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Foreword
Society is about to embark on a digital upgrade—the next generation of the world’s mobile communi-
cation infrastructure—5G. Along with new and innovative capabilities, 5G also introduces new security 
features, vulnerabilities, and risks. 5G does not just represent significantly increased bandwidth and 
lower latency, but it is expected to fundamentally change the mobile ecosystem with new partnership 
models, network slicing, massive deployment of Internet of Things (IoT) devices, and ultimately, an 
increasingly critical dependency on the technology for society to function. Due to this, our ability to 
secure 5G will directly affect the resilience of critical infrastructure and national security.

Some of the security key risks affecting 5G confidentiality, integrity, and availability are supply chain 
risks, increasing complexity leading to new vulnerabilities, and inherent weaknesses in the standards. 
The supply chain risks have reached the geopolitical center stage due to the high societal impact of 
5G, and this has led to national and EU-level regulations, risks assessments, and GSMA’s accreditation 
scheme Network Equipment Security Assurance Scheme (NESAS). The inherent increased complexity 
of 5G leads to a wide range of new potential vulnerabilities that will require increased vigilance from 
product vendors, service providers, and users alike.

In order to manage these risks, 5G is equipped with a broad range of security features and capabilities, 
and GSMA has outlined a list of critically sensitive functions—virtualization infrastructure, controller, 
orchestrators, Internet gateways, network slicing, mobile edge computing, routing and switching of 
IP traffic at the core, database functions, authentication, and access control. As always, a security 
by design approach following a zero-trust approach, with secure deployments and good operational 
hygiene, is key to securing the world’s 5G deployments.

In this book, Pramod Nair guides us through the evolution of cellular technologies from a security 
perspective, the security architecture, deployment modes and use cases of 5G, as well as discusses 
end-to-end security architecture and prioritizing security investments. His unique outlook as the Lead 
Security Architect, head of 5G security architecture in Cisco Systems, and from more than 20 years in 
security allows him to combine a theoretical and applied perspective for the benefit of both business 
and technical readers.

André Årnes, PhD 
Senior Vice President and Chief Security Officer at Telenor Group 

Professor II at the Norwegian University of Science and Technology

A01_Nair_FM-pi-pxxi.indd   14 27/10/21   8:14 PM



xv

Preface
5G technology will redefine the way we perceive cellular networks and will touch almost every aspect 
of our lives. 5G is not about just being faster, bigger, or better; it’s about enabling multiple services 
that we’ll all consume on an everyday basis. It will give rise to a new ecosystem of developers building 
applications that exploit the openness of 5G to help you develop new use cases for consumption by 
enterprises and subscribers alike. New features in 3GPP Releases 16 and 17 help further enable new 
use cases for non-public deployment of 5G by industry verticals and tighter convergence of 3GPP and 
non-3GPP technologies, bringing in multiple deployment methods—including on-premises, hybrid, 
and fully public cloud-based deployments. The 5G ecosystem will see a breakout from 3GPP-only 
based architecture to an open, multi-technology, multi-standard, polyglot ecosystem.

This evolution of the technology landscape also requires an evolution of the security mindset. We 
should start thinking of security as a foundational layer. It should be one of the primary foundations for 
any planned 5G use case implementation. This requires embracing multilayered security beyond the 
requirements in 3GPP specifications.

The business operational risk, legal risk, and reputational risk exist not only for the companies providing 
5G software and hardware infrastructure, but for all companies, nation-states, and individuals who 
provide and consume 5G technology.

The time is now to evaluate the cyber risk posture and apply innovative thoughts to how we can 
approach these challenges today and build for what’s to come tomorrow.

Motivation for Writing This Book
Security in evolving cellular technologies is not an easy concept to grasp, as the technologies have 
evolved rapidly and are becoming increasingly complex and nuanced as they become more open, espe-
cially when you add 5G to the mix.

5G will also enable enterprises and industry verticals to deploy private 5G/non-public 5G networks 
(5G NPN networks) on their own, without any integration with service providers. This necessitates 
private and government sectors to fully understand the 5G threat surfaces, develop methods to mitigate 
the threats, and prioritize the investments in security.

The existing material on security and cellular technologies is dispersed across many resources and 
does not cover the end-to-end 5G threat surfaces, threat mitigation, examples of real-life deployment 
scenarios, and prioritization of security controls based on use cases and deployment scenarios. The 
learning curve for a person trying to understand the evolution in cellular technologies, new architec-
tures, multiple deployment methods, threat surfaces, and mitigation techniques is extremely steep and 
sometimes unnerving.

It is not surprising that the topic of securing cellular technologies tends to flummox newcomers and 
even seasoned network security engineers.
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This book brings all the information together and arranges the key topics in such a way that they can be 
easily consumed and understood. The main purpose of this book is to enable any person to understand 
the key aspects of securing 5G and evolving technologies. This book covers a range of topics; it will 
take you through the evolution of technologies from 2G to 5G, with deep dives into specific topics, such 
as securing non-public 5G networks/private 5G deployments and prioritizing security investments.

The goal of this book is to provide pragmatic views on securing 5G and evolving networks. The 
knowledge and information gathered through numerous customer workshops, brainstorming sessions 
with service providers, industry verticals, industry experts from multiple vendors, proof of concepts, 
and lessons learned from actual security deployments for 5G networks are detailed in this book. Discus-
sions with multiple CSOs and CTOs have enlightened me on the key data points required for priori-
tizing security, which you will see highlighted in this book. Apart from service providers, industry 
verticals are expected to adopt 5G technology, and this area has been expanded into specific use cases, 
threats, and mitigation techniques. This book closes with a chapter discussing the key areas of security 
evolution that will motivate you to investigate different aspects of security as the network evolves. It is 
aimed at helping you create a new mindset while securing your networks of the future.

Who Should Read This Book
I have designed this book so that you can begin without any prior knowledge about 5G or any preceding 
cellular technologies. This book is written to be suitable for multiple levels of technical expertise, 
including the following:

 ■ Security experts looking to understand the history of cellular technology evolution to 5G, key  
5G security enhancements, and security challenges

 ■ Early-in-career telecom engineers, transport design engineers, and radio engineers looking to 
design and implement mobile networks

 ■ Government departments looking at security impacts of 5G deployment for use cases such as 
smart city and looking at implementing security measures

 ■ Management consultants advising governments and service providers on 5G security strategy

 ■ CSO and CTO teams from service providers looking at securing 5G deployments

 ■ CSO and CTO teams from enterprises deploying NPN/private 5G

 ■ Enterprise network design and implementation teams deploying NPN/private 5G deployments

 ■ Security architects responsible for securing the mobile infrastructure

 ■ Enterprise solution architects and enterprise security architects working with enterprises 
integrated with service provider 5G networks

 ■ Security strategy teams within service providers, enterprise and industry verticals deploying 5G
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 ■ Cloud computing and data center teams involved with 5G strategy and deployment

 ■ Enterprise solution and security architects deploying standalone private/NPN 5G or utilizing 
service providers’ 5G slice network

 ■ Audiences of varying levels of expertise from the military and defense community

 ■ Audiences from industry verticals such as smart manufacturing, critical infrastructure entities 
and vendors, and autonomous vehicle manufacturers

 ■ Cybersecurity vendor product managers looking for use cases or features to enhance security 
products to cater for secure 5G deployments

 ■ Students who would like to get a quick understanding of cellular technologies and a look at the 
new features in 5G

Throughout the book, you will see practical examples and real-life scenarios of how you might architect 
a solution to mitigate threats and improve the security posture of your network.

How This Book Is Organized
To allow technical and nontechnical audiences to consume the book in an effective and organized way, 
it is split into four parts. The parts and chapters cover specific topics.

