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Preface

“Audience, level,

and treatment —

a description of
such matters is
what prefaces are
supposed to be
about.”

—P. R. Halmos [173]

“People do acquire a
little brief author-
ity by equipping
themselves with
Jjargon: they can
pontificate and air a
superficial expertise.
But what we should
ask of educated
mathematicians is
not what they can
speechify about,
nor even what they
know about the
existing corpus
of mathematical
knowledge, but
rather what can
they now do with
their learning and
whether they can
actually solve math-
ematical problems
arising in practice.
In short, we look for
deeds not words.”

— J. Hammersley [176]

THIS BOOK IS BASED on a course of the same name that has been taught
annually at Stanford University since 1970. About fifty students have taken it
each year —juniors and seniors, but mostly graduate students —and alumni
of these classes have begun to spawn similar courses elsewhere. Thus the time
seems ripe to present the material to a wider audience (including sophomores).

It was a dark and stormy decade when Concrete Mathematics was born.
Long-held values were constantly being questioned during those turbulent
years; college campuses were hotbeds of controversy. The college curriculum
itself was challenged, and mathematics did not escape scrutiny. John Ham-
mersley had just written a thought-provoking article “On the enfeeblement of
mathematical skills by ‘Modern Mathematics’ and by similar soft intellectual
trash in schools and universities” [176]; other worried mathematicians [332]
even asked, “Can mathematics be saved?” One of the present authors had
embarked on a series of books called The Art of Computer Programming, and
in writing the first volume he (DEK) had found that there were mathematical
tools missing from his repertoire; the mathematics he needed for a thorough,
well-grounded understanding of computer programs was quite different from
what he'd learned as a mathematics major in college. So he introduced a new
course, teaching what he wished somebody had taught him.

The course title “Concrete Mathematics” was originally intended as an
antidote to “Abstract Mathematics,’ since concrete classical results were rap-
idly being swept out of the modern mathematical curriculum by a new wave
of abstract ideas popularly called the “New Math” Abstract mathematics is a
wonderful subject, and there’s nothing wrong with it: It’s beautiful, general,
and useful. But its adherents had become deluded that the rest of mathemat-
ics was inferior and no longer worthy of attention. The goal of generalization
had become so fashionable that a generation of mathematicians had become
unable to relish beauty in the particular, to enjoy the challenge of solving
quantitative problems, or to appreciate the value of technique. Abstract math-
ematics was becoming inbred and losing touch with reality; mathematical ed-
ucation needed a concrete counterweight in order to restore a healthy balance.

When DEK taught Concrete Mathematics at Stanford for the first time,
he explained the somewhat strange title by saying that it was his attempt
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to teach a math course that was hard instead of soft. He announced that,
contrary to the expectations of some of his colleagues, he was not going to
teach the Theory of Aggregates, nor Stone’s Embedding Theorem, nor even
the Stone-Cech compactification. (Several students from the civil engineering
department got up and quietly left the room.)

Although Concrete Mathematics began as a reaction against other trends,
the main reasons for its existence were positive instead of negative. And as
the course continued its popular place in the curriculum, its subject matter
“solidified” and proved to be valuable in a variety of new applications. Mean-
while, independent confirmation for the appropriateness of the name came
from another direction, when Z.A. Melzak published two volumes entitled
Companion to Concrete Mathematics [267].

The material of concrete mathematics may seem at first to be a disparate
bag of tricks, but practice makes it into a disciplined set of tools. Indeed, the
techniques have an underlying unity and a strong appeal for many people.
When another one of the authors (RLG) first taught the course in 1979, the
students had such fun that they decided to hold a class reunion a year later.

But what exactly is Concrete Mathematics? It is a blend of coNtinuous
and disCRETE mathematics. More concretely, it is the controlled manipulation
of mathematical formulas, using a collection of techniques for solving prob-
lems. Once you, the reader, have learned the material in this book, all you
will need is a cool head, a large sheet of paper, and fairly decent handwriting
in order to evaluate horrendous-looking sums, to solve complex recurrence
relations, and to discover subtle patterns in data. You will be so fluent in
algebraic techniques that you will often find it easier to obtain exact results
than to settle for approximate answers that are valid only in a limiting sense.

The major topics treated in this book include sums, recurrences, ele-
mentary number theory, binomial coefficients, generating functions, discrete
probability, and asymptotic methods. The emphasis is on manipulative tech-
nique rather than on existence theorems or combinatorial reasoning; the goal
is for each reader to become as familiar with discrete operations (like the
greatest-integer function and finite summation) as a student of calculus is
familiar with continuous operations (like the absolute-value function and in-
definite integration).

Notice that this list of topics is quite different from what is usually taught
nowadays in undergraduate courses entitled “Discrete Mathematics” There-
fore the subject needs a distinctive name, and “Concrete Mathematics” has
proved to be as suitable as any other.

The original textbook for Stanford’s course on concrete mathematics was
the “Mathematical Preliminaries” section in The Art of Computer Program-
ming [207]. But the presentation in those 110 pages is quite terse, so another
author (OP) was inspired to draft a lengthy set of supplementary notes. The

“The heart of math-
ematics consists

of concrete exam-
ples and concrete
problems.”

—P. R. Halmos [172]

“It is downright
sinful to teach the
abstract before the
concrete.”

—2Z.A. Melzak [267]

Concrete Mathe-
matics is a bridge
to abstract mathe-
matics.

“The advanced
reader who skips
parts that appear
too elementary may
miss more than
the less advanced
reader who skips
parts that appear
too complex.”

—G. Pélya [297]

(We’re not bold
enough to try
Distinuous Math-
ematics.)



“ .. a concrete

life preserver
thrown to students
sinking in a sea of
abstraction.”

— W. Gottschalk

Math graffiti:

Kilroy wasn’t Haar.
Free the group.
Nuke the kernel.
Power to the n.
N=1 = P=NP.

I have only a
marginal interest
in this subject.

This was the most
enjoyable course
I’ve ever had. But
it might be nice
to summarize the
material as you
go along.

PREFACE vii

present book is an outgrowth of those notes; it is an expansion of, and a more
leisurely introduction to, the material of Mathematical Preliminaries. Some of
the more advanced parts have been omitted; on the other hand, several topics
not found there have been included here so that the story will be complete.

The authors have enjoyed putting this book together because the subject
began to jell and to take on a life of its own before our eyes; this book almost
seemed to write itself. Moreover, the somewhat unconventional approaches
we have adopted in several places have seemed to fit together so well, after
these years of experience, that we can’t help feeling that this book is a kind
of manifesto about our favorite way to do mathematics. So we think the book
has turned out to be a tale of mathematical beauty and surprise, and we hope
that our readers will share at least e of the pleasure we had while writing it.

Since this book was born in a university setting, we have tried to capture
the spirit of a contemporary classroom by adopting an informal style. Some
people think that mathematics is a serious business that must always be cold
and dry; but we think mathematics is fun, and we aren’t ashamed to admit
the fact. Why should a strict boundary line be drawn between work and
play? Concrete mathematics is full of appealing patterns; the manipulations
are not always easy, but the answers can be astonishingly attractive. The
joys and sorrows of mathematical work are reflected explicitly in this book
because they are part of our lives.

Students always know better than their teachers, so we have asked the
first students of this material to contribute their frank opinions, as “graffiti”
in the margins. Some of these marginal markings are merely corny, some
are profound; some of them warn about ambiguities or obscurities, others
are typical comments made by wise guys in the back row; some are positive,
some are negative, some are zero. But they all are real indications of feelings
that should make the text material easier to assimilate. (The inspiration for
such marginal notes comes from a student handbook entitled Approaching
Stanford, where the official university line is counterbalanced by the remarks
of outgoing students. For example, Stanford says, “There are a few things
you cannot miss in this amorphous shape which is Stanford”; the margin
says, “Amorphous ... what the h*** does that mean? Typical of the pseudo-
intellectualism around here.” Stanford: “There is no end to the potential of
a group of students living together.” Graffito: “Stanford dorms are like zoos
without a keeper.”)

The margins also include direct quotations from famous mathematicians
of past generations, giving the actual words in which they announced some
of their fundamental discoveries. Somehow it seems appropriate to mix the
words of Leibniz, Euler, Gauss, and others with those of the people who
will be continuing the work. Mathematics is an ongoing endeavor for people
everywhere; many strands are being woven into one rich fabric.
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This book contains more than 500 exercises, divided into six categories:

e  Warmups are exercises that EVERY READER should try to do when first
reading the material.

e Basics are exercises to develop facts that are best learned by trying
one’s own derivation rather than by reading somebody else’s.

e Homework exercises are problems intended to deepen an understand-
ing of material in the current chapter.

e Exam problems typically involve ideas from two or more chapters si-
multaneously; they are generally intended for use in take-home exams
(not for in-class exams under time pressure).

e Bonus problems go beyond what an average student of concrete math-
ematics is expected to handle while taking a course based on this book;
they extend the text in interesting ways.

e Research problems may or may not be humanly solvable, but the ones
presented here seem to be worth a try (without time pressure).

Answers to all the exercises appear in Appendix A, often with additional infor-
mation about related results. (Of course, the “answers” to research problems
are incomplete; but even in these cases, partial results or hints are given that
might prove to be helpful.) Readers are encouraged to look at the answers,
especially the answers to the warmup problems, but only AFTER making a
serious attempt to solve the problem without peeking.

We have tried in Appendix C to give proper credit to the sources of
each exercise, since a great deal of creativity and/or luck often goes into
the design of an instructive problem. Mathematicians have unfortunately
developed a tradition of borrowing exercises without any acknowledgment;
we believe that the opposite tradition, practiced for example by books and
magazines about chess (where names, dates, and locations of original chess
problems are routinely specified) is far superior. However, we have not been
able to pin down the sources of many problems that have become part of the
folklore. If any reader knows the origin of an exercise for which our citation
is missing or inaccurate, we would be glad to learn the details so that we can
correct the omission in subsequent editions of this book.

The typeface used for mathematics throughout this book is a new design
by Hermann Zapf [227], commissioned by the American Mathematical Society
and developed with the help of a committee that included B. Beeton, R.P.
Boas, L. K. Durst, D. E. Knuth, P. Murdock, R. S. Palais, P. Renz, E. Swanson,
S.B. Whidden, and W. B. Woolf. The underlying philosophy of Zapf’s design
is to capture the flavor of mathematics as it might be written by a mathemati-
cian with excellent handwriting. A handwritten rather than mechanical style
is appropriate because people generally create mathematics with pen, pencil,

I see:
Concrete mathemat-
ics means drilling.

The homework was
tough but I learned
a lot. It was worth
every hour.

Take-home exams
are vital— keep
them.

Exams were harder
than the homework
led me to expect.

Cheaters may pass
this course by just
copying the an-
swers, but they’re
only cheating
themselves.

Difficult exams
don’t take into ac-
count students who
have other classes
to prepare for.



I’m unaccustomed
to this face.

Dear prof: Thanks
for (1) the puns,
(2) the subject
matter.

I don’t see how
what I've learned
will ever help me.

I had a Iot of trou-
ble in this class, but
I know it sharpened
my math skills and
my thinking skills.

I would advise the
casual student to
stay away from this
course.

PREFACE

or chalk. (For example, one of the trademarks of the new design is the symbol
for zero, ‘0’, which is slightly pointed at the top because a handwritten zero
rarely closes together smoothly when the curve returns to its starting point.)
The letters are upright, not italic, so that subscripts, superscripts, and ac-
cents are more easily fitted with ordinary symbols. This new type family has
been named AMS Euler, after the great Swiss mathematician Leonhard Euler
(1707-1783) who discovered so much of mathematics as we know it today.
The alphabets include Euler Text (AaBb Cc through Xx Yy Zz), Euler Frak-
tur (AaBb Cc through XrYy 33), and Euler Script Capitals (A B € through
XY2Z), as well as Euler Greek (AaBp 'y through Xx W1 Qw) and special
symbols such as p and X. We are especially pleased to be able to inaugurate
the Euler family of typefaces in this book, because Leonhard Euler’s spirit
truly lives on every page: Concrete mathematics is Eulerian mathematics.

The authors are extremely grateful to Andrei Broder, Ernst Mayr, An-
drew Yao, and Frances Yao, who contributed greatly to this book during the
years that they taught Concrete Mathematics at Stanford. Furthermore we
offer 1024 thanks to the teaching assistants who creatively transcribed what
took place in class each year and who helped to design the examination ques-
tions; their names are listed in Appendix C. This book, which is essentially
a compendium of sixteen years’ worth of lecture notes, would have been im-
possible without their first-rate work.

Many other people have helped to make this book a reality. For example,
we wish to commend the students at Brown, Columbia, CUNY, Princeton,
Rice, and Stanford who contributed the choice graffiti and helped to debug
our first drafts. Owur contacts at Addison-Wesley were especially efficient
and helpful; in particular, we wish to thank our publisher (Peter Gordon),
production supervisor (Bette Aaronson), designer (Roy Brown), and copy ed-
itor (Lyn Dupré). The National Science Foundation and the Office of Naval
Research have given invaluable support. Cheryl Graham was tremendously
helpful as we prepared the index. And above all, we wish to thank our wives
(Fan, Jill, and Amy) for their patience, support, encouragement, and ideas.

This second edition features a new Section 5.8, which describes some
important ideas that Doron Zeilberger discovered shortly after the first edition
went to press. Additional improvements to the first printing can also be found
on almost every page.

We have tried to produce a perfect book, but we are imperfect authors.
Therefore we solicit help in correcting any mistakes that we've made. A re-
ward of $2.56 will gratefully be conveyed to anyone who is the first to report
any error, whether it is mathematical, historical, or typographical.

Murray Hill, New Jersey —RLG
and Stanford, California DEK
May 1988 and October 1993 OP
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A Note on Notation

SOME OF THE SYMBOLISM in this book has not (yet?) become standard.
Here is a list of notations that might be unfamiliar to readers who have learned
similar material from other books, together with the page numbers where
these notations are explained. (See the general index, at the end of the book,
for references to more standard notations.)

Notation Name Page

Inx natural logarithm: log, x 276

lgx binary logarithm: log, x 70

log x common logarithm: log;,x 449

|x] floor: max{n | n < x, integer n} 67

[x] ceiling: min{n | n > x, integer n} 67

x mod y remainder: x —y|x/y] 82

{x} fractional part: x mod 1 70

Z f(x) ox indefinite summation 48

b . .
Z f(x) &x definite summation 49
a

X falling factorial power: x!/(x —n)! 47,211

x™ rising factorial power: I'(x +n)/T'(x) 48,211

nj subfactorial: n!/0! —n!/1+---+ (=1)"n!/n! 194
If you don’t under-

Rz real part: x,if z=x+1y 64  stand what the
x denotes at the

Jz imaginary part: y, if z=x+1y 64  bottom of this page,
try asking your

H, harmonic number: 1/14---4+1/n 29  Latin professor
instead of your

HT(lX) generalized harmonic number: 1/1*+---+1/n* 277  math professor.



Prestressed concrete
mathematics is con-
crete mathematics
that’s preceded by
a bewildering list

of notations.

Also ‘nonstring’ is
a string.

A NOTE ON NOTATION xi

£ (2) mth derivative of f at z 470
[:J Stirling cycle number (the “first kind”) 259
{n} Stirling subset number (the “second kind”) 258
m
n .
< > Eulerian number 267
m
n .
<< >> Second-order Eulerian number 270
m
(A ... a0)b radix notation for ) - ; axb* 11
K(aj,...,an) continuant polynomial 302
a,b . .
F . ‘ z hypergeometric function 205
#A cardinality: number of elements in the set A 39
[z"] f(z) coefficient of z™ in f(z) 197
[oc..B] closed interval: the set {x | & < x < B} 73
[m=n] 1 if m = n, otherwise 0 * 24
[m\n] 1 if m divides n, otherwise 0 * 102
[m\n] 1 if m exactly divides n, otherwise 0 * 146
[mLn] 1 if m is relatively prime to n, otherwise 0 * 115

*In general, if S is any statement that can be true or false, the bracketed
notation [S] stands for 1 if S is true, O otherwise.

Throughout this text, we use single-quote marks (‘...’) to delimit text
as it is written, double-quote marks (“...") for a phrase as it is spoken. Thus,
the string of letters ‘string’ is sometimes called a “string”

An expression of the form ‘a/bc’ means the same as ‘a/(bc)’. Moreover,
logx/logy = (logx)/(logy) and 2n! =2(n!).
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Integer Functions

)Ouch.(

WHOLE NUMBERS constitute the backbone of discrete mathematics, and we
often need to convert from fractions or arbitrary real numbers to integers. Our
goal in this chapter is to gain familiarity and fluency with such conversions
and to learn some of their remarkable properties.

3.1 FLOORS AND CEILINGS

We start by covering the floor (greatest integer) and ceiling (least
integer) functions, which are defined for all real x as follows:

|x] = the greatest integer less than or equal to x;

(3-1)

[x] = the least integer greater than or equal to x.

Kenneth E. Iverson introduced this notation, as well as the names “floor” and
“ceiling;’ early in the 1960s [191, page 12]. He found that typesetters could
handle the symbols by shaving the tops and bottoms off of ‘[’ and ‘]’. His
notation has become sufficiently popular that floor and ceiling brackets can
now be used in a technical paper without an explanation of what they mean.
Until recently, people had most often been writing ¢[x]’ for the greatest integer
< x, without a good equivalent for the least integer function. Some authors
had even tried to use ‘]x['—with a predictable lack of success.

Besides variations in notation, there are variations in the functions them-
selves. For example, some pocket calculators have an INT function, defined
as |[x| when x is positive and [x] when x is negative. The designers of
these calculators probably wanted their INT function to satisfy the iden-
tity INT(—x) = —INT(x). But we’ll stick to our floor and ceiling functions,
because they have even nicer properties than this.

One good way to become familiar with the floor and ceiling functions
is to understand their graphs, which form staircase-like patterns above and

67
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below the line f(x) = x:

X =—e tf(x) f(x) =x
31 eeed .4

32 o 2 30«

-

)

YYTYy 2 P -3
X =€

We see from the graph that, for example,

leJ=2, [-eJ=-3,
=3, [-el=-2,

since e = 2.71828... .

By staring at this illustration we can observe several facts about floors
and ceilings. First, since the floor function lies on or below the diagonal line
f(x) = x, we have |x| < x; similarly [x] > x. (This, of course, is quite
obvious from the definition.) The two functions are equal precisely at the
integer points:

x] = x = x is an integer = [x] = x.

