

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special
sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:
International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Spinellis, Diomidis.
Code reading / Diomidis Spinellis.

p. cm.
Contents: The open source perspective.
Includes bibliographical references and Index.
ISBN 0-201-79940-5 (pbk. : alk. paper)
1. Computer programming. 2. Coding theory. I. Title.

QA76.6 .S675 2003
005.1–dc21 2002038563

Copyright c© 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written
request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-201-79940-5

Printing11th March 2009
Text printed in the United States at Offset Paperback Manufacturers in Laflin, Pennsylvania.

www.awprofessional.com

Contents at a Glance

Foreword . xxi

Preface . xxv

1 Introduction . 1

2 Basic Programming Elements . 19

3 Advanced C Data Types . 61

4 C Data Structures . 95

5 Advanced Control Flow . 143

6 Tackling Large Projects . 179

7 Coding Standards and Conventions . 225

8 Documentation . 241

9 Architecture . 267

10 Code-Reading Tools . 339

11 A Complete Example . 379

A Outline of the Code Provided . 399

B Source Code Credits . 403

C Referenced Source Files . 405

D Source Code Licenses . 413

E Maxims for Reading Code . 425

Bibliography . 445

Index . 459

Author Index . 491

v

This page intentionally left blank

Contents

Figures . xiii

Tables . xix

Foreword . xxi

Preface . xxv

1 Introduction . 1

1.1 Why and How to Read Code . 2
1.1.1 Code as Literature . 2
1.1.2 Code as Exemplar . 5
1.1.3 Maintenance . 6
1.1.4 Evolution . 7
1.1.5 Reuse . 9
1.1.6 Inspections . 9

1.2 How to Read This Book . 10
1.2.1 Typographical Conventions . 10
1.2.2 Diagrams . 12
1.2.3 Exercises . 13
1.2.4 Supplementary Material .14
1.2.5 Tools . 14
1.2.6 Outline . 15
1.2.7 The Great Language Debate . 15

Further Reading . 17

2 Basic Programming Elements . 19

2.1 A Complete Program . 19

2.2 Functions and Global Variables . 25

vii

viii Contents

2.3 while Loops, Conditions, and Blocks . 28

2.4 switch Statements .32

2.5 for Loops . 34

2.6 break and continue Statements . 37

2.7 Character and Boolean Expressions . 39

2.8 goto Statements . 43

2.9 Refactoring in the Small . 45

2.10 do Loops and Integer Expressions . 51

2.11 Control Structures Revisited . 54

Further Reading . 60

3 Advanced C Data Types . 61

3.1 Pointers . 61
3.1.1 Linked Data Structures .62
3.1.2 Dynamic Allocation of Data Structures . 62
3.1.3 Call by Reference . 63
3.1.4 Data Element Access . 65
3.1.5 Arrays as Arguments and Results . 65
3.1.6 Function Pointers . 67
3.1.7 Pointers as Aliases . 70
3.1.8 Pointers and Strings . 72
3.1.9 Direct Memory Access .74

3.2 Structures . 75
3.2.1 Grouping Together Data Elements . 75
3.2.2 Returning Multiple Data Elements from a Function 76
3.2.3 Mapping the Organization of Data . 76
3.2.4 Programming in an Object-Oriented Fashion . 78

3.3 Unions . 80
3.3.1 Using Storage Efficiently .80
3.3.2 Implementing Polymorphism . 81
3.3.3 Accessing Different Internal Representations . 82

3.4 Dynamic Memory Allocation . 84
3.4.1 Managing Free Memory . 87
3.4.2 Structures with Dynamically Allocated Arrays 89

Contents ix

3.5 typedef Declarations . 91

Further Reading . 93

4 C Data Structures . 95

4.1 Vectors . 96

4.2 Matrices and Tables . 101

4.3 Stacks . 105

4.4 Queues . 107

4.5 Maps . 111
4.5.1 Hash Tables . 113

4.6 Sets . 116

4.7 Linked Lists . 117

4.8 Trees . 125

4.9 Graphs .131
4.9.1 Node Storage . 131
4.9.2 Edge Representation . 134
4.9.3 Edge Storage . 137
4.9.4 Graph Properties . 139
4.9.5 Hidden Structures . 139
4.9.6 Other Representations . 140

Further Reading . 140

5 Advanced Control Flow . 143

5.1 Recursion . 143

5.2 Exceptions . 150

5.3 Parallelism . 154
5.3.1 Hardware and Software Parallelism . 154
5.3.2 Control Models . 156
5.3.3 Thread Implementations . 162

