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Foreword by Cay Horstmann
In my book Scala for the Impatient, I provide a rapid-fire introduction into the many
features of the Scala language and API. If you need to know how a particular feature
works, you will find a concise explanation and a minimal code example (with real code,
not fruits or animals). I assume that the reader is familiar with Java or a similar object-
oriented programming language and organize the material to maximize the experience
and intuition of such readers. In fact, I wrote the book because I was put off by the
learning materials at the time, which were disdainful of object-oriented programming
and biased toward functional programming as the superior paradigm.

That was more than a decade ago. Nowadays, functional techniques have become
much more mainstream, and it is widely recognized that the object-oriented and func-
tional paradigms complement each other. In this book, Michel Charpentier provides
an accessible introduction to functional and concurrent programming. Unlike my Scala
book, the material here is organized around concepts and techniques rather than lan-
guage features. Those concepts are developed quite a bit more deeply than they would
be in a book that is focused on a programming language. You will learn about nontrivial
and elegant techniques such as zippers and trampolines.

This book uses Scala 3 for most of its examples, which is a great choice. The concise
and elegant Scala syntax makes the concepts stand out without being obscured by a
thicket of notation. You will particularly notice that when the same concept is expressed
in Scala and in Java. You don’t need to know any Scala to get started, and only a modest
part of Scala is used in the code examples. Again, the focus of the book is concepts,
not programming language minutiae. Mastering these concepts will make you a better
programmer in any language, even if you never end up using Scala in your career.

I encourage you to actively work with the sample programs. Execute them, observe
their behavior, and experiment by making changes. I suggest that you use a program-
ming environment that supports Scala worksheets, such as Visual Studio Code, IntelliJ,
or the online Scastie service. With a worksheet, turnaround is quick and exploratory
programming is enjoyable.

Seven out of the 28 chapters are complete case studies that illustrate the material
that preceded them. They are chosen to be interesting without being overwhelming. I
am sure you will profit from working through them in detail.

The book is divided into two parts. The first part covers functional programming
with immutable data, algebraic data types, recursion, higher-order functions, and lazy
evaluation. Even if you are at first unexcited about reimplementing lists and trees, give
it a chance. Observe the contrast with traditional mutable data structures, and you
will find the journey rewarding. The book is blessedly free of complex category theory
that in my opinion—evidently shared by the author—requires a large amount of jargon
before yielding paltry gains.
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The focus of the second part is concurrent programming. Here too the organization
along concepts rather than language and API features is refreshing. Concurrent pro-
gramming is a complex subject with many distinct use cases and no obvious way of
teaching it well. Michel has broken down the material into an interesting and thought-
provoking sequence of chapters that is quite different from what you may have seen
before. As with the first part, the ultimate aim is not to teach you a specific set of skills
and techniques, but to make you think at a higher level about program design.

I enjoyed reading and working through this unique book and very much hope that
you will too.

Cay Horstmann
Berlin, 2022



Preface
Before you start reading this book, it is important to think about the distinction between
programming languages and programming language features. I believe that developers
benefit from being able to rely on an extensive set of programming language features,
and that a solid understanding of these features—in any language—will help them be
productive in a variety of programming languages, present or future.

The world of programming languages is varied and continues to evolve all the time.
As a developer, you are expected to adapt and to repeatedly transfer your programming
skills from one language to another. Learning new programming languages is made easier
by mastering a set of core features that today’s languages often share, and that many
of tomorrow’s languages are likely to use as well.

Programming language features are illustrated in this book with numerous code
examples, primarily in Scala (for reasons that are detailed later). The concepts, however,
are relevant—with various degrees—to other popular languages like Java, C++, Kotlin,
Python, C#, Swift, Rust, Go, JavaScript, and whatever languages might pop up in the
future to support strong typing as well as functional and/or concurrent programming.

As an illustration of the distinction between languages and features, consider the
following programming task:

Shift every number from a given list by a random amount between -10

and 10. Return a list of shifted numbers, omitting all values that are not
positive.

A Java programmer might implement the desired function as follows:

Java

List<Integer> randShift(List<Integer> nums, Random rand) {

var shiftedNums = new java.util.ArrayList<Integer>(nums.size());

for (int num : nums) {

int shifted = num + rand.nextInt(-10, 11);

if (shifted > 0) shiftedNums.add(shifted);

}

return shiftedNums;

}

xxv
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A Python programmer might write this instead:

Python

def rand_shift(nums, rand):

shifted_nums = []

for num in nums:

shifted = num + rand.randrange(-10, 11)

if shifted > 0:

shifted_nums.append(shifted)

return shifted_nums

Although they are written in two different languages, both functions follow a similar
strategy: Create a new empty list to hold the shifted numbers, shift each original number
by a random amount, and add the new values to the result list only when they are
positive. For all intents and purposes, the two programs are the same.

Other programmers might choose to approach the problem differently. Here is one
possible Java variant:

Java

List<Integer> randShift(List<Integer> nums, Random rand) {

return nums.stream()

.map(num -> num + rand.nextInt(-10, 11))

.filter(shifted -> shifted > 0)

.toList();

}

The details of this implementation are not important for now—it relies on functional
programming concepts that will be discussed in Part I. What matters is that the code
is noticeably different from the previous Java implementation.

You can write a similar functional variant in Python:

Python

def rand_shift(nums, rand):

return list(filter(lambda shifted: shifted > 0,

map(lambda num: num + rand.randrange(-10, 11), nums)))

This implementation is arguably closer to the second Java variant than it is to the first
Python program.

These four programs demonstrate two different ways to solve the original problem.
They contrast an imperative implementation—in Java or in Python—with a functional
implementation—again, in Java or in Python. What fundamentally distinguishes the
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programs is not the languages—Java versus Python—but the features being used—
imperative versus functional. The programming language features used in the impera-
tive variant (assignment statements, loops) and in the functional variant (higher-order
functions, lambda expressions) exist independently from Java and Python; indeed, they
are available in many programming languages.

I am not saying that programming languages don’t matter. We all know that, for
a given task, some languages are a better fit than others. But I want to emphasize
core features and concepts that extend across languages, even when they appear under
a different syntax. For instance, an experienced Python programmer is more likely to
write the example functional program in this way:

Python

def rand_shift(nums, rand):

return [shifted for shifted in (num + rand.randrange(-10, 11) for num in nums)

if shifted > 0]

This code looks different from the earlier Python code—and the details are again unim-
portant. Notice that functions map and filter are nowhere to be seen. Conceptually,
though, this is the same program but written using a specific Python syntax known as
list comprehension, instead of map and filter.

The important concept to understand here is the use of map and filter (and more
generally higher-order functions, of which they are an example), not list comprehension.
You benefit from this understanding in two ways. First, more languages support higher-
order functions than have a comprehension syntax. If you are programming in Java, for
instance, you will have to write map and filter explicitly (at least for now). Second,
if you ever face a language that uses a somewhat unusual syntax, as Python does with
list comprehension, it will be easier to recognize what is going on once you realize that
it is just a variation of a concept you already understand.

The preceding code examples illustrate a contrast between a program written in plain
imperative style and one that leverages the functional programming features available
in many languages. I can make a similar argument with concurrent programming. Lan-
guages (and libraries) have evolved, and there is no reason to write today’s concurrent
programs the way we did 20 years ago. As a somewhat extreme example, travel back
not quite 20 years to 2004, the days of Java 1.4, and consider the following problem:

Given two tasks that each produce a string, invoke both tasks in parallel and
return the first string that is produced.

Assume a type StringComputation with a string-producing method compute. In
Java 1.4, the problem can be solved as follows (do not try to understand the code; it is
rather long, and the details are unimportant):
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Java

String firstOf(final StringComputation comp1, final StringComputation comp2)

throws InterruptedException {

class Result {

private String value = null;

public synchronized void setValue(String str) {

if (value == null) {

value = str;

notifyAll();

}

}

public synchronized String getValue() throws InterruptedException {

while (value == null)
wait();

return value;

}

}

final Result result = new Result();

Runnable task1 = new Runnable() {

public void run() {

result.setValue(comp1.compute());

}

};

Runnable task2 = new Runnable() {

public void run() {

result.setValue(comp2.compute());

}

};

new Thread(task1).start();

new Thread(task2).start();

return result.getValue();

}

This implementation uses features with which you may not be familiar (but which are
covered in Part II of the book).1 Here are the important points to notice:

• The code is about 30 lines long.

• It relies on synchronized methods, a form of locking available in the Java Virtual
Machine (JVM).

1One reason such old-fashioned features are still covered in this book is that I believe they help us
understand the richer and fancier constructs that we should be using in practice. The other reason is
that the concurrent programming landscape is still evolving and recent developments, such as virtual
threads in the Java Virtual Machine, have the potential to make these older concepts relevant again.
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• It uses methods wait and notifyAll, which implement a basic synchronization
scheme on the JVM.

• It starts its own two threads to run the two tasks in parallel.

Fast forward to today’s Java, and reimplement the program:

Java

String firstOf(StringComputation comp1, StringComputation comp2, Executor threads)

throws InterruptedException, ExecutionException {

var result = new CompletableFuture<String>();

result.completeAsync(comp1::compute, threads);

result.completeAsync(comp2::compute, threads);

return result.get();

}

Again, ignore the details and observe these points:

• The code is much shorter.

• Class Result is gone. It implemented a poor man’s form of a future, but futures
are now available is many languages, including Java.

• Synchronized methods are gone. The code does not rely on locks anywhere.

• Methods wait and notifyAll are gone. Instead, CompletableFuture implements
its own synchronization, correctly and efficiently.

• No thread is created explicitly. Instead, threads are passed as an argument in the
form of an Executor and can be shared with the rest of the application.

There is one more difference between the two variants that I want to emphasize. In
the newer code, the two Runnable classes have disappeared. They have been replaced
with an odd-looking syntax that did not exist in Java 1.4: comp1::compute. You may
find this syntax puzzling because method compute seems to be missing its parenthe-
ses. Indeed, this code does not invoke compute, but rather uses the method itself as
an argument to completeAsync. It could be written as a lambda expression instead:
comp1::compute is the same as () -> comp1.compute(). Passing functions as argu-
ments to functions is a fundamental concept of functional programming, which is ex-
plored at length in Part I, but finds frequent uses in writing concurrent code as well.

Here’s the point of this illustration: You can still write the first version of the program
in today’s Java, but you shouldn’t. It is notoriously difficult to get multithreaded code
correct, and it is even more difficult to get it correct and make it efficient. Instead, you
should leverage what is available in the language and use it effectively. Are you making
the most of the programming languages you are using today?

As a trend, programming languages have become more abstract and richer in fea-
tures, a shift that makes many programming tasks less demanding. There are more con-
cepts to understand in Java 19 than there were in Java 1, but it is easier to write correct



xxx Preface

and efficient programs with Java 19 than it was with Java 1. Feature-rich programming
languages can be harder to learn, but they are also more powerful once mastered.