(We use the notation ‘>’ to mean “if and only if”) Furthermore, when they
differ the ceiling is exactly 1 higher than the floor:

[x] — [x] = [xis not an integer]. (3.2) cute.
By Iverson’s bracket
If we shift the diagonal line down one unit, it lies completely below the floor ~ convention, this is a
function, so x — 1 < |x]; similarly x4+ 1 > [x]. Combining these observations complete equation.
gives us

x—1 < [x] € x < [x] < x+1. (3-3)
Finally, the functions are reflections of each other about both axes:

=] = =[xI;  [=x] = —[x]. (3-4)
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Thus each is easily expressible in terms of the other. This fact helps to
explain why the ceiling function once had no notation of its own. But we
see ceilings often enough to warrant giving them special symbols, just as we
have adopted special notations for rising powers as well as falling powers.
Mathematicians have long had both sine and cosine, tangent and cotangent,

Next week we’re secant and cosecant, max and min; now we also have both floor and ceiling.

getting walls. To actually prove properties about the floor and ceiling functions, rather
than just to observe such facts graphically, the following four rules are espe-
cially useful:

[x]=n <= n<x<n+1, (a)
[x]=n & x—-1<n<x, (b)
[X]=n &= mn-1l<x<n, (¢ (3:5)
[x]=n = x<n<x+1. (d)

(We assume in all four cases that n is an integer and that x is real.) Rules

(a) and (c) are immediate consequences of definition (3.1); rules (b) and (d)

are the same but with the inequalities rearranged so that n is in the middle.
It’s possible to move an integer term in or out of a floor (or ceiling):

[x+n| = [x]+n, integer n. (3.6)

(Because rule (3.5(a)) says that this assertion is equivalent to the inequalities
[x] +n < x+n < |x] +n+1.) But similar operations, like moving out a
constant factor, cannot be done in general. For example, we have |nx| # n|x|
when n = 2 and x = 1/2. This means that floor and ceiling brackets are
comparatively inflexible. We are usually happy if we can get rid of them or if
we can prove anything at all when they are present.

It turns out that there are many situations in which floor and ceiling
brackets are redundant, so that we can insert or delete them at will. For
example, any inequality between a real and an integer is equivalent to a floor
or ceiling inequality between integers:

x<n <& [x|]<n, (a)
n<x << n<]Jx], (b) (3.7)
x<n e [xKl<n, (0 37
n<x <<= n<]|[x|. (d)

These rules are easily proved. For example, if x < n then surely |x| < n, since
|x] < x. Conversely, if [x] < n then we must have x < n, since x < [x] + 1
and [x]+1<n.

It would be nice if the four rules in (3.7) were as easy to remember as
they are to prove. Each inequality without floor or ceiling corresponds to the
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same inequality with floor or with ceiling; but we need to think twice before
deciding which of the two is appropriate.

The difference between x and |x] is called the fractional part of x, and
it arises often enough in applications to deserve its own notation:

o = x—|x]. (38)

We sometimes call |x] the integer part of x, since x = |x] + {x}. If a real
number x can be written in the form x = n + 0, where n is an integer and
0 <0 < 1, we can conclude by (3.5(a)) that n = [x] and 6 = {x}.

Identity (3.6) doesn’t hold if n is an arbitrary real. But we can deduce
that there are only two possibilities for |x +y] in general: If we write x =
|x] +{x} and y = |y] + {y}, then we have |[x +y]| = [x]| + [y] + [{x} + {y}].
And since 0 < {x} + {y} < 2, we find that sometimes [x +y| is |x] + [y],
otherwise it’s [x] + |y] + 1.

3.2 FLOOR/CEILING APPLICATIONS

We've now seen the basic tools for handling floors and ceilings. Let’s
put them to use, starting with an easy problem: What’s [1g35]? (Following
a convention that many authors have proposed independently, we use ‘Ig’ to
denote the base-2 logarithm.) Well, since 2° < 35 < 2°, we can take logs to
get 5 < 1g 35 < 6; so relation (3.5(c)) tells us that [1g35] = 6.

Note that the number 35 is six bits long when written in radix 2 notation:
35 = (100011);,. Is it always true that [lgn] is the length of n written in
binary? Not quite. We also need six bits to write 32 = (100000),. So [lgn]
is the wrong answer to the problem. (It fails only when n is a power of 2,
but that’s infinitely many failures.) We can find a correct answer by realizing
that it takes m bits to write each number n such that 2™~ ! < n < 2™; thus
(3-5(a)) tells us that m — 1 = |lgn], so m = |lgn| + 1. That is, we need
|lgn| + 1 bits to express 1 in binary, for all n > 0. Alternatively, a similar
derivation yields the answer [lg(n + 1)]; this formula holds for n = 0 as well,
if we're willing to say that it takes zero bits to write n = 0 in binary.

Let’s look next at expressions with several floors or ceilings. What is
[[x]]? Easy—since |x] is an integer, [[x]| is just [x]. So is any other ex-
pression with an innermost | x| surrounded by any number of floors or ceilings.

Here’s a tougher problem: Prove or disprove the assertion

VI = v,

Equality obviously holds when x is an integer, because x = [x]. And there’s
equality in the special cases m = 3.14159..., e = 2.71828..., and ¢ =
(14++/5)/2 =1.61803..., because we get 1 = 1. Our failure to find a coun-
terexample suggests that equality holds in general, so let’s try to prove it.

real x > 0. (3-9)

Hmmm. We’d bet-
ter not write {x}
for the fractional
part when it could
be confused with
the set containing x
as its only element.

The second case
occurs if and only
if there’s a “carry”
at the position of
the decimal point,
when the fractional
parts {x} and {y}
are added together.

(Of course m, e,
and ¢ are the
obvious first real
numbers to try,
aren’t they?)



Skepticism is
healthy only to
a limited extent.
Being skeptical
about proofs and
programs (particu-
larly your own) will
probably keep your
grades healthy and
your job fairly se-
cure. But applying
that much skepti-
cism will probably
also keep you shut
away working all
the time, instead
of letting you get
out for exercise and
relaxation.
Too much skepti-
cism is an open in-
vitation to the state
of rigor mortis,
where you become
so worried about
being correct and
rigorous that you
never get anything
finished.

— A skeptic

(This observation
was made by R. J.
McEliece when he
was an undergrad.)
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Incidentally, when we're faced with a “prove or disprove,” we’re usually
better off trying first to disprove with a counterexample, for two reasons:
A disproof is potentially easier (we need just one counterexample); and nit-
picking arouses our creative juices. Even if the given assertion is true, our
search for a counterexample often leads us to a proof, as soon as we see why
a counterexample is impossible. Besides, it’s healthy to be skeptical.

If we try to prove that |\/[x]| = [v/x] with the help of calculus, we might
start by decomposing x into its integer and fractional parts [x| +{x} =n+6
and then expanding the square root using the binomial theorem: (n+0)'/? =
n'/2 £ n=120/2 —n—3/292/8 + - ... But this approach gets pretty messy.

It’s much easier to use the tools we’ve developed. Here’s a possible strat-
egy: Somehow strip off the outer floor and square root of L\/m J, then re-
move the inner floor, then add back the outer stuff to get |/x]|. OK. We let
m = |/[x]] and invoke (3.5(a)), giving m < V/[x] < m+1. That removes
the outer floor bracket without losing any information. Squaring, since all
three expressions are nonnegative, we have m? < x| < (m + 1)2. That gets
rid of the square root. Next we remove the floor, using (3.7(d)) for the left
inequality and (3.7(a)) for the right: m? < x < (m + 1)2. It’s now a simple
matter to retrace our steps, taking square roots to get m < v/x < m+ 1 and
invoking (3.5(a)) to get m = [/x]. Thus |\/[x]] = m = [y/x]; the assertion
is true. Similarly, we can prove that

[VIXT] = [vx1,

The proof we just found doesn’t rely heavily on the properties of square
roots. A closer look shows that we can generalize the ideas and prove much
more: Let f(x) be any continuous, monotonically increasing function on an
interval of the real numbers, with the property that

real x > 0.

f(x) = integer = x = integer.

(The symbol ‘=’ means “implies”) Then we have

O] = [f([x])] [T = [FIxD1

and (3-10)

whenever f(x), f(|x]), and f([x]) are defined. Let’s prove this general prop-
erty for ceilings, since we did floors earlier and since the proof for floors is
almost the same. If x = [x], there’s nothing to prove. Otherwise x < [x],
and f(x) < f([x]) since f is increasing. Hence [f(x)] < [f([x])], since [] is
nondecreasing. If [f(x)] < [f([x])], there must be a number y such that
x <y < [x] and f(y) = [f(x)], since f is continuous. This y is an integer, be-
cause of f’s special property. But there cannot be an integer strictly between
|x] and [x]. This contradiction implies that we must have [f(x)] = [f([x])].
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An important special case of this theorem is worth noting explicitly:

{XerJ _ {LXJerJ nd ernﬂ _ Wx]erL (3.11)

n n n n

if m and n are integers and the denominator n is positive. For example, let

m = 0; we have |[|x/10]/10]/10] = [x/1000]. Dividing thrice by 10 and

throwing off digits is the same as dividing by 1000 and tossing the remainder.
Let’s try now to prove or disprove another statement:

[V1x]] Z [Vx], realx>0.

This works when x = 7 and x = e, but it fails when x = ¢; so we know that
it isn’t true in general.

Before going any further, let’s digress a minute to discuss different levels
of problems that might appear in books about mathematics:

Level 1. Given an explicit object x and an explicit property P(x), prove that
P(x) is true. For example, “Prove that |7t] = 3.” Here the problem involves
finding a proof of some purported fact.

Level 2. Given an explicit set X and an explicit property P(x), prove that
P(x) is true for all x € X. For example, “Prove that |x| < x for all real x.”
Again the problem involves finding a proof, but the proof this time must be
general. We're doing algebra, not just arithmetic.

Level 3. Given an explicit set X and an explicit property P(x), prove or

disprove that P(x) is true for all x € X. For example, “Prove or disprove In my other texts
_ ” ) iy “prove or disprove”
that [/ LXH = [/x] for all r.eal X = 0 Here ther(? s an additional level seems to mean the
of uncertainty; the outcome might go either way. This is closer to the real  gyme as “prove,”
situation a mathematician constantly faces: Assertions that get into books about 99.44% of
tend to be true, but new things have to be looked at with a jaundiced eye. If ?heﬂf{mg; b;{lt not
. . . In tnis DOOK.
the statement is false, our job is to find a counterexample. If the statement

is true, we must find a proof as in level 2.

Level 4. Given an explicit set X and an explicit property P(x), find a neces-

sary and suffictent condition Q(x) that P(x) is true. For example, “Find a

necessary and sufficient condition that [x| > [x].” The problem is to find Q

such that P(x) < Q(x). Of course, there’s always a trivial answer; we can

take Q(x) = P(x). But the implied requirement is to find a condition that’s as

simple as possible. Creativity is required to discover a simple condition that But no simpler.
will work. (For example, in this case, “|x| > [x] <= x is an integer”) The —A. Einstein
extra element of discovery needed to find Q(x) makes this sort of problem

more difficult, but it’s more typical of what mathematicians must do in the

“real world” Finally, of course, a proof must be given that P(x) is true if and

only if Q(x) is true.
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Level 5. Given an explicit set X, find an interesting property P(x) of its
elements. Now we're in the scary domain of pure research, where students
might think that total chaos reigns. This is real mathematics. Authors of
textbooks rarely dare to pose level 5 problems.

End of digression. But let’s convert the last question we looked at from
level 3 to level 4: What is a necessary and sufficient condition that ( [x] W =
[v/x]? We have observed that equality holds when x = 3.142 but not when
x = 1.618; further experimentation shows that it fails also when x is between
Home of the 9 and 10. Oho. Yes. We see that bad cases occur whenever m? < x < m? +1,
Toledo Mudhens. since this gives m on the left and m + 1 on the right. In all other cases
where \/x is defined, namely when x = 0 or m? +1 < x < (m + 1)?, we
get equality. The following statement is therefore necessary and sufficient for
equality: Either x is an integer or /|x] isn’t.
For our next problem let’s consider a handy new notation, suggested
by C.A.R. Hoare and Lyle Ramshaw, for intervals of the real line: [x..p]
denotes the set of real numbers x such that « < x < . This set is called
a closed interval because it contains both endpoints « and 3. The interval
containing neither endpoint, denoted by («.. ), consists of all x such that
® < x < f; this is called an open interval. And the intervals [x..[) and
(c..B], which contain just one endpoint, are defined similarly and called
(Or, by pessimists, half-open.
half-closed.) How many integers are contained in such intervals? The half-open inter-
vals are easier, so we start with them. In fact half-open intervals are almost
always nicer than open or closed intervals. For example, they're additive —we
can combine the half-open intervals [«..3) and [ ..7v) to form the half-open
interval [«..vy). This wouldn’t work with open intervals because the point 3
would be excluded, and it could cause problems with closed intervals because
3 would be included twice.
Back to our problem. The answer is easy if « and 3 are integers: Then
[c..p) contains the B — o integers o, «+ 1, ..., p — 1, assuming that o < B.
Similarly (.. ] contains 3 — « integers in such a case. But our problem is
harder, because « and 3 are arbitrary reals. We can convert it to the easier
problem, though, since

a<n<p = [d] < n
a<n<pP = lx] < n
when n is an integer, according to (3.7). The intervals on the right have
integer endpoints and contain the same number of integers as those on the left,
which have real endpoints. So the interval [«..3) contains exactly [B] — [«]
integers, and («..p] contains || — |«]. This is a case where we actually
want to introduce floor or ceiling brackets, instead of getting rid of them.
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By the way, there’s a mnemonic for remembering which case uses floors
and which uses ceilings: Half-open intervals that include the left endpoint
but not the right (such as 0 < 6 < 1) are slightly more common than those
that include the right endpoint but not the left; and floors are slightly more
common than ceilings. So by Murphy’s Law, the correct rule is the opposite
of what we’d expect — ceilings for [«..) and floors for (.. 3].

Similar analyses show that the closed interval [«..[3] contains exactly
|B]—[«]+1 integers and that the open interval («.. () contains [B]—|x|—T;
but we place the additional restriction o # 3 on the latter so that the formula
won'’t ever embarrass us by claiming that an empty interval («..«) contains
a total of —1 integers. To summarize, we’'ve deduced the following facts:

interval integers contained restrictions

(.. ] [B) — [oc] +1 x< B,

.. B) [B] — f«] x< B, (312)
(O(f)] UBJ7|_OCJ @ < B)

(c..B) Bl — L] =1 x<P.

Now here’s a problem we can’t refuse. The Concrete Math Club has a
casino (open only to purchasers of this book) in which there’s a roulette wheel
with one thousand slots, numbered 1 to 1000. If the number n that comes up
on a spin is divisible by the floor of its cube root, that is, if

[Vn] \ n,

then it’s a winner and the house pays us $5; otherwise it’s a loser and we
must pay $1. (The notation a\b, read “a divides b’ means that b is an exact
multiple of a; Chapter 4 investigates this relation carefully.) Can we expect
to make money if we play this game?

We can compute the average winnings—that is, the amount we’ll win
(or lose) per play — by first counting the number W of winners and the num-
ber L = 1000 — W of losers. If each number comes up once during 1000 plays,
we win 5W dollars and lose L dollars, so the average winnings will be

5W—L 5W — (1000 — W) 6W — 1000

1000 1000 N 1000

If there are 167 or more winners, we have the advantage; otherwise the ad-
vantage is with the house.

How can we count the number of winners among 1 through 10007 It’s
not hard to spot a pattern. The numbers from 1 through 23 — 1 = 7 are all
winners because |¢/n| = 1 for each. Among the numbers 2° = 8 through
33 —1 = 26, only the even numbers are winners. And among 33 = 27 through
43 — 1 = 63, only those divisible by 3 are. And so on.

Just like we can re-
member the date of
Columbus’s depar-
ture by singing, “In
fourteen hundred
and ninety-three/
Columbus sailed the
deep blue sea.”

(A poll of the class
at this point showed
that 28 students
thought it was a
bad idea to play,

13 wanted to gam-
ble, and the rest
were too confused
to answer.)

(So we hit them
with the Concrete
Math Club.)
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The whole setup can be analyzed systematically if we use the summa-
tion techniques of Chapter 2, taking advantage of Iverson’s convention about
logical statements evaluating to O or 1:

1000
W = Z [n is a winner]

n=1

= Y wa\n] = Y [k=[¥n)]n<n<1000]

1<n<1000 k,n
= ) [KF¥<n<(k+1)*][n=km][1<n<1000]
k,m,n

T+ [K<km<(k+1)3][1<k<10]

k,m
1+ [me k2. (k+1)¥k)][1<k<10]
k,m

T+ ) (K2 +3k+3+1/k - [k*])

1<k<10
7431
:1 = . = .
+ ) Bkt = 1459 =172
1<k<10

This derivation merits careful study. Notice that line 6 uses our formula
(3-12) for the number of integers in a half-open interval. The only “difficult”
maneuver is the decision made between lines 3 and 4 to treat n = 1000 as a
special case. (The inequality k3 <n < (k+1)3 does not combine easily with
1 <n < 1000 when k = 10.) In general, boundary conditions tend to be the
True. most critical part of > _-manipulations.
The bottom line says that W = 172; hence our formula for average win-
Where did you say ~ nings per play reduces to (6-172 —1000)/1000 dollars, which is 3.2 cents. We
this casino is? can expect to be about $3.20 richer after making 100 bets of $1 each. (Of
course, the house may have made some numbers more equal than others.)
The casino problem we just solved is a dressed-up version of the more
mundane question, “How many integers n, where 1 < n < 1000, satisfy the re-
lation |¢/n] \ n?” Mathematically the two questions are the same. But some-
times it’s a good idea to dress up a problem. We get to use more vocabulary
(like “winners” and “losers”), which helps us to understand what’s going on.
Let’s get general. Suppose we change 1000 to 1000000, or to an even
larger number, N. (We assume that the casino has connections and can get a
bigger wheel.) Now how many winners are there?
The same argument applies, but we need to deal more carefully with the
largest value of k, which we can call K for convenience:

K = |[VNJ.
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(Previously K was 10.) The total number of winners for general N comes to

W= 3 (3k+4)+) [K3<Km<N]
1<k<K m

= L7 +3K+1)(K=1)+ ) [melK2..N/K]]
= 3K2+3K—4+ > [melK2..N/K]].

We know that the remaining sum is [N/K| — [K?] +1 = [N/K| — K? +T;
hence the formula

W = [N/K|+1K2+3K-3, K = |[VN] (3.13)

gives the general answer for a wheel of size N.

The first two terms of this formula are approximately N2/3 + %Nz/ 3=
%Nz/ 3. and the other terms are much smaller in comparison, when N is large.
In Chapter 9 we’ll learn how to derive expressions like

W = 3N2/3+0O(N'/3),

where O(N'/3) stands for a quantity that is no more than a constant times
N'/3. Whatever the constant is, we know that it’s independent of N; so for
large N the contribution of the O-term to W will be quite small compared
with 2N2/3. For example, the following table shows how close 3N2/3 is to W:

N 3N2/3 w % error

1,000 150.0 172 12.791

10,000 696.2 746 6.670
100,000 3231.7 3343 3.331
1,000,000 15000.0 15247 1.620
10,000,000 69623.8 70158 0.761
100,000,000 323165.2 324322 0.357
1,000,000,000 1500000.0 1502497 0.166

It’s a pretty good approximation.