5.4 Signals . 165

5.5 Nonlocal Jumps . 169

5.6 Macro Substitution . 172

Further Reading . 177

x Contents

6 Tackling Large Projects . 179

6.1 Design and Implementation Techniques . 179

6.2 Project Organization . 181

6.3 The Build Process and Makefiles . 189

6.4 Configuration .197

6.5 Revision Control . 202

6.6 Project-Specific Tools . 210

6.7 Testing . 215

Further Reading . 224

7 Coding Standards and Conventions . 225

7.1 File Names and Organization . 225

7.2 Indentation . 228

7.3 Formatting . 230

7.4 Naming Conventions . 234

7.5 Programming Practices . 237

7.6 Process Standards . 239

Further Reading . 240

8 Documentation . 241

8.1 Documentation Types . 241

8.2 Reading Documentation . 243

8.3 Documentation Problems . 254

8.4 Additional Documentation Sources . 256

8.5 Common Open-Source Documentation Formats .260

Further Reading . 266

9 Architecture . 267

9.1 System Structures . 268
9.1.1 Centralized Repository and Distributed Approaches 268
9.1.2 Data-Flow Architectures . 273
9.1.3 Object-Oriented Structures . 275
9.1.4 Layered Architectures . 279

Contents xi

9.1.5 Hierarchies . 282
9.1.6 Slicing . 283

9.2 Control Models . 285
9.2.1 Event-Driven Systems . 285
9.2.2 System Manager . 289
9.2.3 State Transition . 291

9.3 Element Packaging .292
9.3.1 Modules .293
9.3.2 Namespaces . 296
9.3.3 Objects .300
9.3.4 Generic Implementations . 313
9.3.5 Abstract Data Types . 318
9.3.6 Libraries . 319
9.3.7 Processes and Filters . 323
9.3.8 Components . 325
9.3.9 Data Repositories . 325

9.4 Architecture Reuse . 328
9.4.1 Frameworks . 329
9.4.2 Code Wizards . 330
9.4.3 Design Patterns . 331
9.4.4 Domain-Specific Architectures . 333

Further Reading . 337

10 Code-Reading Tools . 339

10.1 Regular Expressions . 340

10.2 The Editor as a Code Browser . 343

10.3 Code Searching with grep . 346

10.4 Locating File Differences .355

10.5 Roll Your Own Tool . 357

10.6 The Compiler as a Code-Reading Tool . 360

10.7 Code Browsers and Beautifiers . 365

10.8 Runtime Tools . 370

10.9 Nonsoftware Tools . 375

Tool Availability and Further Reading . 376

xii Contents

11 A Complete Example . 379

11.1 Overview . 379

11.2 Attack Plan . 380

11.3 Code Reuse . 382

11.4 Testing and Debugging . 388

11.5 Documentation . 396

11.6 Observations . 397

A Outline of the Code Provided . 399

B Source Code Credits . 403

C Referenced Source Files . 405

D Source Code Licenses . 413

D.1 ACE . 413

D.2 Apache . 415

D.3 ArgoUML . 416

D.4 DemoGL . 416

D.5 hsqldb . 417

D.6 NetBSD .418

D.7 OpenCL .418

D.8 Perl . 419

D.9 qtchat . 422

D.10 socket .422

D.11 vcf . 422

D.12 X Window System . 423

E Maxims for Reading Code . 425

Bibliography . 445

Index . 459

Author Index . 491

Foreword

We’re programmers. Our job (and in many cases our passion) is to make things happen
by writing code. We don’t meet our user’s requirements with acres of diagrams, with
detailed project schedules, with four-foot-high piles of design documentation. These
are all wishes—expressions of what we’d like to be true. No, we deliver by writing
code: code is reality.

So that’s what we’re taught. Seems reasonable. Our job is to write code, so we need
to learn how to write code. College courses teach us to to write programs. Training
courses tell us how to code to new libraries and APIs. And that’s one of the biggest
tragedies in the industry.

Because the way to learn to write great code is by reading code. Lots of code. High-
quality code, low-quality code. Code in assembler, code in Haskell. Code written by
strangers ten thousand miles away, and code written by ourselves last week. Because
unless we do that, we’re continually reinventing what has already been done, repeating
both the successes and mistakes of the past.

I wonder how many great novelists have never read someone else’s work, how
many great painters never studied another’s brush strokes, how many skilled surgeons
never learned by looking over a colleague’s shoulder, how many 767 captains didn’t
first spend time in the copilot’s seat watching how it’s really done.

And yet that’s what we expect programmers to do. “This week’s assignment is
to write. . . .” We teach developers the rules of syntax and construction, and then we
expect them to be able to write the software equivalent of a great novel.

The irony is that there’s never been a better time to read code. Thanks to the huge
contributions of the open-source community, we now have gigabytes of source code
floating around the ’net just waiting to be read. Choose any language, and you’ll be
able to find source code. Select a problem domain, and there’ll be source code. Pick a
level, from microcode up to high-level business functions, and you’ll be able to look
at a wide body of source code.

xxi

xxii Foreword

Code reading is fun. I love to read others’ code. I read it to learn tricks and to study
traps. Sometimes I come across small but precious gems. I still remember the pleasure
I got when I came across a binary-to-octal conversion routine in PDP-11 assembler
that managed to output the six octal digits in a tight loop with no loop counter.