Of course, what you find hard or easy depends a lot on your programming back-
ground, and it is important not to confuse simplicity with familiarity. The functional
variants of the Java and Python programs presented earlier are not more complicated
than the imperative variants, but for some programmers, they can certainly be less
familiar. Indeed, it is more difficult for a programmer to shift from an imperative to a
functional variant (or vice versa) within Java or Python than it is to shift from Java
to Python (or vice versa) within the same imperative or functional style. The latter
transition is mostly a matter of syntax, while the first requires a paradigm shift.

Most of the advantages of current, feature-rich, programming languages revolve
around functional programming, concurrency, and types—hence the three themes of
this book. A common trend is to provide developers with abstractions that allow them
to dispense with writing nonessential implementation details, and code that is not writ-
ten is bug-free code.

Jumps and gotos, for instance, were long ago discarded in high-level programming
languages in favor of structured loops. But many loops can themselves be replaced
with functional alternatives that instead use a standard set of higher-order functions.
Similarly, writing concurrent programs directly in terms of threads and locks can be very
challenging. Relying on thread pools, futures, and other mechanisms instead can result
in simpler patterns. In many scenarios, you have no more reason to use loops and locks
than you have to write your own hash map or sorting method: It’s unnecessary work, it’s
error-prone, and it’s unlikely to achieve the performance of existing implementations. As
for types, the age-old dichotomy between safety—being able to catch errors thanks to
types—and flexibility—not being overly constrained in design choices because of types—
is often being resolved in favor of safe and flexible type systems, albeit complicated ones.

This book is not a comprehensive guide to everything you need to know about func-
tional and concurrent programming, or about types. But to leverage modern language
constructs in your everyday programming, you need to become familiar with the abstract
concepts that underlie these features. There is more to applying functional patterns than
being aware of the syntax for lambda expressions, for instance. This book introduces
only enough concepts as are needed to use language features effectively. There is a lot
more to functional and concurrent programming and to types than what the book cov-
ers. (There is also a lot more to Scala.) Advanced topics are left for you to explore
through other resources.

Why Scala?

As mentioned earlier, most of the code illustrations in this book are written in Scala.
This may not be the language you are most familiar with, or the language in which you
plan to develop your next application. It is a fair question to wonder why I chose it
instead of a more mainstream language.
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Scala is a programming language that aims to combine object-oriented and functional
programming, with good support for concurrency as well.2 It is a hybrid language—also
called a multi-paradigm language. In fact, all three versions of the random shifting
program already written in Java and in Python can be written in Scala:

Scala

def randShift(nums: List[Int], rand: Random): List[Int] = {

val shiftedNums = List.newBuilder[Int]

for (num <- nums) {

val shifted = num + rand.between(-10, 11)

if (shifted > 0) {

shiftedNums += shifted

}

}

shiftedNums.result()

}

def randShift(nums: List[Int], rand: Random): List[Int] =

nums.view

.map(num => num + rand.between(-10, 11))

.filter(shifted => shifted > 0)

.toList

def randShift(nums: List[Int], rand: Random): List[Int] =

for {

num <- nums

shifted = num + rand.between(-10, 11)

if shifted > 0

} yield shifted

The first function is imperative, based on an iteration and a mutable list. The next
variant is functional and uses map and filter explicitly. The last variant relies on
Scala’s for-comprehension, a mechanism similar to (but more powerful than) Python’s
list comprehension.

You can also use Scala to write a concise solution to the concurrency problem. It
uses futures and thread pools, like the earlier Java program:

Scala

def firstOf(comp1: StringComputation, comp2: StringComputation)

(using ExecutionContext): String = {

val future1 = Future(comp1.compute())

val future2 = Future(comp2.compute())

Await.result(Future.firstCompletedOf(Set(future1, future2)), timeout)

}

2Different incarnations of Scala exist. This book uses the most common flavor of Scala, namely, the
one that runs on the JVM and leverages the JVM’s support for concurrency.
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Given the book’s objectives, there are several benefits to using Scala for code illustra-
tions. First, this language is feature-rich, making it possible to illustrate many concepts
without switching languages. Many of the standard features of functional and concur-
rent programming exist in Scala, which also has a powerful type system. Second, Scala
was introduced fairly recently and was carefully (and often beautifully) designed. Com-
pared to some older languages, there is less historical baggage in Scala that can get in
the way when discussing underlying concepts. Finally, Scala syntax is quite conventional
and easy to follow for most programmers without prior exposure to the language.

Nevertheless, it is important to keep in mind that programming language features,
rather than Scala per se, are the focus of this book. Although I personally like it as a
teaching language, I am not selling Scala, and this is not a Scala book. It just happens
that I need a programming language that is clean and simple in all areas of interest,
and I believe Scala meets these requirements.

Target Audience

The target audience is programmers with enough experience to not be distracted by
simple matters of syntax. I assume prior Java experience, or enough overall program-
ming experience to read and understand simple Java code. Concepts such as classes,
methods, objects, types, variables, loops, and conditionals are assumed to be familiar. A
rudimentary understanding of program execution—execution stack, garbage collection,
exceptions—is also assumed, as well as basic exposure to data structures and algorithms.
For other key terms covered in depth in the book, the glossary provides a basic definition
and indicates the appropriate chapter or chapters where the concept is presented.

No prior knowledge of functional or concurrent programming is assumed. No prior
knowledge of Scala is assumed. Presumably, many readers will have some understanding
of functional or concurrent concepts, such as recursion or locks, but no such knowledge
is required. For instance, I do not expect you to necessarily understand the functional
Python and Java programs discussed earlier, or the two Java concurrent programs, or
the last two Scala functions. Indeed, I would argue that if these programs feel strange
and mysterious, this book is for you! By comparison, the imperative variant of the
number-shifting program should be easy to follow, and I expect you to understand
the corresponding code, whether it is written in Java, Python, or Scala. You are expected
to understand simple Scala syntax when it is similar to that of other languages and to
pick up new elements as they are introduced.

The syntax of Scala was inspired by Java’s syntax—and that of Java by C’s syntax—
which should make the transition fairly straightforward for most programmers. Scala
departs from Java in ways that will be explained as code examples are introduced. For
now, I’ll highlight just three differences:

• Semicolon inference. In Scala, terminating semicolons are inferred by the compiler
and rarely used explicitly. They may still appear occasionally—for instance, as a
way to place two statements on the same line.
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• No “return” needed. Although a return keyword exists in Scala, it is seldom used.
Instead, a function implicitly returns the value of the last expression evaluated in
its body.

• Significant indentation. The curly braces used to define code blocks can often be
inferred from indentation and are optional. The first Scala randShift variant can
been written:

Scala

def randShift(nums: List[Int], rand: Random): List[Int] =

val shiftedNums = List.newBuilder[Int]

for num <- nums do

val shifted = num + rand.between(-10, 11)

if shifted > 0 then shiftedNums += shifted

end for

shiftedNums.result()

end randShift

When indentation is used to create blocks, markers can be added to emphasize
block endings, but they are optional. An even shorter version of the randShift

function takes the following form:

Scala

def randShift(nums: List[Int], rand: Random): List[Int] =

val shiftedNums = List.newBuilder[Int]

for num <- nums do

val shifted = num + rand.between(-10, 11)

if shifted > 0 then shiftedNums += shifted

shiftedNums.result()

In this book, code illustrations rely on indentation instead of curly braces when
possible and omit most end markers for the sake of compactness. I expect readers
to be able to read imperative Scala code in this form, like the preceding function.

How to Read This Book

I believe that the primary value of this book lies in its code illustrations. To a large
extent, the text is there to support the code, more than the other way around. The
code examples tend to be short and focused on the concepts they aim to illustrate. In
particular, very few examples are designed to perform the specific tasks you need to
solve in your daily programming activities. This is not a cookbook.

Furthermore, concepts are introduced from the ground up, starting with the fun-
damentals, and expanding and abstracting toward the application level. The code that
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you might find to be the most applicable is found in the later chapters in each part of
the book. I have found this progression to be most conducive to a solid understanding
of features, which can then be translated into languages other than Scala. If you feel
that the early topics are well known and the pace too slow, please be patient.

This book is designed to be read in order, from beginning to end. Most chapters—and
their code illustrations—depend on ideas and programs presented in earlier chapters.
For instance, several solutions to the same problem are often presented in separate
chapters as a way to illustrate different sets of programming language features. It is
also the case that Part II on concurrent programming uses concepts from Part I on
functional programming.

While this makes it near impossible to proceed through the contents in a different
order, you are free to speed through sections that cover features with which you are
already familiar. Material from this book has been to used to teach undergraduate and
graduate students who are told that, as long as the code makes sense, they are ready
to move on to the next part. It is when code starts to look puzzling that it is time to
slow down and pay closer attention to the explanations in the text.

There are several ways you can safely skip certain parts of the contents:

• Chapter 15 on types can be skipped entirely. Elsewhere in the book, several code
examples make simplifying assumptions to avoid intricate concepts such as type
bounds and type variance. A basic understanding of Java types, including generics
(but not necessarily with wildcards) and polymorphism, is sufficient.

• Any “aside” can be safely ignored. These are designed as complementary discus-
sions that you may expect to find, given the book’s topics (and I would not want
to disappoint you!), and they can sometimes be lengthy. They are rarely referred
to in the main text, and any of these references can be ignored.

• Any “case study” chapter can be skipped. I would not necessarily recommend
that you do so, however, because the case study code is where features are put
together in the most interesting ways. However, no concept or syntax needed in a
later part of the book is ever introduced in a case study. The main text does not
refer to code from the case studies, with one minor exception: Section 10.8 refers
to a binary search tree implementation developed in Chapter 8.

Additional Resources

The book’s companion website is hosted at https://fcpbook.org. It contains additional
resources, a list of errata, and access to the code illustrations, which are available from
GitHub. The code examples were compiled and tested using Scala 3.2. The author
welcomes comments and discussions, and can be reached at author@fcbbook.org.

https://fcpbook.org
mailto:author@fcbbook.org
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Chapter 9

Higher-Order Functions

It is natural for a programming paradigm that centers on functions to treat them as
first-class citizens. In functional programming, functions are values and can be stored in
variables and passed as arguments. Functions that consume or produce other functions
are said to be higher-order functions. Using higher-order functions, computations can
be parameterized by other computations in powerful ways.

9.1 Functions as Values

Previous chapters have shown how pure functions from immutable values to immutable
values can be used as building programming blocks, and how complex computations can
be achieved by composing functions, including composing a function with itself through
recursion. Although pure functions, immutability, and recursion are essential concepts,
many would argue that the distinctive characteristic of a functional programming style
is the use of functions as values.

To help motivate the benefits of functions as values, consider this first illustration.
Suppose you need to search for a value in a list. You can implement such a lookup in a
recursive function, similar to function contains from Chapter 7:

Scala

def find[A](list: List[A], target: A): Option[A] = list match

case Nil => None

case h :: t => if h == target then Some(h) else find(t, target)

Listing 9.1: List lookup for a specific target.

