
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137644674
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137644674
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137644674

Model-Driven DevOps

9780137644674_print.indb 1 24/05/22 7:17 PM

9780137644674_print.indb 2 24/05/22 7:17 PM

This page intentionally left blank

Model-Driven DevOps
Increasing agility and security in your
physical network through DevOps

Steven Carter and Jason King

with

Josh Lothian and Mike Younkers

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

9780137644674_print.indb 3 24/05/22 7:17 PM

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2022938003

Copyright © 2023 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-764467-4
ISBN-10: 0-13-764467-1

Editor-in-Chief
Mark Taub

Director, ITP Product
Management
Brett Bartow

Executive Editor
Nancy Davis

Development Editor
Christopher A. Cleveland

Managing Editor
Sandra Schroeder

Senior Project Editor
Tonya Simpson

Copy Editor
Chuck Hutchinson

Indexer
Erika Millen

Proofreader
Barbara Mack

Technical Reviewer
Gerald Dykeman

Editorial Assistant
Cindy Teeters

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

9780137644674_print.indb 4 24/05/22 7:17 PM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

Pearson’s Commitment to Diversity, Equity,
and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We embrace
the many dimensions of diversity, including but not limited to race, ethnicity, gender, socioeconomic
status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver oppor-
tunities that improve lives and enable economic mobility. As we work with authors to create content
for every product and service, we acknowledge our responsibility to demonstrate inclusivity and incor-
porate diverse scholarship so that everyone can achieve their potential through learning. As the world’s
leading learning company, we have a duty to help drive change and live up to our purpose to help more
people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

■ Everyone has an equitable and lifelong opportunity to succeed through learning

■ Our educational products and services are inclusive and represent the rich diversity of learners

■ Our educational content accurately reflects the histories and experiences of the learners
we serve

■ Our educational content prompts deeper discussions with learners and motivates them to
expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you about any concerns or
needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/report-bias.html.

9780137644674_print.indb 5 24/05/22 7:17 PM

https://www.pearson.com/report-bias.html

I dedicate this book to my beautiful wife, Ana, and my children, Renée, Michael, Andrew, Rita Maria,
Therese, Emma, and Dominic. I am grateful to have had such amazing opportunities to work at

companies with talented individuals that helped me build the experience presented in this book and
provide a wonderful life for my family. My wife and children support me, inspire me, and love me.

I thank God for them and all that He has given me.
—Steven Carter

I would like to dedicate this book to my wife, Erika, daughter, Julia, and son, Josh. It is cliche,
but honestly, it would not have happened without them. It turns out that writing a book is not an
individual effort undertaken solely by the author, but rather a team effort. Everybody on the team
needs to make sacrifices, and my family certainly made many during the writing of this book. I

sincerely hope that people find this book useful, because Erika has informed me that it is probably
my last. It was unexpected, but I found great satisfaction in writing the fictional portions of this book.

Who knows? Maybe I can convince her that Bob from ACME Corp is more than just a successful
DevOps engineer, if only the world knew his shocking secret…

—Jason King

9780137644674_print.indb 6 24/05/22 7:17 PM

vii

Table of Contents
Chapter 1: A Lightbulb Goes Off 2

Enterprise IT as a Source of Risk to the Business . 2

Observations of a Train Wreck . 6

DevOps Seems Like a Better Way . 8

What Is DevOps?. 8

Automation. 9

Infrastructure as Code . 9

CI/CD . 9

Apps vs. Infrastructure . 10

Harnessing Automation-at-Scale. 10

Why Are Enterprise IT Departments Not Adopting DevOps? 10

Human Factors . 11

Business Factors . 12

Summary . 12

Chapter 2: A Better Way 14

The Goal: Business Transformation . 17

Constraints-Based IT . 17

Business Transformation . 18

DevOps in Action. 20

Why Model-Driven DevOps? . 21

Network Infrastructure Is Different . 21

What Is Model-Driven DevOps?. 22

What Is a Data Model? . 22

Source of Truth . 26

DevOps as a Framework . 26

DevSecOps: Baked-In Security . 27

Summary . 28

9780137644674_print.indb 7 24/05/22 7:17 PM

viii Table of Contents

Chapter 3: Consumable Infrastructure 30

APIs . 32

Why API over CLI? . 33

Platforms . 37

Physical Hardware Provisioning. 37

Consolidated Control Point . 37

Northbound vs. Southbound APIs . 38

API and Feature Normalization. 38

Fabricwide Services . 39

Scalability. 40

Summary . 41

Chapter 4: Infrastructure as Code 42

Why Infrastructure as Code? . 45

Source of Truth . 45

Data Models. 46

Common IaC Tools . 51

Organization. 52

Types of Source of Truth . 56

Code . 65

Data Flow . 65

Summary . 71

Chapter 5: Continuous Integration/Continuous Deployment 74

CI/CD Overview . 78

Applications vs. Infrastructure . 79

CI/CD in Action . 80

Source Code Management. 81

Core Features . 81

Collaboration Features . 83

SCM Summary . 86

9780137644674_print.indb 8 24/05/22 7:17 PM

ixTable of Contents

Continuous Integration Tools . 86

CI Engines . 86

How They Work . 87

Sample Workflow . 88

Infrastructure Simulation Tools . 90

Cisco Modeling Labs . 91

Test and Validation . 97

Linting. 98

Schema/Model Validation . 99

Functional Testing . 102

Test and Validation Summary . 107

Continuous Deployment . 107

Continuous Monitoring . 109

Summary . 109

Chapter 6: Implementation 112

Model-Driven DevOps Reference Implementation . 114

The Goal . 115

DevOps Roadmap . 116

Architecture . 117

Network as an Application . 117

Consistency . 119

Simulation . 119

Automation. 121

Creating a Source of Truth . 121

Moving Data. 122

MDD Source of Truth. 123

Automation Tooling . 128

MDD Data . 130

9780137644674_print.indb 9 24/05/22 7:17 PM

x Table of Contents

Automation Runner . 131

Cisco Network Services Orchestrator . 135

Testing . 136

Linting. 137

Snapshotting the Test Network . 137

Data Validation and State Checking . 138

Data Validation. 138

Pushing Data to the Devices . 140

State Checking . 141

Restore . 146

Continuous Integration Workflow Summary . 146

Deployment . 146

Scale. 146

Starting Workflows . 147

Summary . 149

Chapter 7: Human Factors 150

Culture and the Need for Change . 151

Start with the Why . 152

Organization. 152

Leadership . 153

Role Models . 153

Building a Team . 154

Break Down the Silos . 154

Community. 154

New Tools. 155

Summary of Organization-Level Changes. 159

A01_King_FM_pi-pxix.indd 10 26/05/22 2:56 PM

xiTable of Contents

Individual . 159

Programming vs. Automation. 160

Version Control Tools . 161

Data Formats . 161

APIs . 161

Templating . 162

Linux/UNIX . 164

Wait! Where Do I Fit In? . 164

Summary . 165

Index 166

9780137644674_print.indb 11 24/05/22 7:17 PM

xii

Preface
The Internet is built on network infrastructure. Many technologies, and by extension many economies
and societies, are built on the Internet. Unfortunately, the way organizations deploy and maintain these
critical networks has not changed meaningfully in 30 years. Network infrastructure operations is often
a very human-intensive and manual process, making it prone to error and slow to react to business
needs. The DevOps model promises to dramatically improve infrastructure operations using auto-
mation, tools, and processes designed to increase agility, scale, security, compliance, and reliability.
Although DevOps has been used to great effect in applications development and management of cloud
infrastructure, there has been no comprehensive, structured approach for applying DevOps to network
infrastructure.

One primary way in which DevOps applied to network infrastructure differs from application DevOps
is the number of elements managed and the amount of data on each of those elements. Essentially,
this makes network infrastructure DevOps a data management problem. Networking vendors use data
models to organize the data within each individual network element and to regularize their APIs, yet
these data models are different between vendors and even between device families from the same
vendor. Model-driven DevOps seeks to normalize the data models used to organize the data across
the entire infrastructure as well as to normalize the code. In a sense, model-driven DevOps is intended
to provide a repeatable, deterministic way to apply DevOps to network infrastructure and achieve the
same benefits as DevOps applied to cloud infrastructure.

