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Preface
The Internet is built on network infrastructure. Many technologies, and by extension many economies 
and societies, are built on the Internet. Unfortunately, the way organizations deploy and maintain these 
critical networks has not changed meaningfully in 30 years. Network infrastructure operations is often 
a very human-intensive and manual process, making it prone to error and slow to react to business 
needs. The DevOps model promises to dramatically improve infrastructure operations using auto-
mation, tools, and processes designed to increase agility, scale, security, compliance, and reliability. 
Although DevOps has been used to great effect in applications development and management of cloud 
infrastructure, there has been no comprehensive, structured approach for applying DevOps to network 
infrastructure.

One primary way in which DevOps applied to network infrastructure differs from application DevOps 
is the number of elements managed and the amount of data on each of those elements. Essentially, 
this makes network infrastructure DevOps a data management problem. Networking vendors use data 
models to organize the data within each individual network element and to regularize their APIs, yet 
these data models are different between vendors and even between device families from the same 
vendor. Model-driven DevOps seeks to normalize the data models used to organize the data across 
the entire infrastructure as well as to normalize the code. In a sense, model-driven DevOps is intended 
to provide a repeatable, deterministic way to apply DevOps to network infrastructure and achieve the 
same benefits as DevOps applied to cloud infrastructure.

Vision
This book represents a journey that the authors have taken over the last couple of decades. We all 
started our careers with our hands on a keyboard, running large networks and even supercomputers. 
Driven partly by the demands of the organizations that we have worked for and partly by laziness, 
we have leveraged some form of automation through it all. As we progressed throughout our careers, 
some of us went into consultancy, some development, and some management. We have been privi-
leged to work with, and for, many amazing companies with many talented people. It was our vision 
that this book contains the distillation of what we have learned over the years and how we apply it to 
solving customer challenges today. Using this experience, we seek to provide a holistic approach to 
applying DevOps to infrastructure operations organizations. This book lays down an extensive foun-
dation that helps developers and operators apply and tailor the detailed, prescriptive approach laid out 
for infrastructure DevOps. Furthermore, it addresses the human and organizational factors that, left 
unaddressed, cause many organizations to fail.

We also want this book to be approachable and usable. It is our opinion that the skills required to be 
a network operator or network engineer have fundamentally changed. The API is the new CLI. The 
material in this book is meant to help network operators and engineers start retooling their skills to 
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operate their infrastructure in line with the way their colleagues operate cloud infrastructure. To rein-
force this approach, we added a fictional storyline that, in our experience, illustrates the challenges 
faced in organizations that lead them to make this change.

Finally, we wanted to focus on outcomes and provide plenty of code to enable that outcome in your 
organization. We focus on industry standard tools and methodologies. Where possible, we use open-
source or free tools. When we do have to choose a vendor solution, we do so in a way that makes it 
a choice for a particular implementation. That is, using different vendor implementations for various 
components would not significantly change the principles, framework, or even the code that we present.

Who Should Read This Book?
This book is targeted at infrastructure teams within the Information Technology sector running physical 
networks, although the principles apply to any infrastructure team. We take a deep dive into model-
driven DevOps and define it through use cases and specific examples in our open-source, companion 
code repositories. In addition to IT infrastructure teams, this book is also applicable to cybersecurity 
teams looking to build security into their infrastructure at all stages. And finally, the human factors 
section is targeted at individual contributors as well as business and technical leaders who want to 
understand modern best practices as they relate to achieving high-quality results through teams.

How This Book Is Organized
The chapters of this book follow a logical progression. First, we examine why network infrastructure 
operations need to change, then we explore what needs to change, and finally we show you how to 
change it. Your journey includes a reference implementation of model-driven DevOps that will guide 
you through how to apply the techniques and concepts that you have learned. With this solid technical 
foundation in place, we end the journey with a discussion of the significant human factors to consider 
when making an operational change of this magnitude.

Along the way, you encounter exercises that will allow you to get hands-on experience, understand the 
technical details better, and test your knowledge. These exercises are based on the reference implemen-
tation and are identified throughout the book.