This function checks whether the head of a non-empty list equals the target and, if not,
keeps searching in the tail of the list. It returns an option to allow for cases where the
target value is not found. You can use find to look for specific values in a list, like a
list of temperatures:

Scala

val temps = List(88, 91, 78, 69, 100, 98, 70)

find(temps, 78) // Some(78)

find(temps, 79) // None

115
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A limitation of this function, however, is that you can only search for a target if
you already have a value equal to that target. For instance, you cannot search a list
of temperatures for a value greater than 90. Of course, you can easily write another
function for that:

Scala

def findGreaterThan90(list: List[Int]): Option[Int] = list match

case Nil => None

case h :: t => if h > 90 then Some(h) else findGreaterThan90(t)

findGreaterThan90(temps) // Some(91)

But what if you need to search for a temperature greater than 80 instead? You can
write another function, in which an integer argument replaces the hardcoded value 90:

Scala

def findGreaterThan(list: List[Int], bound: Int): Option[Int] = list match

case Nil => None

case h :: t => if h > bound then Some(h) else findGreaterThan(t, bound)

findGreaterThan(temps, 80) // Some(88)

This is better, but the new function still cannot be used to search for a temperature
less than 90, or for a string that ends with "a", or for a project with identity 12345.

You will notice that functions find, findGreaterThan90, and findGreaterThan are
strikingly similar. The algorithm is the same in all three cases. The only part of the
implementation that changes is the test in the if-then-else, which is h == target in
the first function, h > 90 in the next, and h > bound in the third.

It would be nice to write a generic function find parameterized by a search criterion.
Criteria such as “to be greater than 90” or “to end with "a"” or “to have identity 12345”
could then be used as arguments. To implement the if-then-else part of this function,
you would apply the search criterion to the head of the list to produce a Boolean value.
In other words, you need the search criterion to be a function from A to Boolean.

Such a function find can be written. It takes another function as an argument,
named test:

Scala

def find[A](list: List[A], test: A => Boolean): Option[A] = list match

case Nil => None

case h :: t => if test(h) then Some(h) else find(t, test)

Listing 9.2: Recursive implementation of higher-order function find.

The type of argument test is A => Boolean, which in Scala denotes functions from A

to Boolean. As a function, test is applied to the head of the list h (of type A), and
produces a value of type Boolean (used as the if condition).
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You can use this new function find to search a list of temperatures for a value
greater than 90 by first defining the “greater than 90” search criterion as a function:

Scala

def greaterThan90(x: Int): Boolean = x > 90

find(temps, greaterThan90) // Some(91)

In this last expression, you do not invoke function greaterThan90 on an integer argu-
ment. Instead, you use the function itself as an argument to find. To search for a project
with identity 12345, simply define a different search criterion:

Scala

def hasID12345(project: Project): Boolean = project.id == 12345L

find(projects, hasID12345) // project with identity 12345

Because it takes a function as an argument, find is said to be a higher-order function.
Functional programming libraries define many standard higher-order functions, some of
which are discussed in Chapter 10. In particular, a method find is already defined on
Scala’s List type. The two searches in the preceding examples can be written as follows:

Scala

temps.find(greaterThan90)

projects.find(hasID12345)

From now on, code examples in this chapter use the standard method find instead of
the earlier user-defined function.

Method find is a higher-order function because it takes another function as an
argument. A function can also be higher-order by returning a value that is a function.
For example, instead of implementing greaterThan90, you can define a function that
builds a search criterion to look for temperatures greater than a given bound:

Scala

def greaterThan(bound: Int): Int => Boolean =

def greaterThanBound(x: Int): Boolean = x > bound

greaterThanBound

Listing 9.3: Example of a function that returns a function; see also Lis. 9.4 and 9.5.

Function greaterThan works by first defining a function greaterThanBound. This func-
tion is not applied to anything but simply returned as a value. Note that greaterThan
has return type Int => Boolean, which denotes functions from integers to Booleans.
Given a lower bound b, the expression greaterThan(b) is a function, which tests
whether an integer is greater than b. It can be used as an argument to higher-order
method find:
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Scala

temps.find(greaterThan(90))

temps.find(greaterThan(80))

In a similar fashion, you can define a function to generate search criteria for projects:

Scala

def hasID(identity: Long): Project => Boolean =

def hasGivenID(project: Project): Boolean = project.id == identity

hasGivenID

projects.find(hasID(12345L))

projects.find(hasID(54321L))

9.2 Currying

Functions that return other functions are common in functional programming, and many
languages define a more convenient syntax for them:

Scala

def greaterThan(bound: Int)(x: Int): Boolean = x > bound

def hasID(identity: Long)(project: Project): Boolean = project.id == identity

Listing 9.4: Example of higher-order functions defined through currying.

It might appear as if greaterThan is a function of two arguments, bound and x, but it
is not. It is a function of a single argument, bound, which returns a function of type
Int => Boolean, as before; x is actually an argument of the function being returned.

Functions written in this style are said to be curried.1 A curried function is a function
that consumes its first list of arguments, returns another function that uses the next
argument list, and so on. You can read the definition of greaterThan as implementing
a function that takes an integer argument bound and returns another function, which
takes an integer argument x and returns the Boolean x > bound. In other words, the
return value of greaterThan is the function that maps x to x > bound.

Functional programming languages rely heavily on currying. In particular, currying
can be used as a device to implement all functions as single-argument functions, as in

1The concept is named after the logician Haskell Curry, and the words curried and currying are
sometimes capitalized.
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languages like Haskell and ML. For instance, we tend to think of addition as a function
of two arguments:

Scala

def plus(x: Int, y: Int): Int = x + y // a function of type (Int, Int) => Int

plus(5, 3) // 8

However, you can also think of it as a single-argument (higher-order) function:

Scala

def plus(x: Int)(y: Int): Int = x + y // a function of type Int => (Int => Int)

plus(5) // a function of type Int => Int

plus(5)(3) // 8

Curried functions are so common in functional programming that the => that repre-
sents function types is typically assumed to be right-associative: Int => (Int => Int)

is simply written Int => Int => Int. For example, the function

Scala

def lengthBetween(low: Int)(high: Int)(str: String): Boolean =

str.length >= low && str.length <= high

has type Int => Int => String => Boolean. You can use it to produce a Boolean,
as in

Scala

lengthBetween(1)(5)("foo") // true

but also to produce other functions:

Scala

val lengthBetween1AndBound: Int => String => Boolean = lengthBetween(1)

val lengthBetween1and5: String => Boolean = lengthBetween(1)(5)

lengthBetween1AndBound(5)("foo") // true

lengthBetween1and5("foo") // true

Before closing this section on currying, we should consider a feature that is particular
to Scala (although other languages use slightly different tricks for the same purpose).
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In Scala, you can call a single-argument function on an expression delimited by curly
braces without the need for additional parentheses. So, instead of writing

Scala

println({

val two = 2

two + two

}) // prints 4

you can simply write:

Scala

println {

val two = 2

two + two

} // prints 4

To use this syntax when multiple arguments are involved, you can rely on currying
to adapt a multi-argument function into a single-argument function. For instance, the
curried variant of function plus can be invoked as follows:

Scala

plus(5) {

val two = 2

two + 1

}

This is still value 8, as before.
Many functions and methods are curried in Scala for the sole purpose of benefiting

from this syntax. The syntax is introduced here because we will encounter some example
uses throughout the book, starting with the next section.

9.3 Function Literals

It would be inconvenient if, to use higher-order functions like find, you always had to
separately define (and name) argument functions like hasID12345 and greaterThan90.
After all, when you call a function on a string or an integer, you don’t need to define (and
name) the values first. This is because programming languages define a syntax for strings
and integer literals, like the "foo" and 42 that are sprinkled throughout this book’s code
illustrations. Similarly, functional programming languages, which rely heavily on higher-
order functions, offer syntax for function literals, also called anonymous functions. The
most common form of function literals is lambda expressions, which are often the first



9.3 Function Literals 121

thing that comes to mind when you hear that a language has support for functional
programming.

In Scala, the syntax for lambda expressions is (v1: T1, v2: T2, ...) => expr.2

This defines a function with arguments v1, v2, . . . that returns the value produced by
expr. For instance, the following expression is a function, of type Int => Int, that
adds 1 to an integer:

Scala

(x: Int) => x + 1

Function literals can be used to simplify calls to higher-order functions like find:

Scala

temps.find((temp: Int) => temp > 90)

projects.find((proj: Project) => proj.id == 12345L)

The Boolean functions “to be greater than 90” and “to have identity 12345” are imple-
mented as lambda expressions, which are passed directly as arguments to method find.

You can also use function literals as return values of other functions. So, a third
way to define functions greaterThan and hasID, besides using named local functions
or currying, is as follows:

Scala

def greaterThan(bound: Int): Int => Boolean = (x: Int) => x > bound

def hasID(identity: Long): Project => Boolean = (p: Project) => p.id == identity

Listing 9.5: Example of higher-order functions defined using lambda expressions.

The expression (x: Int) => x > bound replaces the local function greaterThanBound

from Listing 9.3.
Function literals have no name, and usually do not declare their return type. Com-

pilers can sometimes infer the types of their arguments. You could omit argument types
in all the examples written so far:

Scala

temps.find(temp => temp > 90)

projects.find(proj => proj.id == 12345L)

def greaterThan(bound: Int): Int => Boolean = x => x > bound

def hasID(identity: Long): Project => Boolean = p => p.id == identity

2Lambda expressions can also be parameterized by types, though this is a more advanced feature not
used in this book. For instance, Listing 2.7 defines a function first of type (A, A) => A, parameterized
by type A. It could be written as the lambda expression [A] => (p: (A, A)) => p(0).
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Today, many programming languages have a syntax for function literals. The
Scala expression (temp: Int) => temp > 90 could be written in other languages as
shown here:

(int temp) -> temp > 90 // Java

(int temp) => temp > 90 // C#

[](int temp) { return temp > 90; } // C++

{ temp: Int -> temp > 90 } // Kotlin

fn temp: int => temp > 90 // ML

fn temp -> temp > 90 end // Elixir

function (temp) { return temp > 90 } // JavaScript

temp => temp > 90 // also JavaScript

lambda { |temp| temp > 90 } // Ruby

-> temp { temp > 90 } // also Ruby

(lambda (temp) (> temp 90)) // Lisp

(fn [temp] (> temp 90)) // Clojure

lambda temp: temp > 90 // Python

The argument (or arguments) of a lambda expression can be composite types. For
example, assume you have a list of pairs (date, temperature), and you need to find a
temperature greater than 90 in January, February, or March. You can use find with
a lambda expression on pairs:

Scala

val datedTemps: List[(LocalDate, Int)] = ...

datedTemps.find(dt => dt(0).getMonthValue <= 3 && dt(1) > 90)

The test checks that the first element of a pair (a date) is in the first three months of
the year, and that the second element of the pair (a temperature) is greater than 90.

Languages that support pattern matching often let you use it within a lambda
expression. In the preceding example, you can use pattern matching to extract the date
and temperature from a pair, instead of dt(0) and dt(1):

Scala

datedTemps.find((date, temp) => date.getMonthValue <= 3 && temp > 90)

This is a lot more readable than the variant that uses dt(0) and dt(1).
More complex patterns can be used. In Scala, a series of case patterns, enclosed in

curly braces, also define an anonymous function. For instance, if a list contains tem-
peratures with an optional date, and temperatures without a date are not eligible, you
can search for a temperature greater than 90 in the first three months with the follow-
ing code:3

3Here, I must admit that the Scala syntax can be confusing at first. As with code blocks, a call
f({...}) can omit extraneous parentheses, and be written as f{...}. This example becomes clearer
once you understand that it is a call to a higher-order method on a function literal defined with pattern
matching and that a pair of unnecessary parentheses have been dropped.