Vision
This book represents a journey that the authors have taken over the last couple of decades. We all
started our careers with our hands on a keyboard, running large networks and even supercomputers.
Driven partly by the demands of the organizations that we have worked for and partly by laziness,
we have leveraged some form of automation through it all. As we progressed throughout our careers,
some of us went into consultancy, some development, and some management. We have been privi-
leged to work with, and for, many amazing companies with many talented people. It was our vision
that this book contains the distillation of what we have learned over the years and how we apply it to
solving customer challenges today. Using this experience, we seek to provide a holistic approach to
applying DevOps to infrastructure operations organizations. This book lays down an extensive foun-
dation that helps developers and operators apply and tailor the detailed, prescriptive approach laid out
for infrastructure DevOps. Furthermore, it addresses the human and organizational factors that, left
unaddressed, cause many organizations to fail.

We also want this book to be approachable and usable. It is our opinion that the skills required to be
a network operator or network engineer have fundamentally changed. The API is the new CLI. The
material in this book is meant to help network operators and engineers start retooling their skills to

9780137644674_print.indb 12 24/05/22 7:17 PM

xiii

operate their infrastructure in line with the way their colleagues operate cloud infrastructure. To rein-
force this approach, we added a fictional storyline that, in our experience, illustrates the challenges
faced in organizations that lead them to make this change.

Finally, we wanted to focus on outcomes and provide plenty of code to enable that outcome in your
organization. We focus on industry standard tools and methodologies. Where possible, we use open-
source or free tools. When we do have to choose a vendor solution, we do so in a way that makes it
a choice for a particular implementation. That is, using different vendor implementations for various
components would not significantly change the principles, framework, or even the code that we present.

Who Should Read This Book?
This book is targeted at infrastructure teams within the Information Technology sector running physical
networks, although the principles apply to any infrastructure team. We take a deep dive into model-
driven DevOps and define it through use cases and specific examples in our open-source, companion
code repositories. In addition to IT infrastructure teams, this book is also applicable to cybersecurity
teams looking to build security into their infrastructure at all stages. And finally, the human factors
section is targeted at individual contributors as well as business and technical leaders who want to
understand modern best practices as they relate to achieving high-quality results through teams.

How This Book Is Organized
The chapters of this book follow a logical progression. First, we examine why network infrastructure
operations need to change, then we explore what needs to change, and finally we show you how to
change it. Your journey includes a reference implementation of model-driven DevOps that will guide
you through how to apply the techniques and concepts that you have learned. With this solid technical
foundation in place, we end the journey with a discussion of the significant human factors to consider
when making an operational change of this magnitude.

Along the way, you encounter exercises that will allow you to get hands-on experience, understand the
technical details better, and test your knowledge. These exercises are based on the reference implemen-
tation and are identified throughout the book.

To provide some context and help illustrate many of the concepts in the book, each chapter starts with
a fictional story involving a network engineer named Bob. Bob works for ACME Corp. ACME Corp
is an intentionally generic company with a typical organizational structure including a CIO, various IT
silos, and consultants. Most importantly, it operates network infrastructure in a very human-intensive,
hands-on keyboards fashion. At the direction of the CIO, Bob is on a journey to DevOps. It is through
his challenges, spectacular failures, and ultimate success that we see the problems of the legacy opera-
tional model and how automation, and ultimately DevOps, can enable true business transformation.

9780137644674_print.indb 13 24/05/22 7:17 PM

xiv

Book Structure
Each chapter in this book is intended to build on the previous chapter. Infrastructure DevOps is a
journey, and the chapters are arranged in a way intended to guide you along the journey. The following
is a brief summary of each chapter and how it fits into the journey.

■ Chapter 1, “A Lightbulb Goes Off”: In this chapter we illustrate why the legacy operational
model for network infrastructure needs to change, briefly give an overview of how DevOps
might address many of the problems with the legacy model, and explore reasons that DevOps is
not widely adopted for on-premises IT infrastructure.

■ Chapter 2, “A Better Way”: In this chapter we define the goal of business transformation,
begin to discuss the high-level framework for model-driven DevOps, and introduce concepts
such as source of truth and data models.

■ Chapter 3, “Consumable Infrastructure”: If network infrastructure is to become an enabler
of business transformation, we need to get away from the box-by-box CLI management model.
This chapter makes the case that the API is the new CLI and explores ways that we can lever-
age and scale APIs.

■ Chapter 4, “Infrastructure as Code”: Although APIs enable you to work with network
infrastructure programmatically, you don’t have to be a programmer to take advantage of them.
This chapter explores how you can refer to the network infrastructure “as code” using concepts
such as data models, source of truth, configuration management tools, and templating tools.
Together, these tools enable infrastructure as code and let you operate your network
infrastructure just like you would in “the cloud.”

■ Chapter 5, “Continuous Integration/Continuous Deployment”: Infrastructure as code is
incredibly powerful but, like many powerful things, carries a great deal of risk if applied indis-
criminately. In this chapter, we explore the concepts of version control systems, data validation
tools, simulation platforms, and CI/CD. Together, these tools enable the safe use of infrastruc-
ture as code at scale and automated compliance and security.

■ Chapter 6, “Implementation”: Books on DevOps often focus on the why and the what, but
they often omit the how. In this chapter, we take the concepts and techniques covered in the
previous chapters, bring them all together, and apply them to a reference implementation. The
reference implementation is published as a repository on GitHub so that you can get hands-on
experience with model-driven DevOps as well as modify or extend the code to meet your own
needs.

9780137644674_print.indb 14 24/05/22 7:17 PM

xv

Register your copy of Model-Driven DevOps on the InformIT site for convenient access to updates
and/or corrections as they become available. To start the registration process, go to informit.com/
register and log in or create an account. Enter the product ISBN (9780137644674) and click Submit.
Look on the Registered Products tab for an Access Bonus Content link next to this product, and follow
that link to access any available bonus materials. If you would like to be notified of exclusive offers on
new editions and updates, please check the box to receive email from us.

■ Chapter 7, “Human Factors”: Much of the text of this book is focused on the technical
aspects of implementing model-driven DevOps. However, the technical challenges are only
part of the journey. The importance of the human factors involving the breakdown of organiza-
tional silos, culture change, and the skills gap cannot be overstated. This chapter outlines why
it is not enough to focus only on the technical capability, but also on the human side of imple-
menting DevOps.

9780137644674_print.indb 15 24/05/22 7:17 PM

http://informit.com/register
http://informit.com/register

xvi

Acknowledgments
This book was truly a team effort. In addition to our own experience, much of the information in this
book is informed by many of the companies and federal, state, and local organizations that we have
worked with over the years. It would be hard to list them all, but we’d like to thank Captain Kyle
“Chet” Turco, U.S. Navy, for his relevancy to the content of this book. We would also like to thank
Lee Van Ginkel, Cisco Systems, and Gerald Dykeman, Red Hat, for the collaboration and proofreading
they provided. Furthermore, we’d like to thank Craig Hill and Stephen Orr for their mentorship and
guidance. Finally, there is a team of systems architects and developers, without which much of the
code that underpins this book would not exist; in particular, we would like to acknowledge Steven
Mosher, Tim Thomas, and Mitch Mitchner.

9780137644674_print.indb 16 24/05/22 7:17 PM

xvii

About the Authors
Steven Carter has more than 25 years of industry experience working in large universities, government
research and development laboratories, and private sector companies. He has been a speaker at several
industry conferences and written blogs and articles in technical journals. He has spent time as a system
administrator running some of the world’s largest supercomputers and a network engineer building
out the world’s first SDN network for the Department of Energy. In addition, Steven has a wide range
of experience in networking, including operations, embedded software development, and sales. He
has spent the past 5 years working for Red Hat Ansible and Cisco Systems consulting and coding for
many of the world’s largest organizations as they modernize and secure their operations by incorpo-
rating DevOps. He currently works as a principal DevOps engineer for Cisco Systems creating CI/CD
pipelines for deploying cloud applications and network infrastructure in secure and classified environ-
ments. He holds a BS in computer engineering, an MS in computer science, an MBA, and a CCIE in
routing and switching.

Jason King is a solutions architect at Cisco, supporting the public sector community. In his 11 years
at Cisco, he has focused on cloud, automation, programmability, and HPC. Prior to joining Cisco, he
spent 10 years building and tuning some of the world’s largest HPC clusters at Lawrence Livermore
National Laboratory. He holds an MS in computer science and a CCIE in routing and switching.