I sometimes read code for the narrative, like a book you’d pick up at an airport
before a long flight. I expect to be entertained by clever plotting and unexpected
symmetries. Jame Clark’s gpic program (part of his GNU groff package) is a wonderful
example of this kind of code. It implements something that’s apparently very complex
(a declarative, device-independent picture-drawing language) in a compact and elegant
structure. I came away feeling inspired to try to structure my own code as tidily.

Sometimes I read code more critically. This is slower going. While I’m reading,
I’m asking myself questions such as ”Why is this written this way?” or “What in the
author’s background would lead her to this choice?” Often I’m in this mode because
I’m reviewing code for problems. I’m looking for patterns and clues that might give
me pointers. If I see that the author failed to take a lock on a shared data structure in one
part of the code, I might suspect that the same might hold elsewhere and then wonder
if that mistake could account for the problem I’m seeing. I also use the incongruities I
find as a double check on my understanding; often I find what I think is a problem, but
it on closer examination it turns out to be perfectly good code. Thus I learn something.

In fact, code reading is one of the most effective ways to eliminate problems in pro-
grams. Robert Glass, one of this book’s reviewers, says, “by using (code) inspections
properly, more than 90 percent of the errors can be removed from a software product
before its first test.1 In the same article he cites research that shows “Code-focused
inspectors were finding 90 percent more errors than process-focused inspectors.” In-
terestingly, while reading the code snippets quoted in this book I came across a couple
of bugs and a couple of dubious coding practices. These are problems in code that’s
running at tens of thousands of sites worldwide. None were critical in nature, but the
exercise shows that there’s always room to improve the code we write. Code-reading
skills clearly have a great practical benefit, something you already know if you’ve
ever been in a code review with folks who clearly don’t know how to read code.

And then there’s maintenance, the ugly cousin of software development. There
are no accurate statistics, but most researchers agree that more than half of the time we
spend on software is used looking at existing code: adding new functionality, fixing
bugs, integrating it into new environments, and so on. Code-reading skills are crucial.
There’s a bug in a 100,000-line program, and you’ve got an hour to find it. How do

1http://www.stickyminds.com/se/S2587.asp

http://www.stickyminds.com/se/S2587.asp

Foreword xxiii

you start? How do you know what you’re looking at? And how can you assess the
impact of a change you’re thinking of making?

For all these reasons, and many more, I like this book. At its heart it is pragmatic.
Rather than taking an abstract, academic approach, it instead focuses on the code itself.
It analyzes hundreds of code fragments, pointing out tricks, traps and (as importantly)
idioms. It talks about code in its environment and discusses how that environment
affects the code. It highlights the important tools of the code reader’s trade, from
common tools such as grep and find to the more exotic. And it stresses the importance
of tool building: write code to help you read code. And, being pragmatic, it comes
with all the code it discusses, conveniently cross-referenced on a CD-ROM.

This book should be included in every programming course and should be on
every developer’s bookshelf. If as a community we pay more attention to the art of
code reading we’ll save ourselves both time and pain. We’ll save our industry money.
And we’ll have more fun while we’re doing it.

Dave Thomas
The Pragmatic Programmers, LLC
http://www.pragmaticprogrammer.com

http://www.pragmaticprogrammer.com

This page intentionally left blank

Preface

What do we ever get nowadays from reading to equal the excitement and the
revelation in those first fourteen years?

—Graham Greene

The reading of code is likely to be one of the most common activities of a
computing professional, yet it is seldom taught as a subject or formally used
as a method for learning how to design and program.

One reason for this sad situation originally may have been the lack of real-world
or high-quality code to read. Companies often protect source code as a trade secret
and rarely allow others to read, comment on, experiment with, and learn from it. In the
few cases where important proprietary code was allowed out of a company’s closet,
it spurred enormous interest and creative advancements. As an example, a generation
of programmers benefited from John Lions’s Commentary on the Unix Operating
System that listed and annotated the complete source code of the sixth-edition Unix
kernel. Although Lions’s book was originally written under a grant from AT&T for
use in an operating system course and was not available to the general public, copies
of it circulated for years as bootleg nth-generation photocopies.

In the last few years, however, the popularity of open-source software has provided
us with a large body of code we can all freely read. Some of the most popular software
systems used today, such as the Apache Web server, the Perl language, the GNU/Linux
operating system, the BIND domain name server, and the sendmail mail-transfer agent
are in fact available in open-source form. I was thus fortunate to be able to use
open-source software such as the above to write this book as a primer and reader
for software code. My goal was to provide background knowledge and techniques for
reading code written by others. By using real-life examples taken out of working, open-
source projects, I tried to cover most concepts related to code that are likely to appear

xxv

xxvi Preface

before a software developer’s eyes, including programming constructs, data types, data
structures, control flow, project organization, coding standards, documentation, and
architectures. A companion title to this book will cover interfacing and application-
oriented code, including the issues of internationalization and portability, the elements
of commonly used libraries and operating systems, low-level code, domain-specific
and declarative languages, scripting languages, and mixed language systems.