9.4 Functions Versus Methods 123

Scala

val optionalDatedTemps: List[(Option[LocalDate], Int)] = ...

optionalDatedTemps.find {

case (Some(date), temp) => date.getMonthValue <= 3 && temp > 90

case _ => false
}

9.4 Functions Versus Methods

So far in this book, the words function and method have been used almost interchange-
ably. It is now time to discuss differences between the two. Methods are often defined
as being functions associated with a target object: x.m(y), which invokes method m on
object x with argument y, is not much different from f(x,y), which calls a function
f on x and y. This way of differentiating methods from functions is premised on them
being mechanisms used to encapsulate behaviors—blocks of code—which both methods
and functions are.

However, the story somewhat changes once functions become values. A more mean-
ingful difference between methods and functions in the context of this book is that
functions are values in functional programming, while methods are not objects in object-
oriented programming. In a hybrid language like Scala, functions are objects; methods
are not. Instead of the function literal (temp: Int) => temp > 90, you could build a
regular object explicitly. This object would implement the type Function:

Scala

object GreaterThan90 extends Function[Int, Boolean]:

def apply(x: Int): Boolean = x > 90

The notation Int => Boolean is syntactic sugar for the type Function[Int, Boolean].
This type defines a method apply, which is invoked when the function is applied. The ex-
pression temps.find(GreaterThan90) could replace temps.find(temp => temp > 90)

to perform the same computation.4 GreaterThan90 is an object—which defines a func-
tion—not a method. In contrast,

Scala

def greaterThan90(x: Int): Boolean = x > 90

defines a method greaterThan90, not a function.
But then, the plot thickens. We did write temps.find(greaterThan90) earlier to

search a list of temperatures, as if greaterThan90 were an object, which it is not. This
is possible because the language implements bridges between methods and functions. In

4In JVM languages, anonymous functions are often compiled through a separate mechanism but,
as a function, object GreaterThan90 is conceptually equivalent to the earlier lambda expression.
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Section 2.5, we discussed extension methods, a mechanism to make a function appear
as a method. Here, what we need is a conversion in the opposite direction so that we
can use a method as a function.

The fancy name for this is η-conversion. In λ-calculus, it states the equivalence
between f and λx. f x. In plainer terms, you can think of it as an equivalence between
greaterThan90 and x => greaterThan90(x). As units of computation, both perform
the same task of asserting whether an integer is greater than 90. Given that the argument
of find must have type Int => Boolean, and greaterThan90 is a method from Int to
Boolean, the intent of the expression temps.find(greaterThan90) is pretty clear, and
the compiler is able to insert the necessary η-conversion.

Other languages offer similar bridges to create a function out of a method, some-
times by relying on a more explicit syntax. In Java, for instance, a lambda expression
x -> target.method(x) can be replaced with a method reference target::method.
Kotlin uses a similar syntax.

9.5 Single-Abstract-Method Interfaces

In hybrid languages, functions are objects, and lambda expressions are used as a con-
venient way to create such objects. Indeed, the lambda expression syntax is so handy
that many languages let you use it to create instances of types other than functions.

A single-abstract-method (SAM) interface is an interface that contains exactly one
abstract method. In Scala, for instance, the type Function[A,B] (or, equivalently,
A => B) is a SAM interface with a single abstract method apply. We have used lambda
expressions in code illustrations to create instances of Function[A,B], but it turns out
that all SAM types can be instantiated using lambda expressions, even types that are
not related to Function:

Scala

abstract class Formatter:

def format(str: String): String

def println(any: Any): Unit = Predef.println(format(any.toString))

Class Formatter defines only one abstract method format and is therefore a SAM
interface. It can be implemented using lambda expressions:

Scala

val f: Formatter = str => str.toUpperCase

f.println(someValue)

Note how method println is called on object f, which was defined as a lambda expres-
sion. This is possible only because f was declared with type Formatter; the expression
(str => str.toUpperCase).println("foo") would make no sense.
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Many Java interfaces can be implemented as lambdas, even though they predate
Java’s syntax for lambda expressions and have little to do with functional programming:

Scala

val absComp: Comparator[Int] = (x, y) => x.abs.compareTo(y.abs)

val stream: IntStream = ...

val loggingStream: IntStream = stream.onClose(() => logger.info("closing stream"))

Comparator is a Java 2 SAM interface with an abstract method compare. Stream
method onClose uses a single argument of type Runnable, a Java 1 SAM interface
with an abstract method run. Both Comparator and Runnable can be implemented as
lambda expressions.

9.6 Partial Application

In addition to lambda expressions, currying, and η-conversion, partial application is yet
another mechanism used to create function values. In Scala, it takes the form of an
underscore used in place of a part of an expression. This produces a function that, when
applied, replaces the underscore with its argument in the given expression. For instance,
the following code searches for a temperature greater than 90 (in Fahrenheit) in a list
of Celsius temperatures:

Scala

celsiusTemps.find(temp => temp * 1.8 + 32 > 90)

Instead of a lambda expression, you can build the desired function argument by replacing
temp with an underscore in the expression temp * 1.8 + 32 > 90:

Scala

celsiusTemps.find(_ * 1.8 + 32 > 90)

The expression _ * 1.8 + 32 > 90 represents a Boolean function that maps temp

to temp * 1.8 + 32 > 90, just like the function defined by the lambda expression
temp => temp * 1.8 + 32 > 90. Searches written earlier using lambda expressions
can use partial application instead:

Scala

temps.find(_ > 90)

projects.find(_.id == 12345L)

Partial application is generalized to multi-argument functions by using several under-
scores in the same expression. For instance, _ * 1.8 + 32 > _ is a two-argument

http://>logger.info(
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function that compares a Celsius temperature to a Fahrenheit bound, and _.id == _

is a function that takes a project and an identity and checks whether the project has
the given identity.5

Partial application can easily be abused. Code is often easier to read with lambda
expressions that name (and sometimes type) their arguments. Compared to the shorter
_.id == 12345L, the longer expression project => project.id == 12345L makes it
clearer that projects are being searched, and (project, id) => project.id == id is
a lot easier to read than _.id == _.

Aside on Scoping

After a variable is introduced in a program, the variable’s name is bound to
that variable’s value. The part of the program where this binding exists is called
the scope of the declaration. Scoping rules vary from programming language to
programming language. The state of affairs is somewhat simpler than it used to
be because almost all languages rely on static (or lexical) scoping. Only a few
languages continue to offer a form of dynamic (or late binding) scoping. How-
ever, many popular languages implement their static scoping rules differently, so
caution is still warranted.

The following Scala program involves multiple scopes:

Scala

var str: String = ""

def f(x: Int): Int =

if x > 0 then

val str: Int = x - 1

str + 1

else

val x: String = str.toUpperCase

x.length

The outermost scope defines a variable str, of type String. The body
of function f creates its own scope, in which a variable x, of type Int, is
defined (the argument to the function). The block of code that constitutes the
then part of the conditional has its own scope in which a new variable str, of
type Int, is declared. Similarly, the else block defines a new variable x, of type
String, in its own scope. Variables do not exist outside their scopes: Outside
function f, variable str is the string defined on the first line, and there is no
variable named x.

The variables str and x declared in the inner scopes shadow the variables
with the same names from the outer scopes. Java forbids such shadowing and

5Be careful, because details vary from language to language. For instance, while “_ + _” is a two-
argument adding function in Scala, it + it is a single-argument doubling function in Kotlin. In Elixir,
&(&1 + &2) is the two-argument adding function, and &(&1 + &1) is the single-argument doubling
function.
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forces you to pick different names for the variables declared inside the then and
else blocks.

While it is often the case that every block of code defines its own scope, not
all languages adhere to this rule. JavaScript and Python, for instance, introduce
a new scope for the body of a function, but not for the then and else branches
of a conditional, or the body of a loop. This can be confusing when you are used
to the more mainstream scoping rules. As an illustration, consider the following
Python program:

Python

x = 1

def f():

x = 2

if x > 0:

x = 3

y = 4

print(x) # prints 3

print(y) # prints 4

f()

print(x) # prints 1

print(y) # error: name 'y' is not defined

The body of function f defines its own scope, but the block of code inside if

does not. Instead, x=3 is an assignment to the variable x declared in the scope of
the function (initialized with 2), and y=4 introduces a variable y inside that same
scope. In particular, this variable y continues to exist after the if statement and
has value 4. The print(x) statement inside function f prints the value of the
variable x in the scope of the function, which is 3, while the print(x) statement
outside function f prints the value of the variable x in the outermost scope,
which is 1. The final print(y) statement triggers an error, since no y variable
has been declared outside the scope of the function. The behavior would be the
same in JavaScript. Contrast this with Scala:

Scala

var x = 1

def f() =

var x = 2

if x > 0 then

var x = 3

var y = 4

println(x) // prints 2

println(y) // rejected at compile-time
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f()

println(x) // prints 1

println(y) // rejected at compile-time

Most languages now use static scoping, with variations as to which program-
ming language constructs introduce a new scope. Dynamic scoping, in contrast,
is error-prone and has become less popular. It was used in the original Lisp and
remains available as an option in modern variants of that language. It is also
used in some scripting languages, most notably Perl and various Bourne Shell
implementations.

As an illustration, this Scala program follows static scoping rules:

Scala

var x = 1

def f() =

x += 1

println(x) // prints 2

def g() =

var x = 10

f()

g()

println(x) // prints 2

Function g defines a local variable x, then invokes f. The variable x used in-
side function f, however, is the one declared on the first line of the program,
which is the one in scope where function f is defined. The local variable with
the same name defined inside function g plays no part. The behavior would
be the same for an equivalent program written in Java, Kotlin, C, or any one of
a multitude of languages that use static scoping.

Contrast this with the following Bash implementation:

Bash

x=1

f() {
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(( x++ ))

printf "%d\n" $x # prints 11

}

g() {

local x=10

f

}

g

printf "%d\n" $x # prints 1

In Bash, the variable x used inside function f is not the variable in scope where
f is defined, but the variable in scope where function f is invoked. This variable,
equal to 10, is incremented to 11. The variable x declared at the beginning of
the program was never modified.

Dynamic scoping can be used to override a global variable with a local vari-
able, thus changing the behavior of a function. This is sometimes useful, and
a similar behavior can be achieved in Scala through implicit arguments. For
instance, by reusing the Formatter type from Section 9.5, a function can be
defined to print an object with the default formatter in scope:

Scala

def printFormatted(any: Any)(using formatter: Formatter): Unit =

formatter.println(any)

printFormatted("foo") // uses the default formatter in scope (there must be one)

Within a function—or any block of code that introduces its own scope—a
different formatter can be specified:

Scala

given UpperCaseFormatter: Formatter = str => str.toUpperCase

printFormatted("foo") // prints "FOO"

This technique brings back some of the flexibility of dynamic scoping but
is much safer: Function printFormatted is explicit in the fact that it allows a
locally defined formatter to impact its behavior.