To provide some context and help illustrate many of the concepts in the book, each chapter starts with 
a fictional story involving a network engineer named Bob. Bob works for ACME Corp. ACME Corp 
is an intentionally generic company with a typical organizational structure including a CIO, various IT 
silos, and consultants. Most importantly, it operates network infrastructure in a very human-intensive, 
hands-on keyboards fashion. At the direction of the CIO, Bob is on a journey to DevOps. It is through 
his challenges, spectacular failures, and ultimate success that we see the problems of the legacy opera-
tional model and how automation, and ultimately DevOps, can enable true business transformation.
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Book Structure
Each chapter in this book is intended to build on the previous chapter. Infrastructure DevOps is a 
journey, and the chapters are arranged in a way intended to guide you along the journey. The following 
is a brief summary of each chapter and how it fits into the journey.

■ Chapter 1, “A Lightbulb Goes Off”: In this chapter we illustrate why the legacy operational 
model for network infrastructure needs to change, briefly give an overview of how DevOps 
might address many of the problems with the legacy model, and explore reasons that DevOps is 
not widely adopted for on-premises IT infrastructure.

■ Chapter 2, “A Better Way”: In this chapter we define the goal of business transformation, 
begin to discuss the high-level framework for model-driven DevOps, and introduce concepts 
such as source of truth and data models.

■ Chapter 3, “Consumable Infrastructure”: If network infrastructure is to become an enabler 
of business transformation, we need to get away from the box-by-box CLI management model. 
This chapter makes the case that the API is the new CLI and explores ways that we can lever-
age and scale APIs.

■ Chapter 4, “Infrastructure as Code”: Although APIs enable you to work with network 
infrastructure programmatically, you don’t have to be a programmer to take advantage of them. 
This chapter explores how you can refer to the network infrastructure “as code” using concepts 
such as data models, source of truth, configuration management tools, and templating tools. 
Together, these tools enable infrastructure as code and let you operate your network 
infrastructure just like you would in “the cloud.”

■ Chapter 5, “Continuous Integration/Continuous Deployment”: Infrastructure as code is 
incredibly powerful but, like many powerful things, carries a great deal of risk if applied indis-
criminately. In this chapter, we explore the concepts of version control systems, data validation 
tools, simulation platforms, and CI/CD. Together, these tools enable the safe use of infrastruc-
ture as code at scale and automated compliance and security.

■ Chapter 6, “Implementation”: Books on DevOps often focus on the why and the what, but 
they often omit the how. In this chapter, we take the concepts and techniques covered in the 
previous chapters, bring them all together, and apply them to a reference implementation. The 
reference implementation is published as a repository on GitHub so that you can get hands-on 
experience with model-driven DevOps as well as modify or extend the code to meet your own 
needs.
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Register your copy of Model-Driven DevOps on the InformIT site for convenient access to updates 
and/or corrections as they become available. To start the registration process, go to informit.com/
register and log in or create an account. Enter the product ISBN (9780137644674) and click Submit. 
Look on the Registered Products tab for an Access Bonus Content link next to this product, and follow 
that link to access any available bonus materials. If you would like to be notified of exclusive offers on 
new editions and updates, please check the box to receive email from us.

■ Chapter 7, “Human Factors”: Much of the text of this book is focused on the technical 
aspects of implementing model-driven DevOps. However, the technical challenges are only 
part of the journey. The importance of the human factors involving the breakdown of organiza-
tional silos, culture change, and the skills gap cannot be overstated. This chapter outlines why 
it is not enough to focus only on the technical capability, but also on the human side of imple-
menting DevOps.
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Consumable Infrastructure
In the preceding chapter, we explained the power of model-driven DevOps and the use of data models. 
To start the journey toward model-driven DevOps, your infrastructure must be consumable in a 
programmatic way. Therefore, in this chapter we discuss the concept of consumable infrastructure. 
Consumable infrastructure, simply put, is infrastructure that is interacted with through APIs via data 
models. Consumable infrastructure rapidly responds to the needs of an organization through APIs 
and platform-based simplification. As we explore later, we want to look at the network in terms of 
consuming services and capabilities and not just automating specific tasks. Consumable infrastructure 
greatly reduces the complexity of automation and makes it more accessible to operators as opposed to 
requiring deep programming expertise.