This book is—as far as I know—the first one to exclusively deal with code reading
as a distinct activity, one worthy on its own. As such I am sure that there will be
inevitable shortcomings, better ways some of its contents could have been treated,
and important material I have missed. I firmly believe that the reading of code should
be both properly taught and used as a method for improving one’s programming
abilities. I therefore hope this book will spur interest to include code-reading courses,
activities, and exercises into the computing education curriculum so that in a few years
our students will learn from existing open-source systems, just as their peers studying
a language learn from the great literature.

Supplementary Material
Many of the source code examples provided come from the source distribution of
NetBSD. NetBSD is a free, highly portable Unix-like operating system available for
many platforms, from 64-bit AlphaServers to handheld devices. Its clean design and
advanced features make it an excellent choice for both production and research en-
vironments. I selected NetBSD over other similarly admirable and very popular free
Unix-like systems (such as GNU/Linux, FreeBSD, and OpenBSD) because the primary
goal of the NetBSD project is to emphasize correct design and well-written code, thus
making it a superb choice for providing example source code. According to its devel-
opers, some systems seem to have the philosophy of “if it works, it’s right,” whereas
NetBSD could be described as “it doesn’t work unless it’s right.” In addition, some
other NetBSD goals fit particularly well with the objectives of this book. Specifically,
the NetBSD project avoids encumbering licenses, provides a portable system running
on many hardware platforms, interoperates well with other systems, and conforms
to open systems standards as much as is practical. The code used in this book is a
(now historic) export-19980407 snapshot. A few examples refer to errors I found in
the code; as the NetBSD code continuously evolves, presenting examples from a more
recent version would mean risking that those realistic gems would have been corrected.

I chose the rest of the systems I used in the book’s examples for similar reasons:
code quality, structure, design, utility, popularity, and a license that would not make my

Preface xxvii

publisher nervous. I strived to balance the selection of languages, actively looking for
suitable Java and C++ code. However, where similar concepts could be demonstrated
using different languages I chose to use C as the least common denominator.

I sometimes used real code examples to illustrate unsafe, nonportable, unreadable,
or otherwise condemnable coding practices. I appreciate that I can be accused of
disparaging code that was contributed by its authors in good faith to further the open-
source movement and to be improved upon rather than merely criticized. I sincerely
apologize in advance if my comments cause any offense to a source code author. In
defense I argue that in most cases the comments do not target the particular code
excerpt, but rather use it to illustrate a practice that should be avoided. Often the
code I am using as a counterexample is a lame duck, as it was written at a time
when technological and other restrictions justified the particular coding practice, or
the particular practice is criticized out of the context. In any case, I hope that the
comments will be received with good humor, and I openly admit that my own code
contains similar, and probably worse, misdeeds.

Acknowledgments
A number of people generously contributed advice, comments, and their time help-
ing to make this book a reality. Addison-Wesley assembled what I consider a dream
team of reviewers: Paul C. Clements, Robert L. Glass, Scott D. Meyers, Guy Steele,
Dave Thomas, and John Vlissides graciously read the manuscript in a form much
rougher than the one you hold in your hands and shared their experience and wisdom
through thoughtful, perceptive, and often eye-opening reviews. In addition, Eliza
Fragaki, Georgios Chrisoloras, Kleanthis Georgaris, Isidor Kouvelas, and Lorenzo
Vicisano read parts of the manuscript in an informal capacity and contributed many
useful comments and suggestions. I was also lucky to get advice on the mechanics
of the production process from Bill Cheswick, Christine Hogan, Tom Limoncelli,
and Antonis Tsolomitis. Furthermore, George Gousios suggested the use of Tom-
cat as Java open-source software material and explained to me details of its oper-
ation, pointed me toward the ant build tool, and clarified issues concerning the
use of the DocBook documentation format. Stephen Ma solved the mystery of how
vnode pointers end up at the operating system device driver level (see Section 9.1.4).
Spyros Oikonomopoulos provided me with an overview of the reverse engineering
capabilities of UML-based modeling tools. Panagiotis Petropoulos updated the book
references. Konstantina Vassilopoulou advised me on readability aspects of the an-
notated code listings. Ioanna Grinia, Vasilis Karakoidas, Nikos Korfiatis, Vasiliki

xxviii Preface

Tangalaki, and George M. Zouganelis contributed their views on the book’s layout.
Athan Tolis located the epigram for Chapter 5 in the London Science Museum library.

Elizabeth Ryan and the folks at ITC patiently designed and redesigned the book
until we could all agree it had the right look.

My editors, Ross Venables and Mike Hendrickson at Addison-Wesley, handled
the book’s production with remarkable effectiveness. In the summer of 2001, a week
after we first established contact, Ross was already sending the manuscript proposal
for review; working with a seven-hour time zone difference, I would typically find any
issues I raised near the end of my working day solved when I opened my email in the
morning. Their incredible efficiency in securing reviewers, answering my often naive
questions, dealing with the book’s contractual aspects, and coordinating the com-
plex production process was paramount in bringing this project to fruition. Later on,
Elizabeth Ryan expertly synchronized the Addision-Wesley production team; Chrysta
Meadowbrooke diligently copy-edited my (often rough) manuscript, demonstrating
an admirable understanding of its technical content; ITC handled the demanding com-
position task; and Jennifer Lundberg patiently introduced me to the mysteries of book
marketing.