Approximate formulas are useful because they’re simpler than formu-
las with floors and ceilings. However, the exact truth is often important,
too, especially for the smaller values of N that tend to occur in practice.
For example, the casino owner may have falsely assumed that there are only
3N2/3 = 150 winners when N = 1000 (in which case there would be a 10¢
advantage for the house).



. without lots
of generality . ..

“If x be an in-
commensurable
number less than
unity, one of the
series of quantities
m/x, m/(] _X)r
where m is a whole
number, can be
found which shall
lie between any
given consecutive
integers, and but
one such quantity
can be found.”

— Rayleigh [304]

Right, because
exactly one of
the counts must
increase when n
increases by 1.
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Our last application in this section looks at so-called spectra. We define
the spectrum of a positive real number « to be an infinite multiset of integers,

Spec(a) = {|«], [2¢], [3], ...]}.

(A multiset is like a set but it can have repeated elements.) For example, the
spectrum of 1/2 starts out {0,1,1,2,2,3,3,...}.

It’s easy to prove that no two spectra are equal —that & # (3 implies
Spec(a) # Spec(p). For, assuming without loss of generality that o« < f3,
there’s a positive integer m such that m(f — «) > 1. (In fact, any m >
[1/(B — «)] will do; but we needn’t show off our knowledge of floors and
ceilings all the time.) Hence mp — ma > 1, and |mf| > [moa. Thus
Spec(p) has fewer than m elements < |ma«], while Spec(«) has at least m.

Spectra have many beautiful properties. For example, consider the two
multisets

Spec(v2) = {1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22, 24, ...},
Spec(2+V2) = {3,6,10,13,17,20,23,27, 30, 34,37,40,44,47,51, ... }.

It’s easy to calculate Spec(\/i) with a pocket calculator, and the nth element
of Spec(2 +1/2) is just 2n more than the nth element of Spec(v/2 ), by (3.6).
A closer look shows that these two spectra are also related in a much more
surprising way: It seems that any number missing from one is in the other,
but that no number is in both! And it’s true: The positive integers are the
disjoint union of Spec(v/2 ) and Spec(2++/2 ). We say that these spectra form
a partitton of the positive integers.

To prove this assertion, we will count how many of the elements of
Spec(v/2) are < n, and how many of the elements of Spec(2 + v/2) are < n.
If the total is n, for each n, these two spectra do indeed form a partition.

Whenever « > 0, the number of elements in Spec(«) that are < n is

> Ik <n]

k>0

Z[Lkocj <n+1]

k>0

Z[koc<n+1]

k>0

Y [o<k<(n+1)/«]

K
[(n+1)/a] = 1.

N(e,n)

(3-14)
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This derivation has two special points of interest. First, it uses the law
m<n = m< n+1, integers m and n (3-15)

to change ‘<’ to ‘<’, so that the floor brackets can be removed by (3.7).
Also—and this is more subtle —it sums over the range k > 0 instead of k > 1,
because (n + 1)/« might be less than 1 for certain n and «. If we had tried
to apply (3.12) to determine the number of integers in [1..(n+1)/«), rather
than the number of integers in (0..(n+1)/«), we would have gotten the right
answer; but our derivation would have been faulty because the conditions of
applicability wouldn’t have been met.

Good, we have a formula for N(«,n). Now we can test whether or not
Spec(v/2 ) and Spec(2++/2) partition the positive integers, by testing whether
or not N(v/2,n) 4+ N(2 + v/2,n) = n for all integers n > 0, using (3.14):

EIRNEARR

SRR e
“\21 - {n\g } " 2n++\% B {Zn:x%} =™ (38

Everything simplifies now because of the neat identity
Ly,
V2 2442 ’

our condition reduces to testing whether or not

{n+1}+{ n+1 } _

V2 2+V2 ’

for all n > 0. And we win, because these are the fractional parts of two
noninteger numbers that add up to the integer n + 1. A partition it is.

3.3 FLOOR/CEILING RECURRENCES

Floors and ceilings add an interesting new dimension to the study
of recurrence relations. Let’s look first at the recurrence

Ko:];

_ : (3.16)
Kny1 =1+ mln(ZKLn/2J,3KLn/3J), forn > 0.

Thus, for example, K; is T + min(2Ky,3Kg) = 3; the sequence begins 1, 3, 3,
4,7,7,7,9, 9, 10, 13, ... . One of the authors of this book has modestly
decided to call these the Knuth numbers.
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Exercise 25 asks for a proof or disproof that K, > n, for all n > 0. The
first few K’s just listed do satisfy the inequality, so there’s a good chance that
it’s true in general. Let’s try an induction proof: The basis n = 0 comes
directly from the defining recurrence. For the induction step, we assume
that the inequality holds for all values up through some fixed nonnegative n,
and we try to show that K,,; 1 > n + 1. From the recurrence we know that
Kni1 = 1+ min(2K|,,/2),3K|,/3)). The induction hypothesis tells us that
2K|n/2) 2 2[n/2] and 3K|, /3] = 3|n/3|. However, 2|n/2] can be as small
as n— 1, and 3|n/3| can be as small as n — 2. The most we can conclude
from our induction hypothesis is that K;, 1 > 1+ (n — 2); this falls far short
of Knpii=>n+1.

We now have reason to worry about the truth of K;; > n, so let’s try to
disprove it. If we can find an n such that either 2K, ,2) <nor 3K|,3) <mn,
or in other words such that

KLn/ZJ < TL/Z or KLn/3J < TL/3,

we will have K7 < n+ 1. Can this be possible? We’d better not give the
answer away here, because that will spoil exercise 25.

Recurrence relations involving floors and/or ceilings arise often in com-
puter science, because algorithms based on the important technique of “divide
and conquer” often reduce a problem of size n to the solution of similar prob-
lems of integer sizes that are fractions of n. For example, one way to sort
n records, if n > 1, is to divide them into two approximately equal parts, one
of size [n/2] and the other of size |[n/2]|. (Notice, incidentally, that

n = /2] + [n/2]; (3-17)

this formula comes in handy rather often.) After each part has been sorted
separately (by the same method, applied recursively), we can merge the
records into their final order by doing at most n — 1 further comparisons.
Therefore the total number of comparisons performed is at most f(n), where

f(1) =0;

f(n) = f([n/2]) + f(In/2)) +n—1,  forn>1. (3-18)

A solution to this recurrence appears in exercise 34.
The Josephus problem of Chapter 1 has a similar recurrence, which can
be cast in the form

Jay = 1;
Jm) = 2J([n/2]) = (=1)",  forn>1.
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We've got more tools to work with than we had in Chapter 1, so let’s
consider the more authentic Josephus problem in which every third person is
eliminated, instead of every second. If we apply the methods that worked in
Chapter 1 to this more difficult problem, we wind up with a recurrence like

J3s(n) = q%]s(gnj) + an1 mod n) +1,

where ‘mod’ is a function that we will be studying shortly, and where we have
a, =—2, +1, or —% according as nmod 3 =0, 1, or 2. But this recurrence
is too horrible to pursue.

There’s another approach to the Josephus problem that gives a much
better setup. Whenever a person is passed over, we can assign a new number.
Thus, 1 and 2 become n + 1 and n + 2, then 3 is executed; 4 and 5 become
n+ 3 and n+4, then 6 is executed; ...; 3k+ 1 and 3k + 2 become n+ 2k + 1
and n + 2k + 2, then 3k + 3 is executed; ... then 3n is executed (or left to

survive). For example, when n = 10 the numbers are

1 2 3 4 5 6 7 8§ 9 10

11 12 13 14 15 16 17
18 19 20 21 22
23 24 25
26 27
28
29
30

The kth person eliminated ends up with number 3k. So we can figure out who
the survivor is if we can figure out the original number of person number 3n.

If N > n, person number N must have had a previous number, and we
can find it as follows: We have N =n+ 2k + 1 or N = n + 2k + 2, hence
k=|[(N—n—1)/2]; the previous number was 3k + 1 or 3k + 2, respectively.
That is, it was 3k + (N —n — 2k) = k+ N — n. Hence we can calculate the
survivor’s number J3(n) as follows:

N := 3n;
while N>n do N:= V\I;]JJan;
J3(n) == N.

- . .. “Not too slow,
This is not a closed form for J3(n); it’s not even a recurrence. But at least it | ¢ 1,0 fast.”

tells us how to calculate the answer reasonably fast, if n is large. —L. Armstrong
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Fortunately there’s a way to simplify this algorithm if we use the variable
D = 3n+1— N in place of N. (This change in notation corresponds to
assigning numbers from 3n down to 1, instead of from 1 up to 3n; it’s sort of
like a countdown.) Then the complicated assignment to N becomes

D = 3n+1—q(3n+1_D)_n_1J +(3n+1—D)—n>

2

n+D—V“2_DJ = D—{_ZDJ = D+Fﬂ = [3D],

and we can rewrite the algorithm as follows:

D :=1;
while D <2n do D:=[3D];
Js(n) == 3n+1-D.

Aha! This looks much nicer, because n enters the calculation in a very simple
way. In fact, we can show by the same reasoning that the survivor J4(n) when
every qth person is eliminated can be calculated as follows:

D = 1;
while D<(q—1)n do D := {
Jqn) == gn+1-D.

reelk (3-19)

In the case q = 2 that we know so well, this makes D grow to 2™*! when
n=2™+1; hence Jo(n) =2(2™+1) +1—-2™*1 =21+ 1. Good.

The recipe in (3.19) computes a sequence of integers that can be defined
by the following recurrence:

DY =1;
D =[4-pi|  forn>o0.

(3-20)

These numbers don’t seem to relate to any familiar functions in a simple
way, except when q = 2; hence they probably don’t have a nice closed form.

“Known” like, say, But if we're willing to accept the sequence D;‘” as “known,’ then it’s easy to
harmonic numbers.  Jescribe the solution to the generalized Josephus problem: The survivor Jq(n)
A. M. Odlyzko and . 1 - D where k i 1 bl h that D 1

H.S. Wilf have isqn+1—D,", where k is as small as possible suc at D" > (g —1)n.

shown [283] that

D =13)°C), 34 “MOD’: THE BINARY OPERATION

where
C ~ 1.622270503. The quotient of n divided by mis [n/m|, when m and n are positive
integers. It’s handy to have a simple notation also for the remainder of this
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division, and we call it ‘n mod m’. The basic formula

n = m|n/m| + nmodm

~——

quotient remainder

tells us that we can express n mod m as n—m/|n/m|. We can generalize this
to negative integers, and in fact to arbitrary real numbers:
for y # 0.

xmody = x — y|x/y], (3-21)

This defines ‘mod’ as a binary operation, just as addition and subtraction are
binary operations. Mathematicians have used mod this way informally for a
long time, taking various quantities mod 10, mod 27, and so on, but only in
the last twenty years has it caught on formally. Old notion, new notation.

We can easily grasp the intuitive meaning of x mod y, when x and y
are positive real numbers, if we imagine a circle of circumference y whose
points have been assigned real numbers in the interval [0..y). If we travel a
distance x around the circle, starting at 0, we end up at x mod y. (And the
number of times we encounter 0 as we go is |x/y].)

When x or y is negative, we need to look at the definition carefully in
order to see exactly what it means. Here are some integer-valued examples:

5mod3 = 5—3|5/3] = 2;
5mod —3 = 5—(—3)[5/(—3)] = —1;
—5mod 3 = —5—3|-5/3] =1;

—5mod -3 = —5—(-3)|-5/(-3)] = -2.

The number after ‘mod’ is called the modulus; nobody has yet decided what
to call the number before ‘mod’. In applications, the modulus is usually
positive, but the definition makes perfect sense when the modulus is negative.
In both cases the value of x mod y is between 0 and the modulus:

mody < vy,

0 < x for y > 0;
0 2 xmody > vy,

fory < 0.

What about y = 0? Definition (3.21) leaves this case undefined, in order to
avoid division by zero, but to be complete we can define

xmod 0 = x. (3-22)

This convention preserves the property that x mod y always differs from x by
a multiple of y. (It might seem more natural to make the function continuous
at 0, by defining x mod 0 = limy_,o x mod y = 0. But we’ll see in Chapter 4

Why do they call it
‘mod’: The Binary
Operation? Stay
tuned to find out in
the next, exciting,
chapter!

Beware of computer
languages that use
another definition.

How about calling
the other number
the modumor?



There was a time in
the 70s when ‘mod’
was the fashion.
Maybe the new
mumble function
should be called
‘punk’?

No—1 like
‘mumble’.

Notice that
x mumble y =
(—x) mody.

The remainder, eh?
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that this would be much less useful. Continuity is not an important aspect
of the mod operation.)

We’ve already seen one special case of mod in disguise, when we wrote x
in terms of its integer and fractional parts, x = |x] 4+{x}. The fractional part
can also be written x mod 1, because we have

x = [x] + xmod 1.

Notice that parentheses aren’t needed in this formula; we take mod to bind
more tightly than addition or subtraction.

The floor function has been used to define mod, and the ceiling function
hasn’t gotten equal time. We could perhaps use the ceiling to define a mod
analog like

xmumbley = y[x/y] —x;

in our circle analogy this represents the distance the traveler needs to continue,
after going a distance x, to get back to the starting point 0. But of course
we’d need a better name than ‘mumble’. If sufficient applications come along,
an appropriate name will probably suggest itself.

The distributive law is mod’s most important algebraic property: We
have

c(x mody) = (cx) mod (cy) (3-23)
for all real c, x, and y. (Those who like mod to bind less tightly than multi-
plication may remove the parentheses from the right side here, too.) It’s easy
to prove this law from definition (3.21), since

c(xmody) = c(x —y|x/y]) = ecx—cylex/cy] = cxmod cy,

if cy # 0; and the zero-modulus cases are trivially true. Our four examples
using +5 and 43 illustrate this law twice, with ¢ = —1. An identity like
(3.23) is reassuring, because it gives us reason to believe that ‘mod’ has not
been defined improperly.

In the remainder of this section, we'll consider an application in which
‘mod’ turns out to be helpful although it doesn’t play a central role. The
problem arises frequently in a variety of situations: We want to partition
n things into m groups as equally as possible.

Suppose, for example, that we have n short lines of text that we'd like
to arrange in m columns. For asthetic reasons, we want the columns to be
arranged in decreasing order of length (actually nonincreasing order); and the
lengths should be approximately the same—no two columns should differ by
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more than one line’s worth of text. If 37 lines of text are being divided into
five columns, we would therefore prefer the arrangement on the right:

8 8 8 8 5 8 8 7 7 7
line 1 line 9 line 17 line 25 line 33 line 1 line 9 line 17 line 24 line 31
line 2 line 10 line 18 line 26 line 34 line 2 line 10 line 18 line 25 line 32
line 3 line 11 line 19 line 27 line 35 line 3 line 11 line 19 line 26 line 33
line 4 line 12 line 20 line 28 line 36 line 4 line 12 line 20 line 27 line 34
line 5 line 13 line 21 line 29 line 37 line 5 line 13 line 21 line 28 line 35
line 6 line 14 line 22 line 30 line 6 line 14 line 22 line 29 line 36
line 7 line 15 line 23 line 31 line 7 line 15 line 23 line 30 line 37
line 8 line 16 line24  line 32 line 8 line 16

Furthermore we want to distribute the lines of text columnwise — first decid-
ing how many lines go into the first column and then moving on to the second,
the third, and so on—because that’s the way people read. Distributing row
by row would give us the correct number of lines in each column, but the
ordering would be wrong. (We would get something like the arrangement on
the right, but column 1 would contain lines 1, 6, 11, ..., 36, instead of lines
1,2,3,..., 8 as desired.)

A row-by-row distribution strategy can’t be used, but it does tell us how
many lines to put in each column. If n is not a multiple of m, the row-
by-row procedure makes it clear that the long columns should each contain
[n/m] lines, and the short columns should each contain |[n/m|. There will
be exactly n mod m long columns (and, as it turns out, there will be exactly
n mumble m short ones).

Let’s generalize the terminology and talk about ‘things’ and ‘groups’
instead of ‘lines’ and ‘columns’. We have just decided that the first group
should contain [n/m] things; therefore the following sequential distribution
scheme ought to work: To distribute n things into m groups, when m > 0,
put [n/m] things into one group, then use the same procedure recursively to
put the remaining n’ = n— [n/m] things into m’ = m—1 additional groups.

For example, if n = 314 and m = 6, the distribution goes like this:

remaining things remaining groups [things/groups]

314 6 53
261 5 53
208 4 52
156 3 52
104 2 52

52 1 52

It works. We get groups of approximately the same size, even though the
divisor keeps changing.

Why does it work? In general we can suppose that n = qm + r, where
q = [n/m] and r = nmod m. The process is simple if r = 0: We put
[n/m] = q things into the first group and replace n by n’ = n — q, leaving
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n’ = gm’ things to put into the remaining m’ = m — 1 groups. And if
r > 0, we put [n/m] = q + 1 things into the first group and replace n
by n’ =n—q—1, leaving n’ = qm’ + r — 1 things for subsequent groups.
The new remainder is v’ = r — 1, but g stays the same. It follows that there
will be r groups with q + 1 things, followed by m — r groups with q things.

How many things are in the kth group? We'd like a formula that gives
[n/m] when k < nmod m, and |[n/m| otherwise. It’s not hard to verify
that

S

has the desired properties, because this reduces to q + [(r —k + 1)/m] if we
write n = qm + r as in the preceding paragraph; here ¢ = [n/m|. We have
[r—k+T1)/m] =[k<7],if 1 <k <mand 0 <r < m. Therefore we can
write an identity that expresses the partition of n into m as-equal-as-possible
parts in nonincreasing order:

o {“W N P‘—‘l . F‘—mww _ (3.24)

m m

This identity is valid for all positive integers m, and for all integers n (whether
positive, negative, or zero). We have already encountered the case m = 2 in
(3-17), although we wrote it in a slightly different form, n = [n/2] + |n/2].

If we had wanted the parts to be in nondecreasing order, with the small
groups coming before the larger ones, we could have proceeded in the same
way but with |n/m| things in the first group. Then we would have derived
the corresponding identity

I e FEC

It’s possible to convert between (3.25) and (3.24) by using either (3.4) or the
identity of exercise 12.

Some claim that it’s Now if we replace n in (3.25) by |mx], and apply rule (3.11) to remove

too dangerous to floors inside of floors, we get an identity that holds for all real x:

replace anything by

an mx. 1 m — 1 6
mx| = [x X+ — et x4+ — . .2
T R (3.26)

This is rather amazing, because the floor function is an integer approximation
of a real value, but the single approximation on the left equals the sum of a
bunch of them on the right. If we assume that |x| is roughly x — % on the
average, the left-hand side is roughly mx — %, while the right-hand side comes
to roughly (Xf%)+(Xf%+%)+-'-+(xf%+m74) = mx — J; the sum
of all these rough approximations turns out to be exact!
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3.5 FLOOR/CEILING SUMS

Equation (3.26) demonstrates that it’s possible to get a closed form
for at least one kind of sum that involves | |. Are there others? Yes. The
trick that usually works in such cases is to get rid of the floor or ceiling by
introducing a new variable.