Automating Things to Do Stuff

When we last left Bob from ACME Corp, he was considering a new job offer from a competitor 
while the CIO, Haley, was just beginning to understand the true extent of Bob’s value to the 
company. It was clear that ACME Corp’s current methods for operating IT infrastructure were not 
aligned with the business’s goals of greater agility and lower risk. In fact, Haley was beginning to 
realize that she had a very large risk of disruption to the business if Bob left for a competitor.

Haley was becoming convinced that automating her IT infrastructure and implementing DevOps 
could meet her twin goals of increasing agility and lowering risk. She needed to take somebody 
like Bob and transform his knowledge into code while making the shift to DevOps. She knew this 
effort was going to be a significant amount of work, but she also knew that it was the right way 
forward. She would start right away.

When Bob walked into the office on Monday, he had a new meeting on his calendar with the 
ominous title “Network Automation Discussion.” Bob had built his career at ACME Corp through 
his knowledge of network design and protocols, combined with the ability to turn those designs 
into reality via the CLI. This was the value he brought to the company.

Chapter 3
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A couple years ago, he got excited and tried to do some simple automation using a script that 
would log in to a device and issue a few commands. His excitement did not last long. He quickly 
discovered that trying to parse the output of a list of commands was far from simple. The CLI was 
easy for humans to parse, but it turned out to be far trickier for a machine to understand the result 
of a configuration change or the output of a show command. He had to write code that would look 
for and parse certain language in the output. Writing this code was difficult, and even if he could 
do it, he knew that the CLI was different for each device in ACME Corp’s network. Writing unique 
code for hundreds or maybe thousands of individual devices was not something Bob had time 
for. The effort might pay off in the long run, but Bob had a network to operate. Like many network 
engineers before him, instead of investing all that time in custom language parsing code, he fell 
back to what had worked for the last few decades: managing every device, individually, through 
the command line.

Recalling his previous failed attempts, Bob was now concerned about the notion of automating 
network infrastructure. At the start of the meeting, Jane, Bob’s manager, laid out the grim truth to 
the network team. She said, “Our CIO is convinced that IT infrastructure automation will improve 
our efficiency, agility, and lower the risk of outages.” Like virtually every meeting involving network 
engineers, when the word automation was mentioned, a collective groan erupted. Jane heard 
comments such as “Over my dead body!” and “Not on my watch!” Bob, with a somber expression, 
said, “We tried that before, and it just doesn’t work.” Although, deep down, he knew he was 
overworked and unhappy, he had been involved in every critical change to the environment, and 
because developers were deploying code multiple times a day, critical changes were becoming a 
regular occurrence. There had to be some merit to the CIO’s automation strategy. Jane, in a firm 
tone, responded, “Well, what we are doing today is not working. Something needs to change. Any 
suggestions?” She made direct eye contact with Bob. He quickly reflected on his past automation 
failure and thought about what could be done to fix it. He knew that APIs are supposed to help 
with some of the previous issues, and even though he was not excited about learning something 
new, Bob offered a suggestion. “Okay, we all have had issues scripting network changes through 
the CLI. It is, well, painful.” He heard murmured agreement from the team. He offered a half smile 
and continued, “So why don’t we look at using APIs to automate our network infrastructure? Our 
vendors are always talking about how great APIs are.” “That is an excellent suggestion, Bob! I 
would like you to take the lead on this effort,” Jane replied. Bob’s smile faded. “That’s what I get 
for opening my big mouth,” he thought.

A week later, Bob picked up a ticket submitted by the person who manages the ACME Corp NTP 
servers. Due to changes occurring in the data center infrastructure, they needed to migrate the 
NTP servers to new IP addressing, and doing so required that the NTP server configurations on 
every network device be modified. He had been studying how to interact with network devices 
through their APIs for the last few days, and he thought that this might be a good opportunity to 
put his new skills to use.

After some trial and error using a tool called Postman, Bob was able to make a change through the 
API on one of the more modern devices in the lab. He verified that the change occurred success-
fully by examining the API return codes. “Success!” he shouted as he raised his fists in triumph. 
Then he checked the resulting configuration to find that his change only added new servers to the 
list instead of replacing the list. This process was going to be more complicated than he thought.
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It turns out that things like simple lists are not so simple to automate without some more compli-
cated logic to check for existing configuration. After more trial and error, he was finally able to 
script the process of retrieving the existing configuration, reconciling the old list with the new one, 
and pushing only the needed changes to the device, all via the API.