Part I, “Evolution of Cellular Technologies to 5G, Security Enhancements, and Challenges,” explains 
the evolution of cellular technologies toward 5G as well as new security enhancements and new 
security challenges brought in by 5G. It will also take the reader through different deployment modes, 
including private 5G / non-public networks (NPN). This part will mostly cater to the audience who 
wants a high-level view of 5G technology and its security aspects. It includes the following chapters:

 ■ Chapter 1, “Evolution from 4G to 5G,” covers the evolution of cellular technologies and will 
provide you with a basic understanding of the 5G technology features. It will also take you 
through some of the key enhancements in 3GPP Rel-16 and Rel-17.

 ■ Chapter 2, “Deployment Modes in 5G,” covers the different non-standalone and standalone 
deployment modes and use cases, which can be mapped to specific deployment modes.

 ■ Chapter 3, “Securing 5G Infrastructure,” covers new security enhancements and new security 
challenges brought in by 5G. It also discusses the reasons why you should have an external 
layer of security controls, even though 3GPP provides some enhancements in security.

Part II, “Securing 5G Architectures, Deployment Modes, and Use Cases,” covers the security controls 
for 5G network components such as RAN, transport, 5GC, and devices. It then takes you through 
securing 5G enablers—such as multi-access edge compute (MEC), software-defined networks 
(SDNs), network slicing, orchestration, and automation—and protecting different deployment methods 
such as on-premises, private and public cloud based MEC, and hybrid cloud, including open RAN  
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deployments. It finally covers securing key 5G use cases such as critical infrastructure, vehicle-to-every-
thing (V2X), and smart factory. This part of the book will be of keen interest to readers who would like to 
deep-dive into the security aspects of 5G and its key use cases. It includes the following chapters:

 ■ Chapter 4, “Securing RAN and Transport Deployments in 5G,” covers the 5G RAN and 
transport threat surfaces and threat mitigation for the 5G public and non-public deployments, 
including open RAN. This chapter also takes you through some real-world attacks and 
mechanisms to mitigate them.

 ■ Chapter 5, “Securing MEC Deployments in 5G,” covers various MEC deployment models, 
network functions deployed in the private and public cloud based MEC, its threat surfaces, 
and methods to mitigate the threats. The chapter also provides some real-world risk and risk 
mitigation scenarios.

 ■ Chapter 6, “Securing Virtualized 5G Core Deployments,” covers the threats due to virtualized 
5G Core deployments and new methods of software development and deployment. This chapter 
also provides some key recommendations to secure your virtualized 5GC deployments with 
vendor-agnostic approaches and includes some real-world scenarios.

 ■ Chapter 7, “Securing Network Slice, SDN, and Orchestration in 5G,” covers network slicing 
and enablers of network slicing such as software-defined networks (SDNs), orchestration, and 
automation. The chapter also explains the threat surfaces and threat mitigations specific to 
network slicing and its enablers. This chapter also delves into the network slice as a service 
(NSaaS) offering, its threat surface, and methods to mitigate the threats.

 ■ Chapter 8, “Securing Massive IoT Deployments in 5G,” covers the risks related to IoT devices 
and related connectivity and management. The chapter then goes on to explain different 
security mechanisms and best practices to secure your network from any IoT device-based 
attacks.

 ■ Chapter 9, “Securing 5G Use Cases,” covers critical infrastructure, V2X, and smart 
manufacturing use cases, which use different types of IoT devices—some smart, some semi-
smart—as well as non-smart devices. The chapter takes you through the risks within these three 
use cases and methods to mitigate the risks.

Part III, “End-to-End 5G Security Architecture and Prioritizing Security Investments,” provides 
an overview of the various security recommendations for end-to-end 5G security and discusses the 
factors based on which certain security controls can be prioritized among other security controls for 
5G networks. This part will be of keen interest to an audience who would like to have an end-to-end 
view of security and understand the methods to prioritize investments in security. It includes following 
chapters:

 ■ Chapter 10, “Building Pragmatic End-to-End Security 5G Architecture,” covers the key 
building blocks for creating an end-to-end security layer for 5G deployments. This chapter 
also provides you with a checklist for each of the 5G domains and includes zero-trust design 
principles.
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 ■ Chapter 11, “Prioritizing 5G Security Investments,” covers the considerations and 
recommendations for prioritizing investments to secure your 5G network. This chapter takes 
two primary scenarios—one related to a service provider providing mobile service, and the 
other related to the non-public deployment methods for industry verticals and enterprises.

Part IV, “Emerging Discussions,” takes you through the topics aimed at new features being discussed 
for 5G and evolving architectures, security enhancements using machine learning (ML) and artificial 
intelligence (AI), and the method to make your network quantum safe. This part will be of keen interest 
to readers who would like to understand the key discussions in the security industry around 5G and 
evolving technologies. It includes following chapter:

 ■ Chapter 12, “5G and Beyond,” covers the adoption and adaptation of 5G standalone technology  
with new use cases, convergence of non-3GPP and 3GPP technologies, application of AI 
and ML in securing 5G and evolving technologies, and the importance of deploying crypto-
agile mobile networks.

Due to ongoing developments, Chapter 12 will occasionally be updated with relevant new content and 
insights on the book’s website at www.informit.com. Register your copy of Securing 5G and Evolving 
Architectures on the InformIT site for convenient access to these updates and/or corrections as they 
become available. To start the registration process, go to informit.com/register and log in or create an 
account. Enter the product ISBN (9780137457939) and click Submit. Look on the Registered Products 
tab for an Access Bonus Content link next to this product, and follow that link to access any available 
bonus materials. If you would like to be notified of exclusive offers on new editions and updates, please 
check the box to receive email from us.

Please note that this book is written with a vendor-neutral approach, and it does not give recommen-
dations on what vendor should be deployed. Each service provider or industry vertical planning to 
deploy 5G can evaluate the security controls required and make decisions based on their own criteria, 
circumstances, and targeted use cases. This book covers the details of the security controls, required 
features, and functions required for securing 5G and evolving networks, allowing you to make better 
informed decisions.

Happy reading, and I hope you enjoy reading this book as much as I enjoyed writing it!
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Securing Massive IoT Deployments 
in 5G
After reading this chapter, you should have a better understanding of the 
following topics:

 ■ Threats in massive IoT use case deployments

 ■ Securing massive IoT networks

 ■ Real scenario case study examples of massive IoT threat surfaces and threat mitigation 
techniques

This chapter will take you through the threat surfaces in 5G massive IoT deployments and mechanisms 
to mitigate the threats.

This chapter will be of particular interest to the following teams from enterprise, industry verticals, 
Non-Public Networks (NPN), 5G service providers deploying 5G mIoT, and cybersecurity vendors 
planning product developments and new functionalities to secure 5G mIoT use cases.

 ■ Mobile infrastructure strategy teams of service provider deploying mIoT in 5G

 ■ Security strategy teams within service provider and enterprise verticals planning on deploying 
5G mIoT

 ■ Transmission and the packet core team within service providers and private 5G enterprises 
planning to deploy 5G mIoT

 ■ Cloud computing and data center teams involved with 5G strategy and deployment

 ■ Security architects and design teams looking at securing the public and non-public mobile 
 infrastructure

 ■ Solution and security architects deploying 5G mIoT on enterprises and industry verticals

Chapter 8
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 ■ Enterprise solution and security architects using IoT services from mIoT service provider

 ■ Government departments deploying 5G mIoT

 ■ Cybersecurity vendor teams looking to secure mIoT deployments for their customers

 ■ Product managers of cybersecurity vendors trying to identify use cases for new products or 
 features to protect 5G mIoT deployments

5G represents a disruptive shift from just traditional consumer smartphones to advanced enterprise 
services, including ultra-reliable low-latency communication (URLLC)–based machine-to-machine 
(M2M) use cases. 5G is expected to be widely adopted in enterprise, industrial, and IoT use cases, 
enabling greater workforce mobility, automation, and countless new applications. Incorporation of 
5G into these environments requires a deeper level of integration between end-user networks and 5G 
service interfaces, exposing both enterprise owners (in particular, operators of critical information 
infrastructure) and 5G service providers to new risks. Before we get into the risks and mitigation of 
risks, we will first need to look into the types of IoT use cases.