For example, let’s see if it’s possible to do the sum

D VA

osk<n

in closed form. One idea is to introduce the variable m = |[vk|; we can do
this “mechanically” by proceeding as we did in the roulette problem:

> Wkl = > mik<nl[m=|vk]]

o<k<n k,m=0

= Z m[k<n][m§\/lz<m+ﬂ
k,m=0

= Z mlk<n][m? <k<(m+1)?]
k,m>=0

= Z mm? <k<(m+1)2<n]
k,m=0

+ Z mm?<k<n<(m+1)?].

k,m=0

Once again the boundary conditions are a bit delicate. Let’s assume first that
2 is a perfect square. Then the second sum is zero, and the first can be
evaluated by our usual routine:

n=a

Z m[m? <k<(m+1)2<a?]

k,m=0

Z m((m+1)?—m?)[m+1<al

m=0

= Z m(2m+ 1)[m< d]

m=0

= Z (2mZ +3mY[m<al

m=0

a .
= Z (2m2 + 3mb) ém Falling powers
0 make the sum come

tumbling down.
= 2a(a—T1)(a=2)+3ala—1) = L(4a+Nala—1). umbling down
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In the general case we can let a = |/n]; then we merely need to add the
terms for a* < k < n, which are all equal to a, so they sum to (n — a?)a.
This gives the desired closed form,

Z [Vk] = na—Ja®—Ja? - la, a=[vynl. (3-27)
o<k<n

Another approach to such sums is to replace an expression of the form
[x] by > ;[1<j<x]; this is legal whenever x > 0. Here’s how that method
works in the sum of |square roots|, if we assume for convenience that n = a?:

> Wkl = Y D<jsvklo<k<a?]
i,k
D D liP<k<a’l

1<j<a k

= Z (a*—j%) = a®>—Lala+3)(a+1), integer a.

1<j<a

Now here’s another example where a change of variable leads to a trans-
formed sum. A remarkable theorem was discovered independently by three
mathematicians — Bohl [34], Sierpinski [326], and Weyl [368] —at about the
same time in 1909: If « is irrational then the fractional parts {no} are very uni-
formly distributed between 0 and 1, as n — co. One way to state this is that

1
lim > f(lked) = L f(x) dx (3.28)

for all irrational o and all bounded functions f that are continuous almost
everywhere. For example, the average value of {na} can be found by setting
f(x) = x; we get % (That’s exactly what we might expect; but it’s nice to
know that it is really, provably true, no matter how irrational « is.)
The theorem of Bohl, Sierpiniski, and Weyl is proved by approximating
Warning: This stuff ~ f(x) above and below by “step functions,” which are linear combinations of

Is fairly advanced. the simple functions
Better skim the

next two pages on _ <
first reading; they fu(x) = [0sx<v]
aren tir;g;];dly TA when 0 < v < 1. Our purpose here is not to prove the theorem; that’s a job

for calculus books. But let’s try to figure out the basic reason why it holds,

Start by seeing how well it works in the special case f(x) = f, (x). In other words,
Skimming let’s try to see how close the sum
Z [{ka}<v]
o<k<n

gets to the “ideal” value nv, when n is large and « is irrational.
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For this purpose we define the discrepancy D(a,n) to be the maximum
absolute value, over all 0 <v < 1, of the sum

s(ay,n,v) = Z ([{koc}<v} —v). (3.29)

o<k<n

Our goal is to show that D(a,n) is “not too large” when compared with n,
by showing that [s(c, n,v)| is always reasonably small when « is irrational.
We can assume without loss of generality that 0 < o < 1.

First we can rewrite s(o,n,v) in simpler form, then introduce a new
index variable j:

2 (Hko‘kv]_v) D (ke = [kee—v] —v)

o<k<n o<k<n

= —nv+ Z Z[koc—v<j<k(x]

o<k<n j

= —nv+ Z Z o' <k<(G+v)a'].

0<j<na] k<n

If we're lucky, we can do the sum on k. But we ought to introduce some new

variables, so that the formula won’t be such a mess. Let us write Right, name and
conquer.
The change of vari-
_ —1 -1 _ /.
a =[], @ =atoa; able from k to j is

—1

b = [vofw , Vo = b—v'. the main point.

— Friendly TA
Thus «’ = {« '} is the fractional part of !, and v’ is the mumble-fractional
part of vac .
Once again the boundary conditions are our only source of grief. For
now, let’s forget the restriction ‘k < n’ and evaluate the sum on k without it:

Z{ke o .. (] +v)oc’1)] = [G+Vv(a+a)] = [jla+ )]

K
b+ [ja'—v']—[ju’].

OK, that’s pretty simple; we plug it in and plug away:

s(oyn,v) = —nv+ [nab+ Z ([jo'=v'T—=Tjx’]) =S, (3.30)

0<j<[na]

where S is a correction for the cases with k > n that we have failed to exclude.
The quantity jo’ will be an integer only when j = 0, since « (hence «') is
irrational; and ja’ — v’ will be an integer for at most one value of j. So we
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can change the ceiling terms to floors:

s(a,m,v) = —nv+ [na]b — Z (L] = [jo'—=v"]) =S +{0 or 1}.
(The formula 0<j<na]
{0 or 1} stands

for something that’s  pteresting. Instead of a closed form, we're getting a sum that looks rather

ith 1; . . . . .
ileede;’? cginmyitwe like s(o,n,v) but with different parameters: o’ instead of «, [noa] instead

ourselves, because of n, and v’ instead of v. So we'll have a recurrence for s(«,n,v), which
the details don’t (hopefully) will lead to a recurrence for the discrepancy D(o,n). This means
really matter.)

we want to get

s(e/ynad,v') = Y (i) = [/ =V —=V)

0<j<[na]

into the act:

s(a,n,v) = —nv+ [na]b — [na]v’ —s(a’, [ne],v’) =S +{0 or 1}.
Recalling that b—v’ = va~!, we see that everything will simplify beautifully

if we replace [na](b—v’) by no(b —v’') =nw:
s(a,n,v) = —s(a’, [ne],v') —S+e€+{0or 1}.

Here e is a positive error less than vor~'. Exercise 18 proves that S is, similarly,
between 0 and [va~']. And we can remove the term for j = [na] —1 = |n«]
from the sum, since it contributes either v/ or v/ — 1. Hence, if we take the
maximum of absolute values over all v, we get

D(o,n) < D(«/, [an]) + " 42. (3.31)

The methods we'll learn in succeeding chapters will allow us to conclude

from this recurrence that D(«,n) is always much smaller than n, when n is

Stop sufficiently large. Hence theorem (3.28) is true; however, convergence to the
lSkimming limit is not always very fast. (See exercises 9.45 and 9.61.)

Whew; that was quite an exercise in manipulation of sums, floors, and
ceilings. Readers who are not accustomed to “proving that errors are small”
might find it hard to believe that anybody would have the courage to keep
going, when faced with such weird-looking sums. But actually, a second look
shows that there’s a simple motivating thread running through the whole
calculation. The main idea is that a certain sum s(x,n,v) of n terms can be
reduced to a similar sum of at most [an] terms. Everything else cancels out
except for a small residual left over from terms near the boundaries.

Let’s take a deep breath now and do one more sum, which is not trivial
but has the great advantage (compared with what we’ve just been doing) that
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it comes out in closed form so that we can easily check the answer. Our goal
now will be to generalize the sum in (3.26) by finding an expression for

>

O<k<m

nk
{ i XJ , integer m > 0, integer n.

Finding a closed form for this sum is tougher than what we've done so far
(except perhaps for the discrepancy problem we just looked at). But it's
instructive, so we’ll hack away at it for the rest of this chapter.

As usual, especially with tough problems, we start by looking at small
cases. The special case n = 1 is (3.26), with x replaced by x/m:

X 1+x m—1+x
[J% J++{J = |x].
m m m
And as in Chapter 1, we find it useful to get more data by generalizing
downwards to the case n = 0:

X X X X
R R R i
m m m m
Our problem has two parameters, m and n; let’s look at some small cases
for m. When m = 1 there’s just a single term in the sum and its value is [x].
When m = 2 the sum is |x/2] + [(x +n)/2]. We can remove the interaction
between x and n by removing n from inside the floor function, but to do that

we must consider even and odd n separately. If n is even, n/2 is an integer,
so we can remove it from the floor:

EIR(EIRS PR

If nis odd, (n —1)/2 is an integer so we get

(5] 5) = et

The last step follows from (3.26) with m = 2.

These formulas for even and odd n slightly resemble those forn = 0 and 1,
but no clear pattern has emerged yet; so we had better continue exploring
some more small cases. For m = 3 the sum is

FJ n X+n n X +2n

3 3 3 ’

and we consider three cases for n: Either it’s a multiple of 3, or it’s 1 more
than a multiple, or it’s 2 more. That is, nmod 3 =0, 1, or 2. If n mod 3 =0

Is this a harder sum
of floors, or a sum
of harder floors?

Be forewarned: This
is the beginning of
a pattern, in that
the last part of the
chapter consists
of the solution of
some long, difficult
problem, with little
more motivation
than curiosity.

— Students

Touché. But c’mon,
gang, do you always
need to be told
about applications
before you can get
interested in some-
thing? This sum
arises, for example,
in the study of
random number
generation and
testing. But math-
ematicians looked
at it long before
computers came
along, because they
found it natural to
ask if there’s a way
to sum arithmetic
progressions that
have been “floored.”
— Your instructor
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then n/3 and 2n/3 are integers, so the sum is

BB+ 5+ (51 5F) =3 5]+

If nmod 3 =1 then (n—1)/3 and (2n — 2)/3 are integers, so we have

e (555 (22 - e

Again this last step follows from (3.26), this time with m = 3. And finally, if
n mod 3 = 2 then

gJ + ({XQZJ +n3_2) + QX;L]J +2n3_1> = [x]+n—1.

“Inventive genius The left hemispheres of our brains have finished the case m = 3, but the

requires pleasurable  right hemispheres still can’t recognize the pattern, so we proceed to m = 4:
mental activity as

a.condition for. its X {X + nJ {x + sz {x + SnJ
vigorous exercise. L J + + + .
‘Necessity is the 4 4 4
mother of invention’

4

is a silly proverb. At least we know enough by now to consider cases based on n mod m. If
‘Necessity is the n mod 4 = 0 then

mother of futile

dodges’ is much X X n X n X 3n X 3n
nearer i0 ihe fruth GG 7) G+ 7)) =+ lE+ T

The basis of the
growth of modern
invention is science,
and science is al-

And if nmod 4 =1,

most wholly the X x+1 n—I1 x+2 2n—2 x+3 3n—-3
outgrowth of plea- {ZJ + 4 + 4 + 4 + 4 + 4 + 1
surable intellectual 3 3
curiosity.” n
AN, White = k+5 -3
head [371]

The case n mod 4 = 3 turns out to give the same answer. Finally, in the case
nmod 4 = 2 we get something a bit different, and this turns out to be an
important clue to the behavior in general:

i (2] (G 3+ (53]

RN R =

This last step simplifies something of the form |y/2| + |(y + 1)/2], which
again is a special case of (3.26).
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To summarize, here’s the value of our sum for small m:

m| nmodm=0 nmodm=1 nmodm=2 nmodm=3

G
TREE RS

3 3gJ+n Ix] +n —1 [x] + n —1

IREIE N SR R =

It looks as if we're getting something of the form

a{EJ +bn+c,
a

where a, b, and ¢ somehow depend on m and n. Even the myopic among
us can see that b is probably (m — 1)/2. It’s harder to discern an expression
for a; but the case n mod 4 = 2 gives us a hint that a is probably gcd(m,n),
the greatest common divisor of m and n. This makes sense because gcd(m, n)
is the factor we remove from m and n when reducing the fraction n/m to
lowest terms, and our sum involves the fraction n/m. (We'll look carefully
at gcd operations in Chapter 4.) The value of ¢ seems more mysterious, but
perhaps it will drop out of our proofs for a and b.

In computing the sum for small m, we've effectively rewritten each term
of the sum as

{x-ﬁ-knJ B Lx—&—knmode +k7n_knmodm

b

m m m m

because (kn — kn mod m)/m is an integer that can be removed from inside
the floor brackets. Thus the original sum can be expanded into the following

tableau:
{ X J 0 0 mod m
I + _ — [
m m m
{x+nmode n n mod m
+ —_ + = - —
m m m
X 4+ 2n mod m n Zin B 2n mod m
m m m

n x+ (m—T1)nmodm Jr(m—Un (m—1)n mod m
m m m ’
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When we experimented with small values of m, these three columns led re-
spectively to a|x/a], bn, and c.

In particular, we can see how b arises. The second column is an arithmetic
progression, whose sum we know —it’s the average of the first and last terms,
times the number of terms:

1 (m—1)n o (m—=1)n
2(0+m> =y

So our guess that b = (m — 1)/2 has been verified.
The first and third columns seem tougher; to determine a and ¢ we must
take a closer look at the sequence of numbers

0Omod m, nmodm, 2nmod m, ..., (m—1)n mod m.

Suppose, for example, that m = 12 and n = 5. If we think of the
sequence as times on a clock, the numbers are 0 o’clock (we take 12 o’clock
to be 0 o’clock), then 5 o’clock, 10 o’clock, 3 o’clock (= 15 o’clock), 8 o’clock,
and so on. It turns out that we hit every hour exactly once.

Now suppose m = 12 and n = 8. The numbers are 0 o'clock, 8 o’clock,
4 o’clock (= 16 o’clock), but then 0, 8, and 4 repeat. Since both 8 and 12 are
multiples of 4, and since the numbers start at 0 (also a multiple of 4), there’s
no way to break out of this pattern —they must all be multiples of 4.

In these two cases we have gcd(12,5) = 1 and gcd(12,8) = 4. The general

Lemma now, rule, which we will prove next chapter, states that if d = gcd(m,n) then we

dilemma later. get the numbers 0, d, 2d, ..., m — d in some order, followed by d — 1 more
copies of the same sequence. For example, with m = 12 and n = 8 the pattern
0, 8, 4 occurs four times.

The first column of our sum now makes complete sense. It contains
d copies of the terms |x/m|, [(x +d)/m], ..., [(x + m — d)/m], in some
order, so its sum is

(e B3 2
(B e )
a)

This last step is yet another application of (3.26). Our guess for a has been
verified:

a =d = gcd(mmn).
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Also, as we guessed, we can now compute c, because the third column
has become easy to fathom. It contains d copies of the arithmetic progression
0/m, d/m, 2d/m, ..., (m —d)/m, so its sum is

1 m—d m m—d
d<z<°+m> 'a) =7

the third column is actually subtracted, not added, so we have

Z {nk—i—xJ _ dtﬁJ +m—1n+d—m)

o<k<m

where d = gcd(m,n). As a check, we can make sure this works in the special
cases 1 = 0 and n = 1 that we knew before: When n = 0 we get d =
gcd(m,0) = m; the last two terms of the formula are zero so the formula
properly gives m|x/m|. And for n = 1 we get d = gcd(m,1) = 1; the last
two terms cancel nicely, and the sum is just [x].

By manipulating the closed form a bit, we can actually make it symmetric
in m and n:

Z {nk—l—xJ _ 4 XJ +m—1n+d—m

m Ld

O0<k<m
B X (m=—1)(n-1) m—1 d—m
- d_HJ + 2 LS IR
B X (m=—1)(n-1) d—1
= d_aJ + 7 + 7 (3-32)

This is astonishing, because there’s no algebraic reason to suspect that such  Yup, I'm floored.
a sum should be symmetrical. We have proved a “reciprocity law,’

k k
Z {n + XJ = Z {m +XJ , integers m,n > 0.
m n

O<k<m 0<k<n

For example, if m = 41 and n = 127, the left sum has 41 terms and the right
has 127; but they still come out equal, for all real x.
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Exercises
Warmups

1 When we analyzed the Josephus problem in Chapter 1, we represented
an arbitrary positive integer n in the form n = 2™ +1, where 0 <1< 2™.
Give explicit formulas for 1 and m as functions of n, using floor and/or
ceiling brackets.

2  What is a formula for the nearest integer to a given real number x? In case
of ties, when x is exactly halfway between two integers, give an expression
that rounds (a) up—that is, to [x]; (b) down—that is, to |x].

3  Evaluate Hmocj n/ocJ, when m and n are positive integers and « is an
irrational number greater than n.

4  The text describes problems at levels 1 through 5. What is a level 0
problem? (This, by the way, is not a level 0 problem.)

5 Find a necessary and sufficient condition that [nx| =n|x], when n is a
positive integer. (Your condition should involve {x}.)

6  Can something interesting be said about | f(x)| when f(x) is a continuous,
monotonically decreasing function that takes integer values only when
x is an integer?

7  Solve the recurrence

Xn = n, for0<n<m;

Xn = Xpnom + 1, forn > m.
You know you’re 8 Prove the Dairichlet box principle: If n objects are put into m boxes,
in college when the some box must contain > [n/m] objects, and some box must contain
book doesn’t tell < |n/m]

you how to pro-

nounce ‘Dirichlet’. . o . .
9 Egyptian mathematicians in 1800 B.C. represented rational numbers be-

tween O and 1 as sums of unit fractions 1/x; + - - - + 1/xk, where the x’s
were distinct positive integers. For example, they wrote % + 11—5 instead
of % Prove that it is always possible to do this in a systematic way: If
0<m/n <1, then

1 n

1 . m
=4 + {representatlon of i } , q = [7—‘ .

m
n q m

(This is Fibonacci’s algorithm, due to Leonardo Fibonacci, A.D. 1202.)
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Basics

10

11

12

13

14

15
16

17

18

Show that the expression

SRR

is always either |x]| or [x]. In what circumstances does each case arise?

Give details of the proof alluded to in the text, that the open interval
(oc..B) contains exactly [B] — || — 1 integers when o < 3. Why does
the case o« = 3 have to be excluded in order to make the proof correct?

Prove that

[ n W o n+m—1
ml m ’
for all integers n and all positive integers m. [This identity gives us

another way to convert ceilings to floors and vice versa, instead of using
the reflective law (3.4).]

Let o and 3 be positive real numbers. Prove that Spec(a) and Spec(f3)
partition the positive integers if and only if « and (3 are irrational and
1/a+1/p=1.

Prove or disprove:
(x mod ny) mody = x mod vy, integer n.

Is there an identity analogous to (3.26) that uses ceilings instead of floors?

Prove that n mod 2 = (1 —(=1 )") /2. Find and prove a similar expression
for n mod 3 in the form a+bw™+cw?™, where w is the complex number
(—=1+1v3)/2. Hint: w?® =1 and 14+ w + w? =0.

Evaluate the sum } ,_, _.. |x+k/m] in the case x > 0 by substituting
2 ;[1<j<x+k/m] for [x + k/m] and summing first on k. Does your
answer agree with (3.26)?