He then moved on to one of the older devices in the ACME Corp network and quickly discovered that 
it had no API. It was a CLI-only device. “Crud,” he thought. “It looks like I might need to automate this 
device some other way.” So, he looked at another common tool for network infrastructure automation 
called Ansible and discovered that an Ansible module supports this older device. After some trial and 
error with Ansible, Bob was able to make a playbook that achieved the same result on the older device, 
but unfortunately, it was done in a completely different tool with completely different syntax. “This is 
going to be ugly,” Bob thought. “Even if I somehow figure out how to automate all the different devices 
in whatever tool or language works for that device, I still need to figure out how to verify the results of 
each operation and somehow scale all these different operations to thousands of network devices. 
This is going to be really ugly,” he thought again. “There must be a better way.”

APIs
An application programming interface (API) is a way for two applications to interact with each other. 
In contrast, a command-line interface is a way for a human to interact with an application to retrieve 
data or make configuration changes. In the context of IT infrastructure, an API interaction is usually a 
two-way communication where some data is sent from an application to a device or controller platform 
for the purposes of retrieving operational information or making configuration changes.

APIs are a critical component of model-driven DevOps. As the name implies, model-driven DevOps 
makes heavy use of data models. API software on a device takes data and, using a data model to 
decipher that data, configures the various components of the device the way the manufacturer intended.

When network infrastructure is treated as a set of APIs, configuration consists of moving data, generally 
in the form of JSON or XML, between those APIs. This capability makes network operations more 
like cloud and application development. This type of interaction is a significant improvement over the 
legacy human-optimized CLI interaction.

The most common model-driven APIs for network devices use the NETCONF protocol with YANG 
data models. NETCONF pushes the data models encoded in XML over a secure transport layer and 
provides several operational advantages over CLI, including

■ Installation, manipulation, and deletion methods for configuration data

■ Multiple configuration data stores (such as candidate, running, startup)

■ Configuration validation and testing

■ Differentiation between configuration and state data

■ Configuration rollback
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Why API over CLI?
For decades, network engineers have used CLIs to configure network devices. A CLI is, for the most 
part, an effective human-to-device interface. When it comes to automating network devices, however, 
a CLI is a poor computer-to-network device interface. The main reason for this is that most CLIs are 
meant to be human readable; therefore, most CLIs have a language-like construction that makes it 
easier for humans to use. Unfortunately, human languages are difficult for computers to use.

To illustrate, let’s first look at a simple example of configuring the hostname on a Cisco IOS device. 
We use Ansible because it is one of the most popular ways of automating network devices, but the 
problem we are about to describe exists with most any CLI-based method of automation. Using 
Ansible parlance, we describe the desired end state of the hostname of a particular device. A hostname 
is a great use case because it is a scalar (that is, a single value). To change the hostname, the Ansible 
ios_config module does a simple textual comparison of the configuration. To set the hostname 
using Ansible, you would use the following YAML in a playbook:

- ios_config:

    lines:

      - hostname newname

If hostname newname is not present, it sends that line to the device. Even if a different hostname 
is present on the target device, because hostname is a scalar, the old hostname gets replaced by 
the desired hostname. However, as Bob painfully discovered, a list of NTP servers is more difficult. 
Suppose you’ve set the NTP server to 1.1.1.1 with the following YAML:

- ios_config:

    lines:

      - ntp server 1.1.1.1

Now you want to change your NTP server to 2.2.2.2, so you modify the YAML:

- ios_config:

    lines:

      - ntp server 2.2.2.2

Simple, right? But the problem is that you would end up with two NTP servers in the configuration:

ntp server 1.1.1.1

ntp server 2.2.2.2

The reason is that the Ansible ios_config module does not see ntp server 2.2.2.2 present 
in the configuration, so it sends the line. However, because ntp server is a list, it adds a new NTP 
server instead of replacing the existing one, giving you two NTP servers (one that you do not want). To 
end up with just 2.2.2.2 as your NTP server, you would have to know that 1.1.1.1 was already defined 
as an NTP server and explicitly remove it. This is also the case with ACLs, IP prefix-lists, and any 
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other list in IOS. The Ansible ios_config module (as well as the cli_config module) does not 
have a native way to describe the desired end state of something simple like NTP servers on a network 
device, much less something more complex like OSPF, QoS, or Multicast.