5G also sees a departure from the reliance on a single approach to authenticating all users onto the 
network-based SIM cards. The Third-Generation Partnership Project (3GPP) has addressed such 
shortcomings, with 5G now integrating the Extensible Authentication Protocol (EAP) framework, 
first adopted by Wi-Fi into WPA-Enterprise back in 2002, into its architecture. The 5G standard now 
provides examples of how to use EAP-TLS certificate-based authentication in 5G as well as other EAP 
methods that support mutual authentication. The list that follows outlines some of the key reasons why 
IoT threats are quite critical in 5G based on the excerpts taken from the Cisco Annual Internet Report 
(2018-2023):

 ■ The number of devices connected to IP networks will be more than three times the global popu-
lation by 2023. There will be 3.6 networked devices per capita by 2023, up from 2.4 networked 
devices per capita in 2018. There will be 29.3 billion networked devices by 2023, up from 
18.4 billion in 2018.

 ■ Globally, devices and connections are growing faster (10 percent compound annual growth 
rate [CAGR]) than both the population (1.0 percent CAGR) and the Internet users (6 percent 
CAGR). This trend is accelerating the increase in the average number of devices and connec-
tions per household and per capita. Each year, various new devices in different form factors 
with increased capabilities and intelligence are introduced and adopted in the market. A grow-
ing number of M2M applications, such as smart meters, video surveillance, healthcare moni-
toring, transportation, and package or asset tracking, are significant contributors to the growth 
of devices and connections. By 2023, M2M connections will constitute 50 percent of the total 
devices and connections.

 ■ M2M connections will be the fastest-growing device and connections category, growing nearly 
2.4-fold during the forecast period (19 percent CAGR) to 14.7 billion connections by 2023.
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With this type of growth in the number of devices and spurts in new use cases such as M2M, an attack 
that successfully disrupts the network, or that steals or undermines the integrity of confidential data, 
could have a far greater economic and societal impact than previous generations.

IoT devices and applications have been around for quite some time and are not a new concept for 
5G. There are networks today using LTE or NB-IoT technologies enabling IoT use cases. 5G offers 
flexibility in IoT deployment. The use cases aimed at 5G IoT are devices having different bandwidth 
requirements. Some require high bandwidth and transmit in burst, while some require low bandwidth 
and continuous connectivity. 5G offers this capability to support the massive number of devices with 
different bandwidth requirements. In addition, 5G also supports enterprise and industry use cases that 
have strict requirements on latency. This is one of the key reasons why the industry is looking at 
adopting 5G. The flexible mode of 5G deployment using network slicing and deployment of applica-
tions in the edge of the network can bring down the latency to 1ms or less, enabling ultra-reliable and 
low-latency use cases such as factory automation, enhanced vehicular technologies such as vehicle-to-
everything (V2X), power and utility sector use cases such as smart energy grids, and other demanding 
use cases to become a reality.

There are different types of IoT use cases in 5G depending on the data consumption, energy 
consumption, and scale of deployment. When you take a step back and look at the use-case scenarios 
in 5G, we can split the IoT devices into smart devices and not-so-smart devices. Smart IoT devices are 
the devices that have some intelligence built into them and can make some decisions based on the input 
data. The not-so-smart IoT devices are the devices that just send the collected data and receive certain 
actions, such as stop data collection and a query to start data collection.

Use cases attributed to 5G such as smart cities would require the use of both types of devices, as shown 
in Figure 8-1, and have an artificial intelligence (AI), machine learning (ML), and an analytics layer to 
analyze the information from multiple devices and make a decision based on it. An example could be 
automated car parking in a busy area such as an airport parking lot, as shown in Figure 8-1.

Cargo
sensor

Parking spot
sensor

Emergency
Unit Vehicular
system

Movable
CCTV sensor

Autonomous
Pedestrian
system

V2X

MEC - Public cloud and Internet

Analytics

AI and ML
MEC

application

FIGURE 8-1 Different IoT Device Types to Enable a 5G Smart City
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As shown in Figure 8-1, it would require different types of mIoT devices to enable the smart city use 
case. Table 8-1 lists the types of devices to fulfill the use case of finding a parking spot and the safest 
way to reach the parking spot.

TABLE 8-1 Different IoT Device Types 

IoT Device mIoT Device Type Function

Cargo sensor Not-so-smart device Sends the geo-location metadata along with the speed

Parking spot sensor Not-so-smart device Indicates whether or not a vehicle is located in a parking 
spot

Emergency Unit 
Vehicular system

Not-so-smart device Indicates whether an emergency vehicle is active in the 
location

Movable CCTV sensor Not-so-smart device Detects if there is movement near the parking spot

Autonomous  
pedestrian system

Smart device Indicates any V2X application in the vicinity and broad-
casts a message based on whether or not a pedestrian 
is crossing. Captures any speeding instances and sends 
data to the road safety officers. Indicates any collision 
and immediately broadcasts messages to the emergency 
health unit.

V2X Smart device Provides a road safety application such as intersection 
movement assist, provides emergency brakes, and also 
includes V2V (vehicle-to-vehicle) communications

As listed in Table 8-1, to fulfill this example of smart city–based parking, there is a need for both not-
so-smart-devices and smart devices.

In this example, the cargo sensor, Emergency Unit Vehicular system, and autonomous pedestrian 
system are all part of the collision-prevention mechanism. The parking spot sensor and movable CCTV 
sensor are part of the parking detection mechanism. The V2X system is embedded within the vehicle 
for passing along the metadata to the MEC application.

All the data from the mIoT devices is then passed on to the AI and ML system and real-time (RT) 
analysis system. The AI, ML, and analytics system will then detect the free parking spot and the safest 
way to approach the parking spot and then help park the car or indicate the parking spot and the best 
way to reach it.

Massive IoT in 5G addresses the need to support billions of connections with a range of different 
services. IoT services range from device sensors requiring relatively low bandwidth to connected cars 
that require a similar service to a mobile handset. Network slicing provides a way for service providers 
to enable services to enterprises, giving them the flexibility to manage their own devices and services 
on the 5G network. mIoT, as the name suggests, is a category of use cases that is driven by scale.

Figure 8-2 illustrates an example of components that are part of the mIoT deployment.
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MEC

SP IoT  Applications and
Internet

Centralized DCgNB

Sensors

Vehicular Asset tracking

UEs

FIGURE 8-2 mIoT Deployment in 5G

Figure 8-2 shows an example of mIoT use-case deployment using 5G. The gNB serves geographically 
disparate devices such as sensors and vehicles that need to be tracked. mIoT would typically include 
devices that transmit and consume low data and are in the scale from hundreds to millions. Depending 
on the device type, it could be low-energy-consuming devices with limited access to power with a 
very light software stack for communications. There are device vendors in the market with 5G-capable 
chips with optimized power consumption.

This chapter will cover the 5G MIoT part. 5G IoT use cases based on smart devices (V2X, smart city, 
industrial IoT use cases, and so on) are covered in Chapter 9, “Securing 5G Use Cases.”)

Massive IoT–Based Threats in 5G
Figure 8-3 shows the key threats for the device-based threats for the devices connecting to the service 
provider’s 5G infrastructure. The devices in this case can be the 5G user equipment (UE), sensors, and 
IoT devices connecting to the 5G network provided by the service provider.

Figure 8-3 shows 5G multi-access edge compute (MEC), centralized 5GC (5G Core), public or private 
cloud-based SP applications, and the Internet access layer. Depending on the deployment plans of the 
service provider, the 5G User Plane Function (UPF) would be deployed in the MEC, along with any 
of the IoT applications that require caching. When the UPF network functions are deployed in the 
MEC, the N6 interface—the interface between the data network (DN) and the UPF—is also configured 
to allow UE and 5G devices to interconnect with the data network. Depending on the deployment 
scenario, the 5GC could host the 5G network functions that have low impact with higher latency, such 
as control plane functions, user plane functions for some IoT use cases, and the operations, admin-
istration, and maintenance (OAM) functions. Many service providers are also planning to have the 
configuration management (CM), fault management (FM), and performance management (PM) for the 
consumer IoT devices being catered to from the public/private cloud.
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The majority of the threat surfaces illustrated in Figure 8-3 are primarily due to the device vulner-
abilities and the devices being compromised by the command and control (C&C) server.