The code examples in this book do not rely much on implicit arguments,
except on occasion in Part II. In particular, Scala tends to use implicit argu-
ments to specify the thread pool on which to execute concurrent activities.
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9.7 Closures

Recall our first implementation of function greaterThan, in Listing 9.3:

Scala

def greaterThan(bound: Int): Int => Boolean =

def greaterThanBound(x: Int): Boolean = x > bound

greaterThanBound

You can apply greaterThan to different values to produce different functions. For
example, greaterThan(5) is a function that tests if a number is greater than 5, while
greaterThan(100) is a function that tests if a number is greater than 100:

Scala

val gt5 = greaterThan(5)

val gt100 = greaterThan(100)

gt5(90) // true

gt100(90) // false

The question to ponder is this: In the gt5(90) computation, which compares 90
to 5, where does the value 5 come from? A 5 was pushed on the execution stack as
local variable bound for the call greaterThan(5), but this call has been completed, and
the value removed from the stack. In fact, another call has already taken place with
local variable bound equal to 100. Still, gt5(90) compares to 5, not to 100. Somehow,
the value 5 of variable bound was captured during the call greaterThan(5), and is now
stored as part of function gt5.

The terminology surrounding this phenomenon is somewhat ambiguous, but most
sources define closures to be functions associated with captured data.6 When a func-
tion, like greaterThanBound, uses variables in its body other than its arguments—here,
bound—these variables must be captured to create a function value.

Closures are sometimes used in functional programming languages as a way to add
state to a function. For instance, a function can be “memoized” (a form of caching) by
storing the inputs and outputs of previous computations:

Scala

def memo[A, B](f: A => B): A => B =

val store = mutable.Map.empty[A, B]

def g(x: A): B =

store.get(x) match

case Some(y) => y

6The term closure is sometimes used to refer to the data only, or to the capturing phenomenon
itself. The word closure comes from the fact that, in λ-calculus, a function like greaterThanBound

is represented by an open term that contains a free variable bound, and that needs to be closed to
represent an actual function.
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case None =>

val y = f(x)

store(x) = y

y

g

Listing 9.6: Memoization using closures; see also Lis. 12.2.

Function memo is a higher-order function. Its argument f is a function of type A => B.
Its output is another function, g, of the same type. Function g is functionally equivalent
to f—it computes the same thing—but stores every computed value into a map. When
called on some input x, function g first looks up the map to see if value f(x) has already
been calculated and if so, returns it. Otherwise, f(x) is computed, using function f,
and stored in the map before being returned. You apply memo to a function to produce
a memoized version of that function:

Scala

val memoLength: String => Int = memo(str => str.length)

memoLength("foo") // invokes "foo".length and returns 3

memoLength("foo") // returns 3, without invoking method length

Function memoLength is a function from strings to integers, like str => str.length. It
calculates the length of a string and stores it. The first time you call memoLength("foo"),
the function invokes method length on string "foo", stores 3, and returns 3. If you
call memoLength("foo") again, value 3 is returned directly, without invoking method
length of strings. Another invocation memo(str => str.length) would create a new
closure with its own store map.

What is captured by a closure is a lexical environment. This environment contains
function arguments, local variables, and fields of an enclosing class, if any:

Scala

def logging[A, B](name: String)(f: A => B): A => B =

var count = 0

val logger = Logger.getLogger("my.package")

def g(x: A): B =

count += 1

logger.info(s"calling $name ($count) with $x")
val y = f(x)

logger.info(s"$name($x)=$y")
y

g

Listing 9.7: Example of a function writing in its closure.
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Like memo, function logging takes a function of type A => B as its argument and pro-
duces another function of the same type. The returned function is functionally equivalent
to the input function, but it adds logging information, including the input and output
of each call and the number of invocations:

Scala

val lenLog: String => Int = logging("length")(str => str.length)

lenLog("foo")

// INFO: calling length (1) with foo

// INFO: length(foo)=3

lenLog("bar")

// INFO: calling length (2) with bar

// INFO: length(bar)=3

For this to work, the returned closure g needs to maintain references to arguments name
and f, as well as to local variables count and logger.

Note that variable count is modified when the closure is called. Writing into closures
can be a powerful mechanism, but it is also fraught with risks:

Scala

// DON'T DO THIS!

val multipliers = Array.ofDim[Int => Int](10)

var n = 0

while n < 10 do

multipliers(n) = x => x * n

n += 1

This code attempts to create an array of multiplying functions: It fills the array with
functions of type Int => Int defined as x => x * n. The idea is that multipliers(i)
should then be x => x * i, a function that multiplies its argument by i. However, as
written, the implementation does not work:

Scala

val m3 = multipliers(3)

m3(100) // 1000, not 300

All the functions stored in the array close over variable n and share it. Since n is equal
to 10 at the end of the loop, all the functions in the array multiply their argument by 10
(at least, until n is modified). Some languages, including Java, emphasize safety over
flexibility and do not allow local variables captured in closures to be written.
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As with other forms of implicit references (e.g., inner classes), you need to be aware
of closures to avoid tricky bugs caused by unintended sharing. This is especially true
when closing over mutable data. As always, emphasizing immutability tends to result
in safer code.

9.8 Inversion of Control

You may sometimes see higher-order functions being discussed within the broader notion
of inversion of control. When using higher-order functions, control flow moves from the
caller into the callee, which uses function arguments as callbacks into the caller.

To search a list of temperatures for a value greater than 90, you can use the re-
cursive function findGreaterThan90 defined earlier in this chapter, or the loop-based
equivalent:

Scala

def findGreaterThan90(list: List[Int]): Option[Int] =

var rem = list

while rem.nonEmpty do

if rem.head > 90 then return Some(rem.head) else rem = rem.tail

None

Whether you use recursion or a loop, the list is queried for its values (head and tail),
but the flow of control remains within function findGreaterThan90. If instead you use
the expression temps.find(greaterThan90), you no longer query the list for its values.
Function find is now responsible for the flow of control—and may use recursion or a
loop, depending on its own implementation. It makes callbacks to your code, namely
the test function greaterThan90.

This shift of control flow from application code into library code is one of the reasons
functional programming feels more abstract and declarative compared to imperative
programming. However, once higher-order functions are well understood, they become
convenient abstractions that can improve productivity and reduce the need for debug-
ging. By using a method like find, you not only save the time it takes to write the three
or four lines needed to implement the loop, but more importantly, eliminate the risk of
getting it wrong.

9.9 Summary

• A defining characteristic of functional programming is the use of functions as
values. Functions can be stored in data structures, passed as arguments to other
functions, or returned as values by other functions. Functions that take functions
as arguments or return functions as values are said to be higher-order functions.
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• Passing functions as arguments to other functions makes it possible to parameter-
ize a higher-order function by the behavior of its function arguments—for example,
a searching method parameterized by a search criterion.

• To facilitate the implementation and usage of higher-order functions, many pro-
gramming languages offer a syntax for function literals, which are expressions that
evaluate to function values. This can take different forms, but a very common syn-
tax is that of a lambda expression, which defines an anonymous function in terms
of its arguments and return value.

• A curried function consumes its first argument (or argument list) and returns
another function that will use the remaining arguments (or argument lists). By
currying, a function that uses a list of multiple arguments can be transformed
into a function that uses multiple lists of fewer arguments. This facilitates partial
application to some but not all of the original arguments.

• In hybrid languages that combine object-oriented and functional programming,
function values tend to appear as objects, and a function is applied by invoking
a method of the object. Functions and methods are thus conceptually different:
Functions are objects, which contain methods. Note that both methods and func-
tions can be higher-order.

• Hybrid languages define syntax to bridge methods and functions, specifically to
build a function value out of code defined in a method. One example is method
reference: obj::method represents the function x -> obj.method(x) in Java.
Another is implicit η-conversion: obj.method is transformed by the Scala compiler
into x => obj.method(x) based on context.

• Partial application is another convenience mechanism used to generate functions.
It relies on placeholders—for example, “_” in Scala, it in Kotlin—that make a
function out of an arbitrary expression and can be thought of as a generalization
of currying.

• The syntax used to implement function literals—lambda expressions, method ref-
erences, partial application, etc.—can often be used in hybrid languages to create
instances of SAM interfaces, which are interfaces and abstract classes with a single
abstract method. This results in frequent use of lambda expressions as a replace-
ment for more verbose mechanisms, such as anonymous classes, independently
from functional programming patterns.

• When a function value is produced from code in a function or method that refers
to variables other than its arguments, the compiler needs to construct a closure.
The closure associates the function being created with a lexical environment that
captures those variables. This is necessary for a function value to be usable outside
its defining context.
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• Programming with higher-order functions often involves a form of inversion of
control. Control flow is embedded into a higher-order function, which then uses
arguments as callbacks into the caller’s code. It is an effective programming style
once mastered, but the resulting code is more abstract and can require some
adjustment for programmers used to imperative programming.
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Chapter 26

Functional-Concurrent
Programming

Functional tasks can be handled as futures, which implement the basic synchroniza-
tion needed to wait for completion and to retrieve computed values (or exceptions).
As synchronizers, however, futures suffer from the same drawbacks as other blocking
operations, including performance costs and the risk of deadlocks. As an alternative,
futures are often enriched with higher-order methods that process their values asyn-
chronously, without blocking. Actions with side effects can be registered as callbacks,
but the full power of this approach comes from applying functional transformations to
futures to produce new futures, a coding style this book refers to as functional-concurrent
programming.

26.1 Correctness and Performance Issues with Blocking

In Chapter 25, we looked at futures as data-carrying synchronizers. Futures can be used
to simplify concurrent programming, especially compared to error-prone, do-it-yourself,
lock-based strategies (e.g., Listings 22.3 and 22.4).

However, because they block threads, all synchronizers suffer from the same weak-
nesses—and that includes futures. Earlier, we discussed the possibility of misusing syn-
chronizers in such a way that threads end up waiting for each other in a cycle, resulting in
a deadlock. Synchronization deadlocks can happen with futures as well and can actually
be quite sneaky—running the server of Listing 25.2 on a single thread pool is a mistake
that is easy to make.

Before going back to this server example, consider first, as an illustration, a naive
implementation of a parallel quick-sort:

Scala

// DON'T DO THIS!

def quickSort(list: List[Int], exec: ExecutorService): List[Int] =

list match

case Nil => list

case pivot :: others =>

val (low, high) = others.partition(_ < pivot)

val lowFuture = exec.submit(() => quickSort(low, exec))

381
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val highSorted = quickSort(high, exec)

lowFuture.get() ::: pivot :: highSorted

Listing 26.1: Deadlock-prone parallel quick-sort; see also Lis. 26.5.

This method follows the same pattern as the previous implementation of quick-sort in
Listing 10.1. The only difference is that the function uses a separate thread to sort
the low values, while the current thread sorts the high values, thus sorting both lists
in parallel. After both lists have been sorted, the sorted low values are retrieved using
method get, and the two lists are concatenated around the pivot as before. This is the
same pattern used in the server example to fetch a customized ad in the background
except that the task used to create the future is the function itself, recursively.