There are clearly ways to address this situation. For example, the Ansible ios_config module could 
be improved to know how to parse IOS syntax and look for any existing NTP server configuration and 
remove it, just as a human would. One problem with this approach, however, is that this more capable 
module would be re-implementing IOS parsing rules outside of IOS. This means that vendor changes 
to the IOS CLI would necessitate changes to the ios_config Ansible module, creating a maintain-
ability problem that would often result in lagging functionality. Furthermore, this approach would need 
to be taken with every vendor and/or device CLI available, making this approach unscalable.

The better way is to use an API. APIs are specifically designed for programmatic configuration of devices. 
To illustrate the advantages of the model-driven method using an API, let’s use the netconf-console
utility to get and set the NTP servers on a Cisco IOS-XE device. First, let’s see the current list of NTP 
servers. Listing 3-1 illustrates how to retrieve NTP configuration using netconf-console.

LISTING 3-1 Using netconf-console to Retrieve NTP Configuration

# netconf-console –host <device IP> --port 830 –user admin –password admin –db run-

ning –get-config –xpath /native/ntp

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" 

xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

  <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

    <ntp>

      <server xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ntp">

        <server-list>

          <ip-address>1.1.1.1</ip-address>

        </server-list>

        <server-list>

          <ip-address>2.2.2.2</ip-address>

        </server-list>

      </server>

    </ntp>

  </native>

</data>

Although this example is a wordier rendering of the same configuration, it is deterministic. All the 
NTP servers and their associated configuration are organized into one section of the tree. We can deal 
with it as a separate entity as opposed to being thrown in at the same level with other configuration 
information. Also, note that we were able to ask the device for just the NTP configuration information. 
No parsing required.
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Now let’s change the NTP servers. First, we take the previous output, change the IP address of 
the second NTP server, and specify that this operation should replace the server section with 
operation='replace'. The content of Listing 3-2 would normally go into a file named ntp.xml.

LISTING 3-2 XML to Change NTP Configuration

<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

  <ntp>

    <server xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ntp" operation='replace'>

      <server-list>

        <ip-address>1.1.1.1</ip-address>

      </server-list>

      <server-list>

        <ip-address>3.3.3.3</ip-address>

      </server-list>

    </server>

  </ntp>

</native>

Then we can push the XML payload to the device using netconf-console, as shown in Listing 3-3.

LISTING 3-3 Using netconf-console to Change NTP Configuration

# netconf-console –host <device IP> --port 830 –user admin –password admin –db 

running –edit-config ntp.xml

<ok xmlns="urn:ietf:params:xml:ns:8equire:base:1.0" 

xmlns:nc="urn:ietf:params:xml:ns:8equire:base:1.0"/>

The ok in the XML response indicates that the device accepted the change. Now let’s retrieve the NTP 
configuration and verify the results, as shown in Listing 3-4.

LISTING 3-4 Using netconf-console to Verify Configuration Change

# netconf-console –host <device IP> --port 830 –user admin –password admin –db 

running –get-config –xpath /native/ntp

<data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" 

xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

  <native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">

    <ntp>

      <server xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ntp">

        <server-list>

          <ip-address>1.1.1.1</ip-address>

        </server-list>

        <server-list>
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          <ip-address>3.3.3.3</ip-address>

        </server-list>

      </server>

    </ntp>

  </native>

</data>

The first thing that you might notice is that this was a lot of work just to change the NTP server. In the 
same way that human-to-device interfaces are not optimal for computers, computer-to-device inter-
faces are not optimal for humans. Having a machine-friendly, deterministic, and repeatable way of 
making changes in the environment is the necessary foundation for effective automation. Assembling 
a series of programmable operations into more complex workflows is where you start to see real effi-
ciency advantages.

Even though computer-to-device interfaces might look daunting at first and are not optimal for humans, 
humans still need to understand them in order to help computers use them for automation. Figure 3-1 
takes a closer look at this concept. Here we take data (the list of NTP servers that should be configured) 
from our source of truth, encode it into a payload as defined by a data model (XML in the case of 
NETCONF), and send the payload to the API (NETCONF in this case).