Here are some of the key threats related to mIoT use cases within the 5G networks:

 ■ C&C-based attacks

 ■ Malicious code injection on the driver that compromises the hardware, causing a denial of 
 service (DoS)

 ■ Forced resource buffer overflows causing DoS

 ■ Forced crash/shutdown due to malware injection, causing DoS

 ■ Compromised protocol on an IoT device, causing malicious code injection on the primary 
 device connected to the IoT device

 ■ Firmware OS hacking/code injection, leading to a compromised device

 ■ Radio-frequency identification (RFID)/Bluetooth sniffing and eavesdropping on the IoT device, 
causing messages to be intercepted, modified, and retransmitted with false information

 ■ Spoofing another device on the network and exfiltrating data

 ■ Malicious code injection leading to the same device being seen at multiple locations with 
 separate IP addresses

 ■ Multiplying the number of nodes (artificially), causing increased signaling in both UL/DL

Device Vulnerabilities Due to Weak Built-in Security
mIoT devices usually have very weak built-in security mechanisms due to lower price points of the 
devices to make them affordable to a large consumer base. The IoT deployment of any type, be it based 
on smart IoT devices or not-so-smart IoT devices, needs to be catered to by robust security controls to 
mitigate the vulnerabilities introduced by weak built-in security mainly due to the low cost and limita-
tions due to the form factor. Non-mIoT use cases that are not geographically located would also need 
multilayered security controls to secure them from targeted attacks very specific to industry verticals, 
such as major automotive manufacturers or government utility verticals.

Spoofing, cloning, and eavesdropping on the 5G endpoints/IoT devices can be carried out by attackers 
impersonating an RFID or Bluetooth device and reading and recording the transmitted data from the 
5G-enabled IoT device. This is primarily made possible due to weak access controls and poor authen-
tication methods used by the IoT device. These kinds of attacks are more prevalent in verticals of IoT 
such as healthcare where the IoT devices use Bluetooth to transfer the patient’s health statistics to a 
tablet where the vital stats of the patient can be checked/monitored by the healthcare workers.
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Another type of attack mentioned in Figure 8-3 is where the devices are compromised. In this instance, 
all the data from the impacted devices is dropped or redirected instead of being transmitted to the 
intended receiver for further forwarding or analysis. The data from such devices can then be analyzed 
by the attacker for any valuable data points, such as the IP address of the receiver, which can then be 
targeted for DoS.

These kinds of attack methods can also be referred to as sinkhole attacks or a form of routing attack. 
This is because the method of attack used in such instances is to route the packets away from the 
main intended receiver. To prevent the detection of such attacks, the data can be mirrored to the mali-
cious data collection server using a method very similar to port mirroring or Switch Port Analyzer 
(SPAN), which is used quite commonly in the network monitoring environment of the service provider 
networks. SPAN copies (or mirrors) traffic received or sent (or both) on source ports or source VLANs 
to a dedicated destination switch port for analysis. You can analyze network traffic passing through 
switch ports or VLANs by using SPAN or Remote SPAN (RSPAN) to send a copy of the traffic to 
another port on the switch or on another switch that has been connected to a network analyzer or other 
monitoring solution.

Management layer–based attacks are another key concern for device-based attacks within 5G. In these 
attacks, the attacker tries to take control of the key management layers, such as CM, FM, and PM, by 
exploiting the existing vulnerabilities of the IoT vendors’ management platform or the open source 
components used in the vendors’ IoT platform. Once the vulnerability has been successfully exploited, 
the attacker gains access and control over all endpoints catered for by the IoT vendor for the service 
provider. This can now be used for DoS and distributed denial-of-service (DDoS) attacks. One of the 
methods the attacker could also use here is to change the encryption type or level (from encrypted 
to null encryption), which makes the entire IoT network susceptible to man-in-the-middle (MitM) 
attacks.

The key threat surfaces and vulnerabilities are discussed in more detail in the sections that follow.

Supply Chain Vulnerability

Supply chain vulnerability is a well-known issue across different industry segments. The challenge 
of supply chain vulnerabilities becomes more prominent in 5G, as it enables attaching millions of 
low-cost IoT devices to the network. 5G also introduces critical infrastructure–based use cases and 
caters for use cases like smart cities, defense, and so on. These critical infrastructure 5G IoT use cases 
attract more nation-state attackers and thus are under higher levels of risk for cyberattacks. Supply 
chain is one of the weak links in security. If not secured properly, it opens the door wide for attacks, 
and the impacts of the attacks could be devastating, depending on the use case where the vulnerable 
IoT device was used. This section will take you through the vulnerabilities in the IoT supply chain 
related to manufacturing and distribution, as shown in Figure 8-4.
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FIGURE 8-4 Vulnerabilities in Different Stages of the Supply Chain

Key vulnerabilities and threat vectors for the IoT supply chain related to manufacturing and  distribution 
are explained in the list that follows:

 1. The requirement stage is when you send the requirements for your IoT device to the vendor. 
This will include details like maximum energy consumption, dimension of the unit, maximum/
minimum temperature, pressure (depending on use case), software or platform requirements 
such as integration options using API, and so on. The threat vector here is the requirement that 
is actually passed on to the vendor product R&D and manufacturing team. An attacker might 
add a couple of details in the requirements not actually requested by you. These newly added 
details are aimed at creating the backdoor using hardware or software remodifications to the 
original design, which can then be exploited by the attacking entity once deployed.

 2. The hardware specification team would normally take the requirements from the customer and 
map them to the required hardware, including deciding what sort of components should be used 
in manufacturing the device. Typical considerations are values to withstand humidity, tem-
perature, power consumption, and so on. The threat vector here is that an attacker could choose 
certain components that will fail when a certain condition is met. For example, the malicious 
actor or the attacking entity could intentionally choose a substandard electronic component or a 
customized component that fails after a certain temperature or humidity level is reached.
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 3. Once the components are finalized, the design team would make a schematic of the design 
that will be used as a blueprint for the printed circuit board (PCB) manufacturing for the IoT 
device. This is a very important part of the manufacturing process, as all the further checks on 
quality and so on would be referred back to the schematic. The attacking entity or the malicious 
actor could alter the design to include an eavesdropping component to leak sensitive data to a 
 predetermined destination such as a C&C server.

 4. The PCB layout process and component soldering are the next steps after the circuit design pro-
cess. Here, the key vulnerabilities and threat vectors are due to the attacker choosing counterfeit 
electronic components causing intermittent failures that are difficult to find and correct.

 5. IoT software specifications are taken from the requirements list you have provided to the IoT 
vendor/manufacturer. A member of the IoT software specification team or an attacker work-
ing in the software specification team could be directed to modify the specification for the 
software. The software specification will also be used in the software quality process for vali-
dating the software and to ensure that the designed software meets the software specifications. 
Any modification done in the software specification process will be considered as the software 
 blueprint for the device.

 6. The software design team would follow the specifications set by the software specifications 
team and specify the architecture and software technology to be used. In this process, the vul-
nerabilities are mainly due to the lack of knowledge about security leading to weak software for 
the device.

 7. The software development team programs the IoT device with the chosen software language. 
With attacks aimed at software vulnerabilities on the rise, it is imperative that the software team 
follows secure software design and avoids known vulnerabilities such as buffer overflows, 
which occur when there is more data in the buffer than it can handle, leading to software crash 
and thus creating a point for cyberattack. This can be intentionally implemented by an attacker 
within the software development team. Another threat vector is when a team member of the 
software development team is instructed by an attacker or an attacking entity to include mali-
cious code within the program to allow a backdoor entry to the device or to the private network 
where the IoT device is deployed.