About the Contributing Authors
Josh Lothian has worked in system administration and DevOps for more than 20 years. In his career
he has supported everything from academic departments to the fastest supercomputer in the world.
He has focused on how automation can lessen the burden on staff while increasing efficiency and
reliability. In his 6 years at Cisco as a senior cloud engineer and technical leader, he has helped build
small, highly collaborative teams that produce big results using DevOps principles. He holds a BS and
an MS in computer science.

Mike Younkers has 30 years of industry experience working for the U.S. government and private
sector companies. He has been an operator, engineer, and architect of global networks, cybersecurity
capabilities, and other IT-related systems. Over the years he has held various leadership positions
where he has been impacted by industry changes and led multiple teams through various transforma-
tions. He is currently a senior director of Systems Engineering on Cisco’s U.S. federal team, where he
has the privilege and honor to work alongside some of the brightest and most dedicated people in our
industry. He holds a BS in electrical engineering (BSEE), a BS in computer science, and an MS in tele-
communications and computers. It is the combination of this education and these years of experience
that inspired him to want to be an active participant in this effort.

9780137644674_print.indb 17 24/05/22 7:17 PM

30

Consumable Infrastructure
In the preceding chapter, we explained the power of model-driven DevOps and the use of data models.
To start the journey toward model-driven DevOps, your infrastructure must be consumable in a
programmatic way. Therefore, in this chapter we discuss the concept of consumable infrastructure.
Consumable infrastructure, simply put, is infrastructure that is interacted with through APIs via data
models. Consumable infrastructure rapidly responds to the needs of an organization through APIs
and platform-based simplification. As we explore later, we want to look at the network in terms of
consuming services and capabilities and not just automating specific tasks. Consumable infrastructure
greatly reduces the complexity of automation and makes it more accessible to operators as opposed to
requiring deep programming expertise.

Automating Things to Do Stuff

When we last left Bob from ACME Corp, he was considering a new job offer from a competitor
while the CIO, Haley, was just beginning to understand the true extent of Bob’s value to the
company. It was clear that ACME Corp’s current methods for operating IT infrastructure were not
aligned with the business’s goals of greater agility and lower risk. In fact, Haley was beginning to
realize that she had a very large risk of disruption to the business if Bob left for a competitor.

Haley was becoming convinced that automating her IT infrastructure and implementing DevOps
could meet her twin goals of increasing agility and lowering risk. She needed to take somebody
like Bob and transform his knowledge into code while making the shift to DevOps. She knew this
effort was going to be a significant amount of work, but she also knew that it was the right way
forward. She would start right away.

When Bob walked into the office on Monday, he had a new meeting on his calendar with the
ominous title “Network Automation Discussion.” Bob had built his career at ACME Corp through
his knowledge of network design and protocols, combined with the ability to turn those designs
into reality via the CLI. This was the value he brought to the company.

Chapter 3

9780137644674_print.indb 30 24/05/22 7:17 PM

31Consumable Infrastructure

A couple years ago, he got excited and tried to do some simple automation using a script that
would log in to a device and issue a few commands. His excitement did not last long. He quickly
discovered that trying to parse the output of a list of commands was far from simple. The CLI was
easy for humans to parse, but it turned out to be far trickier for a machine to understand the result
of a configuration change or the output of a show command. He had to write code that would look
for and parse certain language in the output. Writing this code was difficult, and even if he could
do it, he knew that the CLI was different for each device in ACME Corp’s network. Writing unique
code for hundreds or maybe thousands of individual devices was not something Bob had time
for. The effort might pay off in the long run, but Bob had a network to operate. Like many network
engineers before him, instead of investing all that time in custom language parsing code, he fell
back to what had worked for the last few decades: managing every device, individually, through
the command line.

Recalling his previous failed attempts, Bob was now concerned about the notion of automating
network infrastructure. At the start of the meeting, Jane, Bob’s manager, laid out the grim truth to
the network team. She said, “Our CIO is convinced that IT infrastructure automation will improve
our efficiency, agility, and lower the risk of outages.” Like virtually every meeting involving network
engineers, when the word automation was mentioned, a collective groan erupted. Jane heard
comments such as “Over my dead body!” and “Not on my watch!” Bob, with a somber expression,
said, “We tried that before, and it just doesn’t work.” Although, deep down, he knew he was
overworked and unhappy, he had been involved in every critical change to the environment, and
because developers were deploying code multiple times a day, critical changes were becoming a
regular occurrence. There had to be some merit to the CIO’s automation strategy. Jane, in a firm
tone, responded, “Well, what we are doing today is not working. Something needs to change. Any
suggestions?” She made direct eye contact with Bob. He quickly reflected on his past automation
failure and thought about what could be done to fix it. He knew that APIs are supposed to help
with some of the previous issues, and even though he was not excited about learning something
new, Bob offered a suggestion. “Okay, we all have had issues scripting network changes through
the CLI. It is, well, painful.” He heard murmured agreement from the team. He offered a half smile
and continued, “So why don’t we look at using APIs to automate our network infrastructure? Our
vendors are always talking about how great APIs are.” “That is an excellent suggestion, Bob! I
would like you to take the lead on this effort,” Jane replied. Bob’s smile faded. “That’s what I get
for opening my big mouth,” he thought.

A week later, Bob picked up a ticket submitted by the person who manages the ACME Corp NTP
servers. Due to changes occurring in the data center infrastructure, they needed to migrate the
NTP servers to new IP addressing, and doing so required that the NTP server configurations on
every network device be modified. He had been studying how to interact with network devices
through their APIs for the last few days, and he thought that this might be a good opportunity to
put his new skills to use.

After some trial and error using a tool called Postman, Bob was able to make a change through the
API on one of the more modern devices in the lab. He verified that the change occurred success-
fully by examining the API return codes. “Success!” he shouted as he raised his fists in triumph.
Then he checked the resulting configuration to find that his change only added new servers to the
list instead of replacing the list. This process was going to be more complicated than he thought.

9780137644674_print.indb 31 24/05/22 7:17 PM

CHAPTER 3 Consumable Infrastructure32

It turns out that things like simple lists are not so simple to automate without some more compli-
cated logic to check for existing configuration. After more trial and error, he was finally able to
script the process of retrieving the existing configuration, reconciling the old list with the new one,
and pushing only the needed changes to the device, all via the API.

He then moved on to one of the older devices in the ACME Corp network and quickly discovered that
it had no API. It was a CLI-only device. “Crud,” he thought. “It looks like I might need to automate this
device some other way.” So, he looked at another common tool for network infrastructure automation
called Ansible and discovered that an Ansible module supports this older device. After some trial and
error with Ansible, Bob was able to make a playbook that achieved the same result on the older device,
but unfortunately, it was done in a completely different tool with completely different syntax. “This is
going to be ugly,” Bob thought. “Even if I somehow figure out how to automate all the different devices
in whatever tool or language works for that device, I still need to figure out how to verify the results of
each operation and somehow scale all these different operations to thousands of network devices.
This is going to be really ugly,” he thought again. “There must be a better way.”

APIs
An application programming interface (API) is a way for two applications to interact with each other.
In contrast, a command-line interface is a way for a human to interact with an application to retrieve
data or make configuration changes. In the context of IT infrastructure, an API interaction is usually a
two-way communication where some data is sent from an application to a device or controller platform
for the purposes of retrieving operational information or making configuration changes.

APIs are a critical component of model-driven DevOps. As the name implies, model-driven DevOps
makes heavy use of data models. API software on a device takes data and, using a data model to
decipher that data, configures the various components of the device the way the manufacturer intended.

When network infrastructure is treated as a set of APIs, configuration consists of moving data, generally
in the form of JSON or XML, between those APIs. This capability makes network operations more
like cloud and application development. This type of interaction is a significant improvement over the
legacy human-optimized CLI interaction.

The most common model-driven APIs for network devices use the NETCONF protocol with YANG
data models. NETCONF pushes the data models encoded in XML over a secure transport layer and
provides several operational advantages over CLI, including

■ Installation, manipulation, and deletion methods for configuration data

■ Multiple configuration data stores (such as candidate, running, startup)

■ Configuration validation and testing

■ Differentiation between configuration and state data

■ Configuration rollback

9780137644674_print.indb 32 24/05/22 7:17 PM

APIs 33

Why API over CLI?
For decades, network engineers have used CLIs to configure network devices. A CLI is, for the most
part, an effective human-to-device interface. When it comes to automating network devices, however,
a CLI is a poor computer-to-network device interface. The main reason for this is that most CLIs are
meant to be human readable; therefore, most CLIs have a language-like construction that makes it
easier for humans to use. Unfortunately, human languages are difficult for computers to use.