The vast majority of the examples used in this book are parts of existing open-
source projects. The use of real-life code allowed me to present the type of code that
one is likely to encounter rather than simplified toy programs. I therefore wish to
thank all the contributors of the open-source material I have used for sharing their
work with the programming community. The contributor names of code that appears
in the book, when listed in the corresponding source code file, appear in Appendix B.

2
Basic Programming Elements

What we observe is not nature itself, but nature exposed to our method of
questioning.

—Werner Heisenberg

Code reading is in many cases a bottom-up activity. In this chapter we review
the basic code elements that comprise programs and outline how to read and
reason about them. In Section 2.1 we dissect a simple program to demonstrate

the type of reasoning necessary for code reading. We will also have the first oppor-
tunity to identify common traps and pitfalls that we should watch for when reading
or writing code, as well as idioms that can be useful for understanding its meaning.
Sections 2.2 and onward build on our understanding by examining the functions,
control structures, and expressions that make up a program. Again, we will reason
about a specific program while at the same time examining the (common) control
constructs of C, C++, Java, and Perl. Our first two complete examples are C programs
mainly because realistic self-standing Java or C++ programs are orders of magni-
tude larger. However, most of the concepts and structures we introduce here apply
to programs written in any of the languages derived from C such as C++, C#, Java,
Perl, and PHP. We end this chapter with a section detailing how to reason about a pro-
gram’s flow of control at an abstract level, extracting semantic meaning out of its code
elements.

2.1 A Complete Program
A very simple yet useful program available on Unix systems is echo, which prints
its arguments on the standard output (typically the screen). It is often used to display

19

20 Basic Programming Elements

information to the user as in:

echo "Cool! Let
‚
s get to it..."

in the NetBSD upgrade script.1 Figure 2.1 contains the complete source code of echo.2

As you can see, more than half of the program code consists of legal and admin-
istrative information such as copyrights, licensing information, and program version
identifiers. The provision of such information, together with a summary of the spe-
cific program or module functionality, is a common characteristic in large, organized
systems. When reusing source code from open-source initiatives, pay attention to the
licensing requirements imposed by the copyright notice (Figure 2.1:1).

C and C++ programs need to include header files (Figure 2.1:2) in order to
correctly use library functions. The library documentation typically lists the header
files needed for each function. The use of library functions without the proper header
files often generates only warnings from the C compiler yet can cause programs to
fail at runtime. Therefore, a part of your arsenal of code-reading procedures will be to
run the code through the compiler looking for warning messages (see Section 10.6).

Standard C, C++, and Java programs begin their execution from the function
(method in Java) called main (Figure 2.1:3). When examining a program for the first
timemain can be a good starting point. Keep in mind that some operating environments
such as Microsoft Windows, Java applet and servlet hosts, palmtop PCs, and embedded
systems may use another function as the program’s entry point, for example, WinMain
or init.

In C/C++ programs two arguments of the main function (customarily named argc
and argv) are used to pass information from the operating system to the program
about the specified command-line arguments. The argc variable contains the number
of program arguments, while argv is an array of strings containing all the actual
arguments (including the name of the program in position 0). The argv array is
terminated with a NULL element, allowing two different ways to process arguments:
either by counting based on argc or by going through argv and comparing each value
against NULL. In Java programs you will find the argv String array and its length
method used for the same purpose, while in Perl code the equivalent constructs you
will see are the @ARGV array and the $#ARGV scalar.

1netbsdsrc/distrib/miniroot/upgrade.sh:98
2netbsdsrc/bin/echo/echo.c:3–80

2.1 A Complete Program 21

/*

 * Copyright (c) 1989, 1993
 * The Regents of the University of California. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * This product includes software developed by the University of
 * California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
#ifndef lint
__COPYRIGHT(
"@(#) Copyright (c) 1989, 1993\n\
 The Regents of the University of California. All rights reserved.\n");

__RCSID("$NetBSD: echo.c,v 1.7 1997/07/20 06:07:03 thorpej Exp $");
#endif /* not lint */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main __P((int, char *[]));

int
main (argc, argv)
 int argc;

 char *argv[];
{
 int nflag;

 /* This utility may NOT do getopt(3) option parsing. */
 if (*++argv && !strcmp(*argv, "-n") {

 ++argv;
 nflag = 1;
 }
 else
 nflag = 0;

) {

 (void)printf("%s", *argv);

 if (*++argv)
 putchar(’ ’);