 8. In the post-PCB layout and software development process, the IoT device manufacturer would 
validate whether the hardware prototype and software fulfill the requirements set by your (or 
your customer’s) IoT device requirement. This is the last part of the process when a vulner-
ability can be identified and patched. If the quality team is compromised by an attacker, the 
specific vulnerability that is planned to be exploited by the attacker/attacking entity will be 
overlooked and will not be patched. This will leave the IoT device open for any attacks.

 9. One of the key vulnerabilities in production is shadow production. Shadow production is 
where the real production numbers are hidden and used to flood the market with IoT devices 
with backdoors and vulnerabilities, making the devices open to attacks. Another threat vector 
is where the Joint Test Access Group (JTAG) ports are left unsecured. JTAG is an interface 
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that provides an option for debugging, reprogramming, and so on. In many gaming consoles, 
the JTAG ports are unsecured and open to user access. If you had the common interface cable 
for JTAG, you could plug it into your computer, use manufacturer default credentials, and 
play pirated games with some modifications on the attributes using the JTAG ports. The same 
unsecured JTAG port in an IoT device can allow an attacker to have unauthorized access and 
possibly have access to the private network where the IoT devices are deployed. The physical 
attacks, such as injecting malicious code into the IoT network, can be made possible by tamper-
ing with an IoT endpoint, gaining control over it, and then using that endpoint to gain access 
into the central IoT network. Attackers also exploit the JTAG interface used by manufacturers 
for debugging purposes. JTAG is an industry standard for on-chip instrumentation in electronic 
design automation (EDA). JTAG is also used to program field-programmable gate arrays 
(FPGAs). Most CPU vendors still use JTAG for debugging purposes. If JTAG ports are left 
 unprotected, this interface can become a critical attack vector on the system.

 10. Logistics is the other vulnerability in the supply chain that is prone to sabotage or modification 
of the IoT devices while in transit. Though this is not the most preferred attack vector for IoT 
devices in the supply chain, for critical infrastructure use cases, logistics needs to be carefully 
monitored. Your supply chain risk management (SCRM) should ensure that you have the right 
controls, such as choosing validated and security-cleared logistics vendors for shipping and 
transportation of IoT devices from production to deployment.

The attacks are primarily aimed at data exfiltration, tampering with the files within the IoT network, 
and gathering information. With the control garnered over the IoT network, the attacker could control 
the operations and the data flow between the IoT network and the 5G network components, such as a 
radio (gNB) or storage/configuration in the MEC layer of the 5G network. With the control over the 
IoT network, the attackers can damage the IoT devices and disrupt the IoT service, thereby causing 
DoS to service providers’ IoT services. This is not a new threat vector for 5G technology specifically; 
it is prevalent in legacy technologies such as 2G, 3G, and 4G, but it’s critical for 5G technology, as it 
is aimed at enabling IoT use cases such as mIoT that would impact different government and private 
sectors.

Command-and-Control Servers and Botnets

A command-and-control server (also referred to as a C&C, C2C or C2 server) is an endpoint/device 
that is compromised and controlled by an attacker. Devices on your network can be commandeered 
by a cybercriminal to become a command center or a botnet (a combination of the words “robot” and 
“network”) with the intention of obtaining full network control. Establishing C&C communications 
via a Trojan horse is an important step for attackers to move laterally inside service provider networks, 
infecting machines and servers with the intent to exfiltrate data.

One famous example of botnet malware is Mirai, which causes its infected devices to scan the Internet 
for the IP address of IoT devices by using a table of common factory-default usernames and pass-
words. The Mirai malware then logs in to the IoT devices and infects them with the Mirai malware. 
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Figure 8-14 illustrates the authentication of the IoT device using the installed SDK and is explained as 
follows:

 1. The SDK will include open source libraries. The recommended practice for low-powered 
 devices is to use an SDK that supports device connections that use Message Queuing Telemetry 
Transport (MQTT). The SDK will include a basic set of functionalities and policies to access 
the cloud-based IoT provider.

 2. The key functionalities of the IoT service provider are deployed in the cloud. One of the key 
components is Identity and Access Management (IAM), which is used for authenticating the 
IoT devices. The API gateway (API GW) is used to protect the IoT applications from API 
vulnerabilities, such as providing rate-limiting functionalities and enhanced authentication and 
authorization functions.

 3. Installing SDKs in the IoT devices will help you integrate IoT products to your choice of IoT 
providers deployed in public cloud.

 4. The SDK deployed within the IoT device will initiate an HTTPS request toward the authentica-
tion, authorization, and accounting (AAA) component of the cloud-based IoT provider. The 
HTTPS request includes the X.509 certificate, which is verified by the AAA component to 
 authenticate the IoT device.

 5. Once the mutual authentication is performed, initial configuration can be downloaded to the 
IoT device. One of the other functions that can be performed is to attach a policy for the device, 
such as allowing the device to connect to the analytics engine, enabling you to enhance the 
 services being offered to the IoT use cases.

In pragmatic deployment considerations, you also need to consider integration of hundreds of thou-
sands or even millions of devices, which might require AAA to be deployed in the public cloud, as 
illustrated in Figure 8-15.

SP Applications and
Data Network

Cloud-based
AAA

CM, PM, FM for
IoT devices

5G MEC

UPF CP NFs

Centralized 5G Core

FIGURE 8-15 Cloud-Based Authentication for IoT Devices
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One way to tackle the issue of identifying millions of devices is to build a strategy around having a 
unique ID (UID) assigned during the manufacturing process that can be used to identify and authenticate 
the device. Having a unique ID will also allow service providers to have proper lifecycle management, 
including tracking the software and hardware changes. Any infection or abnormal behavior can be 
easily tracked down to a specific device or group of devices.

Network Slice Isolation and Segmentation

Network slicing is one of the key evolutions of the network deployment brought in by 5G technology. 
Network slicing is the ability of the network to (automatically) configure and run multiple logical 
networks as virtually independent business operations on a common physical infrastructure. Network 
slicing is a fundamental architecture component of the 5G network, fulfilling the majority of the 5G 
use cases. Many operators are considering the offer of a network slice per enterprise, which is not that 
dissimilar to the per access point name (APN) offer for an enterprise in play today. As we consider the 
points where the enterprise then touches the 5G slice, a number of security aspects must be addressed—
one of them being slice-level isolation, as illustrated in Figure 8-16.

Network slicing architecture, which allows the ability to run multiple logical networks as virtually inde-
pendent business operations on a common physical infrastructure, also requires high isolation between 
the slices. Isolation within the components of the slice prevents the vulnerabilities from spreading to 
other components within the slice and between the slices in the case of any malicious attacks.

Intra-slice and inter-slice isolation should be implemented for both public and non-public networks 
(NPNs). The network slices should also allow a quarantine slice for identified malicious hosts, which 
provides isolation and restricts the spread of malware due to lateral movement.

Intra-slice can be provided by ensuring that the CNFs serving the slice are deployed on separate hosts. 
This ensures high availability for the slice.

Inter-slice isolation can be provided by deploying 5GC CNFs on separate hosts and then implementing 
network segmentation between slices. This mitigates malware propagation between slices of different 
sensitivity, such as a slice serving critical infrastructure (considered a highly sensitive slice) and a slice 
serving IoT devices (considered a less sensitive slice).
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Segmentation and isolation mechanisms used for the IoT deployment will vary depending on your 
deployment mode to cater for the mIoT use cases. If network slice mechanisms are used to provide 
access to the IoT device, you should ensure that the 3GPP 5G functions are isolated from other slices. 
This can be done by using separate x86 servers for deploying mIoT slice NFs. You should also architect 
your network such that web-facing applications are in a separate security zone and are not deployed in 
the same x86 server. This will ensure physical separation of the NFs and will reduce the probability of 
any side-channel attacks exploiting the vulnerability of the host OS and hardware (HW). If the mIoT 
devices are being deployed in the NPN network, then you should ensure that you have the mIoT network 
and the operational technology (OT) completely isolated from your IT network using a demilitarized 
zone (DMZ). In fact, if the mIoT is being deployed for critical use cases, there should be integrations 
with the IT network only if it is really necessary. Remote access to such networks should follow stringent 
identity and access mechanisms and should be continuously audited. This could be done by using a 
next-generation firewall (NGFW) integrated with your Network Access Control (NAC) and IAM layers.