To illustrate, let’s first look at a simple example of configuring the hostname on a Cisco IOS device.
We use Ansible because it is one of the most popular ways of automating network devices, but the
problem we are about to describe exists with most any CLI-based method of automation. Using
Ansible parlance, we describe the desired end state of the hostname of a particular device. A hostname
is a great use case because it is a scalar (that is, a single value). To change the hostname, the Ansible
ios_config module does a simple textual comparison of the configuration. To set the hostname
using Ansible, you would use the following YAML in a playbook:

- ios_config:

 lines:

 - hostname newname

If hostname newname is not present, it sends that line to the device. Even if a different hostname
is present on the target device, because hostname is a scalar, the old hostname gets replaced by
the desired hostname. However, as Bob painfully discovered, a list of NTP servers is more difficult.
Suppose you’ve set the NTP server to 1.1.1.1 with the following YAML:

- ios_config:

 lines:

 - ntp server 1.1.1.1

Now you want to change your NTP server to 2.2.2.2, so you modify the YAML:

- ios_config:

 lines:

 - ntp server 2.2.2.2

Simple, right? But the problem is that you would end up with two NTP servers in the configuration:

ntp server 1.1.1.1

ntp server 2.2.2.2

The reason is that the Ansible ios_config module does not see ntp server 2.2.2.2 present
in the configuration, so it sends the line. However, because ntp server is a list, it adds a new NTP
server instead of replacing the existing one, giving you two NTP servers (one that you do not want). To
end up with just 2.2.2.2 as your NTP server, you would have to know that 1.1.1.1 was already defined
as an NTP server and explicitly remove it. This is also the case with ACLs, IP prefix-lists, and any

9780137644674_print.indb 33 24/05/22 7:17 PM

CHAPTER 3 Consumable Infrastructure34

other list in IOS. The Ansible ios_config module (as well as the cli_config module) does not
have a native way to describe the desired end state of something simple like NTP servers on a network
device, much less something more complex like OSPF, QoS, or Multicast.

There are clearly ways to address this situation. For example, the Ansible ios_config module could
be improved to know how to parse IOS syntax and look for any existing NTP server configuration and
remove it, just as a human would. One problem with this approach, however, is that this more capable
module would be re-implementing IOS parsing rules outside of IOS. This means that vendor changes
to the IOS CLI would necessitate changes to the ios_config Ansible module, creating a maintain-
ability problem that would often result in lagging functionality. Furthermore, this approach would need
to be taken with every vendor and/or device CLI available, making this approach unscalable.

The better way is to use an API. APIs are specifically designed for programmatic configuration of devices.
To illustrate the advantages of the model-driven method using an API, let’s use the netconf-console
utility to get and set the NTP servers on a Cisco IOS-XE device. First, let’s see the current list of NTP
servers. Listing 3-1 illustrates how to retrieve NTP configuration using netconf-console.

LISTING 3-1 Using netconf-console to Retrieve NTP Configuration

netconf-console –host <device IP> --port 830 –user admin –password admin –db run-

ning –get-config –xpath /native/ntp

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

 <ntp>

 <server xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ntp">

 <server-list>

 <ip-address>1.1.1.1</ip-address>

 </server-list>

 <server-list>

 <ip-address>2.2.2.2</ip-address>

 </server-list>

 </server>

 </ntp>

 </native>

</data>

Although this example is a wordier rendering of the same configuration, it is deterministic. All the
NTP servers and their associated configuration are organized into one section of the tree. We can deal
with it as a separate entity as opposed to being thrown in at the same level with other configuration
information. Also, note that we were able to ask the device for just the NTP configuration information.
No parsing required.

9780137644674_print.indb 34 24/05/22 7:17 PM

http://cisco.com/ns/yang/Cisco-IOS-XE-native"
http://cisco.com/ns/yang/Cisco-IOS-XE-ntp"

APIs 35

Now let’s change the NTP servers. First, we take the previous output, change the IP address of
the second NTP server, and specify that this operation should replace the server section with
operation='replace'. The content of Listing 3-2 would normally go into a file named ntp.xml.

LISTING 3-2 XML to Change NTP Configuration

<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

 <ntp>

 <server xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ntp" operation='replace'>

 <server-list>

 <ip-address>1.1.1.1</ip-address>

 </server-list>

 <server-list>

 <ip-address>3.3.3.3</ip-address>

 </server-list>

 </server>

 </ntp>

</native>

Then we can push the XML payload to the device using netconf-console, as shown in Listing 3-3.

LISTING 3-3 Using netconf-console to Change NTP Configuration

netconf-console –host <device IP> --port 830 –user admin –password admin –db

running –edit-config ntp.xml

<ok xmlns="urn:ietf:params:xml:ns:8equire:base:1.0"

xmlns:nc="urn:ietf:params:xml:ns:8equire:base:1.0"/>

The ok in the XML response indicates that the device accepted the change. Now let’s retrieve the NTP
configuration and verify the results, as shown in Listing 3-4.

LISTING 3-4 Using netconf-console to Verify Configuration Change

netconf-console –host <device IP> --port 830 –user admin –password admin –db

running –get-config –xpath /native/ntp

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

 <ntp>

 <server xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ntp">

 <server-list>

 <ip-address>1.1.1.1</ip-address>

 </server-list>

 <server-list>

9780137644674_print.indb 35 24/05/22 7:17 PM

http://cisco.com/ns/yang/Cisco-IOS-XE-native"
http://cisco.com/ns/yang/Cisco-IOS-XE-ntp"
http://cisco.com/ns/yang/Cisco-IOS-XE-native"
http://cisco.com/ns/yang/Cisco-IOS-XE-ntp"

CHAPTER 3 Consumable Infrastructure36

 <ip-address>3.3.3.3</ip-address>

 </server-list>

 </server>

 </ntp>

 </native>

</data>

The first thing that you might notice is that this was a lot of work just to change the NTP server. In the
same way that human-to-device interfaces are not optimal for computers, computer-to-device inter-
faces are not optimal for humans. Having a machine-friendly, deterministic, and repeatable way of
making changes in the environment is the necessary foundation for effective automation. Assembling
a series of programmable operations into more complex workflows is where you start to see real effi-
ciency advantages.

Even though computer-to-device interfaces might look daunting at first and are not optimal for humans,
humans still need to understand them in order to help computers use them for automation. Figure 3-1
takes a closer look at this concept. Here we take data (the list of NTP servers that should be configured)
from our source of truth, encode it into a payload as defined by a data model (XML in the case of
NETCONF), and send the payload to the API (NETCONF in this case).

SoT Encoding Device
{DATA} {DATA}’

FIGURE 3-1 Encoding Data

This generic workflow can accommodate a host of use cases and APIs. For example, we can use a
RESTCONF interface by simply changing the encoding to JSON (but using the same data model) and
sending it to a RESTful interface. We can even stretch this notion to CLI-only devices by taking the
data, encoding it as textual configuration tailored to that device, and delivering it via SSH. This yields
a flexible framework, illustrated in Figure 3-2, with the flexibility to deliver the data via any encoding
to any device using any API.

SoT

Transform
NETCONF

Device A

Device B

Device C

RESTCONF

SSH

{DATA}XML

{DATA}JSON

{DATA}CLI

{DATA}

{DATA}

{DATA}

FIGURE 3-2 Encoding Data for Different APIs

9780137644674_print.indb 36 24/05/22 7:17 PM

Platforms 37

This approach works for physical network infrastructure, but it also works for cloud infrastructure. For
example, AWS CloudFormation is just source of truth data encoded in JSON using a data model and
delivered via an API using an SDK like Boto3 for Python. Therefore, thinking in this manner allows
you to use the same methodology for your entire IT infrastructure.

Platforms
A platform, in the context of model-driven DevOps, is a consolidation and simplification point for
the devices in a network. Without platforms, you would need to configure each device individually,
making IT much more cumbersome and time-consuming. The best examples of a platform are cloud
infrastructure providers like AWS, Azure, and Google. They created platforms that provide abstracted
services, such as compute, storage, or networking to an IT organization. No longer does an organization
need to think about acquiring hardware, configuring that hardware into a system to support applica-
tions, and maintaining that hardware over time. This process is all abstracted as a service and provided
via API. For example, a customer does not care what types of nodes are used for their compute service
or how to configure them; that customer just wants the service to work. Platforms come in different
forms with different capabilities, but they all aim to simplify IT and generally contain many of the
attributes we describe in the remainder of this chapter.