At first, the code appears to be working well enough. You can use quickSort to
successfully sort a small list of numbers:

Scala

val exec = Executors.newFixedThreadPool(3)

quickSort(List(1, 6, 8, 6, 1, 8, 2, 8, 9), exec) // List(1, 1, 2, 6, 6, 8, 8, 8, 9)

However, if you use the same three-thread pool in an attempt to sort the list
[5,4,1,3,2], the function gets stuck and fails to terminate. Looking at a thread dump
would show that all three threads are blocked on a call lowFuture.get in a deadlock.

Figure 26.1 displays the state of the computation at this point as a tree. Each sorting
task is split into three branches: low, pivot, and high. The thread that first invokes
quickSort is called main here. It splits the list into a pivot (5), a low list ([4,1,3,2]),
and a high list ([]). It quickly sorts the empty list itself, and then blocks, waiting for
the sorting of list [4,1,3,2] to complete. Similar steps are taking place with the thread

[5,4,1,3,2]

main waits
[4,1,3,2]

worker 1 waits
[1,3,2]

[] 1 [3,2]

worker 2 waits
[2]

worker 3 waits

[] 2 []

3 []

4 []

5 []

Figure 26.1 Deadlock as a result of tasks created by tasks.
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in charge of sorting list [4,1,3,2], and so on, recursively. In the end, the three workers
from the thread pool are blocked on three sorting tasks: [1,3,2], [2], and []. This
last task—sorting the empty list at the bottom left of Figure 26.1—sits in the queue of
the thread pool, as there is no thread left to run it.

This faulty implementation of quick-sort works adequately on computations with
short low lists, even if the high lists are long. You can use it to sort the already sorted
list [1,2,...,100] on a three-thread pool, for instance. However, the function fails
when low lists are long, even if high lists are short. On the same three-thread pool, it
cannot sort the list [5,4,1,3,2], or even the list [4,3,2,1].

Tasks that recursively create more tasks on the same thread pool are a common
source of deadlocks. In fact, that problem is so prevalent that special thread pools were
designed to handle it (see Section 27.3). Recursive tasks will get you in trouble easily,
but as soon as tasks wait for completion of other tasks on the same thread pool, the risk
of deadlock is present, even without recursion. This is why the server in Listing 25.2
uses two separate thread pools. Its handleConnection function—stripped here of code
that is not relevant to the discussion—involves the following steps:

Scala

val futureAd: Future[Ad] = exec.submit(() => fetchAd(request)) // a Java future

val data: Data = dbLookup(request)

val page: Page = makePage(data, futureAd.get())

connection.write(page)

Listing 26.2: Ad-fetching example; contrast with Lis. 26.3, 26.6, and 26.7.

With a single pool of N threads, you could end up with N simultaneous connections,
and thus N concurrent runs of function handleConnection. Each run would submit an
ad-fetching task to the pool, with no thread to execute it. All the runs would then be
stuck, forever waiting on futureAd.get.

Avoiding these deadlock situations is typically not easy. You may have to add many
threads to a pool to make sure that deadlocks cannot happen, but large numbers
of threads can be detrimental to performance. It is quite possible—likely, even—that
most runs will block only a small subset of threads, nowhere near a deadlock situation,
and leave too many active threads that use CPU resources. Some situations are hope-
less: In the worst case, the naive quick-sort example would need as many threads as
there are values in the list to guarantee that a computation remains free of deadlock.

Even if you find yourself in a better situation and deadlocks can be avoided with a
pool of moderate size, waiting on futures still incurs a non-negligible cost. Blocking—on
any kind of synchronizer, including locks—requires parking a thread, saving its execution
stack, and later restoring the stack and restarting the thread. A parked thread also tends
to see its data in a processor-level cache overwritten by other computations, resulting
in cache misses when the thread resumes execution. This can have drastic consequences
on performance.

Avoiding deadlocks should, of course, be your primary concern, but these perfor-
mance costs cannot always be ignored. Thus, they constitute another incentive to reduce
thread blocking. Several strategies have been proposed to minimize blocking, and some
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are described in detail in Chapter 27. For now, we will focus on a functional-concurrent
programming style that uses futures through higher-order functions without blocking. It
departs from the more familiar reliance on synchronizers and as such takes some getting
used to. Once mastered, it is a powerful way to arrange concurrent programs.

26.2 Callbacks

NOTE

The code illustrations in this chapter rely mostly on Scala’s futures for the same reason the book

uses Scala in the first place: They tend to be cleaner than (though not always as rich as) Java’s

CompletableFuture. Listings 26.10 and 27.9 and some of the code in Chapter 28 make use

of CompletableFuture, with more examples in Appendix A. Note also that callback mechanisms

and other higher-order functions on futures often require an execution context—typically a thread

pool in concurrent applications. How this context is specified varies from language to language. It

can also become a distraction when presenting more important concepts. Most functions in this

chapter assume a global execution context, which is left unspecified. One exception is Listing 26.5

(for consistency with Listing 26.1); other functions could use a similar pattern—that is, add a

“(using ExecutionContext)” argument instead of assuming a global context.

A callback is a piece of code that is registered for execution, often later (asynchronous
callback). Modern implementations of futures—including Scala’s Future and Java’s
CompletableFuture—offer a callback-registration mechanism. On a Scala future, you
register a callback using method onComplete, which takes as its argument an action to
apply to the result of the future. Because a future can end up with an exception instead
of a value, the input of a callback action is of type Try (see Section 13.3).

On a future whose task is still ongoing, a call to onComplete returns immediately.
The action will run when the future finishes, typically on a thread pool specified as
execution context:

Scala

println("START")

given ExecutionContext = ... // a thread pool

val future1: Future[Int] = ... // a future that succeeds with 42 after 1 second

val future2: Future[String] = ... // a future that fails with NPE after 2 seconds

future1.onComplete(println)

future2.onComplete(println)

println("END")
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This example starts a 1-second task and a 2-second task and registers a simple callback
on each. It produces an output of the following form:

main at XX:XX:33.413: START

main at XX:XX:33.465: END

pool-1-thread-3 at XX:XX:34.466: Success(42)

pool-1-thread-3 at XX:XX:35.465: Failure(java.lang.NullPointerException)

You can see that the main thread terminates immediately—callback registration takes
almost no time. One second later, the first callback runs and prints a Success value.
One second after that, the second callback runs and prints a Failure value. In this
output, both callbacks ran on the same thread, but there is no guarantee that this will
always be the case.

You can use a callback in the ad-fetching scenario. Instead of waiting for a customized
ad to assemble a page, as in Listing 26.2, you specify as an action what is to be done
with the ad once it becomes available:

Scala

val futureAd: Future[Ad] = Future(fetchAd(request))

val data: Data = dbLookup(request)

futureAd.onComplete { ad =>

val page = makePage(data, ad.get)

connection.write(page)

}

Listing 26.3: Ad-fetching example with a callback on a future.

After the connection-handling thread completes the database lookup, it registers a call-
back action on the ad-fetching task, instead of waiting for the task to finish. The callback
action extracts a customized ad from the Try value (assuming no error), assembles the
data and ad into a page, and sends the page back as a reply as before. The key difference
from Listing 26.2 is that no blocking is involved.

26.3 Higher-Order Functions on Futures

By using a callback to assemble and send the page, you avoid blocking, and thus elim-
inate the risk of deadlock. However, because the function argument of onComplete is
an action, which is executed for its side effects, some of the earlier functional flavor is
lost. Recall that in the full version of the server in Listing 25.2, the assembled page
is also used in a statistics-keeping function. If a value produced as a future is needed
in multiple places, handling these uses with callbacks can get complicated. If the value
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is used asynchronously, you may even need callbacks within callbacks, which are diffi-
cult to write and even more difficult to debug. A better solution would be to bring the
non-blocking nature of callbacks into code that maintains a more functional style.

Before we revisit the ad-fetching example in Section 26.5, consider this callback-
based function:

Scala

def multiplyAndWrite(futureString: Future[String], count: Int): Unit =

futureString.onComplete {

case Success(str) => write(str * count)

case Failure(e) => write(s"exception: ${e.getMessage}")
}

Somewhere, an input string is being produced asynchronously. It is passed to func-
tion multiplyAndWrite as a future. This function uses a callback to repeat the
string multiple times and to write the result—in Scala, "A" * 3 is "AAA". This ap-
proach requires that you specify in the callback action everything you want to do
with the string str * count, which does not exist outside this callback. This is a
source of possible complexity and loss of modularity. It could be more advantageous to
replace multiplyAndWrite with a multiply function that somehow returns the string
str * count and makes it available to any code that needs it.

Within this multiply function, however, the string to multiply may not yet be
available—its computation could still be ongoing. You also cannot wait for it because you
want to avoid blocking. Instead, you need to return the multiplied string itself as a future.
Accordingly, the return type of multiply is not String, but rather Future[String].
The future to be returned can be created using a promise, as in Listing 25.4:

Scala

def multiply(futureString: Future[String], count: Int): Future[String] =

val promise = Promise[String]()

futureString.onComplete {

case Success(str) => promise.success(str * count)

case Failure(e) => promise.failure(e)

}

promise.future

You create a promise to hold the multiplied string and a callback action to fulfill the
promise. If the future futureString produces a string, the callback multiplies it and
fulfills the promise successfully. Otherwise, the promise is failed, since no string was
available for multiplication.

Now comes the interesting part. Conceptually, the preceding code has little to do
with strings and multiplication. What it really does is transform the value produced by
a future so as to create a new future. Of course, we have seen this pattern before—for
instance, to apply a function to the contents of an option—in the form of the higher-
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order function map. Instead of focusing on the special case of string multiplication, you
could write a generic map function on futures:

Scala

def map[A, B](future: Future[A], f: A => B): Future[B] =

val promise = Promise[B]()

future.onComplete {

case Success(value) => promise.complete(Try(f(value)))

case Failure(e) => promise.failure(e)

}

promise.future

This function is defined for generic types A and B instead of strings. The only mean-
ingful difference with function multiply is that f might fail and is invoked inside Try.
Consequently, the promise could be failed for one of two reasons: No value of type A is
produced on which to apply f, or the invocation of function f itself fails.

The beauty of bringing up map is that it takes us to a familiar world, that of higher-
order functions, as discussed in Chapters 9 and 10 and throughout Part I. Indeed, the
Try type itself has a method map, which you can use to simplify the implementation of
map on futures:

Scala

def map[A, B](future: Future[A], f: A => B): Future[B] =

val promise = Promise[B]()

future.onComplete(tryValue => promise.complete(tryValue.map(f)))

promise.future

Listing 26.4: Reimplementing higher-order function map on futures.

Note how error cases are handled transparently, thanks to the Try type (see Sec-
tion 13.3 for the behavior of map on Try).

Functions as values and higher-order functions constitute a fundamental aspect of
functional programming. Chapter 25 introduced futures as a way to start making con-
current programming more functional by relying on a mechanism adapted to value-
producing tasks. Once you choose to be functional, you should not be surprised to
see higher-order patterns begin to emerge. But the story doesn’t end with map. Vari-
ous higher-order functions on futures give rise to a powerful concurrent programming
style that is both functional and non-blocking.