Prove that the boundary-value error term S in (3.30) is at most [a~"v].
Hint: Show that small values of j are not involved.

Homework exercises

19

Find a necessary and sufficient condition on the real number b > 1 such
that

|logy, x| = UOgb LXJJ

for all real x > 1.
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20 Find the sum of all multiples of x in the closed interval [x.. (], when
x > 0.

21 How many of the numbers 2™, for 0 < m < M, have leading digit 1 in
decimal notation?

22 Evaluatethesums S, =Y o [n/25+3 ] and Tn = Y, .4 25[n/25+1 2.
23 Show that the nth element of the sequence

1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,...

is L\/ 2n+ %J (The sequence contains exactly m occurrences of m.)

24 Exercise 13 establishes an interesting relation between the two multisets
Spec(a) and Spec(cx/(oc — 1)), when « is any irrational number > 1,
because 1/a+ (o« — 1)/ = 1. Find (and prove) an interesting relation
between the two multisets Spec(«) and Spec(oc/(oc + 1)), when « is any
positive real number.

25 Prove or disprove that the Knuth numbers, defined by (3.16), satisfy
Kn = n for all nonnegative n.

26 Show that the auxiliary Josephus numbers (3.20) satisfy

l (q) !
< < > 0.
( ]) S DT‘L NS q( _I) y forn/O

27 Prove that infinitely many of the numbers D\’ defined by (3.20) are
even, and that infinitely many are odd.

28 Solve the recurrence

a = 1;
an = an_1+ [Van—1], for n > 0.

There’s a discrep- 29 Show that, in addition to (3.31), we have
ancy between this

formula and (3.31). D(x,n) > D(oc’, L(XTIJ) —x -2,
30 Show that the recurrence

Xo = m,
Xn = X2 -2, for n > 0,

has the solution X,, = [«?"], if m is an integer greater than 2, where
o« + o« ' =m and « > 1. For example, if m = 3 the solution is

2“+1-|) d):]Jr\/g) o‘:d)Z'

Xn:[d) 2
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31 Prove or disprove: |x| + [y|+ [x +y]| < [2x] + [2y].

32 Let ||x|| = min(x— |x], [x] —x) denote the distance from x to the nearest
integer. What is the value of

ZZkHX/ZkHZ?
k

(Note that this sum can be doubly infinite. For example, when x = 1/3
the terms are nonzero as k — —oo and also as k — +00.)

Exam problems

33 A circle, 2n — 1 units in diameter, has been drawn symmetrically on a
2n x 2n chessboard, illustrated here for n = 3:

T

4 N

T
~—T

a How many cells of the board contain a segment of the circle?
b Find a function f(n,k) such that exactly ZE;: f(n, k) cells of the
board lie entirely within the circle.
34 Let f(n) =Y I [lgk].
a Find a closed form for f(n), when n > 1.
b Prove that f(n) =n—1+f([n/2]) + f(|n/2]) foralln > 1.

35 Simplify the formula |(n+ 1)?n!e| mod n. Simplify it, but
don’t change the

36 Assuming that n is a nonnegative integer, find a closed form for the sum ;.

1
Z 2llek]4llglgk] *
T<k<22™
37 Prove the identity

2 <lmn+kJ - LU) = F:J - {min(m mod n»n(—m) mod n)zJ

os<k<m

for all positive integers m and n.

38 Let xq, ..., Xn be real numbers such that the identity
n
[mxy| = {m Z ka
k=1 I<k<n

holds for all positive integers m. Prove something interesting about
X1y eeey Xnt
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39 Prove that the double sum J oy 106 2 o-j<p| (X +b¥)/b*"] equals
(b— 1)(L10gb x| + 1) + [x] — 1, for every real number x > 1 and every
integer b > 1.

40 The spiral function o(n), indicated in the diagram below, maps a non-
negative integer n onto an ordered pair of integers (x(n),y(n)). For
example, it maps n = 9 onto the ordered pair (1,2).

Y A
People in the south-
ern hemisphere use
a different spiral. 9
2 1 8
3 0o |7 X
4 5 6

a Prove that if m = [\/n],
x(n) = (—1)“((n—m(m—|— 1)-[|2v/n] is even] + f%m}) ,

and find a similar formula for y(n). Hint: Classify the spiral into
segments Wy, Sy, Ex, Ny according as [2y/n]| =4k — 2, 4k — 1, 4k,
4k + 1.

b  Prove that, conversely, we can determine n from o(n) by a formula
of the form

n = (2k)* £ (2k+x(n)+yn)), k = max(x(n)lyn)).

Give a rule for when the sign is + and when the sign is —.

Bonus problems

41 Let f and g be increasing functions such that the sets {f(1),f(2),...} and
{g(1),9(2),...} partition the positive integers. Suppose that f and g are
related by the condition g(n) = f(f(n)) + 1 for all n > 0. Prove that
f(n) = [n¢| and g(n) = [nd?], where ¢ = (1 +/5)/2.

42 Do there exist real numbers «, 3, and y such that Spec(«), Spec(p), and
Spec(y) together partition the set of positive integers?
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43

44

45

46

47

48

Find an interesting interpretation of the Knuth numbers, by unfolding
the recurrence (3.16).

Show that there are integers aTL and dn such that

D aad D
- - ) )

(q)
a
q—1 q

n

when D\ is the solution to (3.20). Use this fact to obtain another form
of the solution to the generalized Josephus problem:

Ja) = 1+d¥ +qn—al?),  for al? <n<ald).
Extend the trick of exercise 30 to find a closed-form solution to
Yo = m,
Yo = 2Y2 ,—1,  forn >0,
if m is a positive integer.

1
Prove that if n = [(ﬁl +v2' )m|, where m and 1 are nonnegative

integers, then |/2n(n+1)| = L(ﬂlH + ﬁl)mJ. Use this remarkable
property to find a closed form solution to the recurrence

Ly = a, integer a > 0;

Ln = [V2Laa(Lar +1)],  forn>0.

Hint: [/2n(n+1)| = [V2(n+1)].

The function f(x) is said to be replicative if it satisfies
1 1
f(mx) = f(x)+f(x+—)+ +f<x+7)
m m

for every positive integer m. Find necessary and sufficient conditions on
the real number c for the following functions to be replicative:
a f(x)=x+c.
b f(x) =[x + c is an integer].
) =ma (|_ J)C)-

(
c f(x
d f(x)=x+c|x|— %[x is not an integer].

Prove the identity
x* = 3x|x|x]| +30H{x[x]} +{x =3 |x] |x|x]| + [x]°,

and show how to obtain similar formulas for x™ when n > 3.
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49 Find a necessary and sufficient condition on the real numbers 0 < a < 1
and 3 > 0 such that we can determine « and {3 from the infinite multiset
of values

{[ne) + [nB] | n>0}.

Research problems

50 Find a necessary and sufficient condition on the nonnegative real numbers
« and {3 such that we can determine « and 3 from the infinite multiset
of values

{|Inx]B] | n>0}.

51 Let x be a real number > ¢ = 12(1 ++/5). The solution to the recurrence

ZO(X) = X,
Zn(x) = Zn1(x)?>—1, for n > 0,

can be written Z, (x) = {f(x)zn], if x is an integer, where

f(x) = lim Zn(x)"?",
n—oo
because Z, (x)—1 < f(x)2" < Z,(x) in that case. What other interesting
properties does this function f(x) have?

52 Given nonnegative real numbers o and f3, let

Spec(o; B) = {loc+BJ, [2a+ B], [Box+ B,... }

be a multiset that generalizes Spec(x) = Spec(x;0). Prove or disprove:
If the m > 3 multisets Spec(oq; 1), Spec(az; B2), ..., Spec(tm; Pm)
partition the positive integers, and if the parameters o1 < ot; < -+ <
are rational, then

2m—1

ST forT<k<<m.

X =

53 Fibonacci’s algorithm (exercise 9) is “greedy” in the sense that it chooses

the least conceivable q at every step. A more complicated algorithm is

known by which every fraction m/n with n odd can be represented as a

sum of distinct unit fractions 1/q1 + - 4+ 1/qx with odd denominators.
Does the greedy algorithm for such a representation always terminate?
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0°, 162 [I-notation, 64, 106

V2 (= 1.41421), 100 /\-notation, 65

V3 (~ 1.73205), 378 & if and only if, 68

J: imaginary part, 64 —: implies, 71

£: logarithmico-exponential functions, 442-443 \: divides, 102

fR: real part, 64, 212, 451 \: exactly divides, 146

v (= 0.57722), see Euler’s constant L is relatively prime to, 115
I', see Gamma function <: grows slower than, 440-443
5, 47-56 >: grows faster than, 440-443

A: difference operator, 47-55, 241, 470-471

€p(n): largest power of p dividing n, 112-114,
146

¢, see zeta function

9, 219-221, 310, 347

©: Big Theta notation, 448

grows as fast as, 442-443

is asymptotic to, 8, 110, 439-443, 448-449
approximates, 23

is congruent to, 123-126

: cardinality, 39

I: factorial, 111-115

X

&

|

Km, see ler.nulants . i: subfactorial, 194-200
K, see Mébius function ..: interval notation, 73-74
v, see nu function ... ellipsis, 21, 50, 108, ...

7t (= 3.14159), 26, 70, 146, 244, 485, 564, 596
7(x), see pi function
o: standard deviation, 388; see also Stirling’s

Aaronson, Bette Jane, ix

Abel, Niels Henrik, 604, 634
Abramowitz, Milton, 42, 604
absolute convergence, 60—62, 64
absolute error, 452, 455

absolute value of complex number, 64

constant
on(x), see Stirling polynomials
¢ (=~ 1.61803): golden ratio, 70, 97, 299-301,

310, 553 absorption identities, 157-158, 261
¢, see phi function Acton, John Emerich Edward Dalberg, Baron,
©: sum of @, 138-139, 462-463 66
Q: Big Omega notation, 448 Adams, William Wells, 604, 635
> -notation, 22-25, 245 Addison-Wesley, ix

637
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addition formula for (E), 158-159

analog for (1), 268

analogs for {1} and [}], 259, 261
dual, 530
Aho, Alfred Vaino, 604, 633
Ahrens, Wilhelm Ernst Martin Georg, 8, 604
AXkhiezer, Naum Il’ich, 604
Alfred [Brousseau], Brother Ulbertus, 607, 633
algebraic integers, 106, 147
algorithms,
analysis of, 138, 413—426
divide and conquer, 79
Euclid’s, 103-104, 123, 303-304
Fibonacci’s, 95, 101
Gosper’s, 224-227
Gosper—Zeilberger, 229-241, 254-255, 319,
547
greedy, 101, 295
self-certifying, 104
Alice, 31, 408-410, 427, 430
Allardice, Robert Edgar, 2, 604
ambiguous notation, 245
American Mathematical Society, viii
AMS Euler, ix, 657
analysis of algorithms, 138, 413-426
analytic functions, 196
ancestor, 117, 291
André, Antoine Désiré, 604, 635
Andrews, George W. Eyre, 215, 330, 530, 575,
605, 634, 635
answers, notes on, 497, 637, viii
anti-derivative operator, 48, 470-471
anti-difference operator, 48, 54, 470-471
Apéry, Roger, 238, 605, 630, 634
numbers, 238-239, 255
approximation, see asymptotics
of sums by integrals, 45, 276-277, 469-475
Archibald, Raymond Clare, 608
Archimedes of Syracuse, 6
argument of hypergeometric, 205
arithmetic progression, 30, 376
floored, 89-94
sum of, 6, 26, 30-31
Armageddon, 85
Armstrong, Daniel Louis (= Satchmo), 80
art and science, 234
ascents, 267-268, 270
Askey, Richard Allen, 634
associative law, 30, 61, 64

asymptotics, 439-496
from convergent series, 451
of Bernoulli numbers, 286, 452
of binomial coefficients, 248, 251, 495, 598
of discrepancies, 492, 495
of factorials, 112, 452, 481-482, 491
of harmonic numbers, 276-278, 452, 480-481,
491
of hashing, 426
of nth prime, 110-111, 456-457, 490
of Stirling numbers, 495, 602
of sums, using Euler’s summation formula,
469-489
of sums, using tail-exchange, 466—469,
486-489
of sums of powers, 491
of wheel winners, 76, 453—454
table of expansions, 452
usefulness of, 76, 439
Atkinson, Michael David, 605, 633, 635
Austin, Alan Keith, 607
automaton, 405
automorphic numbers, 520
average, 384
of a reciprocal, 432
variance, 423-425

Bn, see Bernoulli numbers
Bachmann, Paul Gustav Heinrich, 443, 462, 605
Bailey, Wilfrid Norman, 223, 548, 605, 634
Balasubramanian, Ramachandran, 525, 605.
Ball, Walter William Rouse, 605, 633
ballot problem, 362
Banach, Stefan, 433
Barlow, Peter, 605, 634
Barton, David Elliott, 602, 609
base term, 240
baseball, 73, 148, 195, 519, 622, 648, 653
BASIC, 173, 446
basic fractions, 134, 138
basis of induction, 3, 10-11, 320-321
Bateman, Harry, 626
Baum, Lyman Frank, 581
Beatty, Samuel, 605, 633
bee trees, 291
Beeton, Barbara Ann Neuhaus Friend Smith,
viii
Bell, Eric Temple, 332, 606, 635
numbers, 373, 493, 603
Bender, Edward Anton, 606, 636



Bernoulli, Daniel, 299
Bernoulli, Jakob (= Jacobi = Jacques = James),
283, 470, 606
numbers, see Bernoulli numbers
polynomials, 367-368, 470-475
polynomials, graphs of, 473
trials, 402; see also coins, flipping
Bernoulli, Johann (= Jean), 622
Bernoulli numbers, 283-290
asymptotics of, 286, 452
calculation of, 288, 620
denominators of, 315, 551, 574
generalized, see Stirling polynomials
generating function for, 285, 351, 365
numerators of, 555
relation to tangent numbers, 287
table of, 284, 620
Bernshtein (= Bernstein), Sergef Natanovich, 636
Bertrand, Joseph Louis Francois, 145, 606, 633
postulate, 145, 500, 550
Bessel, Friedrich Wilhelm, functions, 206, 527
Beyer, William Hyman, 606
biased coin, 401
bicycles, 260, 500
Bieberbach, Ludwig, 617
Bienaymé, Irénée Jules, 606
Big Ell notation, 444
Big Oh notation, 76, 443-449
Big Omega notation, 448
Big Theta notation, 448
bijection, 39
Bill, 408-410, 427, 430
binary logarithm, 70, 449
binary notation (radix 2), 11-13, 15-16, 70,
113-114
binary partitions, 377
binary search, 121, 183
binary trees, 117
Binet, Jacques Philippe Marie, 299, 303,
606, 633
binomial coefficients, 153-242
addition formula, 158-159
asymptotics of, 248, 251, 495, 598
combinatorial interpretation, 153, 158, 160,
169-170
definition, 154, 211
dual, 530
fractional, 250
generalized, 211, 318, 530

INDEX 639

indices of, 154
middle, 187, 255-256, 495
reciprocal of, 188-189, 246, 254
top ten identities of, 174
wraparound, 250 (exercise 75), 315
binomial convolution, 365, 367
binomial distribution, 401-402, 415, 428, 432
negative, 402-403, 428
binomial series, generalized, 200—204, 243,
252, 363
binomial theorem, 162-163
as hypergeometric series, 206, 221
discovered mechanically, 230-233
for factorial powers, 245
special cases, 163, 199
Blom, Carl Gunnar, 606, 636
bloopergeometric series, 243
Boas, Ralph Philip, Jr., 600, 606, 636, viii
Boggs, Wade Anthony, 195
Bohl, Piers Paul Felix (= Bol’, Pirs Georgie-
vich), 87, 606
Bohmer, Paul Eugen, 604
Bois-Reymond, Paul David Gustav du, 440, 610,
617
Boncompagni, Prince Baldassarre, 613
bootstrapping, 463466
to estimate nth prime, 456—457
Borchardt, Carl Wilhelm, 617
Borel, Emile Félix Edouard Justin, 606, 636
Borwein, Jonathan Michael, 606, 635
Borwein, Peter Benjamin, 606, 635
bound variables, 22
boundary conditions on sums,
can be difficult, 75, 86
made easier, 24—-25, 159
bowling, 6
box principle, 95, 130, 512
Boyd, David William, 564
bracket notation,
for coefficients, 197, 331
for true/false values, 24-25
Brahma, Tower of, 1, 4, 278
Branges, Louis de, 617
Brent, Richard Peirce, 306, 525, 564, 606
bricks, 313, 374
Brillhart, John David, 607, 633
Brocot, Achille, 116, 607
Broder, Andrei Zary, 632, ix
Brooke, Maxey, 607, 635
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Brousseau, Brother Alfred, 607, 633