Physical Hardware Provisioning
The idea of a platform also extends to the physical, on-premises network. Unlike cloud, where you
don’t have to know or care about physical hardware, with on-premises infrastructure, it is a significant
concern. To ease the deployment and provisioning of hardware, many platforms support technologies
such as “plug and play” or “zero-touch provisioning.” This is also commonly known as Day 0 provi-
sioning, where a minimal configuration is automatically applied to a piece of physical hardware on
bootup so that it can communicate with the platform to get a more complete, or Day 1, configuration.
This book focuses mainly on Day 1 configuration and Day 2 operations, but it is useful to know that
most platforms also ease the Day 0 provisioning of physical hardware.

Consolidated Control Point
Whether it is cloud or on-premises, the main benefit of a platform is the consolidated control point.
The idea of a consolidated control point in a network came to prominence with the advent of software-
defined networking (SDN). SDN decouples the control plane (the part that decides where to send
packets) of a network from the data plane (the part that does the forwarding of the packet). The devices
in a pure SDN network have little to no ability to operate autonomously, rendering them inoperable
without a central controller. Over time, however, this pure approach largely found equilibrium in
devices that can either operate autonomously or as part of a controller-based fabric. A more pragmatic
approach to SDN evolved whereby devices in the network operated as part of a distributed control

9780137644674_print.indb 37 24/05/22 7:17 PM

CHAPTER 3 Consumable Infrastructure38

plane with a centralized controller managing network configuration and policy. This approach took
the best parts of pure SDN (consolidated control point) and married it with the best parts of distributed
control planes (scale and resiliency). In the context of networking, this more pragmatic approach to an
SDN controller is what we refer to as a platform.

Northbound vs. Southbound APIs
In the IT infrastructure space, it is often useful to think of platform APIs as either northbound or
southbound. A typical controller platform exposes a “northbound” API that is intended to provide
functionality for other applications. A good example is the UI for the controller itself. Often the UI for
the controller uses this same northbound API to retrieve data and make configuration changes. When a
request is received via the northbound API, and the controller software determines that it needs to make
changes to one or more devices, it uses a “southbound” API to talk with the various devices. These
southbound APIs are specific to whatever API is exposed by the devices in the network. Different device
vendors often have different APIs for their devices. As shown in Figure 3-3, a controller platform can
consolidate many disparate vendor or device APIs into a single, unified, northbound API.

Control

Platform

Device A Device B Device C

Northbound API

APIX

APIA APIB APIC

Southbound APIs

FIGURE 3-3 Northbound vs. Southbound APIs

API and Feature Normalization
One important role that a platform can play is to normalize the API across a set of dissimilar devices.
From our previous example, the platform would perform any data transformations internally and trans-
parently while presenting a single API to the user (see Figure 3-4).

9780137644674_print.indb 38 24/05/22 7:17 PM

Platforms 39

Platform

SoT
{DATA}

{DATA}XML
NETCONF

Device A

Device B

Device C

RESTCONF

SSH

{DATA}JSON

{DATA}CLI

REST

FIGURE 3-4 Platform API Normalization

This normalization greatly reduces the complexity of automating the network by allowing the auto-
mation tooling to work on a single data model against a single API. Without this regularization, the
tooling would have to do the data model conversion and then call the correct API for each type of
device available on the network. Recall that when Bob from ACME Corp realized that each type of
device on the network had a different command line, requiring its own custom code, it seemed unman-
ageable. A platform with the ability to normalize to a single data model with a single API solves this
issue.

Platforms further help by normalizing features across many dissimilar devices of varying capabilities.
For example, many network devices do not have the capability to roll back configuration changes to
a previous state. If state is added to the platform, then the platform can track changes as they occur so
that it can return a device’s state back to its configuration before a change occurred. Furthermore, the
storing of state in the platform allows for the comparison of what the state of a device should be in case
out-of-band changes are made. If the device is out of sync with the platform, then the local change can
either be adopted or overridden.

Fabricwide Services
In addition to normalization, a platform can provide fabricwide services to the network. One common
fabricwide service is Ethernet Virtual Private Network (EVPN). EVPN is used to extend Ethernet
Layer 2 services across a large campus or between sites over a Layer 3 routed network. It is considered
a fabric technology because it relies on a central control plane based on BGP to distribute MAC
addresses and other information that enables connectivity between end nodes. Without the control
plane, the fabric does not function even though the individual boxes can function autonomously.

A platform can provide both a fabricwide view of the network and the services necessary to run that
fabric (see Figure 3-5). These capabilities result in a substantial simplification of the network and
enable services that would not be possible without this central function.

9780137644674_print.indb 39 24/05/22 7:17 PM

CHAPTER 3 Consumable Infrastructure40

APIX

APIA APIB APIC

Services State

FIGURE 3-5 Fabricwide Services

Scalability
Platforms also enable a greater scale in automating networks. Without a platform, the control node
used for automation needs to communicate directly with each device instead of being able to optimize
communications by taking advantage of state in the platform (see Figure 3-6). As an example, let’s
look at the way that tools like Ansible make changes to a device. Ansible’s goal is to get the devices to
a desired end state. To do that, it needs to check the current state of the device, compare that state to the
desired end state, and then send the changes to the device. This operation doubles the communication
between the control node and the end devices. To further complicate the issue, many operations work
only on discrete parts of the configuration, meaning multiple operations need to occur to make one
change.

Control

Device Device Device

All Communication

All Operations

FIGURE 3-6 Scaling Control Communications

When we introduce a platform, the communication between the platform and the device can be reduced
to a minimized set of consolidated changes (see Figure 3-7).

Figure 3-8 illustrates how this architecture can also scale geographically. For geographically dispersed
networks, these intermediary platforms can provide regional aggregation and other control plane services.

9780137644674_print.indb 40 24/05/22 7:17 PM

Summary 41

Control

Platform

All Communication

All Operations

Min Operations

Min Communication

Device Device Device

FIGURE 3-7 Better Scale Through Platforms

Control

Platform Platform

Device Device Device Device Device

Region 2Region 1

Device

FIGURE 3-8 Scaling Platforms Geographically

Summary
This chapter covered the two main factors for successful infrastructure automation: APIs and plat-
forms. We defined consumable infrastructure and demonstrated how the APIs coupled with data models
discussed in the preceding chapter enable it. Furthermore, we illustrated how APIs enable deterministic
and efficient machine-to-machine interactions and are critical for successful automation. Platforms
enable you to better scale operations made via API, provision physical hardware, and enable you to
build more complex automated services on top of your infrastructure. We also examined what makes
cloud platforms so powerful and how those same platform concepts can be applied to on-prem infra-
structure. In the following chapters, we cover how to represent your infrastructure as code and then
how to take some of the high-level things you have learned so far and assemble them into a framework
for infrastructure automation at scale.

9780137644674_print.indb 41 24/05/22 7:17 PM

166

Index

northbound vs. southbound, 38

required skills in, 161

applications

infrastructure versus, 79

network as an application, 117–119

architecture, in DevOps reference implementation,
117, 119

ASNs (autonomous system numbers), 47

automation

APIs (application programming interfaces), 32–37, 97

advantages of, 33–37

CLI (command-line interface) versus, 33–37

definition of, 32–37

feature normalization and, 38–39

importance of, 32

inconsistency of, 21

NETCONF protocol for, 32, 49, 50, 75

northbound vs. southbound, 38

required skills in, 161

automated testing, lack of, 7

automation-at-scale, 10

benefits of, 9, 17–18

business transformation from, 18–19

in DevOps reference implementation, 121

automation runner, 131–134

automation tooling, 128–130

example of, 121

topology deployment exercise for, 121

of documentation, 156

focus on, 20

“green field” approach to, 117

programming versus, 160

A
access control

ACLs (access control lists), 46

Git/GitHub, 84

ACLs (access control lists), 46

Add a Token command (NetBox API Tokens
menu), 61

adoption of DevOps. See DevOps adoption

agile method, 157–158

agility, lack of, 8

Ansible, 9, 33, 51–52

combine filter, 126–127

in DevOps reference implementation, 128–130

check role, 129–130

data role, 128–129

validate role, 129

hostname configuration, 33–36

inventory system, 54–55, 123–124

modules, 33–36, 96–97

cli_config, 33–34

ios_config, 33–36

NetBox Ansible dynamic inventory plug-in, 60–65

ansible-inventory --graph, 123

ansible-lint, 98

API Tokens menu (NetBox), Add a Token command, 61

APIs (application programming interfaces), 97

advantages of, 33–37

CLI (command-line interface) versus, 33–37

definition of, 32–37

feature normalization and, 38–39

importance of, 32

inconsistency of, 21

NETCONF protocol for, 32, 49, 50, 75

9780137644674_print.indb 166 24/05/22 7:18 PM

167CI/CD (continuous integration/continuous deployment)