Securing network slices is covered in detail in Chapter 7, “Securing Network Slice, SDN, and Orches-
tration in 5G.”

Mitigating IRC and P2P-Related Attacks

In general, deploying IRC and P2P IoT devices in the subscriber’s location should be avoided. But prag-
matically speaking, it is well known that the security team of the service provider is rarely informed 
of IoT devices being sold to customers by the customer-facing teams of the service provider. To solve 
this issue, recommended practice dictates that service providers check the type of device, secure the 
development lifecycle followed by the device manufacturer, and look at the supply chain lifecycle of 
the device manufacturer.

If the existing devices within the service provider use IRC, then in cases of IRC-related botnet attacks, 
each bot client must know the IRC server, port, and channel. Anti-malware solutions available today can 
detect and shut down these servers and channels, effectively halting the botnet attack. If this happens, 
clients are still infected, but they typically lie dormant since they have no way of receiving instructions. A 
botnet can also consist of several servers or channels. If one of the servers or channels becomes disabled, 
the botnet simply switches to another. It is still possible to detect and disrupt additional botnet servers 
or channels by sniffing IRC traffic, which can be catered for by anti-malware and monitoring solutions.

If the existing devices within the service provider use P2P, for mitigating the P2P attacks that use the 
firewall pin-holing technique, then granular firewall configurations to block traffic on specific ports 
should be used. This would prevent infected devices from communicating with the malicious P2P servers.

Zero-Touch Security

Many of the consumer devices aimed at enabling IoT use cases use Zero Touch Provisioning (ZTP) 
to allow the PnP capabilities. This is done to allow easier deployment for the customer and provide 
a better user experience. Before choosing such devices from a manufacturer or vendor, the service 
provider should check whether the device manufacturer or vendor uses ZTS as a model for the ZTP 
process. Depending on the vendor, the method of ZTS is also called secure zero touch or zero touch 
secure identity, or other variants.
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Implementing ZTS by the device vendor is quite critical, as it secures the device and authenticates 
and encrypts its communication with the cloud-hosted provisioning and configuration server or PnP 
servers and provides a secure lifecycle thereafter, including secure auto-deployment of patches, secure 
auto-installation of updates, and so on.

ZTS techniques used by the vendor should also ensure continuous authentication if any anomaly in 
behavior is detected or if reauthentication of the device occurs at certain intervals without interrupting 
the device functions. During assessment of the device vendor by the service provider, scalability of the 
solution should also be verified. Quite a few vendors in the market today use artificial intelligence (AI) 
to detect anomalies in behavior and can initiate the detection and response capabilities automatically 
depending on the behavior of the devices, including triggering the reauthentication of the devices and 
moving the devices with anomalous behavior to an isolated segment.

DNS Security for 5G IoT Devices

The Domain Name System (DNS) plays a very important role in the IoT ecosystem. The 5G devices 
enabling consumer IoT would primarily be using cloud-based provisioning servers for PnP, which is 
usually configured using an FQDN that will have the URL of the provisioning server configured or hard-
coded. Using this configuration, the device will connect to the provisioning server, get authenticated 
(depending on the device vendor), and then connect to cloud services to transmit and receive data.

One of the key threats is DNS cache poisoning attacks, where a malicious or fraudulent IP address 
is logged in the local memory cache. The device configuration can also be modified for it to connect 
to a malicious server. This is because the devices trust the domain names to be secure. If an attacker 
changes the original domain name within the configuration template of the device or can change the 
hardcoded domain name to a malicious one, the device will try connecting to that domain name. The 
attacker can then insert a rogue update to the device, potentially taking full control of the device and 
targeting it against the service provider infrastructure, causing a DDoS attack or taking down the infra-
structure, causing a DoS attack.

DNS, although scalable, does not include any inherent security mechanisms such as encryption, which 
makes it vulnerable to MitM attacks for interception and manipulation. Domain Name System Security 
Extensions (DNSSEC) and DNS over HTTPS (DoH) improve the security capability of DNS. DNSSEC 
is becoming more important for IoT devices due to the fact that it secures parts of the supply chain system 
as well. When an IoT device is manufactured, many of the device vendors use the cloud-based configu-
ration for shipping and initial factory configuration. This is because many of the orders from service 
providers can be customed labeled so that when the customers receive their devices, they will be in the 
name of the service provider. This requires some changes at the manufacturing end, and many of these 
processes are automated in the industry these days. Secure DNS solutions can also be used by the service 
providers to enhance security for the IoT devices. This is further explained in detail in this section.

DNSSEC

DNSSEC is a set of extensions to DNS that provides a security chain of trust and protection from 
DNS vulnerabilities. DNSSEC provides DNS clients with cryptographic authentication of DNS data 
by using cryptographic keys to validate connections between the DNS client and a domain name.
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Having DNSSEC as part of the device capability will ensure that the device is routed and connected to 
the authentic server.

Although DNSSEC adds integrity and trust to DNS, it does not provide confidentiality (DNSSEC 
responses are authenticated but not encrypted), which means that the DNSSEC responses can be inter-
cepted. As the attacker can attempt to use DNSSEC mechanisms to consume a victim’s resources, it 
does not provide complete mitigation against DoS attacks.

DoH

DNS over HTTPS (DoH) caters for DNS resolution using the HTTPS protocol. Using HTTPS, DoH 
provides better user privacy and prevents MitM-type attacks because it includes encryption between 
the DoH client and the DoH-based DNS resolver. DoH is published by the IETF as RFC 8484.

DoH works just like a normal DNS request, except that it uses Transmission Control Protocol (TCP) to 
transmit and receive queries. DoH takes the DNS query and sends it to a DoH-compatible DNS server 
(resolver) via an encrypted HTTPS connection on port 443, thereby preventing third-party observers 
from sniffing traffic and understanding what DNS queries users have run or what websites users are 
intending to access. Because the DoH (DNS) request is encrypted, it’s even invisible to cybersecurity 
software that relies on passive DNS monitoring to block requests to known malicious domains.

If service providers plan to use DoH-based endpoints, there are certain mechanisms the security team 
can put into place to ensure that the devices use specific browsers. Browsers such as Chrome ensure 
that DoH will only be enabled when system DNS is observed to be a participating DNS provider. After 
DoH is enabled in Chrome, the browser will send DNS queries to the same DNS servers as before. If 
the target DNS server has a DoH-capable interface, then Chrome will encrypt DNS traffic and send it 
to the same DNS server’s DoH interface.

Secure DNS

In many cases, consumer IoT devices today are not yet fully DNSSEC or DoH capable. One of the 
mitigation mechanisms from DNS cache poisonings and malicious DNS configurations is to use 
a cloud-based DNS security layer that ensures that the DNS request is not resolved to a malicious 
domain. There are vendors in the market today that integrate the secure DNS resolution along with the 
threat intelligence, anti-malware, and antivirus capabilities.

As illustrated in Figure 8-17, when the DNS security layer receives a DNS request from a 5G-capable 
IoT device, be it for the provisioning or PnP layer or for CM, PM or FM, it should use threat  intelligence 
to determine if the request is safe, malicious, or risky—meaning the domain contains both malicious 
and legitimate content. Safe and malicious requests can be routed as usual or blocked, respectively. 
Risky requests can be forwarded to an inspection layer for deeper inspection. The secure DNS layer 
should also inspect the files attempted to be downloaded from the sites using antivirus (AV) engines 
and anti-malware protection, and based on the outcome of this inspection, the connection should be 
either allowed or blocked.
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This is one of the most effective methods that will lead the security teams to remediate fewer instances 
of malware, and the threat is mitigated even before the devices are impacted or an attack is launched. 
Service providers selecting vendors or partners for secure DNS solutions should ensure that they have 
extremely good threat intelligence to ensure high efficacy. They should also ensure that the vendor 
providing such solutions has a robust machine learning algorithm that allows the solution to predict 
attacks. Many of the recursive DNS service providers resolve millions if not billions of Internet requests 
every day, and they have ML algorithms analyzing the massive amount of data to understand patterns 
and co-relate patterns by running statistical and machine learning models to identify attacks and thus 
uncover the attacker’s infrastructure.