You don’t need to reimplement map on futures: Scala futures already have a map

method. You can simply write function multiply as follows:

Scala

def multiply(futureString: Future[String], count: Int): Future[String] =

futureString.map(str => str * count)
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A thread that calls multiply does not block to wait for the input string to become
available. Nor does it create any new string itself. It only makes sure that the input
string will be multiplied once it is ready, typically by a worker from a thread pool.

26.4 Function flatMap on Futures

In function multiply, the string argument is given asynchronously, as a future, but the
count is already known at call time and is passed as an integer. In a more general variant,
the multiplying count itself could be the result of an asynchronous computation and be
passed to multiply as a future. In that case, you need to combine futureString, of
type Future[String], and futureCount, of type Future[Int], into a Future[String].
The expression

futureString.map(str => futureCount.map(count => str * count))

would have type Future[Future[String]], which is not what you want. Of course, we
have had this discussion before (with options, in Section 10.3) and used it to introduce
the fundamental operation flatMap. Scala futures also have a flatMap method:

Scala

def multiply(futureString: Future[String], futureCount: Future[Int]): Future[String] =

futureString.flatMap(str => futureCount.map(count => str * count))

There is nothing blocking in this function. Once both futures—futureString and
futureCount—are completed, the new string will be created.

You can use other functions to achieve the same purpose. For instance, you can
combine the two futures into a Future[(String,Int)] using zip, then use map to
transform the pair:

Scala

def multiply(futureString: Future[String], futureCount: Future[Int]): Future[String] =

futureString.zip(futureCount).map((str, count) => str * count)

You can even use zipWith, which combines zip and map into a single method:

Scala

def multiply(futureString: Future[String], futureCount: Future[Int]): Future[String] =

futureString.zipWith(futureCount)((str, count) => str * count)
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The last two functions may be easier to read than the flatMap/map variant. Never-
theless, you should keep in mind the fundamental nature of flatMap. Indeed, zip and
zipWith can be implemented using flatMap.

An experienced Scala programmer might write multiply as follows:

Scala

def multiply(futureString: Future[String], futureCount: Future[Int]): Future[String] =

for str <- futureString; count <- futureCount yield str * count

Recall from Section 10.9 that for-yield in Scala is implemented as a combination of
map and flatMap (and withFilter). This code would be transformed by the compiler
into the earlier flatMap/map version. The for-yield syntax is very nice, especially
when working with futures. I encourage you to use it if you are programming in Scala.
However, as mentioned in an earlier note, I will continue to favor the explicit use of map
and flatMap in this book’s examples for pedagogical reasons.

By combining two futures into one—using flatMap, zip, or zipWith—you can
rewrite the parallel quick-sort example of Listing 26.1 as a non-blocking function:

Scala

def quickSort(list: List[Int])(using ExecutionContext): Future[List[Int]] = list match

case Nil => Future.successful(list)

case pivot :: others =>

val (low, high) = others.partition(_ < pivot)

val lowFuture = Future.delegate(quickSort(low))

val highFuture = quickSort(high)

lowFuture.flatMap(lowSorted =>

highFuture.map(highSorted => lowSorted ::: pivot :: highSorted)

)

Listing 26.5: Non-blocking implementation of parallel quick-sort.

To avoid blocking, the return type of the function is changed from List[Int] to
Future[List[Int]]. As before, the task of sorting the low values is delegated to the
thread pool. You could equivalently write it as lowFuture = Future(quickSort(low))

.flatten. A direct recursive call is used to sort the high values, and the two futures are
combined, following the same pattern as in function multiply. This variant of quick-sort
involves no blocking and, in contrast to Listing 26.1, cannot possibly deadlock.1

1This implementation remains inefficient. Its main weakness is that it creates separate sorting tasks
for very small lists down to the empty list. More realistic implementations would stop the parallelization
at some point and sort short lists within the current thread instead. Java’s Arrays.parallelSort

function, for instance, stops distributing subarrays to separate threads once they have 8192 or fewer
elements.
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26.5 Illustration: Parallel Server Revisited

Equipped with standard higher-order functions on futures, we can now go back to the
server example. First, you can replace the callback action in Listing 26.3 with a call to
map to produce a Future[Page] out of a Future[Ad]:

Scala

val futureAd: Future[Ad] = Future(fetchAd(request))

val data: Data = dbLookup(request)

val futurePage: Future[Page] = futureAd.map(ad => makePage(data, ad))

futurePage.foreach(page => connection.write(page))

Listing 26.6: Ad-fetching example with map and foreach on futures.

You use map to transform an ad into a full page by combining the ad with data already
retrieved from the database. You now have a Future[Page], which you can use wherever
the page is needed. In particular, sending the page back to the client is a no-value action,
for which a callback fits naturally. For illustration purposes, this code registers the
callback with foreach instead of onComplete. The two methods differ in that foreach
does not deal with errors: Its action is not run if the future fails.

In Listing 26.6, the database is queried by the connection-handling thread while
a customized ad is fetched in the background. Alternatively, database lookup can be
turned over to another thread, resulting in a value of type Future[Data]. You can then
combine the two futures using flatMap/map:

Scala

val futureAd: Future[Ad] = Future(fetchAd(request))

val futureData: Future[Data] = Future(dbLookup(request))

val futurePage: Future[Page] =

futureData.flatMap(data => futureAd.map(ad => makePage(data, ad)))

futurePage.foreach(page => connection.write(page))

Listing 26.7: Ad-fetching example with flatMap and foreach on futures.

What is interesting about this code is that the thread that executes it does not
perform any database lookup, ad fetching, or page assembling and writing. It simply
creates futures and invokes non-blocking higher-order methods on them. If you write
the remainder of the connection-handling code in the same style, you end up with a
handleConnection function that is entirely asynchronous and non-blocking:

Scala

given exec: ExecutionContextExecutorService =

ExecutionContext.fromExecutorService(Executors.newFixedThreadPool(16))
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val server = ServerSocket(port)

def handleConnection(connection: Connection): Unit =

val requestF = Future(connection.read())

val adF = requestF.map(request => fetchAd(request))

val dataF = requestF.map(request => dbLookup(request))

val pageF = dataF.flatMap(data => adF.map(ad => makePage(data, ad)))

dataF.foreach(data => addToLog(data))

pageF.foreach(page => updateStats(page))

pageF.foreach(page => { connection.write(page); connection.close() })

while true do handleConnection(Connection(server.accept()))

Listing 26.8: A fully non-blocking parallel server.

The handleConnection function starts by submitting to the thread pool a task that
reads a request from a socket and produces a future, requestF. From then on, the code
proceeds by calling higher-order functions on futures. First, using map, an ad-fetching
task is scheduled to run once the request has been read. This call produces a future adF.
A database lookup future, dataF, is created in the same way. The two futures dataF

and adF are combined into a future pageF using flatMap and map, as before. Finally,
three callback actions are registered: one on dataF for logging, and two on pageF for
statistics recording and to reply to the client.

No actual connection-handling work is performed by the thread that runs func-
tion handleConnection. The thread simply creates futures and invokes non-blocking
functions on them. The time it takes to run the entire body of handleConnection is
negligible. In particular, you could make the listening thread itself do it, in contrast to
Listing 25.2, where a separate task is created for this purpose.

The various computations that need to happen when handling a request depend on
each other, as depicted in Figure 26.2. The server implemented in Listing 26.8 executes
a task as soon as its dependencies have been completed, unless all 16 threads in the pool
are busy. Indeed, the 16 threads jump from computation to computation—fetching ads,
logging, building pages, and so on—as the tasks become eligible to run, across request
boundaries. They never block, unless there is no task at all to run. This implementation
maximizes parallelism and is deadlock-free.

read

dbLookup

fetchAd makePage

addToLog

write

updateStats

close

Figure 26.2 Activity dependencies in the server example.
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Instead of Scala futures, you could implement the server of Listing 26.8 using
Java’s CompletableFuture (see Appendix A.14 for a pure Java implementation).
Note, however, that CompletableFuture tends to use less standard names:
thenApply, thenCompose, and thenAccept are equivalent to map, flatMap, and
foreach, respectively.

There is one aspect of concurrent programming that a non-blocking approach tends
to make more difficult: handling timeouts. For instance, you could decide that it is
undesirable to have the server wait for more than 0.5 second for a customized ad after
data has been retrieved from the database. In a blocking style, you can achieve this
easily by adding a timeout argument when invoking futureAd.get, as in Listing 25.3.
It can be somewhat more challenging when using a non-blocking style.

Here, CompletableFuture has the advantage over Scala’s Future. It defines a method
completeOnTimeout to complete a future with an alternative value after a given time-
out. If the future is already finished, completeOnTimeout has no effect. You can use it
to fetch a default ad:

Scala

val adF: CompletableFuture[Ad] = ...

...

adF.completeOnTimeout(timeoutAd, 500, MILLISECONDS)

Scala’s Future type has no such method, which makes the implementation of a
timeout ad more difficult. You can follow a do-it-yourself approach by creating a promise
and relying on an external timer to complete it if needed. First, you create a timer as
a scheduling thread pool:

Scala

val timer = Executors.newScheduledThreadPool(1)

Then, you create a promise when the database lookup finishes:

Scala

val pageF = dataF.flatMap { data =>

val safeAdF =

if adF.isCompleted then adF

else

val promise = Promise[Ad]()

val timerF =

timer.schedule(() => promise.trySuccess(timeoutAd), 500, MILLISECONDS)

adF.foreach { ad =>

timerF.cancel(false)
promise.trySuccess(ad)

}

promise.future

safeAdF.map(ad => makePage(data, ad))

}
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This code runs when future dataF completes—when data from the database becomes
available. If, at that point, the ad is ready—adF.isCompleted is true—you can use
it. Otherwise, you need to make sure that an ad will be available quickly. For this
purpose, you create a promise, and you use the timer to fulfill this promise with a
default ad after 0.5 second. You also add a callback action to adF, which tries to fulfill
the same promise. Whichever runs first—the timer task or the customized ad task—will
set the promise with its value.2 The call timerF.cancel is not strictly necessary, but
it is used to avoid creating an unnecessary default ad if the customized ad is available
in time.

As part of the last case study, Listing 28.4 uses a similar strategy to extend Scala
futures with a completeOnTimeout method.

26.6 Functional-Concurrent Programming Patterns

Both futures, on the one hand, and higher-order functions, on the other hand, are
powerful abstractions. Together, they form a potent combination, though one that can
take some effort to master. Even so, it is a worthwhile effort. This section illustrates
a few guidelines you should keep in mind as you venture into functional-concurrent
programming.

flatMap as an Alternative to Blocking

Higher-order functions are abstractions for code you don’t have to write. They are
convenient but could often be replaced with handwritten implementations. If opt is an
option, for instance, opt.map(f) could also be written:

Scala

opt match

case Some(value) => Some(f(value))

case None => None

In the case of futures, however, higher-order functions are an alternative to com-
putations that would be hard to implement directly. If fut is a future, what can you
replace fut.map(f) with? A future cannot simply be “opened” to access its value, since
the value may not yet exist. Short of creating—and blocking—additional threads, there
is no alternative to using higher-order functions to act inside a future.