}
 if (!nflag)
 putchar(’\n’);

 exit(0);
}

/*

 * Copyright (c) 1989, 1993
 * The Regents of the University of California. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * This product includes software developed by the University of
 * California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#ifndef lint
__COPYRIGHT(
"@(#) Copyright (c) 1989, 1993\n\
 The Regents of the University of California. All rights reserved.\n");

__RCSID("$NetBSD: echo.c,v 1.7 1997/07/20 06:07:03 thorpej Exp $");
#endif /* not lint */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main __P((int, char *[]));

int
main(argc, argv)
 int argc;

 char *argv[];
{
 int nflag;

 /* This utility may NOT do getopt(3) option parsing. */
 if (*++argv && !strcmp(*argv, "-n")) {

 ++argv;
 nflag = 1;
 }
 else
 nflag = 0;

{

 (void)printf("%s", *argv);

 if (*++argv)

 putchar(’ ’);

}
 if (!nflag)
 putchar(’\n’);

 exit(0);
}

/*

 * Copyright (c) 1989, 1993
 * The Regents of the University of California. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * This product includes software developed by the University of
 * California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#ifndef lint
__COPYRIGHT(
"@(#) Copyright (c) 1989, 1993\n\
 The Regents of the University of California. All rights reserved.\n");

__RCSID("$NetBSD: echo.c,v 1.7 1997/07/20 06:07:03 thorpej Exp $");
#endif /* not lint */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main __P((int, char *[]));

int
main(argc, argv)
 int argc;

 char *argv[];
{
 int nflag;

 /* This utility may NOT do getopt(3) option parsing. */
 if (*++argv && !strcmp(*argv, "-n")) {

 ++argv;
 nflag = 1;
 }
 else
 nflag = 0;

{

 (void)printf("%s", *argv);

 if (*++argv)

 putchar(’ ’);

}
 if (!nflag)
 putchar(’\n’);

 exit(0);
}

/*
 * Copyright (c) 1989, 1993
 * The Regents of the University of California. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 * must display the following acknowledgement:
 * This product includes software developed by the University of
 * California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 * may be used to endorse or promote products derived from this software
 * without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

1 Comment (copy
right and distri-
bution license),
ignored by the
compiler. This
license appears
on most programs
of this collection.
It will not be
shown again.

#include <sys/cdefs.h>

#ifndef lint
__COPYRIGHT(
"@(#) Copyright (c) 1989, 1993\n\
 The Regents of the University of California. All rights reserved.\n");

__RCSID("$NetBSD: echo.c,v 1.7 1997/07/20 06:07:03 thorpej Exp $");
#endif /* not lint */

Copyright and
program version
identifiers that
will appear as
strings in the
executable
program

#include <stdio.h printf>
#include <stdlib.h exit>
#include <string.h strcmp>

2 Standard library headers for:

int main __P((int, char *[])); Function declaration with macro to hide arguments for
pre-ANSI compilers

int
main 3 The program starts with this function(argc, argv)
 int argc; 4 Number of arguments to the program

 char *argv[]; 4 The actual arguments (starting with the program name, terminated with NULL)

{
 int nflag; 5 When true output will not be terminated with a newline

 /* This utility may NOT do getopt(3) option parsing. */
 if (*++argv && !strcmp(*argv, "-n")

6 The first argument is -n
){

 ++argv;
 nflag = 1; 6 Skip the argument and set nflag

 }
 else
 nflag = 0;

 while (*argv There are arguments to process) {

 (void)printf("%s", *argv); 7 Print the argument

 if (*++argv Is there a next argument? (Advance argv))

 putchar(’ ’); Print the separating space

}
 if (!nflag)
 putchar(’\n’);

Terminate output with newline unless -n was given

 exit(0);
Exit program indicating success

}

Figure 2.1 The Unix echo program.

22 Basic Programming Elements

The declaration of argc and argv in our example (Figure 2.1:4) is somewhat
unusual. The typical C/C++ definition of main is3

int

main(int argc, char **argv)

while the corresponding Java class method definition is4

public static void main(String args[]) {

The definition in Figure 2.1:4 is using the old-style (pre-ANSI C) syntax of C, also
known as K&R C. You may come across such function definitions in older programs;
keep in mind that there are subtle differences in the ways arguments are passed and
the checks that a compiler will make depending on the style of the function definition.

When examining command-line programs you will find arguments processed by
using either handcrafted code or, in POSIX environments, the getopt function. Java
programs may be using the GNU gnu.getopt package5 for the same purpose.

The standard definition of the echo command is not compatible with the getopt
behavior; the single -n argument specifying that the output is not to be terminated with
a newline is therefore processed by handcrafted code (Figure 2.1:6). The comparison
starts by advancing argv to the first argument of echo (remember that position 0
contains the program name) and verifying that such an argument exists. Only then is
strcmp called to compare the argument against -n. The sequence of a check to see
if the argument is valid, followed by a use of that argument, combined with using the
Boolean AND (&&) operator, is a common idiom. It works because the && operator will
not evaluate its righthand side operand if its lefthand side evaluates to false. Calling
strcmp or any other string function and passing it a NULL value instead of a pointer to
actual character data will cause a program to crash in many operating environments.