SoT Encoding Device
{DATA} {DATA}’

FIGURE 3-1 Encoding Data

This generic workflow can accommodate a host of use cases and APIs. For example, we can use a 
RESTCONF interface by simply changing the encoding to JSON (but using the same data model) and 
sending it to a RESTful interface. We can even stretch this notion to CLI-only devices by taking the 
data, encoding it as textual configuration tailored to that device, and delivering it via SSH. This yields 
a flexible framework, illustrated in Figure 3-2, with the flexibility to deliver the data via any encoding 
to any device using any API.

SoT

Transform
NETCONF

Device A

Device B

Device C

RESTCONF

SSH

{DATA}XML

{DATA}JSON

{DATA}CLI

{DATA}

{DATA}

{DATA}

FIGURE 3-2 Encoding Data for Different APIs
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This approach works for physical network infrastructure, but it also works for cloud infrastructure. For 
example, AWS CloudFormation is just source of truth data encoded in JSON using a data model and 
delivered via an API using an SDK like Boto3 for Python. Therefore, thinking in this manner allows 
you to use the same methodology for your entire IT infrastructure.

Platforms
A platform, in the context of model-driven DevOps, is a consolidation and simplification point for 
the devices in a network. Without platforms, you would need to configure each device individually, 
making IT much more cumbersome and time-consuming. The best examples of a platform are cloud 
infrastructure providers like AWS, Azure, and Google. They created platforms that provide abstracted 
services, such as compute, storage, or networking to an IT organization. No longer does an organization 
need to think about acquiring hardware, configuring that hardware into a system to support applica-
tions, and maintaining that hardware over time. This process is all abstracted as a service and provided 
via API. For example, a customer does not care what types of nodes are used for their compute service 
or how to configure them; that customer just wants the service to work. Platforms come in different 
forms with different capabilities, but they all aim to simplify IT and generally contain many of the 
attributes we describe in the remainder of this chapter.

Physical Hardware Provisioning
The idea of a platform also extends to the physical, on-premises network. Unlike cloud, where you 
don’t have to know or care about physical hardware, with on-premises infrastructure, it is a significant 
concern. To ease the deployment and provisioning of hardware, many platforms support technologies 
such as “plug and play” or “zero-touch provisioning.” This is also commonly known as Day 0 provi-
sioning, where a minimal configuration is automatically applied to a piece of physical hardware on 
bootup so that it can communicate with the platform to get a more complete, or Day 1, configuration. 
This book focuses mainly on Day 1 configuration and Day 2 operations, but it is useful to know that 
most platforms also ease the Day 0 provisioning of physical hardware.

Consolidated Control Point
Whether it is cloud or on-premises, the main benefit of a platform is the consolidated control point. 
The idea of a consolidated control point in a network came to prominence with the advent of software-
defined networking (SDN). SDN decouples the control plane (the part that decides where to send 
packets) of a network from the data plane (the part that does the forwarding of the packet). The devices 
in a pure SDN network have little to no ability to operate autonomously, rendering them inoperable 
without a central controller. Over time, however, this pure approach largely found equilibrium in 
devices that can either operate autonomously or as part of a controller-based fabric. A more pragmatic 
approach to SDN evolved whereby devices in the network operated as part of a distributed control 
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plane with a centralized controller managing network configuration and policy. This approach took 
the best parts of pure SDN (consolidated control point) and married it with the best parts of distributed 
control planes (scale and resiliency). In the context of networking, this more pragmatic approach to an 
SDN controller is what we refer to as a platform.

Northbound vs. Southbound APIs
In the IT infrastructure space, it is often useful to think of platform APIs as either northbound or 
southbound. A typical controller platform exposes a “northbound” API that is intended to provide 
functionality for other applications. A good example is the UI for the controller itself. Often the UI for 
the controller uses this same northbound API to retrieve data and make configuration changes. When a 
request is received via the northbound API, and the controller software determines that it needs to make 
changes to one or more devices, it uses a “southbound” API to talk with the various devices. These 
southbound APIs are specific to whatever API is exposed by the devices in the network. Different device 
vendors often have different APIs for their devices. As shown in Figure 3-3, a controller platform can 
consolidate many disparate vendor or device APIs into a single, unified, northbound API.