Brown, Mark Robbin, 632

Brown, Morton, 501, 607

Brown, Roy Howard, ix

Brown, Thomas Craig, 607, 633

Brown, Trivial, 607

Brown, William Gordon, 607

Brown University, ix

Browning, Elizabeth Barrett, 320

Bruijn, Nicolaas Govert de, 444, 447, 500, 609,
635, 636

cycle, 500

bubblesort, 448

Buckholtz, Thomas Joel, 620

Bulwer-Lytton, Edward George Earle Lytton,
Baron, v

Burma-Shave, 541

Burr, Stefan Andrus, 607, 635

calculators, 67, 77, 459
failure of, 344
calculus, vi, 33
finite and infinite, 47-56
candy, 36
Canfield, Earl Rodney, 602, 607, 636
cards,
shuffling, 437
stacking, 273-274, 278, 309
Carlitz, Leonard, 607, 635
Carroll, Lewis (= Dodgson, Rev. Charles
Lutwidge), 31, 293, 607, 608, 630
carries,
across the decimal point, 70
in divisibility of (™™), 245, 536
in Fibonacci number system, 297, 561
Cassini, Gian (= Giovanni = Jean) Domenico
(= Dominique), 292, 607
identity, 292-293, 300
identity, converse, 314
identity, generalized, 303, 310
Catalan, Eugéne Charles, 203, 361, 607
Catalan numbers, 203
combinatorial interpretations, 358-360,
565, 568
generalized, 361
in sums, 181, 203, 317
table of, 203
Cauchy, Augustin Louis, 607, 633
éech, Eduard, vi

ceiling function, 67-69
converted to floor, 68, 96
graph of, 68
center of gravity, 273-274, 309
certificate of correctness, 104
Chace, Arnold Buffum, 608, 633
Chaimovich, Mark, 608
chain rule, 54, 483
change, 327-330, 374
large amounts of, 344-346, 492
changing the index of summation, 30-31, 39
changing the tails of a sum, 466—469, 486—489
cheating, viii, 195, 388, 401
not, 158, 323
Chebyshev, Pafnutil L’vovich, 38, 145, 608, 633
inequality, 390-391, 428, 430
monotonic inequalities, 38, 576
cheese slicing, 19
Chen, Pang-Chieh, 632
Chinese Remainder Theorem, 126, 146
Chu Shih-Chieh (= Zhu Shijié), 169
Chung, Fan-Rong King, ix, 608, 635
Clausen, Thomas, 608, 634, 635
product identities, 253
clearly, clarified, 417418, 581
clichés, 166, 324, 357
closed form, 3, 7, 321, 331
for generating functions, 317
not, 108, 573
pretty good, 346
closed interval, 73-74
Cobb, Tyrus Raymond, 195
coefficient extraction, 197, 331
Cohen, Henri José, 238
coins, 327-330
biased, 401
fair, 401, 430
flipping, 401-410, 430-432, 437-438
spinning, 401
Collingwood, Stuart Dodgson, 608
Collins, John, 624
Colombo, Cristoforo (= Columbus, Christo-
pher), 74
coloring, 496
Columbia University, ix
combinations, 153
combinatorial number system, 245
common logarithm, 449



commutative law, 30, 61, 64
failure of, 322, 502, 551
relaxed, 31
complete graph, 368
complex factorial powers, 211
complex numbers, 64
roots of unity, 149, 204, 375, 553, 574, 598
composite numbers, 105, 518
composition of generating functions, 428
computer algebra, 42, 254, 501, 539
Comtet, Louis, 609, 636
Concrete Math Club, 74, 453
concrete mathematics, defined, vi
conditional convergence, 59
conditional probability, 416-419, 424-425
confluent hypergeometric series, 206, 245
congruences, 123—-126
Connection Machine, 131
contiguous hypergeometrics, 529
continuants, 301-309, 501
and matrices, 318-319
Euler’s identity for, 303, 312
zero parameters in, 314
continued fractions, 301, 304-309, 319
large partial quotients of, 553, 563, 564, 602
convergence,
absolute, 60-62, 64
conditional, 59
of power series, 206, 331-332, 348, 451, 532
convex regions, 5, 20, 497
convolution, 197, 246, 333, 353-364
binomial, 365, 367
identities for, 202, 272, 373
polynomials, 373
Stirling, 272, 290
Vandermonde, see Vandermonde convolution
Conway, John Horton, 410, 609
cotangent function, 286, 317
counting,
combinations, 153
cycle arrangements, 259-262
derangements, 193—-196, 199-200
integers in intervals, 73-74
necklaces, 139-141
parenthesized formulas, 357-359
permutations, 111
permutations by ascents, 267268
permutations by cycles, 262
set partitions, 258—259
spanning trees, 348-350, 356, 368-369, 374
with generating functions, 320-330

INDEX 641

coupon collecting, 583
Cover, Thomas Merrill, 636
Coxeter, Harold Scott MacDonald, 605
Cramér, Carl Harald, 525, 609, 634
Cray X-MP, 109
Crelle, August Leopold, 609, 633
cribbage, 65
Crispin, Mark Reed, 628
Crowe, Donald Warren, 609, 633
crudification, 447
Csirik, Janos Andras, 590, 609
cubes, sum of consecutive, 51, 63, 283, 289, 367
cumulants, 397-401

infinite, 576

of binomial distribution, 432

of discrete distribution, 438

of Poisson distribution, 428-429

third and fourth, 429, 579, 589
CUNY (= City University of New York), ix
Curtiss, David Raymond, 609, 634
cycles,

de Bruijn, 500

of beads, 139-140

of permutations, 259-262
cyclic shift, 12, 359, 362
cyclotomic polynomials, 149

D, see derivative operator
Dating Game, 506
David, Florence Nightingale, 602, 609
Davis, Philip Jacob, 609
Davison, John Leslie, 307, 604, 609, 635
de Branges, Louis, 617
de Bruijn, Nicolaas Govert, 444, 447, 500, 609,
635, 636
cycle, 500
de Finetti, Bruno, 24, 613
de Lagny, Thomas Fantet, 304, 621
de Moivre, Abraham, 297, 481, 609
Dedekind, Julius Wilhelm Richard, 136-137, 609
definite sums, analogous to definite integrals,
49-50
deg, 227, 232
degenerate hypergeometric series, 209-210, 216,
222, 247
derangements, 194-196, 250
generating function, 199-200
derivative operator, 47-49
converting between D and A, 470-471
converting between D and ¥, 310
with generating functions, 33, 333, 364-365
with hypergeometric series, 219-221
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descents, see ascents
dgf: Dirichlet generating function, 370
dice, 381-384
fair, 382, 417, 429
loaded, 382, 429, 431
nonstandard, 431
pgf for, 399-400
probability of doubles, 427
supposedly fair, 392
Dickson, Leonard Eugene, 510, 609
Dieudonné, Jean Alexandre, 523
difference operator, 47-55, 241
converting between D and A, 470-471
nth difference, 187-192, 280-281
nth difference of product, 571
differentiably finite power series, 374, 380
differential operators, see derivative operator,
theta operator
difficulty measure for summation, 181
Dijkstra, Edsger Wybe, 173, 609, 635
dimers and dimes, 320, see dominoes and
change
diphages, 434, 438
Dirichlet, Johann Peter Gustav Lejeune, 370,
610, 633
box principle, 95, 130, 512
generating functions, 370-371, 373, 432, 451
probability generating functions, 432
discrepancy, 88-89, 97
and continued fractions, 319, 492, 602
asymptotics of, 492, 495
discrete probability, 381-438
defined, 381
distribution,
of fractional parts, 87
of primes, 111
of probabilities, see probability distributions
of things into groups, 83-85
distributive law, 30, 35, 60, 64
for gcd and lcm, 145
for mod, 83
divergent sums, 57, 60
considered useful, 346-348, 451
illegitimate, 504, 532
divide and conquer, 79
divides exactly, 146
in binomial coefficients, 245
in factorials, 112-114, 146
divisibility, 102-105
by 3, 147
of polynomials, 225

Dixon, Alfred Cardew, 610, 634
formula, 214
DNA, Martian, 377
Dodgson, Charles Lutwidge, see Carroll
domino tilings, 320-327, 371, 379
ordered pairs of, 375
Dorothy Gale, 581
double generating functions, see super generat-
ing functions
double sums, 34-41, 246, 249
considered useful, 46, 183-185
faulty use of, 63, 65
infinite, 61
over divisors, 105
telescoping, 255
doubloons, 436437
doubly exponential recurrences, 97, 100,
101, 109
doubly infinite sums, 59, 98, 482-483
Dougall, John, 171, 610
downward generalization, 2, 95, 320-321
Doyle, Sir Arthur Ignatius Conan, 162, 228-229,
405, 610
drones, 291
Drysdale, Robert Lewis (Scot), III, 632
du Bois-Reymond, Paul David Gustav, 440, 610,
617
duality, 69
between () and 1/n("."'), 530
between factorial and Gamma functions, 211
between floors and ceilings, 68—69, 96
between gcd and lem, 107
between rising and falling powers, 63
between Stirling numbers of different kinds,
267
Dubner, Harvey, 610, 631, 633
Dudeney, Henry Ernest, 610, 633
Dunkel, Otto, 614, 633
Dunn, Angela Fox, 628, 635
Dunnington, Guy Waldo, 610
duplication formulas, 186, 244
Dupré, Lyn Oppenheim, ix
Durst, Lincoln Kearney, viii
Dyson, Freeman John, 172, 239, 610, 615

e (= 2.718281828459045),
as canonical constant, 70, 596
representations of, 122, 150
en, see Euclid numbers
E: expected value, 385-386



E: shift operator, 55, 188, 191
E., see Euler numbers
Edwards, Anthony William Fairbank, 610
eeny-meeny-miny-mo, see Josephus problem
efficiency, different notions of, 24, 133
egf: exponential generating function, 364
eggs, 158
Egyptian mathematics, 95, 150
bibliography of, 608
Einstein, Albert, 72, 307
Eisele, Carolyn, 625
Eisenstein, Ferdinand Gotthold Max, 202, 610
Ekhad, Shalosh B, 546
elementary events, 381-382
Elkies, Noam David, 131, 610
ellipsis (---), 21
advantage of, 21, 25, 50
disadvantage of, 25
elimination of, 108
empirical estimates, 391-393, 427
empty case,
for spanning trees, 349, 565
for Stirling numbers, 258
for tilings, 320-321
for Tower of Hanoi, 2
empty product, 48, 106, 111
empty sum, 24, 48
entier function, see floor function
equality, one-way, 446-447, 489-490
equivalence relation, 124
Eratosthenes, sieve of, 111
Erdélyi, Arthur, 629, 636
Erdss, Pal (= Paul), 418, 525, 548, 575,
610-611, 634, 636
error function, 166
errors, absolute versus relative, 452, 455
errors, locating our own, 183
Eswarathasan, Arulappah, 611, 635
Euclid (= EVrAeidns), 107-108, 147, 611
algorithm, 103-104, 123, 303-304
numbers, 108-109, 145, 147, 150, 151
Euler, Leonhard, i, vii, ix, 48, 122, 132-134, 202,
205, 207, 210, 267, 277, 278, 286, 301-303,
469, 471, 513, 529, 551, 575, 603, 605, 609,
611-613, 629, 630, 633-636
constant (= 0.57722), 278, 306-307, 316, 319,
481, 596
disproved conjecture, 131
identity for continuants, 303, 312
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identity for hypergeometrics, 244
numbers, 559, 570, 620; see also Eulerian
numbers
polynomials, 574
pronunciation of name, 147
summation formula, 469-475
theorem, 133, 142, 147
totient function, see phi function
triangle, 268, 316
Eulerian numbers, 267-271, 310, 316, 378, 574
combinatorial interpretations, 267-268, 557
generalized, 313
generating function for, 351
second-order, 270-271
table of, 268
event, 382
eventually positive function, 442
exact cover, 376
exactly divides, 146
in binomial coefficients, 245
in factorials, 112-114, 146
excedances, 316
exercises, levels of, viii, 72-73, 95, 511
exp: exponential function, 455
expectation, see expected value
expected value, 385-387
using a pgf, 395
exponential function, discrete analog of, 54
exponential generating functions, 364-369,
421-422
exponential series, generalized, 200-202, 242,
364, 369
exponents, laws of, 52, 63

F, see hypergeometric series
Fn, see Fibonacci numbers
factorial expansion of binomial coefficients, 156,
211
factorial function, 111-115, 346-348
approximation to, see Stirling’s approxima-
tion
duplication formula, 244
generalized to nonintegers, 192, 210-211,
213-214, 316
factorial powers, see falling factorial powers,
rising factorial powers
factorization into primes, 106-107, 110
factorization of summation conditions, 36
fair coins, 401, 430
fair dice, 382, 386, 392, 417, 429
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falling factorial powers, 47
binomial theorem for, 245
complex, 211
difference of, 48, 53, 188
negative, 52, 63, 188
related to ordinary powers, 51, 262—263, 598
related to rising powers, 63, 312
summation of, 50-53
fans, ix, 193, 348
Farey, John, series, 118-119, 617
consecutive elements of, 118-119, 150
distribution of, 152
enumeration of, 134, 137-139, 462-463
Fasenmyer, Mary Celine, 230, 631
Faulhaber, Johann, 288, 613, 620
Feder Bermann, Tomas, 635
Feigenbaum, Joan, 632
Feller, William, 381, 613, 636
Fermat, Pierre de, 130, 131, 613
numbers, 131-132, 145, 525
Fermat’s Last Theorem, 130-131, 150, 524, 555
Fermat’s theorem (= Fermat’s Little Theorem),
131-133, 141-143, 149
converse of, 132, 148
Fibonacci, Leonardo, of Pisa (= Leonardo filio
Bonacii Pisano), 95, 292, 549, 613, 633, 634
addition, 296-297, 318
algorithm, 95, 101
factorial, 492
multiplication, 561
number system, 296-297, 301, 307, 310, 318
odd and even, 307-308
Fibonacci numbers, 290-301, 575
and continuants, 302
and sunflowers, 291
closed forms for, 299-300, 331
combinatorial interpretations of, 291-292,
302, 321, 549
egf for, 570
ordinary generating functions for, 297-300,
337-340, 351
second-order, 375
table of, 290, 293
Fibonomial coefficients, 318, 556
Fine, Henry Burchard, 625
Fine, Nathan Jacob, 603
Finetti, Bruno de, 24, 613
finite calculus, 47-56
finite state language, 405
Finkel, Raphael Ari, 628

Fisher, Michael Ellis, 613, 636
Fisher, Sir Ronald Aylmer, 613, 636
fixed points, 12, 393-394
pef for, 400—401, 428
Flajolet, Philippe Patrick Michel, 564
flipping coins, 401-410, 430—432, 437438
floor function, 67-69
converted to ceiling, 68, 96
graph of, 68
Floyd, Robert W, 635
food, see candy, cheese, eggs, pizza, sherry
football, 182
football victory problem, 193-196, 199-200, 428
generalized, 429
mean and variance, 393-394, 400-401
Forcadel, Pierre, 613, 634
formal power series, 206, 331, 348, 532
FORTRAN, 446
Fourier, Jean Baptiste Joseph, 22, 613
series, 495
fractional parts, 70
in Euler’s summation formula, 470
in polynomials, 100
related to mod, 83
uniformly distributed, 87
fractions, 116-123
basic, 134, 138
continued, 301, 304-309, 319, 564
partial, see partial fraction expansions
unit, 95, 101, 150
unreduced, 134-135, 151
Fraenkel, Aviezri S, 515, 563, 613-614, 633
Frame, James Sutherland, 614, 633
Francesca, Piero della, 614, 635
Franel, Jérome, 549, 614
Fraser, Alexander Yule, 2, 604
Frazer, William Donald, 614, 634
Fredman, Michael Lawrence, 513, 614
free variables, 22
Freman, Grigoril Abelevich, 608
friendly monster, 545
frisbees, 434-435, 437
Frye, Roger Edward, 131
Fundamental Theorem of Algebra, 207
Fundamental Theorem of Arithmetic, 106-107
Fundamental Theorem of Calculus, 48
Fuss, Nicolal Ivanovich, 361, 614
Fuss—Catalan numbers, 361
Fuss, Paul Heinrich von (= Fus, Pavel Nikolae-
ich), 611-612



Gale, Dorothy, 581
games, see bowling, cards, cribbage, dice,
Penney ante, sports
Gamma function, 210-214, 609
duplication formula for, 528
Stirling’s approximation for, 482
gaps between primes, 150-151, 525
Gardner, Martin, 614, 634, 636
Garfunkel, Jack, 614, 636
Gasper, George, Jr., 223, 614
Gauf (= Gauss), Johann Friderich Carl (= Carl
Friedrich), vii, 6, 7, 123, 205, 207, 212, 501,
510, 529, 610, 615, 633, 634
hypergeometric series, 207
identity for hypergeometrics, 222, 247, 539
trick, 6, 30, 112, 313
ged, 103, see greatest common divisor
generalization, 11, 13, 16
downward, 2, 95, 320-321
generalized binomial coefficients, 211, 318, 530
generalized binomial series, 200-204, 243,
252, 363
generalized exponential series, 200-202, 242,
364, 369
generalized factorial function, 192, 210-211,
213-214, 316

generalized harmonic numbers, 277, 283, 286, 370

generalized Stirling numbers, 271-272, 311, 316,
319, 598
generating functions, 196-204, 297-300, 320-380
composition of, 428
Dirichlet, 370-371, 373, 432, 451
exponential, 364-369, 421-422
for Bernoulli numbers, 285, 351, 365
for convolutions, 197, 333—-334, 353-364,
369, 421
for Eulerian numbers, 351, 353
for Fibonacci numbers, 297-300, 337-340,
351, 570
for harmonic numbers, 351-352
for minima, 377
for probabilities, 394-401
for simple sequences, 335
for special numbers, 351-353
for spectra, 307, 319
for Stirling numbers, 351-352, 559
Newtonian, 378
of generating functions, 351, 353, 421
super, 353, 421
table of manipulations, 334
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Genocchi, Angelo, 615
numbers, 551, 574
geometric progression, 32
floored, 114
generalized, 205—-206
sum of, 32-33, 54
Gessel, Ira Martin, 270, 615, 634
Gibbs, Josiah Willard, 630
Gilbert, William Schwenck, 444
Ginsburg, Jekuthiel, 615
Glaisher, James Whitbread Lee, 615, 636
constant (= 1.28243), 595
God, 1, 307, 521
Goldbach, Christian, 611-612
theorem, 66
golden ratio, 299, see phi
golf, 431
Golomb, Solomon Wolf, 460, 507, 615, 633
digit-count sum, 460-462, 490 (exercise 22),
494
self-describing sequence, 66, 495, 630
Good, Irving John, 615, 634
Goodfellow, Geoffrey Scott, 628
Gopinath, Bhaskarpillai, 501, 621
Gordon, Peter Stuart, ix
Gosper, Ralph William, Jr., 224, 564, 615, 634
algorithm, 224-227
algorithm, examples, 227-229, 245, 247-248,
253-254, 530, 534
Gosper—Zeilberger algorithm, 229-241, 319
examples, 254-255, 547
summary, 233
goto, considered harmful, 173
Gottschalk, Walter Helbig, vii
graffiti, vii, ix, 59, 637
Graham, Cheryl, ix
Graham, Ronald Lewis, iii, iv, vi, ix, 102, 506,
605, 608-609, 611, 615-616, 629, 632, 633,
635
Grandi, Luigi Guido, 58, 616
Granville, Andrew James, 548
graph theory, see spanning trees
graphs of functions,
1/x, 276277
e X*/10 483
Bernoulli polynomials, 473
floor and ceiling, 68
hyperbola, 440
partial sums of a sequence, 359-360
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Graves, William Henson, 632

gravity, center of, 273-274, 309

Gray, Frank, code, 497

greatest common divisor, 92, 103-104, 107, 145

greatest integer function, see floor function

greatest lower bound, 65

greed, 74, 387-388; see also rewards

greedy algorithm, 101, 295

Green, Research Sink, 607

Greene, Daniel Hill, 616

Greitzer, Samuel Louis, 616, 633

Gross, Oliver Alfred, 616, 635

Griinbaum, Branko, 498, 616

Grundy, Patrick Michael, 627, 633

Guibas, Leonidas Ioannis (= Leo John), 590,
616, 632, 636

Guy, Richard Kenneth, 523, 525, 616

Hy, see harmonic numbers

Haar, Alfréd, vii

Hacker’s Dictionary, 124, 628

Haiman, Mark, 632

Haland Knutson, Inger Johanne, 616, 633

half-open interval, 73-74

Hall, Marshall, Jr., 616

Halmos, Paul Richard, v, vi, 616-617

Halphen, Georges Henri, 305, 617

halving, 79, 186-187

Hamburger, Hans Ludwig, 591, 617

Hammersley, John Michael, v, 617, 636

Hanoi, Tower of, 1-4, 26-27, 109, 146
variations on, 17-20

Hansen, Eldon Robert, 42, 617

Hardy, Godfrey Harold, 111, 442-443, 617,

633, 636

harmonic numbers, 29, 272-282
analogous to logarithms, 53
asymptotics of, 276-278, 452, 480-481, 491
complex, 311, 316
divisibility of, 311, 314, 319
generalized, 277, 283, 286, 370
generating function for, 351-352
second-order, 277, 280, 311, 550-552
sums of, 41, 313, 316, 354-355
sums using summation by parts, 56, 279-282,