The secure DNS layer is also easy deployable and doesn’t have any requirements on the device itself. 
It only requires the DNS IP address to be changed from a previous DNS IP address to the secure DNS 
provider’s IP address. Any DNS request coming from the device will now be redirected to the secure 
DNS vendor’s cloud network, which will then resolve all the DNS requests and block any request to 
the malicious domains.

Enhanced Visibility and Monitoring

One of the most important security capabilities that’s required in any organization is enhanced end-to-
end monitoring to understand the communication among the devices and between the devices and the 
network elements, including monitoring the encrypted traffic.

After discussing and deploying proof of value (PoV), which is a marketing term used by many vendors 
to make solution validation in service provider networks sound cooler, a number of service providers 
see very little value in aggregating and tapping the user plane data of the devices. In 5G, the user plane 
data from devices (eMBB slice-related devices) will be in the terabytes of volume. Having a solution 
for end-to-end user plane (UP) monitoring is not viable due to cost and technical reasons. Control 
plane, service plane, and OAM are the key layers that should be monitored at minimum. By validating 
this method in multiple service providers, it is quite clear that many of the anomalies can be detected 
by monitoring the control plane, service plane, and OAM layer. Once the monitoring for these layers 
is established, the service provider can pick and choose the UP-layer visibility for specific use cases. 
IoT devices (related to machine-to-machine use cases), as such, are not user plane intensive, so having 
granular visibility would not be a major hurdle in terms of cost.

Before investing in an end-to-end monitoring system for the consumer IoT, service providers should 
try to build a unique ID system, as explained in the section “Identification, Authentication, Access, 
and Certificate Management” in this chapter. This will also help the service providers in reducing the 
mean time to repair (MTTR), as the service provider can quickly respond to the unplanned device 
breakdown.

Figure 8-18 illustrates the monitoring system for anomaly detection for your deployments.
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As shown in Figure 8-18, the monitoring solution should also cater for enterprise use cases, as 5G 
allows easier integration into the enterprise networks using methods such as multi-access and edge 
computing (MEC) and network slicing. Due to the flexibility in deploying the use cases, the moni-
toring solution should also follow flexibility and scalability. There are monitoring solutions available 
in the market today that allow for multivendor packet flow collection (without the need for physical 
probes) and then analyze the data collected after packet de-duplication and VXLAN striping. Having 
such monitoring solutions would also support other use cases, such as reusing the same solution for IT 
and telco DC infrastructure monitoring.

It is also recommended that you look at utilizing monitoring solutions that have integration with the 
products with capabilities such as responding to any detected anomalies within the device or the device 
network. The minimum possible response should be the capability to isolate the infected devices or 
push the devices into a segment that will have access to only critical services.

The visibility and monitoring layer, though very critical, might become very expensive for you if you 
don’t plan it properly for the IoT use cases. One of the methods you could use here to optimize is to 
consider enhanced visibility and monitoring for control plane, service and management layer of the 
network functions, and network devices specific to the IoT network. If the IoT network and devices use 
API-based communications that are encrypted using Transport Layer Security (TLS), it is important 
to have visibility in the encrypted layer as well. Using a decryption engine and then analyzing the 
packets, though effective, is not always the best method, as multiple decryption points will reduce the 
effective security posture of your network. In such cases, it will be more effective to perform malware 
detection in encrypted traffic without decryption using solutions available today that analyze the 
encrypted packet header and look at the behavior of cipher suites and so on to determine any anomaly 
and malicious behavior. Some smart mIoT devices will also provide a basic telemetry with a couple of 
key counters, which will help you to understand if they have been tampered with. Such IoT devices can 
be blocked or reported to the IoT device user, depending on the SLA.

Access Control

Access control for 5G SIM or universal integrated circuit card–capable devices are catered for by the 
inherent 5G Identity and Access Management mechanisms. But many of the consumer IoT devices 
being deployed for quite some time will use non-3GPP technologies and legacy 3GPP mechanisms 
and connect to the 5GC using network elements like the non-3GPP Inter-Working Function (N3IWF), 
which is responsible for the interworking between the untrusted non-3GPP components and the 5GC.

There are various access control mechanisms used by service providers today, primarily role-based 
access control (RBAC), mandatory access control (MAC), access using security group tags (SGTs), 
attribute-based access control (ABAC), and so on. For the cloud-hosted IoT management functions 
such as CM, PM, and FM and provisioning servers catering for consumer IoT devices, a very strict 
RBAC schema should be applied as a minimum, which is then followed by using multifactor authen-
tication (MFA) for the users and devices. There should be layers of access control for any remote 
configuration of the IoT subsystem (controller, server, device, and so on).
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To ensure that only legitimate users with the right levels of access are accessing the management 
layer/operational technology (OT) of the IoT network, you should apply zero-trust principles and use 
mechanisms where you authenticate and re-authenticate the users at varying levels of time and network 
layers. For example, you should use mechanisms such as MFA, which is integrated into your existing 
Identity and Access Management (IAM) layer. This integration will ensure that any change in the 
user’s role is mapped to RBAC. If the previous role of the user was admin with privilege access, once 
the person leaves the organization or changes role, the integration will ensure that the person does not 
have privileged access anymore. This layer, although foundational, is rarely designed properly due to 
multiple access control vendors and multiple MFA vendors being deployed at different departments 
of the service provider. In some cases, there are six to seven multiple IAM solutions deployed in the 
same domain of the service provider, thus unnecessarily complicating the access control and leading to 
improper configuration and blind spots.

Figure 8-19 illustrates the granular access control for IoT deployments by providing the secondary 
authentication mechanism for IoT devices using the enterprise AAA/IAM.

Centralized 5G CoreEnterprise Network

AAA/
IAM

UPF

SMF AMF

NSSAF/AAA-P

5G MEC Applications and
Data Network

N6

AAA for secondary authentication

AAA in network slicing

gNB

Enterprise AAA/IAM
used for device
authentication

UPF deployed in
Enterprise Network

FIGURE 8-19 Granular Access Control for 5G IoT Network

As shown in Figure 8-20, the user will have to go through primary authentication, secondary authen-
tication, secure Internet access, and a granular role-based access for accessing the device and the 
consumer IoT subsystem.
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key features enabling, 305
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NSPs (Network Slice Providers), 309
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orchestration, 299–309

key concepts of, 301–302
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multitenant management, 307–309

RAN, 303
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perimeterless, 75–77

SDNs (software-defined networks), 299–309

SecGW (security gateway) modes, 105–107
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threats in, 429–431
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architecture, 447
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securing, 457–460

threats in, 452–455
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device access
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5G deployments, 477

DCN (data control network), 476–477

enhanced visibility and access controls, 
477–479

main models for, 475

security control checklist for, 479–480

vendor specific access, 476–477

primary security capabilities of, 504

device authentication, 395–402

device hardening, 291–292, 393

access control, 395–402, 410–412

certificate management, 395–402

DDoS protection, 413–414

device authentication, 395–402

device identification, 395–402

DNS (Domain Name System), 405–408
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IRC (Internet Relay Chat), 404
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DNS (Domain Name System), 405–408
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supply chain security, 393–394

ZTS (zero-touch security), 404–405
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SDN data plane threats and, 316

distributed UPF (User Plane Function), 150

DLP (data loss prevention), 156

DMZ (demilitarized zone), 432

DNs (data networks), 60–61, 316, 380
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servers, 96
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303, 313

Elliptic Curve Integrated Encryption Scheme 
(ECIES), 63

eMBB (enhanced mobile broadband), 8, 20, 
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encryption. See also cryptography
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ESP encryption transforms, 102
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IV (initialization vector), 103
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encryption key management (EKM), 276

encryption transforms (ESP), 102
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slice management, 18

threat mitigation
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key components and features of, 327
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API vulnerabilities, 442–443
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Z01_Nair_Index-p552-604.indd   564 27/10/21   8:17 PM