Control

Platform

Device A Device B Device C

Northbound API

APIX

APIA APIB APIC

Southbound APIs

FIGURE 3-3 Northbound vs. Southbound APIs

API and Feature Normalization
One important role that a platform can play is to normalize the API across a set of dissimilar devices. 
From our previous example, the platform would perform any data transformations internally and trans-
parently while presenting a single API to the user (see Figure 3-4).
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Platform

SoT
{DATA}

{DATA}XML
NETCONF

Device A

Device B

Device C

RESTCONF

SSH

{DATA}JSON

{DATA}CLI

REST

FIGURE 3-4 Platform API Normalization

This normalization greatly reduces the complexity of automating the network by allowing the auto-
mation tooling to work on a single data model against a single API. Without this regularization, the 
tooling would have to do the data model conversion and then call the correct API for each type of 
device available on the network. Recall that when Bob from ACME Corp realized that each type of 
device on the network had a different command line, requiring its own custom code, it seemed unman-
ageable. A platform with the ability to normalize to a single data model with a single API solves this 
issue.

Platforms further help by normalizing features across many dissimilar devices of varying capabilities. 
For example, many network devices do not have the capability to roll back configuration changes to 
a previous state. If state is added to the platform, then the platform can track changes as they occur so 
that it can return a device’s state back to its configuration before a change occurred. Furthermore, the 
storing of state in the platform allows for the comparison of what the state of a device should be in case 
out-of-band changes are made. If the device is out of sync with the platform, then the local change can 
either be adopted or overridden.

Fabricwide Services
In addition to normalization, a platform can provide fabricwide services to the network. One common 
fabricwide service is Ethernet Virtual Private Network (EVPN). EVPN is used to extend Ethernet 
Layer 2 services across a large campus or between sites over a Layer 3 routed network. It is considered 
a fabric technology because it relies on a central control plane based on BGP to distribute MAC 
addresses and other information that enables connectivity between end nodes. Without the control 
plane, the fabric does not function even though the individual boxes can function autonomously.

A platform can provide both a fabricwide view of the network and the services necessary to run that 
fabric (see Figure 3-5). These capabilities result in a substantial simplification of the network and 
enable services that would not be possible without this central function.
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APIX

APIA APIB APIC

Services State

FIGURE 3-5 Fabricwide Services

Scalability
Platforms also enable a greater scale in automating networks. Without a platform, the control node 
used for automation needs to communicate directly with each device instead of being able to optimize 
communications by taking advantage of state in the platform (see Figure 3-6). As an example, let’s 
look at the way that tools like Ansible make changes to a device. Ansible’s goal is to get the devices to 
a desired end state. To do that, it needs to check the current state of the device, compare that state to the 
desired end state, and then send the changes to the device. This operation doubles the communication 
between the control node and the end devices. To further complicate the issue, many operations work 
only on discrete parts of the configuration, meaning multiple operations need to occur to make one 
change.

Control

Device Device Device

All Communication

All Operations

FIGURE 3-6 Scaling Control Communications

When we introduce a platform, the communication between the platform and the device can be reduced 
to a minimized set of consolidated changes (see Figure 3-7).

Figure 3-8 illustrates how this architecture can also scale geographically. For geographically dispersed 
networks, these intermediary platforms can provide regional aggregation and other control plane services.
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Control

Platform

All Communication

All Operations

Min Operations

Min Communication

Device Device Device

FIGURE 3-7 Better Scale Through Platforms

Control

Platform Platform

Device Device Device Device Device

Region 2Region 1

Device

FIGURE 3-8 Scaling Platforms Geographically

Summary
This chapter covered the two main factors for successful infrastructure automation: APIs and plat-
forms. We defined consumable infrastructure and demonstrated how the APIs coupled with data models 
discussed in the preceding chapter enable it. Furthermore, we illustrated how APIs enable deterministic 
and efficient machine-to-machine interactions and are critical for successful automation. Platforms 
enable you to better scale operations made via API, provision physical hardware, and enable you to 
build more complex automated services on top of your infrastructure. We also examined what makes 
cloud platforms so powerful and how those same platform concepts can be applied to on-prem infra-
structure. In the following chapters, we cover how to represent your infrastructure as code and then 
how to take some of the high-level things you have learned so far and assemble them into a framework 
for infrastructure automation at scale.
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