reducing complexity of, 30–32

of testing, 19

autonomous system numbers (ASNs), 47

AWS, 52, 90

Azure, 90

B
backlog grooming, 157

backlog tasks, 157

bandwidth testing, 103–104

BGP (Border Gateway Protocol) configuration, 22–23,
47–48

bottlenecks, identification of, 17–18

branches, source code management of, 82–83

business factors limiting DevOps adoption

poor understanding of DevOps, 12

short-term thinking, 12

business risk, enterprise IT as source of

case study of, 3–6

causes of, 2–3, 6–8

business transformation, goal of, 17, 18–19

C
case study

CI/CD (continuous integration/continuous deployment),
74–78

consumable infrastructure, 30–32

DevOps implementation, 112–114

human factors, 150–151

risk, enterprise IT as source of, 3–6

source of truth, 16

CD (continuous deployment), 45, 107–109. See also CI/
CD (continuous integration/continuous deployment)

change management, 150–165

case study of, 150–151

change logging, 82

culture and need for change, 151–152

individual skill requirements, 159–164

APIs (application programming interfaces), 161

data formats, 9, 161

Linux/UNIX, 164

overcoming resistance to change in, 164–165

programming versus automation, 160

templating, 162–163

version control, 161

motivation for change and, 152

organizational-level change

community, 154–155

leadership, 153

role models, 153–154

silos, breaking down of, 154

team building, 154

tools for, 155–158

documentation tools, 155–157

need for, 155

project management tools, 157–158

version control tools, 158, 161

check role, in DevOps reference implementation,
129–130

check_sync, 141

CI/CD (continuous integration/continuous
deployment), 45. See also implementation

applications versus infrastructure in, 79

case study of, 74–78

continuous deployment, 45, 107–109

continuous integration tools, 86–90

CI engines, 86–87

overview of, 86

sample workflow for, 88–90

source code manager workflow with, 87–88

continuous monitoring, 109

definition of, 9

Git/GitHub services, 85

infrastructure simulation tools

benefits of, 90–91

CML (Cisco Modeling Labs), 90–97

order of operations, 80–81

overview of, 78–79

source code management, 81

benefits of, 81, 86

branches, 82–83

change logging, 82

Git/GitHub, 83–85

version control, 82

testing and validation, 97–107

functional testing, 102–107

goals of, 107

Z01_King_Index_p166-p176.indd 167 24/05/22 7:41 PM

168 CI/CD (continuous integration/continuous deployment)

iperf, 103

linting, 98–99

ping, 102

schema/model validation, 99–102

test-driven development, 87

traceroute, 103, 104–107

TRex, 104

CIDR community, 155

Cisco IOS devices

BGP (Border Gateway Protocol) configuration on,
47–48

hostname configuration on, 33–36

pushing data to, 140–141

Cisco Modeling Labs. See CML (Cisco Modeling Labs)

Cisco Network Services Orchestrator (NSO), 135–136

Cisco PyATS, 102, 103, 104, 142, 145

cisco.nso.nso_config module, 141

ciscops.mdd.check role, 129–130

ciscops.mdd.data role, 128–129

ciscops.mdd.data_validation module, 139

ciscops.mdd.validate role, 129

CLI (command-line interface)

APIs (application programming interfaces) versus,
33–37

maintenance and, 3–6

required skills in, 159–160

cli_config module, 33–34

CloudFormation, 52, 147

CMDB (configuration management database), 60

CML (Cisco Modeling Labs), 10, 91–97

deployment options, 92

IaC (infrastructure as code) tools, 94–97

Ansible modules, 96–97

APIs (application programming interfaces), 97

YAML simulation files, 94–96

overview of, 91–92

scale considerations, 92

user interface, 92–94

VNFs (virtual network functions), 91, 94

code, infrastructure as. See IaC (infrastructure as
code)

collaboration features, Git/GitHub, 83–85

access control, 84

CI services, 85

forks, 85

issue tracking, 84–85

public versus private repositories, 84

pull requests, 85

combine filter (Ansible), 126–127

community-driven approach, to DevOps adoption,
154–155

compliance, attitudes toward, 42–44

concurrency directive, 134

configuration, 50–51. See also implementation

BGP (Border Gateway Protocol), 47–48

hostnames, on Cisco IOS devices, 33–36

NTP (Network Time Protocol) servers, 33–36, 123

configuration management database (CMDB), 60

Confluence, 156–157

consistency, in DevOps reference implementation, 119

consolidated control points, 37–38

constraints, theory of, 17

constraints-based IT, 17–18

consumable infrastructure

APIs (application programming interfaces), 32–37, 97

advantages of, 33–37

CLI (command-line interface) versus, 33–37

definition of, 32–37

feature normalization and, 38–39

importance of, 32

inconsistency of, 21

NETCONF protocol for, 32, 49, 50, 75

northbound vs. southbound, 38

required skills in, 161

case study of, 30–32

complexity of automation reduced by, 30–32

definition of, 30

continuous deployment. See CD (continuous
deployment)

continuous integration tools, 86–90

CI engines, 86–87

overview of, 86

sample workflow for, 88–90

source code manager workflow with, 86–87

continuous integration/continuous deployment.
See CI/CD (continuous integration/continuous
deployment)

continuous monitoring, 109

CRUD (create, retrieve, update, delete) process, 20

culture, need for change in, 151–152

9780137644674_print.indb 168 24/05/22 7:18 PM

169DevOps adoption

D
data directory, in DevOps reference implementation,

130–131

data flow

in DevOps reference implementation, 122–123

source of truth and, 65–71

data formats. See encoding formats

data models, 22–25, 46–51

benefits of, 46–48

data model description languages, 50–51

JSON Schema, 51

YANG (Yet Another Next Generation), 47–48, 50–51

encoding formats, 46–48, 161

HCL, 9

JSON, 9, 48–49, 156, 161

XML, 32, 49–50

YAML, 9, 49, 156, 161

OpenConfig, 24–25

schema/model validation, 99–102

standard models, 23

textual configuration versus, 22–23

data role, in DevOps reference implementation,
128–129

data validation. See validation

database source of truth (SoT), 60–65

description of, 60

NetBox

showing hostvars from, 66–67

store and retrieve information from, 60–65

translating data into OpenConfig, 68–71

store and retrieve information from, 60–65

Datadog, 109

Day 0 provisioning, 37

“Deploying the Topology” exercise, 121

deployment, 92, 146

description languages, 50–51

JSON Schema, 51

YANG (Yet Another Next Generation), 47–48, 50–51

devices

BGP (Border Gateway Protocol) configuration on,
47–48

hostname configuration on, 33–36

pushing data to, 140–141

DevOps, definition of, 8

DevOps adoption, 42–44. See also implementation

apps versus infrastructure in, 10

attitudes toward compliance in, 42–44

automation

APIs (application programming interfaces), 32–37

automation-at-scale, 10

benefits of, 9, 17–18

business transformation from, 18–19

DevOps in action, 20

of documentation, 156

“green field” approach to, 117

programming versus, 160

of testing, 19

benefits of, 8, 21

business transformation from, 17, 18–19

case study of, 14–17

community-driven approach to, 154–155

constraints-based IT, 17–18

consumable infrastructure in. See consumable
infrastructure

data models, 22–25, 46–51

benefits of, 46–48

data model description languages, 50–51

encoding formats, 32, 46–48

OpenConfig, 24–25

standard models, 23

textual configuration versus, 22–23

definition of, 22

DevSecOps, 27–28

factors limiting, 10–12

inertia, 11

poor understanding of DevOps, 12

risk aversion, 12

short-term thinking, 12

skills gap, 11

framework for, 26–27

goals of, 17

human factors in, 150–165

case study of, 150–151

community, 154–155

culture and need for change, 151–152

individual skills, 159–164

inertia, 11

Z01_King_Index_p166-p176.indd 169 24/05/22 7:41 PM

170 DevOps adoption

leadership, 153

motivation for change and, 152

risk aversion, 12

role models, 153–154

silos, breaking down of, 154

skills gap, 11

team building, 154

infrastructure as code. See IaC (infrastructure as code)