You can leverage your functional programming skills with higher-order functions
when working with futures. Earlier, for instance, we used flatMap on options to chain
computations that may or may not produce a value. You can use flatMap in a similar
way on futures to chain computations that may or may not be asynchronous. Instead
of “optional” stages, from A to Option[B], you define asynchronous stages, as functions
from A to Future[B].

2Method trySuccess is used because method success fails with an exception when invoked on an
already completed promise.
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As an illustration, the three optional functions used in Section 10.3 can be changed
to represent asynchronous steps:

Scala

def parseRequest(request: Request): Future[User] = ...

def getAccount(user: User): Future[Account] = ...

def applyOperation(account: Account, op: Operation): Future[Int] = ...

The steps can then be chained using flatMap:

Scala

parseRequest(request)

.flatMap(user => getAccount(user))

.flatMap(account => applyOperation(account, op))

Listing 26.9: A pipeline of futures using flatMap.

The expression in Listing 26.9 is exactly the same as that in Listing 10.5, except that
it produces a value of type Future[Int] instead of Option[Int].

Uniform Treatment of Synchronous and Asynchronous Computations

You could mix synchronous and asynchronous operations by combining steps of type
A => B—using map—and steps of type A => Future[B]—using flatMap. Instead, it is
often more convenient to use only steps of the form A => Future[B] combined with
flatMap. When needed, synchronous steps can be implemented as already completed
futures. This design increases flexibility: It makes it easier to replace synchronous steps
with asynchronous steps, and vice versa.

For instance, if accounts are simply stored in a map, the getAccount function from
the earlier example can be implemented synchronously, within the calling thread:

Scala

val allAccounts: Map[User, Account] = ...

def getAccount(user: User): Future[Account] = Future.successful(allAccounts(user))

This function returns an already completed future and does not involve any additional
thread. If a need to fetch accounts asynchronously then arises, you can reimplement the
function without modifying its signature, and leave all the code that uses it—such as
Listing 26.9—unchanged.

Functional Handling of Failures

Exceptions are typically thrown and caught within a thread. They don’t naturally travel
from thread to thread, and they are ill suited for multithreaded programming. Instead,
you are better off following the functional approach to error handling discussed in
Chapter 13.
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An added benefit of relying on computations of type A => Future[B] instead of
A => B is that futures can also carry failures—in Scala, you can think of Future as an
asynchronous Try. For example, you can improve the getAccount function by making
sure it always produces a future, even when a user is not found:

Scala

def getAccount(user: User): Future[Account] = Future.fromTry(Try(allAccounts(user)))

This way, an expression like getAccount(user).onComplete(...) still executes a
callback action, which is not true if getAccount throws an exception. Failed futures
can be handled functionally, using dedicated functions such as recover in Scala or
exceptionally in Java.

For simplicity, the connection-handling function from Listing 26.8 does not deal
with errors. You could use standard future functions to add robustness to the server.
For instance, failure to create a page could be handled by transforming the pageF future:

Scala

val safePageF: Future[Page] = pageF.recover { case ex: PageException => errorPage(ex) }

or by adding a failure callback:

Scala

pageF.failed.foreach { ex =>

connection.write(errorPage(ex))

connection.close()

}

Either the callback actions specified using pageF.foreach or those specified using
pageF.failed.foreach will run, but not both.

Non-Blocking “Join” Pattern

In the server example, pageF is created by combining two futures, dataF and adF, using
flatMap. You can use the same approach to combine three or more futures:

Scala

val f1: Future[Int] = ...

val f2: Future[String] = ...

val f3: Future[Double] = ...

val f: Future[(Int, String, Double)] =

f1.flatMap(n => f2.flatMap(s => f3.map(d => (n, s, d))))

This won’t scale to larger numbers of futures, though. An interesting and not uncom-
mon case is to combine N futures of the same type into a single one, for an arbitrary
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number N . In the server example, a client might obtain data from N database queries,
which are executed in parallel:

Scala

def queryDB(requests: List[Request]): Future[Page] =

val futures: List[Future[Data]] = requests.map(request => Future(dbLookup(request)))

val dataListF: Future[List[Data]] = Future.sequence(futures)

dataListF.map(makeBigPage)

The first line uses map to create a list of database-querying tasks, one for each request.
These tasks, which run in parallel, form a list of futures. The key step in queryDB is the
call to Future.sequence. This function uses an input of type List[Future[A]] to
produce an output of type Future[List[A]]. The future it returns is completed when
all the input futures are completed, and it contains all their values as a list (assuming no
errors). Invoking Future.sequence serves the same purpose as the “join” part of a fork-
join pattern, but does so without blocking. The last step uses a function makeBigPage

from List[Data] to Page to build the final page.
As of this writing, there is no standard sequence function for CompletableFuture,

but you can implement your own using thenCompose (equivalent to flatMap) and
thenApply (equivalent to map):

Scala

def sequence[A](futures: List[CompletableFuture[A]]): CompletableFuture[List[A]] =

futures match

case Nil => CompletableFuture.completedFuture(List.empty)

case future :: more =>

future.thenCompose(first => sequence(more).thenApply(others => first::others))

Listing 26.10: Joining a list of CompletableFutures into one without blocking.

This function uses recursion to nest calls to thenCompose (flatMap). In the recur-
sive branch, sequence(more) is a future that will contain the values of all the input
futures, except the first. This future and the first input future are then combined using
thenCompose and thenApply (flatMap and map), according to the pattern used earlier
to merge two futures (as in Listings 26.5, 26.7, and 26.8).

Non-Blocking “Fork-Join” Pattern

Function queryDB uses a fork-join pattern in which sequence implements the “join” part
without blocking. Fork-join is a common enough pattern that Scala defines a function
traverse that implements both the “fork” and “join” parts of a computation. You can
use it for a simpler implementation of queryDB:

Scala

def queryDB(requests: List[Request]): Future[Page] =

Future.traverse(requests)(request => Future(dbLookup(request))).map(makeBigPage)
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Instead of working on a list of futures, as sequence does, function traverse uses a list
of inputs and a function from input to future output. It “forks” a collection of tasks by
applying the function to all inputs, and then “joins” the tasks into a single future, as
in sequence, without blocking.

26.7 Summary

• When used as a synchronizer, a future requires a thread to potentially block and
wait to access the value being computed. Parking and unparking threads has
a non-negligible performance cost. Worse yet, tasks that block to wait on other
tasks running on the same group of threads can easily result in deadlocks. It is not
always possible to avoid these deadlocks by increasing the number of threads in a
pool, and larger pool sizes tend to cause inefficiencies even when it can be done.

• Callbacks can be used as an alternative to blocking. They trigger a computation
when a future is ready, without having to explicitly wait for this future to finish.
Callbacks can be complex—future values can be used in arbitrary ways—and can
lead to intricate code, especially when callbacks within callbacks are involved.

• By defining non-blocking higher-order functions on futures, you can bring to the
world of concurrent programming the same shift from actions to functions that is at
the core of functional programming. Instead of using effect-based callbacks, future
values are handled functionally, as when using functions, but asynchronously.

• The resulting functional-concurrent programming style does not use futures as
synchronizers—thereby avoiding many deadlock scenarios and performance costs
associated with blocking—and also sidesteps the inherent complexity of callbacks.

• Higher-order functions on futures can be used to transform values, combine multi-
ple computations asynchronously, or recover from failures. The same higher-order
functions that proved hugely beneficial to functional programming—particularly,
map, flatMap, foreach, and filter—provide developers with tools to orchestrate
complex concurrent computations according to patterns that maximize concur-
rency while avoiding blocking.

• Functions flatMap and map, in particular, can be used to combine in a uniform
way computations that may be synchronous or asynchronous, failed or successful.
They can also be used to implement, without blocking threads, patterns that
(conceptually) wait for tasks to finish, such as fork-join.

• Adjusting to functional-concurrent programming requires a shift in program design,
away from locks and synchronizers. This can initially require some effort, similar
to casting aside assignments and loops when moving from imperative to functional
programming. Once you become accustomed to it, though, this programming style
is often easier and less error-prone than the alternatives.
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behavioral, 223–224, 229–230, 235–244
nominal versus structural, 230–231, 245,

251
sum types. See algebraic data types
switch expressions, 28, 47, 60. See also ex-

pressions
symbolic method names. See infix opera-

tors as methods
synchronization, 257, 259–260, 266, 285–

287, 295–296, 321–322, 331–335,
412–415. See also synchronizers;
deadlocks

synchronized. See locks
synchronizers, 324–325, 335, 337–354. See

also synchronization
blocking queue, 342–346, 349–354
condition, 343–346, 354, 364–366
countdown latch, 325–328, 334, 339–

340, 354
cyclic barrier, 340–341, 354,
future, 371–380, 397
lock, 324, 335
semaphore, 341–343, 354, 407

T
tabulate higher-order function, 148
tail list function, 37, 51
tail recursion, 71–77. See also recursive func-

tions,
compiler optimization for, 72–73, 77
via trampolines, 76, 205–209

take list function, 84–85, 94–95
takeWhile higher-order function, 139
thread dumps, 262

debugging deadlocks with, 328–329, 336
thread pools, 307–319. See also parallel data

structures
as timers, 313–314, 319
default, 312–313
fork/join, 405–406, 414

threads, 255–269. See also thread pools,
creation, 261–263, 268, 356–357
daemon, 264, 313

non-determinism of, 259, 263–264, 267,
269, 272, 274

termination, 264–266, 268, 351–353

testing and debugging, 259, 266–269,
277, 328–329, 336, 339–340

thread-safe caching illustration, 377–379,
427–430

thread safety, 274, 285–296,

by compare-and-set, 400–404, 414

by immutability, 285–286, 290–293,
295–296

by locking, 287–293, 297–306, 399–400,
402

thunks, 174–175, 206–207

timeouts, 337–338, 374

in non-blocking code, 392–393, 419,
421–424, 427–430

trampolines, 76, 205–213

trees, 6, 53–54. See also recursive data struc-
tures

binary, 70, 76, 99–113, 212–213

N-ary, 70–71, 157–172

Treiber, R. Kent, 403

triples. See tuples

tuples, 48–49. See also algebraic data types

type bounds, 241–244, 252. See also types

lower, 241–243, 252

upper, 242–244, 252

wildcards in, 241, 243–244

types, 217–252. See also subtypes

abstract data types, 224–225, 250

algebraic data types, 6, 48–56, 60–61

static versus dynamic typing, 217–219,
221, 250

strong versus weak typing, 217–220,
250

type bounds, 241–244, 252

type classes, 245–250, 252

type inference, 225–229, 251

type parameters, 17–20, 233, 235–244,
251

type variance, 235–240

U
unfold higher-order function, 148–149, 155

unit value, of type Unit, 23, 141, 222

use-site variance annotations. See also type
bounds
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V
val/var keywords. See functional variables
varargs. See repeated arguments
variable-lengths arguments. See arguments
variance, 235–240. See also types
views. See lazy evaluation
virtual methods. See subtype polymorphism
volatile variables. See Java memory model

Z
zip list function, 87–88
zipper illustration, 56–59

on trees, 169–172
zipWith higher-order function, 388–389, 411
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