Note the nonintuitive return value of strcmp when it is used for comparing two
strings for equality. When the strings compare equal it returns 0, the C value of false.
For this reason you will see that many C programs define a macro STREQ to return
true when two strings compare equal, often optimizing the comparison by comparing
the first two characters on the fly:6

#define STREQ(a, b) (*(a) == *(b) && strcmp((a), (b)) == 0)

3netbsdsrc/usr.bin/elf2aout/elf2aout.c:72–73
4jt4/catalina/src/share/org/apache/catalina/startup/Catalina.java:161
5http://www.gnu.org/software/java/packages.html
6netbsdsrc/usr.bin/file/ascmagic.c:45

http://www.gnu.org/software/java/packages.html

2.1 A Complete Program 23

Fortunately the behavior of the Java equals method results in a more intuitive
reading:7

if (isConfig) {

configFile = args[i];

isConfig = false;

} else if (args[i].equals("-config")) {

isConfig = true;

} else if (args[i].equals("-debug")) {

debug = true;

} else if (args[i].equals("-nonaming")) {

The above sequence also introduces an alternative way of formatting the indentation
of cascading if statements to express a selection. Read a cascading if-else if-...-
else sequence as a selection of mutually exclusive choices.

An important aspect of our if statement that checks for the -n flag is that nflag
will always be assigned a value: 0 or 1. nflag is not given a value when it is defined
(Figure 2.1:5). Therefore, until it gets assigned, its value is undefined: it is the number
that happened to be in the memory place it was stored. Using uninitialized variables is
a common cause of problems. When inspecting code, always check that all program
control paths will correctly initialize variables before these are used. Some compilers
may detect some of these errors, but you should not rely on it.

The part of the program that loops over all remaining arguments and prints
them separated by a space character is relatively straightforward. A subtle pitfall is
avoided by using printfwith a string-formatting specification to print each argument
(Figure 2.1:7). The printf function will always print its first argument, the format
specification. You might therefore find a sequence that directly prints string variables
through the format specification argument:8

printf(version);

Printing arbitrary strings by passing them as the format specification to printf will
produce incorrect results when these strings contain conversion specifications (for
example, an SCCS revision control identifier containing the % character in the case
above).

7jt4/catalina/src/share/org/apache/catalina/startup/CatalinaService.java:136–143
8netbsdsrc/sys/arch/mvme68k/mvme68k/machdep.c:347

24 Basic Programming Elements

Even so, the use of printf and putchar is not entirely correct. Note how the
return value of printf is cast to void. printf will return the number of characters
that were actually printed; the cast to void is intended to inform us that this result
is intentionally ignored. Similarly, putchar will return EOF if it fails to write the
character. All output functions—in particular when the program’s standard output is
redirected to a file—can fail for a number of reasons.

• The device where the output is stored can run out of free space.

• The user’s quota of space on the device can be exhausted.

• The process may attempt to write a file that exceeds the process’s or the
system’s maximum file size.

• A hardware error can occur on the output device.

• The file descriptor or stream associated with the standard output may not be
valid for writing.

Not checking the result of output operations can cause a program to silently fail, losing
output without any warning. Checking the result of each and every output operation
can be inconvenient. A practical compromise you may encounter is to check for errors
on the standard output stream before the program terminates. This can be done in Java
programs by using the checkError method (we have yet to see this used in practice
on the standard output stream; even some JDK programs will fail without an error when
running out of space on their output device); in C++ programs by using a stream’s
fail, good, or bad methods; and in C code by using the ferror function:9

if (ferror(stdout))

err(1, "stdout");

After terminating its output with a newline, echo calls exit to terminate the
program indicating success (0). You will also often find the same result obtained by
returning 0 from the function main.

Exercise 2.1 Experiment to find out how your C, C++, and Java compilers deal with
uninitialized variables. Outline your results and propose an inspection procedure for locating
uninitialized variables.

Exercise 2.2 (Suggested by Dave Thomas.) Why can’t the echo program use the getopt
function?

9netbsdsrc/bin/cat/cat.c:213–214

2.2 Functions and Global Variables 25

Exercise 2.3 Discuss the advantages and disadvantages of defining a macro like STREQ.
Consider how the C compiler could optimize strcmp calls.

Exercise 2.4 Look in your environment or on the book’s CD-ROM for programs that do
not verify the result of library calls. Propose practical fixes.

Exercise 2.5 Sometimes executing a program can be a more expedient way to understand
an aspect of its functionality than reading its source code. Devise a testing procedure or
framework to examine how programs behave on write errors on their standard output. Try it
on a number of character-based Java and C programs (such as the command-line version of
your compiler) and report your results.

Exercise 2.6 Identify the header files that are needed for using the library functions
sscanf, qsort, strchr, setjmp, adjacent–find, open, FormatMessage, and XtOwn-
Selection. The last three functions are operating environment–specific and may not exist in
your environment.