IT heroes in, 14–17

motivation for, 152

network infrastructure and, 21

platforms, 37–40

consolidated control points in, 37–38

definition of, 37

documentation, 156–157

fabricwide services, 39

feature normalization and, 38–39

northbound vs. southbound APIs, 38

physical hardware provisioning, 37

scalability of, 40

security, 27–28

source of truth (SoT)

case study of, 16

code and, 65

data flow, 65–71

data requirements for, 21

database, 60–65

definition of, 45–46

desired versus actual, 122

in DevOps reference implementation, 121–122,
123–128

importance of, 24–25, 26

organization of, 52–56

textual, 57–60

translating data into OpenConfig, 65–71

tools for, 155–158

documentation tools, 155–157

need for, 155

project management tools, 157–158

version control tools, 158, 161

DevOps reference implementation. See
implementation

DevSecOps, 27–28

Docker, 79

docstrings, 156

documentation tools, 155–157

automation of, 156

importance of, 155–156

platforms, 156–157

DocWiki, 156–157

dry_run variable, 141

E
encoding formats, 46–48, 161

HCL, 9

JSON, 9, 48–49, 75, 156, 161

XML, 32, 49–50

YAML, 9, 49, 58, 75, 156, 161

engines, continuous integration, 86–87

environment directive, 134

equire-console utility, 34–36

error, human, 6–7

EVPN (Ethernet Virtual Private Network), 3, 39

“Exercising the Runner” exercise, 134

“Exploring the Data” exercise, 128

“Exploring the Inventory” exercise, 124

Extensible Markup Language (XML), 32, 49–50

F
fabricwide services, 39

feature normalization, 38–39

forks, Git/GitHub, 85

formats, encoding. See encoding formats

framework, DevOps, 26–27

functional testing, 102–107

iperf, 103

ping, 102

traceroute

example of, 104–107

overview of, 103

TRex, 104

G
GCP, 90

Git/GitHub, 45, 51, 83–85

access control, 84

CI services, 85

9780137644674_print.indb 170 24/05/22 7:18 PM

implementation 171

in DevOps reference implementation, 131–134

forks, 85

issue tracking, 84–85

jobs, 89

public versus private repositories in, 84

pull requests, 85

“green field” approach to automation, 117

H
HCL format, 9

hostname configuration, on Cisco IOS devices, 33–36

human error, impact of, 6–7

human factors, in DevOps adoption, 150–165. See also
tools

case study of, 150–151

community, 154–155

culture and need for change, 151–152

individual skill requirements, 159–164

APIs (application programming interfaces), 161

data formats, 9, 161

Linux/UNIX, 164

overcoming resistance to change, 164–165

programming versus automation, 160

templating, 162–163

version control, 161

inertia, 11

leadership, 153

motivation for change and, 152

risk aversion, 12

role models, 153–154

silos, breaking down of, 154

skills gap, 11

team building, 154

I
IaC (infrastructure as code), 9

benefits of, 45

case study of, 42–44

data models, 22–25, 46–51

benefits of, 46–48

data model description languages, 47–48, 50–51

encoding formats, 9, 32, 46–49, 156, 161

OpenConfig, 24–25

schema/model validation, 99–102

standard models, 23

textual configuration versus, 22–23

source of truth (SoT)

case study of, 16

code and, 65

data flow, 65–71

data requirements for, 21

database, 60–65

definition of, 45–46

desired versus actual, 122

in DevOps reference implementation, 121–122,
123–128

importance of, 24–25, 26

organization of, 52–56

textual, 57–60

translating data into OpenConfig, 65–71

tools for, 51–52

Ansible, 9, 33–36, 51–52, 96–97

APIs (application programming interfaces), 97

AWS CloudFormation, 52

in CML (Cisco Modeling Labs), 94–97

Jinja2, 52

Terraform, 52

YAML simulation files, 94–96

implementation

Ansible collections for, 128–130

check role, 129–130

data role, 128–129

validate role, 129

architecture for, 117, 119

automation in, 121

automation tooling, 128–130

example of, 121

GitHub automation runner, 131–134

topology deployment exercise for, 121

case study of, 112–114

choice of tools for, 114–115

Cisco Network Services Orchestrator (NSO), 135–136

consistency in, 119

continuous integration workflow summary, 146

data directory, 130–131

9780137644674_print.indb 171 24/05/22 7:18 PM

172 implementation

data flow in, 122–123

deployment, 146

exercises for

Data Validation, 140

Deploying the Topology, 121

Exercising the Runner, 134

Exploring the Data, 128

Exploring the Inventory, 124

Pushing the Data, 141

State Checking, 145

full code for, 115

goals of, 115–116

ITSM (IT Service Management) integration, 145

network as an application, 117–119

organizational hierarchy, 119

pushing data to devices, 140–141

roadmap for, 116

scale considerations, 146–147

simulation of, 119–121

source of truth in, 121–122, 123–128

starting workflows for, 147–149

testing and validation, 136–140

data validation, 138–140

linting, 137

restoration of test network, 141–145

snapshotting of test network, 137–138

state checking, 141–145

individual skill requirements, 159–164

APIs (application programming interfaces), 161

data formats, 9, 161

Linux/UNIX, 164

overcoming resistance to change in, 164–165

programming versus automation, 160

templating, 162–163

version control, 161

inertia, DevOps adoption limited by, 11

infrastructure

applications versus, 10, 79

as code. See IaC (infrastructure as code)

constraints-based IT, 17–18

consumable

APIs (application programming interfaces), 32–37

case study of, 30–32

complexity of automation reduced by, 30–32

definition of, 30

maintenance window for

business disruption from, 3–6

common problems with, 6–8

as source of risk to business

case study of, 3–6

causes of, 2–3, 6–8

infrastructure as code. See IaC (infrastructure as
code)

infrastructure resource modeling (IRM) applications

definition of, 60

NetBox, 60–65

infrastructure simulation tools

benefits of, 90–91

CML (Cisco Modeling Labs), 91–97

deployment options, 92

IaC (infrastructure as code) tools, 94–97

overview of, 91–92

scale considerations, 92

user interface, 92–94

VNF (virtual network function) support, 94

inventory system, Ansible, 54–55, 123–124

ios_config module, 33–36

IOS-XR, adding static route in, 162–163

iperf, 103

IRM (infrastructure resource modeling) applications

definition of, 60

NetBox, 60–65

issue tracking, Git/GitHub, 84–85

IT infrastructure. See infrastructure

ITSM (IT Service Management), 16, 60, 148

J
JavaScript Object Notation. See JSON (JavaScript

Object Notation)

Jinja2, 52, 68–71, 156

Jira, 157

jobs, GitHub, 89

jq, 98

JSON (JavaScript Object Notation), 9, 32, 48–49, 75,
156, 161

JSON Schema, 51

JSON Schema-based generators, 156

9780137644674_print.indb 172 24/05/22 7:18 PM

173organizational-level changes

jsonschema package, 139

Juniper JunOS, BGP (Border Gateway Protocol)
configuration on, 47–48

K
Kanban, 157

key/value pairs, 47

Kubernetes, 46, 90, 147

L
lab block, in YAML simulation files, 96

leadership, requirements for DevOps adoption, 153

links block, in YAML simulation files, 96

linting, 98–99, 137

Linux, required skills in, 164

logging, change, 82

M
maintenance window, for IT infrastructure

business disruption from, 3–6

common problems with, 6–8

human error, 6–7

human speed, 7

lack of agility, 8

lack of automated testing, 7

lack of test environment, 6

self-reinforcing cycle, 7–8

maximum transition units (MTUs), 46–47

mdd_combine, 126–127

mdd_data, 126

mdd_data_root, 130

mdd_device_dir, 131

mdd_root, 125

mdd_schema_root, 131

mdd_schemas, 139

mdd_tags, 126–127

method of procedure (MOP), 2

minimum viable product (MVP), 156

models, data. See data models

modules, Ansible, 33–36, 96–97

monitoring, continuous, 109

motivation for change, 152

MTU (maximum transition units), 46–47

N
Nagios, 109

nested virtualization, 92

NetBox

showing hostvars from, 66–67

store and retrieve information from, 60–65

translating data into OpenConfig, 68–71

netbox-to-oc.j2 template, 68–71

NETCONF, 32, 49, 50, 75

network as an application, 117–119

network infrastructure, model-driven DevOps and, 21

network monitoring software (NMS), 109

Network Services Orchestrator (NSO), 135–136

Network Time Protocol. See NTP (Network Time
Protocol) server configuration

NMS (network monitoring software), 109

nodes block, in YAML simulation files, 96

northbound APIs (application programming
interfaces), 38

NSO (Network Services Orchestrator), 135–136

nso_parse method, 143

NTP (Network Time Protocol) server configuration,
33–36, 123

O
OpenConfig, 24–25

organization of, 52–56

source of truth (SoT)

