdigit, regex 133

Y

year 214

Z

zero, rule of
zoned_time

73
216

Index

299

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	12 Containers
	12.1 Introduction
	12.2 vector
	12.3 list
	12.4 forward_list
	12.5 map
	12.6 unordered_map
	12.7 Allocators
	12.8 Container Overview
	12.9 Advice

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