565F1-C interface

non-public network (NPN) deployment 
scenario, 531

primary security capabilities of, 504

security control checklist for, 494

service provider deployment scenario, 520
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V2X (vehicle-to-everything) use case, 457
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encryption transforms, 102
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ESXi, 196
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327–337, 354–355, 492

ETSI (European Telecommunications 
Standards Institute), 15–16, 143, 391, 464, 
538, 547. See also MEC (multi-access edge 
computing)
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NSA (Non-Standalone) deployments
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4G architecture, 4–5
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4G architecture compared to, 4–5

cloud-native technology. See cloud 
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disaggregated architecture, 7–10

flexible architecture, 10–11

key 5G features in 3GPP releases, 18–20
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MEC (multi-access edge computing). See 
MEC (multi-access edge computing)

network slicing. See network slicing

NR (New Radio) features, 5–6, 83, 87

SBA (service-based architecture). See SBA 
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Evolved Mobile BroadBand (eMBB), 20

Evolved Packet Core. See EPC (Evolved 
Packet Core)

Evolved Packet System Authentication and 
Key Agreement (EPS-AKA), 60

Evolved Packet System (EPS), 299

evolving network deployments, 471
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exfiltration, data, 315, 365

5G-V2X use cases, 455

MEC (multi-access edge computing), 156–157, 
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threat mitigation for, 336–337
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Transport Layer Security (EAP-TLS), 322

Extensible Authentication Protocol 
Authentication and Key Agreement  
(EAP-AKA), 60–61, 93

Extensible Authentication Protocol (EAP), 377

Extensible Authentication Protocol Transport 
Layer Security (EAP-TLS), 60–61, 94

Extensible Markup Language - Remote 
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external container communication, 248–250

Extremely High Throughput (EHT), 540
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F1-C interface, 121, 122
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F1-U interface, 121, 122

false base stations
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real scenario case study

mitigation examples, 128–129

threat vectors, 127

vulnerabilities, 91–92

Fast-flux DNS, 391
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performance, security (FCAPS), 38

fault location isolation and service 
restoration (FLISR), 444

fault management (FM), 380, 399, 433–434

FCAPS (fault, configuration, accounting, 
performance, security), 38

Federal Information Processing Standard 
(FIPS), 179

Federal Information Security Management 
Act (FISMA), 179

Federal Risk and Authorization Management 
Program, 464

FedRAMP, 178–180, 464

Field Level Communications (FLC), 43

field-programmable gate arrays (FPGAs), 
161, 385–386

FIPS (Federal Information Processing 
Standard), 179

firewalls

API firewall (API FW), 396

Diameter, 59, 250, 277, 497

GTP-C, 277

MEC (multi-access edge computing) 
deployments, 201–202

NGFW (next-generation firewall), 230, 293, 
404, 414

secure interoperability and, 497

WAF (web application firewall), 213, 263, 351, 
369, 480–482

FISMA (Federal Information Security 
Management Act), 179

Fixed Wireless Access (FWA), 426–427

FLC (Field Level Communications), 43

flexible architecture, 10–11

FLISR (fault location isolation and service 
restoration), 444

FM (fault management), 380, 399, 433–434

forensics, 489–491

FPGAs (field-programmable gate arrays), 
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414–416

FQSCS (fully quantum safe cryptographic 
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G.8262.1-enhanced Ethernet equipment slave 

clock (eEEC), 88

gateways

API gateway (API GW), 183–188, 263, 351, 
369, 396, 401, 480–482

MEC (multi-access edge computing) 
deployments, 201–202

SecGW (security gateway), 293
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in 5G Non-Standalone (NSA) networks, 
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in 5G Standalone (SA) networks, 113–115

centralized, 99

C-RAN (Cloud RAN), 115–122
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distributed, 99

ESP authentication transforms, 102–103

ESP encryption transforms, 102

ESP support, 102

IKEv2, 104

interfaces secured by, 99–102

IPsec functionality, 97–99, 105

IV (initialization vector), 103
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MEC (multi-access edge computing) 
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O-RAN (Open RAN), 115–122

real scenario case study, 131–132

VRAN (Virtualized RAN), 105–107, 
115–122

SGW (Serving Gateway), 235

SGW Control Plane (SGW-C), 147

SGW User Plane (SGW-U), 148

GDPR (General Data Protection Regulation), 
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General Packet Radio Service (GPRS), 4

General Services Administration (GSA), 179

GGSN (GPRS Support Node), 235

Global Navigation Satellite System  
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Global Policy Engine, 347, 367

Global Positioning System (GPS), 444

Global Unique Temporary Identifier (GUTI), 91

GM (grandmaster) clock, 43

gNB (next-generation NodeB), 7–8

gNB Distributed Unit - user plane  
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GNSS (Global Navigation Satellite System), 
88

Governance, Risk and Compliance (GRC), 
494

GPRS (General Packet Radio Service), 4

GPRS Support Node (GGSN), 235

GPRS Tunneling Protocol (GTP), 49, 100, 250, 
299, 473, 497

GPRS Tunneling Protocol User Plane (GTP-
U). See CNFs (Cloud-Native Functions)

GPS (Global Positioning System), 444

grandmaster (GM) clock, 43

granular user and device access control. See 
device access; user access

GRC (Governance, Risk and Compliance), 
494

GSA (General Services Administration), 179

GTP (GPRS Tunneling Protocol), 49, 100, 250, 
299, 473, 497

GTP-C, 277

GTP-U, 146, 277

Guest Shell, 96

GUTI (Global Unique Temporary Identifier), 91
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hardening. See device hardening

hardware, trusted, deployment of, 129–130

hardware root of trust, 394–395

hardware security module (HSM), 182, 394
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hardware vulnerabilities, 252–257

isolation, 252–254
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NFVi hardware and software vulnerabilities, 
252–255
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home network public key identifiers, 65

host and HW vulnerabilities, 252–257

isolation, 252–254

NFVi hardware and software vulnerabilities, 
252–255

host OS, securing in virtualized deployments, 
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HPLMN (PLMN) SEPP, 278

HSMs (hardware security modules), 182, 394

HTTP (Hypertext Transfer Protocol), 33, 447

HTTP flood, 123, 214

HTTP proxy layers, 72–73

HTTPS, 340, 350, 406

hybrid 5G deployments, 425

hybrid DDoS protection, 213

hybrid MEC (multi-access edge computing), 
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hybrid PNI-NPN (public network integrated 
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NPN UPF integrated with control plane from 
SP, 49–50

hyper-jacking, 168

Hypertext Transfer Protocol. See HTTP 
(Hypertext Transfer Protocol)

hypervisor metadata, 196

hypervisors, 280
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IACSs (industrial automation and control 
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338–340, 367, 401
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for network slice deployments, 338–340

RAN (Radio Access Network), 130–131

smart factory use case, 435
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integration, 47

user identities, 197

ICMP (Internet Control Message Protocol)

echo requests, 312

flood attacks, 123

ICS (industrial control systems), 464

identification, 395–402
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Identifier Locator Separation (ID-LOC), 49
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secure CI/CD, 260
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SUPI (Subscription Permanent Identifier), 59, 
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(Identity and Access Management)
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IDevID certificates, 96
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IETF (Internet Engineering Task Force), 387
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components of, 439

overview of, 437–439

sample deployment, 438, 441

securing, 443–446

threats in, 441–443

integration between the IT and OT networks  
in, 471

network slicing and, 51

security control checklist for, 483
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application-level security controls, 435–436

components of, 426–427
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sample deployment, 426–428

securing, 432–435

threats in, 429–431
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V2X (vehicle-to-everything) use case, 447–460

AF-based service parameter provisioning 
for, 448
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SecGW and TLS mechanisms, 481–482
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interoperability, secure
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scenario, 531
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SecGW and TLS mechanisms, 481–482
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