312

table of, 273

harmonic series, divergence of, 62, 275-276

Harry, Matthew Arnold, double sum, 249

hashing, 411-426, 430

hat-check problem, see football victory problem
hcf, 103, see greatest common divisor
Heath-Brown, David Rodney, 629
Heiberg, Johan Ludvig, 611
Heisenberg, Werner Karl, 481
Helmbold, David Paul, 632
Henrici, Peter Karl Eugen, 332, 545, 602, 617,
634, 636
Hermite, Charles, 538, 555, 617, 629, 634
herring, red, 497
Herstein, Israel Nathan, 8, 618
hexagon property, 155-156, 242, 251
highest common factor, see greatest common
divisor
Hillman, Abraham P, 618, 634
Hoare, Sir Charles Antony Richard, 28, 73, 618,
620
Hofstadter, Douglas Richard, 633
Hoggatt, Verner Emil, Jr., 618, 623, 634
Holden, Edward Singleton, 625
Holmboe, Berndt Michael, 604
Holmes, Thomas Sherlock Scott, 162, 228-229
holomorphic functions, 196
homogeneous linear equations, 239, 543
horses, 17, 18, 468, 503
Hsu, Lee-Tsch (= Lietz = Leetch) Ching-Siur,
618, 634
Hurwitz, Adolf, 635
hyperbola, 440
hyperbolic functions, 285-286
hyperfactorial, 243, 491
hypergeometric series, 204-223
confluent, 206, 245
contiguous, 529
degenerate, 209-210, 216, 222, 247
differential equation for, 219-221
Gaussian, 207
partial sums of, 165-166, 223-230, 245
transformations of, 216-223, 247, 253
hypergeometric terms, 224, 243, 245, 527, 575
similar, 541

i, 22
implicit recurrences, 136-139, 193-195, 284
indefinite summation, 48-49
by parts, 54-56
of binomial coefficients, 161, 223-224, 246,
248, 313
of hypergeometric terms, 224-229



independent random variables, 384, 427
pairwise, 437
products of, 386
sums of, 386, 396—398
index set, 22, 30, 61
index variable, 22, 34, 60
induction, 3, 7, 10-11, 43
backwards, 18
basis of, 3, 320-321
failure of, 17, 575
important lesson about, 508, 549
inductive leap, 4, 43
infinite sums, 56-62, 64
doubly, 59, 98, 482-483
information retrieval, 411-413
INT function, 67
insurance agents, 391
integer part, 70
integration, 45-46, 48
by parts, 54, 472
of generating functions, 333, 365

interchanging the order of summation, 34-41,

105, 136, 183, 185, 546
interpolation, 191-192
intervals, 73-74
invariant relation, 117
inverse modulo m, 125, 132, 147
inversion formulas, 193
for binomial coefficients, 192-196
for Stirling numbers, 264, 310
for sums over divisors, 136—139
irrational numbers, 238
continued fraction representations, 306
rational approximations to, 122-123
spectra of, 77, 96, 514
Stern—Brocot representations, 122—-123
Iverson, Kenneth Eugene, 24, 67, 618, 633
convention, 24-25, 31, 34, 68, 75

Jacobi, Carl Gustav Jacob, 64, 618
polynomials, 543, 605

Janson, Carl Svante, 618

Jarden, Dov, 556, 618

Jeopardy, 361

joint distribution, 384

Jonassen, Arne Tormod, 618

Jones, Bush, 618

Josephus, Flavius, 8, 12, 19-20, 618
numbers, 81, 97, 100
problem, 8-17, 79-81, 95, 100, 144
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recurrence, generalized, 13-16, 79-81, 498
subset, 20

Jouaillec, Louis Maurice, 632

Jungen, Reinwald, 618, 635

K, see continuants

Kaplansky, Irving, 8, 568, 618

Karamata, Jovan, 257, 618

Karlin, Anna Rochelle, 632

Kaucky, Josef, 619, 635

Kauers, Manuel, 564

Keiper, Jerry Bruce, 619

Kellogg, Oliver Dimon, 609

Kent, Clark (= Kal-El), 372

Kepler, Johannes, 292, 619

kernel functions, 370

Ketcham, Henry King, 148

kilometers, 301, 310, 550

Kilroy, James Joseph, vii

Kipling, Joseph Rudyard, 260

Kissinger, Henry Alfred, 379

Klamkin, Murray Seymour, 619, 633, 635

Klarner, David Anthony, 632

knockout tournament, 432-433

Knoebel, Robert Arthur, 619

Knopp, Konrad, 619, 636

Knuth, Donald Ervin, iii-ix, 102, 267, 411, 506,

553, 616, 618-620, 632, 633, 636, 657

numbers, 78, 97, 100

Knuth, John Martin, 636

Knuth, Nancy Jill Carter, ix

Kramp, Christian, 111, 620

Kronecker, Leopold, 521
delta notation, 24

Kruk, John Martin, 519

Kummer, Ernst Eduard, 206, 529, 621, 634
formula for hypergeometrics, 213, 217, 535

Kurshan, Robert Paul, 501, 621

L., see Lucas numbers

Lagny, Thomas Fantet de, 304, 621

Lagrange (= de la Grange), Joseph Louis,
comte, 470, 621, 635

identity, 64

Lah, Ivo, 621, 635

Lambert, Johann Heinrich, 201, 363, 613, 621

Landau, Edmund Georg Hermann, 443, 448,
622, 634, 636

Laplace, Pierre Simon, marquis de, 466, 606, 622

last but not least, 132, 469
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Law of Large Numbers, 391
lem, 103, see least common multiple
leading coefficient, 235
least common multiple, 103, 107, 145
of {1,...,n}, 251, 319, 500
least integer function, see ceiling function
least upper bound, 57, 61
LeChiffre, Mark Well, 148
left-to-right maxima, 316
Legendre, Adrien Marie, 622, 633
polynomials, 543, 573, 575
Lehmer, Derrick Henry, 526, 622, 633, 635
Leibniz, Gottfried Wilhelm, Freiherr von, vii,
168, 616, 622
Lekkerkerker, Cornelis Gerrit, 622
Lengyel, Taméas Lérant, 622, 635
levels of problems, viii, 72-73, 95, 511
Levine, Eugene, 611, 635
lexicographic order, 441
lg: binary logarithm, 70, 449
L’Hospital, Guillaume Frangois Antoine de,
marquis de Sainte Mesme, rule, 340,
396, 542
Li Shanlan (= Rénshu = Qiurén), 269, 622
Liang, Franklin Mark, 632
Lieb, Elliott Hershel, 622, 636
lies, and statistics, 195
Lincoln, Abraham, 401
linear difference operators, 240
lines in the plane, 4-8, 17, 19
Liouville, Joseph, 136-137, 622
little oh notation, 448
considered harmful, 448-449
Littlewood, John Edensor, 239
In: natural logarithm, 276, 449
discrete analog of, 53-54
sum of, 481-482
log: common logarithm, 449
Logan, Benjamin Franklin (= Tex), Jr., 287,
622-623, 634-635
logarithmico-exponential functions, 442-443
logarithms, 449
binary, 70
discrete analog of, 53-54
in O-notation, 449
natural, 276
Long, Calvin Thomas, 623, 634
lottery, 387-388, 436—-437
Léu, Shitud, 623

lower index of binomial coefficient, 154
complex valued, 211

lower parameters of hypergeometric series, 205

Loyd, Samuel, 560, 623

Lucas, Frangois Edouard Anatole, 1, 292, 623,

633—-635

numbers, 312, 316, 556

Luczak, Tomasz Jan, 618

Lyness, Robert Cranston, 501, 623

Maclaurin (= Mac Laurin), Colin, 469, 623
MacMahon, Maj. Percy Alexander, 140, 623
magic tricks, 293
Mallows, Colin Lingwood, 506
Markov, Andrel Andreevich (the elder), pro-
cesses, 405
Martian DNA, 377
Martzloff, Jean-Claude, 623
mathematical induction, 3, 7, 10-11, 43
backwards, 18
basis of, 3, 320-321
failure of, 17, 575
important lesson about, 508, 549
Mathews, Edwin Lee (= 41), 8, 21, 94, 105,
106, 343
Matiiasevich (= Matijasevich), Turif (= Yuri)
Vladimirovich, 294, 623, 635
Mauldin, Richard Daniel, 611
Mazxfield, Margaret Waugh, 630, 635
Mayr, Ernst, ix, 632, 633
McEliece, Robert James, 71
McGrath, James Patrick, 632
McKellar, Archie Charles, 614, 634
mean (average) of a probability distribution,
384-399
median, 384, 385, 437
mediant, 116
Melzak, Zdzislaw Alexander, vi, 623
Mendelsohn, Nathan Saul, 623, 634
Merchant, Arif Abdulhussein, 632
merging, 79, 175
Mersenne, Marin, 109-110, 131, 613, 624
numbers, 109-110, 151, 292
primes, 109-110, 127, 522-523
Mertens, Franz Carl Joseph, 23, 139, 624
miles, 301, 310, 550
Mills, Stella, 624
Mills, William Harold, 624, 634
minimum, 65, 249, 377
Minkowski, Hermann, 122



Mirsky, Leon, 635

mixture of probability distributions, 428

mnemonics, 74, 164

Moébius, August Ferdinand, 136, 138, 624
function, 136-139, 145, 149, 370-371, 462-463

mod: binary operation, 81-85

mod: congruence relation, 123-126

mod 0, 82-83, 515

mode, 384, 385, 437

modular arithmetic, 123-129

modulus, 82

Moessner, Alfred, 624, 636

Moivre, Abraham de, 297, 481, 609

moments, 398—-399

Montgomery, Hugh Lowell, 463, 624

Montgomery, Peter Lawrence, 624, 634

Moriarty, James, 162

Morse, Samuel Finley Breese, code, 302-303,

324, 551

Moser, Leo, 624, 633

Motzkin, Theodor Samuel, 556, 564, 618, 624

mountain ranges, 359, 565

mu function, see Mobius function

multinomial coefficients, 168, 171-172, 569
recurrence for, 252

multinomial theorem, 149, 168

multiple of a number, 102

multiple sums, 34—41, 61; see also double sums

multiple-precision numbers, 127

multiplicative functions, 134-136, 144, 371

multisets, 77, 270

mumble function, 83, 84, 88, 507, 513

Murdock, Phoebe James, viii

Murphy’s Law, 74

Myers, Basil Roland, 624, 635

name and conquer, 2, 32, 88, 139
National Science Foundation, ix
natural logarithm, 53-54, 276, 449, 481-482
Naval Research, ix
navel research, 299
nearest integer, 95

rounding to, 195, 300, 344, 491

unbiased, 507
necessary and sufficient conditions, 72
necklaces, 139-141, 259
negating the upper index, 164-165
negative binomial distribution, 402-403, 428
negative factorial powers, 52, 63, 188
Newman, James Roy, 631
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Newman, Morris, 635
Newton, Sir Isaac, 189, 277, 624
series, 189-192
Newtonian generating function, 378
Niven, Ivan Morton, 332, 624, 633
nonprime numbers, 105, 518
nontransitive paradox, 410
normal distribution, 438
notation, x—xi, 2, 637
extension of, 49, 52, 154, 210-211, 266, 271,
311, 319
ghastly, 67, 175
need for new, 83, 115, 267
nu function: sum of digits,
binary (radix 2), 12, 114, 250, 525, 557
other radices, 146, 525, 552
null case, for spanning trees, 349, 565
for Stirling numbers, 258
for tilings, 320-321
for Tower of Hanoi, 2
number system, 107, 119
combinatorial, 245
Fibonacci, 296-297, 301, 307, 310, 318
prime-exponent, 107, 116
radix, see radix notation
residue, 126-129, 144
Stern—Brocot, see Stern—-Brocot number
system
number theory, 102-152

0, considered harmful, 448-449
O-notation, 76, 443-449
abuse of, 447-448, 489
one-way equalities with, 446-447, 489-490
obvious, clarified, 417, 526
odds, 410
Odlyzko, Andrew Michael, 81, 564, 590, 616,
624, 636
Office of Naval Research, ix
one-way equalities, 446-447, 489-490
open interval, 73-74, 96
operators, 47
anti-derivative (), 48
anti-difference (}_), 48
derivative (D), 47, 310
difference (A), 47
equations of, 188, 191, 241, 310, 471
shift (E, K, N), 55, 240
theta (9), 219, 310
optical illusions, 292, 293, 560
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organ-pipe order, 524
Oz, Wizard of, 581

Pacioli, Luca, 614
Palais, Richard Sheldon, viii
paradoxes,
chessboard, 293, 317
coin flipping, 408-410
pair of boxes, 531, 535, 539
paradoxical sums, 57
parallel summation, 159, 174, 208-210
parentheses, 357—-359
parenthesis conventions, xi
partial fraction expansions, 298—299, 338-341
for easy summation and differentiation, 64,
376, 476, 504, 586
not always easiest, 374
of 1/x(*1™), 189
of 1/(z™ —1), 558
powers of, 246, 376
partial quotients, 306
and discrepancies, 319, 598-599, 602
large, 553, 563, 564, 602
partial sums, see indefinite summation
required to be positive, 359-362
partition into nearly equal parts, 83—85
partitions, of the integers, 77-78, 96, 99, 101
of a number, 330, 377
of a set, 258-259, 373
Pascal, Blaise, 155, 156, 624—625, 633
Pascal’s triangle, 155
extended upward, 164
hexagon property, 155-156, 242, 251
row lcms, 251
row products, 243
row sums, 163, 165—-166
variant of, 250
Patashnik, Amy Markowitz, ix
Patashnik, Oren, iii, iv, vi, ix, 102, 506, 616, 632
Patil, Ganapati Parashuram, 625, 636
Paule, Peter, 537, 546
Peirce, Charles Santiago Sanders, 151, 525, 625,
634
Penney, Walter Francis, 408, 625
Penney ante, 408-410, 430, 437, 438
pentagon, 314 (exercise 46), 430, 434
pentagonal numbers, 380
Percus, Jerome Kenneth, 625, 636
perfect powers, 66
periodic recurrences, 20, 179, 498

permutations, 111-112
ascents in, 267-268, 270
cycles in, 259-262
excedances in, 316
fixed points in, 193-196, 393-394, 400-401,
428
left-to-right maxima in, 316
random, 393-394, 400-401, 428
up-down, 377
without fixed points, see derangements
personal computer, 109
perspiration, 234-235
perturbation method, 32—-33, 4344, 64, 179,
284-285
Petkovsek, Marko, 229, 575, 625, 634
Pfaff, Johann Friedrich, 207, 214, 217, 529, 625,
634
reflection law, 217, 244, 247, 539
pef: probability generating function, 394
phages, 434, 438
phi (= 1.61803), 299-301
as canonical constant, 70
continued fraction for, 310
in fifth roots of unity, 553
in solutions to recurrences, 97, 99, 299-301
Stern—Brocot representation of, 550
phi function, 133-135
dgf for, 371
divisibility by, 151
Phi function: sum of ¢, 138-139, 462-463
Phidias, 299
philosophy, vii, 11, 16, 46, 71, 72, 75, 91, 170,
181, 194, 331, 467, 503, 508, 603
phyllotaxis, 291
pi (=~ 3.14159), 26, 286
as canonical constant, 70, 416, 423
large partial quotients of, 564
Stern—Brocot representation of, 146
pi function, 110-111, 452, 593
preposterous expressions for, 516
Pig, Porky, 496
pigeonhole principle, 130
Pincherle, Salvatore, 617
Pisano, Leonardo filio Bonacii, 613, see Fi-
bonacci
Pittel, Boris Gershon, 576, 618
pizza, 4, 423
planes, cutting, 19
Plouffe, Simon, 628



pneumathics, 164
Pochhammer, Leo, 48, 625
symbol, 48
pocket calculators, 67, 77, 459
failure of, 344
Poincaré, Jules Henri, 625, 636
Poisson, Siméon Denis, 471, 625
distribution, 428-429, 579
summation formula, 602
Pollak, Henry Otto, 616, 633
Pélya, George (= Gydrgy), vi, 16, 327, 508,
625-626, 633, 635, 636
polygons, dissection of, 379
triangulation of, 374
Venn diagrams with, 20
polynomial argument, 158, 163
for rational functions, 527
opposite of, 210
polynomially recursive sequence, 374
polynomials, 189
Bernoulli, 367-368, 470-475
continuant, 301-309
convolution, 373
cyclotomic, 149
degree of, 158, 226
divisibility of, 225
Euler, 574
Jacobi, 543, 605
Legendre, 543, 573, 575
Newton series for, 189-191
reflected, 339
Stirling, 271-272, 290, 311, 317, 352
Poonen, Bjorn, 501, 633
Poorten, Alfred Jacobus van der, 630
Porter, Thomas K, 632
Portland cement, see concrete (in another book)
power series, 196, see generating functions
formal, 206, 331, 348, 532
Pr, 381-382
Pratt, Vaughan Ronald, 632
preferential arrangements, 378 (exercise 44)
primality testing, 110, 148
impractical method, 133
prime algebraic integers, 106, 147
prime numbers, 105-111
gaps between, 150-151, 525
largest known, 109-110
Mersenne, 109-110, 127, 522-523
size of nth, 110-111, 456-457
sum of reciprocals, 22-25
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prime to, 115
prime-exponent representation, 107, 116
Princeton University, ix, 427
probabilistic analysis of an algorithm, 413-426
probability, 195, 381-438
conditional, 416-419, 424-425
discrete, 381-438
generating functions, 394-401
spaces, 381
probability distributions, 381
binomial, 401-402, 415, 428, 432
composition or mixture of, 428
joint, 384
negative binomial, 402-403, 428
normal, 438
Poisson, 428-429, 579
uniform, 395-396, 418-421
problems, levels of, viii, 72-73, 95, 511
Prodinger, Helmut, 564
product notation, 64, 106
product of consecutive odd numbers, 186, 270
progression, see arithmetic progression, geomet-
ric progression
proof, 4, 7
proper terms, 239-241, 255-256
properties, 23, 34, 72-73
prove or disprove, 71-72
psi function, 551
pulling out the large part, 453, 458
puns, ix, 220
Pythagoras of Samos, theorem, 510

quadratic domain, 147
quicksort, 28-29, 54
quotation marks, xi
quotient, 81

rabbits, 310
radix notation, 11-13, 15-16, 109, 195, 526
length of, 70, 460
related to prime factors, 113-114, 146-148,
245
Rado, Richard, 625, 635
Rahman, Mizan, 223, 614
Rainville, Earl David, 529, 626
Ramanujan Iyengar, Srinivasa, 330
Ramaré, Olivier, 548
Ramshaw, Lyle Harold, 73, 632, 634, 636
random constant, 399
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random variables, 383—-386; see also independent
random variables
Raney, George Neal, 359, 362, 626, 635
lemma, 359-360
lemma, generalized, 362, 372
sequences, 360-361
Rao, Dekkata Rameswar, 626, 633
rational functions, 207-208, 224-226, 338, 527
rational generating functions, 338-346
expansion theorems for, 340-341
Rayleigh, John William Strutt, 3rd Baron,
77, 626
Read, Ronald Cedric, 625
real part, 64, 212, 451
reciprocity law, 94
Recorde, Robert, 446, 626
recurrences, 1-20
and sums, 25-29
doubly exponential, 97, 100, 101, 109
floor/ceiling, 78-81
implicit, 136-139, 193-195, 284
periodic, 20, 179, 498
solving, 337-350
unfolding, 6, 100, 159-160, 312
unfolding asymptotically, 456
referee, 175
reference books, 42, 223, 616, 619
reflected light rays, 291-292
reflected polynomials, 339
reflection law for hypergeometrics, 217, 247, 539
regions, 4-8, 17, 19
regular expressions, 278
Reich, Simeon, 626, 636
relative error, 452, 455
relatively prime integers, 108, 115-123
remainder after division, 81-82
remainder in Euler’s summation formula, 471,
474-475, 479-480
Rémy, Jean-Luc, 603
Renz, Peter Lewis, viii
repertoire method, 14-15, 19, 250
for Fibonacci-like recurrences, 312, 314, 372
for sums, 26, 44-45, 63
replicative function, 100
repunit primes, 516
residue calculus, 495
residue number system, 126-129, 144
retrieving information, 411-413
rewards, monetary, ix, 256, 497, 525, 575