organization of data, 52–56

textual, 57–60

translating data into, 68–71

order of operations, CI/CD (continuous integration/
continuous deployment), 80–81

organization

for DevOps reference implementation, 119

of source of truth data, 52–56

organizational-level changes

community, 154–155

leadership, 153

role models, 153–154

silos, breaking down of, 154

team building, 154

tools, 155–158

9780137644674_print.indb 173 24/05/22 7:18 PM

174 organizational-level changes

documentation, 155–157

need for, 155

project management, 157–158

version control, 158

organizations, DevOps adoption by. See DevOps
adoption

P
physical hardware provisioning, 37

ping, 102

platforms, 37–40

consolidated control points in, 37–38

definition of, 37

documentation, 156–157

fabricwide services, 39

feature normalization and, 38–39

northbound vs. southbound APIs, 38

physical hardware provisioning, 37

scalability of, 40

poor understanding of DevOps, adoption limited by, 12

Postman, 161–162

private repositories, Git/GitHub, 84

programming, automation versus, 160

project management tools, 157–158

provisioning, physical hardware, 37

public repositories, Git/GitHub, 84

pull requests

Git/GitHub, 85

triggering CI workflows with, 88–90

push requests, triggering CI workflows with, 89

pushing data to devices, 140–141

“Pushing the Data” exercise, 141

PyATS, 102, 103, 104, 142, 145

Q-R
reference implementation. See implementation

releases, triggering CI workflows with, 89

repositories, Git/GitHub, 84

RESTCONF, 50

RESTful API, 71

restoration of test network, 146

risk

enterprise IT as source of

case study of, 3–6

causes of, 2–3, 6–8

risk aversion, DevOps adoption limited by, 12

role models, requirements for DevOps adoption,
153–154

roles, in Ansible collections

check, 129–130

data, 128–129

validate, 129

S
SaaS (software as a service), 83

scale considerations

CML (Cisco Modeling Labs), 92

in DevOps reference implementation, 146–147

harnessing automation at scale, 10

platforms, 40

schedules, triggering CI workflows with, 89

schema/model validation, 99–102

SCM (source code management), 45, 158

benefits of, 81, 86

branches, 82–83

CD (continuous deployment) workflow, 107–109

change logging, 82

CI/CD (continuous integration/continuous deployment)
and, 81

continuous integration tools and

sample workflow for, 88–90

source code manager workflow with CI, 87–88

Git/GitHub, 83–85

access control, 84

CI services, 85

forks, 85

issue tracking, 84–85

public versus private repositories in, 84

pull requests, 85

version control, 82

SDN (software-defined networking), consolidated
control points in, 37–38

Secure Shell (SSH), 51

9780137644674_print.indb 174 24/05/22 7:18 PM

175throughput testing

security, DevSecOps, 27–28

self-hosted directive, 133

self-reinforcing cycle, 7–8

servers, NTP (Network Time Protocol), 33–36, 123

Service Now, 148

session_state property, 144

SharePoint, 156–157

short-term thinking, DevOps adoption limited by, 12

show ip route command, 145

show version command, 142

show-hostvars.yml, 66–67

shutdown property, 144

silos, breaking down of, 154

simulation tools

benefits of, 90–91

CML (Cisco Modeling Labs), 91–97

deployment options, 92

IaC (infrastructure as code) tools, 94–97

overview of, 91–92

scale considerations, 92

user interface, 92–94

VNF (virtual network function) support, 94

for DevOps reference implementation, 119–121

Sinek, Simon, 152

skills gap, DevOps adoption limited by, 11

snapshotting of test networks, 137–138

software as a service (SaaS), 83

software-defined networking (SDN), consolidated
control points in, 37–38

source of truth (SoT). See also data models; encoding
formats

case study of, 16

code and, 65

data flow, 65–71

data requirements for, 21

database, 60–65

description of, 60

NetBox, 60–71

store and retrieve information from, 60–65

definition of, 45–46

desired versus actual, 122

in DevOps reference implementation, 121–122, 123–128

importance of, 24–25, 26

organization of, 52–56

textual, 57–60

translating data into OpenConfig, 65–71

southbound APIs (application programming
interfaces), 38

Spanning Tree Protocol (STP), 76

sprints, 157

SSH (Secure Shell), 51

standard data models, 23

starting workflows, 147–149

state checking, 141–145

“State Checking” exercise, 145

static routes, 162–163

STP (Spanning Tree Protocol), 76

T
team building, requirements for DevOps adoption, 154

templating, 68–71, 162–163

Terraform, 9, 52

test-driven development, 87

testing

automation of, 7, 19

CI/CD (continuous integration/continuous deployment),
97–107

functional testing, 102–107

goals of, 107

iperf, 103

linting, 98–99

ping, 102

schema/model validation, 99–102

test-driven development, 87

traceroute, 103, 104–107

TRex, 104

in DevOps reference implementation, 136–140

data validation, 138–140

linting, 137

restoration of test network, 146

snapshotting of test network, 137–138

state checking, 141–145

test environments, lack of, 6

textual configuration, data models versus, 22–23

textual source of truth (SoT), 57–60

theory of constraints, 17

throughput testing, 103–104

9780137644674_print.indb 175 24/05/22 7:18 PM

176 tools

tools, 51–52, 155–158

Ansible, 9, 33, 51–52

hostname configuration, 33–36

modules, 33–36

AWS CloudFormation, 52, 147

continuous integration, 86–90

CI engines, 86–87

overview of, 86

sample workflow for, 88–90

source code manager workflow with, 87–88

documentation, 155–157

automation of, 156

importance of, 155–156

platforms, 156–157

infrastructure simulation

benefits of, 90–91

CML (Cisco Modeling Labs), 91–97

Jinja2, 52

need for, 155

project management, 157–158

Terraform, 52

version control, 158, 161

topology deployment exercise, 121

ToR (top-of-rack) switches, 46–47

traceroute

example of, 104–107

overview of, 103

Trello, 157

TRex, 104

truth, source of

case study of, 16

data requirements for, 21

importance of, 24–25, 26

Tyson, Mike, 149

U
UNIX, required skills in, 164

user interfaces, CML (Cisco Modeling Labs), 92–94

V
validate role, in DevOps reference implementation, 129

validation

CI/CD (continuous integration/continuous deployment),
97–107

functional testing, 102–107

goals of, 107

iperf, 103

linting, 98–99

ping, 102

schema/model validation, 99–102

test-driven development, 87

traceroute, 103, 104–107

TRex, 104

“Data Validation” exercise, 140

in DevOps reference implementation, 136–140

data validation, 138–140

linting, 137

snapshotting of test network, 137–138

state checking, 141–145

version control, 82, 158, 161

Virtual Extensible LAN (VXLAN), 3

virtual local-area networks (VLANs), 46–47

virtual machines (VMs), 79

virtual network functions (VNFs), 10, 91, 94

virtualization, nested, 92

VLANs (virtual local-area networks), 46–47

VMs (virtual machines), 79

VNFs (virtual network functions), 10, 91, 94

VXLAN (Virtual Extensible LAN), 3

W
workbench, CML (Cisco Modeling Labs), 92–94

workflow, source code management with continuous
integration, 88–90

workflow-dispatch, triggering CI workflows with, 89

X
Xlate, 24–25

XML (Extensible Markup Language), 32, 49–50

Y-Z
YAML Ain’t Markup Language (YAML) format, 9, 49,

58, 75, 156, 161

yamllint, 98, 137

YANG (Yet Another Next Generation), 47–48, 50–51

9780137644674_print.indb 176 24/05/22 7:18 PM

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Chapter 3: Consumable Infrastructure
	APIs
	Why API over CLI?

	Platforms
	Physical Hardware Provisioning
	Consolidated Control Point
	Northbound vs. Southbound APIs
	API and Feature Normalization
	Fabricwide Services
	Scalability

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