Rham, Georges de, 626, 635
Ribenboim, Paulo, 555, 626, 634
Rice, Stephan Oswald, 626
Rice University, ix
Riemann, Georg Friedrich Bernhard, 205, 626,
633
hypothesis, 526
Riemann’s zeta function, 65, 595
as generalized harmonic number, 277-278, 286
as infinite product, 371
as power series, 601
dgf’s involving, 370-371, 373, 463, 566, 569
evaluated at integers, 238, 286, 571, 595, 597
rising factorial powers, 48
binomial theorem for, 245
complex, 211
negative, 63
related to falling powers, 63, 312
related to ordinary powers, 263, 598
Roberts, Samuel, 626, 633
rocky road, 36, 37
Rgdseth, @ystein Johan, 627, 634
Rolletschek, Heinrich Franz, 514
roots of unity, 149, 204, 375, 574, 598
fifth, 553
modulo m, 128-129
Roscoe, Andrew William, 620
Rosser, John Barkley, 111, 627
Rota, Gian-Carlo, 516, 627
roulette wheel, 74-76, 453
rounding to nearest integer, 95, 195, 300,
344, 491
unbiased, 507
Roy, Ranjan, 627, 634
rubber band, 274-275, 278, 312, 493
ruler function, 113, 146, 148
running time, 413, 425-426
O-notation for, abused, 447-448
Ruzsa, Imre Zoltan, 611

Saalschiitz, Louis, 214, 627

identity, 214-215, 234-235, 529, 531
Saltykov, Al’bert Ivanovich, 463, 627
sample mean and variance, 391-393, 427
sample third cumulant, 429
samplesort, 354
sandwiching, 157, 165
Sarkozy, Andras, 548, 627
Sawyer, Walter Warwick, 207, 627
Schéffer, Alejandro Alberto, 632



Schinzel, Andrzej, 525

Schlomilch, Oscar Xaver, 627

Schmidt, Asmus Lorenzen, 634

Schoenfeld, Lowell, 111, 627

Schonheim, Johanen, 608

Schroder, Ernst, 627, 635

Schrodinger, Erwin, 430

Schroter, Heinrich Eduard, 627, 635

Schiitzenberger, Marcel Paul, 636

science and art, 234

Scorer, Richard Segar, 627, 633

searching a table, 411-413

Seaver, George Thomas (= 41), 8, 21, 94, 105,
106, 343

secant numbers, 317, 559, 570, 620

second-order Eulerian numbers, 270-271

second-order Fibonacci numbers, 375

second-order harmonic numbers, 277, 280, 311,
550-552

Sedgewick, Robert, 632

Sedlacek, Jiri, 627, 635

Seidel, Philipp Ludwig von, 605

self-certifying algorithms, 104

self-describing sequence, 66, 495

self reference, 59, 95, 531-540, 616, 653

set inclusion in O-notation, 446-447, 490

Shallit, Jeffrey Outlaw, 627, 635

Sharkansky, Stefan Michael, 632

Sharp, Robert Thomas, 273, 627

sherry, 433

shift operator, 55, 240

binomial theorems for, 188, 191

Shiloach, Joseph (= Yossi), 632

Shor, Peter Williston, 633

Sicherman, George Leprechaun, 636

sideways addition, 12, 114, 146, 250, 552

Sierpinski, Wactaw Franciszek, 87, 627-628, 634

sieve of Eratosthenes, 111

Sigma-notation, 22-25

ambiguity of, 245

signum function, 502

Silverman, David L, 628, 635

similar hypergeometric terms, 541

skepticism, 71

Skiena, Steven Sol, 548

Sloane, Neil James Alexander, 42, 341, 464, 604,
628, 633

Slowinski, David Allen, 109

small cases, 2, 5, 9, 155, 320-321; see also
empty case
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Smith, Cedric Austen Bardell, 627, 633
Snowwalker, Luke, 435
Solov’ev, Aleksandr Danilovitch, 408, 628
solution, 3, 337
sorting,
asymptotic efficiency of, 447-449
bubblesort, 448
merge sort, 79, 175
possible outcomes, 378
quicksort, 28—-29, 54
samplesort, 354
Soundararajan, Kannan, 525, 605.
spanning trees,
of complete graphs, 368—369
of fans, 348-350, 356
of wheels, 374
Spec, see spectra
special numbers, 257-319
spectra, 77-78, 96, 97, 99, 101
generating functions for, 307, 319
spinning coins, 401
spiral function, 99
Spohn, William Gideon, Jr., 628
sports, see baseball, football, frisbees, golf,
tennis
square pyramidal numbers, 42
square root,
of 1 (mod m), 128-129
of 2, 100
of 3, 378
of —1, 22
squarefree, 145, 151, 373, 525, 548
squares, sum of consecutive, 41-46, 51, 180, 245,
260, 284, 288, 367, 444, 470
stack size, 360—361
stacking bricks, 313, 374
stacking cards, 273-274, 278, 309
Stallman, Richard Matthew, 628
standard deviation, 388, 390-394
Stanford University, v, vii, ix, 427, 458, 632,
634, 657
Stanley, Richard Peter, 270, 534, 615, 628,
635, 636
Staudt, Karl Georg Christian von, 628, 635
Staver, Tor Bghm, 628, 634
Steele, Guy Lewis, Jr., 628
Stegun, Irene Anne, 42, 604
Stein, Sherman Kopald, 633
Steiner, Jacob, 5, 628, 633
Steinhaus, Hugo Dyonizy, 636
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Stengel, Charles Dillon (= Casey), 42
step functions, 87
Stern, Moritz Abraham, 116, 629
Stern—Brocot number system, 119-123
related to continued fractions, 306
representation of v/3, 572
representation of y, 306
representation of 7, 146
representation of ¢, 550
representation of e, 122, 150
simplest rational approximations from,
122-123, 146, 519
Stern—Brocot tree, 116-123, 148, 525
largest denominators in, 319
related to continued fractions, 305-306
Stern—Brocot wreath, 515
Stewart, Bonnie Madison, 614, 633
Stickelberger, Ludwig, 629, 633
Stieltjes, Thomas Jan, 617, 629, 633
constants, 595, 601
Stirling, James, 192, 195, 210, 257, 258, 297,
481, 629
approximation, 112, 452, 481-482, 491, 496
approximation, perturbed, 454-455
constant, 481, 485-489
polynomials, 271-272, 290, 311, 317, 352
triangles, 258, 259, 267
Stirling numbers, 257-267
as sums of products, 570
asymptotics of, 495, 602
combinatorial interpretations, 258-262
convolution formulas, 272, 290
duality of, 267
generalized, 271-272, 311, 316, 319, 598
generating functions for, 351-352, 559
identities for, 264-265, 269, 272, 290, 311,
317, 378
inversion formulas for, 310
of the first kind, 259
of the second kind, 258
related to Bernoulli numbers, 289-290,
317 (exercise 76)
table of, 258, 259, 267
Stone, Marshall Harvey, vi
Straus, Ernst Gabor, 564, 611, 624
Strehl, Karl Ernst Volker, 549, 629, 634
Stueben, Michael A., 445
subfactorial, 194-196, 250
summand, 22

summation, 21-66
asymptotic, 87-89, 466—496
by parts, 54-56, 63, 279
changing the index of, 30-31, 39
definite, 49-50, 229-241
difficulty measure for, 181
factors, 27-29, 64, 236, 248, 275, 543
in hypergeometric terms, 224-229
indefinite, see indefinite summation
infinite, 56-62, 64
interchanging the order of, 34-41, 105, 136,
183, 185, 546
mechanical, 229-241
on the upper index, 160-161, 175-176
over divisors, 104-105, 135-137, 141, 370
over triangular arrays, 36—41
parallel, 159, 174, 208-210
sums, 21-66; see also summation
absolutely convergent, 60-62, 64
and recurrences, 25—29
approximation of, by integrals, 45, 276-277,
469-475
divergent, see divergent sums
double, see double sums
doubly infinite, 59, 98, 482—483
empty, 24, 48
floor/ceiling, 86—94
formal, 321; see also formal power series
hypergeometric, see hypergeometric series
infinite, 56-62, 64
multiple, 34—41, 61; see also double sums
notations for, 21-25
of consecutive cubes, 51, 63, 283, 289, 367
of consecutive integers, 6, 44, 65
of consecutive mth powers, 42, 283-285,
288-290, 366—-368
of consecutive squares, 41-46, 51, 180, 245,
269, 284, 288, 367, 444, 470
of harmonic numbers, 41, 56, 279-282,
312-313, 316, 354-355
paradoxical, 57
tails of, 466-469, 488-489, 492
Sun Tst (= Sunzi, Master Sun), 126
sunflower, 291
super generating functions, 353, 421
superfactorials, 149, 243
Swanson, Ellen Esther, viii
Sweeney, Dura Warren, 629
Swinden, Benjamin Alfred, 633
Sylvester, James Joseph, 133, 629, 633



symmetry identities,
for binomial coefficients, 156-157, 183
for continuants, 303
for Eulerian numbers, 268

Szegedy, Marié, 525, 608, 629

Szegd, Géabor, 626, 636

Tn, see tangent numbers
tail exchange, 466-469, 486-489
tail inequalities, 428, 430
tail of a sum, 466-469, 488—-489, 492
tale of a sum, see squares
Tancke, Joachim, 619
tangent function, 287, 317
tangent numbers, 287, 312, 317, 570, 620
Tanny, Stephen Michael, 629, 635
Tartaglia, Nicolo, triangle, 155
Taylor, Brook, series, 163, 191, 287, 396,
470-471
telescoping, 50, 232, 236, 255
tennis, 432-433
term, 21
hypergeometric, 224, 243, 245, 527, 575
term ratio, 207-209, 211-212, 224-225
TEX, 219, 432, 657
Thackeray, Henry St. John, 618
Theisinger, Ludwig, 629, 634
theory of numbers, 102-152
theory of probability, 381-438
theta functions, 483, 524
theta operator, 219-221, 347
converting between D and 9, 310
Thiele, Thorvald Nicolai, 397, 398, 629
thinking, 503
big, 2, 441, 458, 483, 486
not at all, 56, 230, 503
small, see downward generalization, small
cases
three-dots (- --) notation, 21
advantage of, 21, 25, 50
disadvantage of, 25
elimination of, 108
tilings, see domino tilings
Titchmarsh, Edward Charles, 629, 636
Todd, Horace, 501
Toledo, Ohio, 73
Tong, Christopher Hing, 632
Toscano, Letterio, 621
totient function, 133-135
dgf for, 371
divisibility by, 151
summation of, 137-144, 150, 462—-463
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Toto, 581
tournament, 432-433
Tower of Brahma, 1, 4, 278
Tower of Hanoi, 1-4, 26-27, 109, 146
variations on, 17-20
Trabb Pardo, Luis Isidoro, 632
transitive law, 124
failure of, 410
traps, 154, 157, 183, 222, 542
trees,
2-3 trees, 636
binary, 117
of bees, 291
spanning, 348-350, 356, 368-369, 374
Stern—Brocot, see Stern—Brocot tree
triangular array, summation over, 36—41
triangular numbers, 6, 155, 195-196, 260, 380
triangulation, 374
Tricomi, Francesco Giacomo Filippo, 629, 636
tridiagonal matrix, 319
trigonometric functions,
related to Bernoulli numbers, 286-287, 317
related to probabilities, 435, 437
related to tilings, 379
trinomial coefficients, 168, 171, 255, 571
middle, 490
trinomial theorem, 168
triphages, 434
trivial, clarified, 105, 129, 417-418, 618
Turén, Paul, 636
typefaces, viii-ix, 657

Uchimura, Keisuke, 605, 635

umop-apisdn function, 193

unbiased estimate, 392, 429

unbiased rounding, 507

uncertainty principle, 481

undetermined coefficients, 529

unexpected sum, 167, 215-216, 236, 247

unfolding a recurrence, 6, 100, 159-160, 312

asymptotically, 456

Ungar, Peter, 629

uniform distribution, 395-396, 418-421

uniformity, deviation from, 152; see also
discrepancy

unique factorization, 106-107, 147

unit, 147

unit fractions, 95, 101, 150

unwinding a recurrence, see unfolding a
recurrence
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up-down permutations, 377

upper index of binomial coefficient, 154

upper negation, 164-165

upper parameters of hypergeometric series, 205
upper summation, 160-161, 176

useless identity, 223, 254

Uspensky, James Victor, 615, 630, 633

V: variance, 387-398, 419-425
van der Poorten, Alfred Jacobus, 630
Vandermonde, Alexandre Théophile, 169, 630, 634
Vandermonde’s convolution, 169-170, 610, 627
as a hypergeometric series, 211-213
combinatorial interpretation, 169-170
derived mechanically, 234
derived from generating functions, 198
generalized, 201-202, 218-219, 248
with half-integers, 187
vanilla, 36
Vardi, Ilan, 525, 548, 603, 620, 630, 633, 636
variance of a probability distribution, 387-398,
419-425
infinite, 428, 587
Veech, William Austin, 514
Venn, John, 498, 630, 633
diagram, 17, 20
venture capitalists, 493—494
violin string, 29
vocabulary, 75
Voltaire, de (= Arouet, Francois Marie), 450
von Seidel, Philipp Ludwig, 605
von Staudt, Karl Georg Christian, 628, 635
Vyssotsky, Victor Alexander, 548

Wall, Charles Robert, 607, 635
Wallis, John, 630, 635
Wapner, Joseph Albert, 43
war, 8, 16, 85, 434
Waring, Edward, 630, 635
Wasteels, Joseph, 630, 635
Waterhouse, William Charles, 630, 635
Watson, John Hamish, 229, 405
Waugh, Frederick Vail, 630, 635
Weaver, Warren, 630
Weber, Heinrich, 630
Weisner, Louis, 516, 630
Wermuth, Edgar Martin Emil, 603, 630
Weyl, Claus Hugo Hermann, 87, 630
Wham-O, 435, 443
wheel, 74, 374

big, 75

of Fortune, 453

Whidden, Samuel Blackwell, viii
Whipple, Francis John Welsh, 630, 634
identity, 253
Whitehead, Alfred North, 91, 503, 603, 631
Wiles, Andrew John, 131
Wilf, Herbert Saul, 81, 240, 241, 514, 549, 575,
620, 624, 631, 634
Williams, Hugh Cowie, 631, 633
Wilquin, Denys, 634
Wilson, George and Martha, 148
Wilson, Sir John, theorem, 132-133, 148, 516,
609
wine, 433
Witty, Carl Roger, 509
Wolstenholme, Joseph, 631, 635
theorem, 554
Wood, Derick, 631, 633
Woods, Donald Roy, 628
Woolf, William Blauvelt, viii
worm,
and apple, 430
on rubber band, 274-275, 278, 312, 493
Worpitzky, Julius Daniel Theodor, 631
identity, 269
wraparound, 250 (exercise 75), 315
wreath, 515
Wrench, John William, Jr., 600, 606, 636
Wright, Sir Edward Maitland, 111, 617, 631, 633
Wythoff (= Wijthoff), Willem Abraham, 614

Yao, Andrew Chi-Chih, ix, 632
Yao, Frances Foong Chu, ix, 632
Yao, Qf, 623

Youngman, Henry (= Henny), 175

zag, see zig
Zagier, Don Bernard, 238
Zapf, Hermann, viii, 620, 657
Zave, Derek Alan, 631, 635
Zeckendorf, Edouard, 631
theorem, 295-296, 563
Zeilberger, Doron, ix, 229-231, 238, 240, 241,
631, 634
zero, not considered harmful, 24-25, 159
strongly, 24-25
zeta function, 65, 595
and the Riemann hypothesis, 526
as generalized harmonic number, 277-278, 286
as infinite product, 371
as power series, 601
dgf’s involving, 370-371, 373, 463, 566, 569
evaluated at integers, 238, 286, 571, 595, 597
Zhu Shijie, see Chu Shih-Chieh
zig, 7-8, 19
zig-zag, 19
Zipf, George Kingsley, law, 419
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This book introduces the mathematics that supports advanced computer programming and
the analysis of algorithms. The primary aim of its well-known authors is to provide a solid
and relevant base of mathematical skills—the skills needed to solve complex problems, to
evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text
and reference not only for computer scientists —the authors themselves rely heavily on it! —
but for serious users of mathematics in virtually every discipline.

Concrete mathematics is a blending of coNtinuous and disCRETE mathematics. “More con-
cretely,” the authors explain, “it is the controlled manipulation of mathematical formulas,
using a collection of techniques for solving problems.” The subject matter is primarily an
expansion of the Mathematical Preliminaries section in Knuth’s classic Art of Computer Pro-
gramming, but the style of presentation is more leisurely, and individual topics are covered
more deeply. Several new topics have been added, and the most significant ideas have been
traced to their historical roots. The book includes more than 500 exercises, divided into six
categories. Complete answers are provided for all exercises, except research problems, making
the book particularly valuable for self-study.

Major topics include:
Sums e Recurrences e Integer functions e Elementary number theory e Binomial
coefficients e Generating functions e Discrete probability e Asymptotic methods

This second edition includes important new material about mechanical summation. In response
to the widespread use of the first edition as a reference book, the bibliography and index have
also been expanded, and additional nontrivial improvements can be found on almost every page.

Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are
the marginal graffiti contributed by students who have taken courses based on this material.
Graham, Knuth, and Patashnik want to convey not only the importance of the techniques
presented, but some of the fun in learning and using them.
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