2.2 Functions and Global Variables
The program expand processes the files named as its arguments (or its standard input if
no file arguments are specified) by expanding hard tab characters (\t, ASCII character 9)
to a number of spaces. The default behavior is to set tab stops every eight characters;
this can be overridden by a comma or space-separated numeric list specified using
the -t option. An interesting aspect of the program’s implementation, and the reason
we are examining it, is that it uses all of the control flow statements available in the
C family of languages. Figure 2.2 contains the variable and function declarations of
expand,10 Figure 2.3 contains the main code body,11 and Figure 2.5 (in Section 2.5)
contains the two supplementary functions used.12

When examining a nontrivial program, it is useful to first identify its major con-
stituent parts. In our case, these are the global variables (Figure 2.2:1) and the functions
main (Figure 2.3), getstops (see Figure 2.5:1), and usage (see Figure 2.5:8).

The integer variable nstops and the array of integers tabstops are declared as
global variables, outside the scope of function blocks. They are therefore visible to
all functions in the file we are examining.

The three function declarations that follow (Figure 2.2:2) declare functions that
will appear later within the file. Since some of these functions are used before they are
defined, in C/C++ programs the declarations allow the compiler to verify the arguments

10netbsdsrc/usr.bin/expand/expand.c:36–62
11netbsdsrc/usr.bin/expand/expand.c:64–151
12netbsdsrc/usr.bin/expand/expand.c:153–185

26 Basic Programming Elements

#include <sys/cdefs.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>

int nstops;
int tabstops[100];

static void getstops(char *);
 int main(int, char *);
static void usage (void);

#include <sys/cdefs.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>

int nstops;
int tabstops[100];

static void getstops(char *);
 int main(int, char *);
static void usage (void);

#include <sys/cdefs.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>

Header files

int nstops;
int tabstops[100];

1 Global variables

static void getstops(char *);
 int main(int, char *);
static void usage (void);

2 Forward function declarations

Figure 2.2 Expanding tab stops (declarations).

passed to the function and their return values and generate correct corresponding code.
When no forward declarations are given, the C compiler will make assumptions about
the function return type and the arguments when the function is first used; C++
compilers will flag such cases as errors. If the following function definition does
not match these assumptions, the compiler will issue a warning or error message.
However, if the wrong declaration is supplied for a function defined in another file,
the program may compile without a problem and fail at runtime.

Notice how the two functions are declared as static while the variables are not.
This means that the two functions are visible only within the file, while the variables
are potentially visible to all files comprising the program. Since expand consists only
of a single file, this distinction is not important in our case. Most linkers that combine
compiled C files are rather primitive; variables that are visible to all program files
(that is, not declared as static) can interact in surprising ways with variables with
the same name defined in other files. It is therefore a good practice when inspecting
code to ensure that all variables needed only in a single file are declared as static.

Let us now look at the functions comprising expand. To understand what a function
(or method) is doing you can employ one of the following strategies.

• Guess, based on the function name.

• Read the comment at the beginning of the function.

• Examine how the function is used.

• Read the code in the function body.

• Consult external program documentation.

In our case we can safely guess that the function usage will display program
usage information and then exit; many command-line programs have a function with
the same name and functionality. When you examine a large body of code, you

2.2 Functions and Global Variables 27

int
main(int argc, char *argv)

 int c, column;
 int n;

 while ((c = getopt (argc, argv, "t:")) != -1) {
 switch (c) {
 case ’t’:
 getstops(optarg);
 break;
 case ’?’: default:
 usage();
 }
 }
 argc -= optind;
 argv += optind;

 do {

 if (argc > 0) {
 if (freopen(argv[0], "r", stdin) == NULL) {
 perror(argv[0]);
 exit(1);
 }
 argc--, argv++;
 }

 column = 0;
 while ((c = getchar()) != EOF) {

 switch (c) {
 case ’\t’:
 if (nstops == 0) {
 do {
 putchar(’ ’);
 column++; } while (column & 07);

 continue;
 }
 if (nstops == 1) {
 do {
 putchar(’ ’);
 column++;
 } while (((column - 1) % tabstops[0]) != (tabstops[0] - 1));
 continue;
 }
 for (n = 0; n < nstops; n++)
 if (tabstops[n] > column)
 break;
 if (n == nstops) {
 putchar(’ ’);
 column++;
 continue;
 }
 while (column < tabstops[n]) {
 putchar(’ ’);
 column++;
 }
 continue;

 case ’\b’:
 if (column)
 column--;
 putchar(’\b’);
 continue;

 default:
 putchar(c);
 column++;

 continue;

 case ’\n’:
 putchar(c);
 column = 0;

 continue;
}

}

 } while (argc > 0);)
 exit(0);
}

int
main(int argc, char *argv)

 int c, column;
 int n;

 while ((c = getopt (argc, argv, "t:")) != -1) {
 switch (c) {
 case ’t’:
 getstops(optarg);
 break;
 case ’?’: default:
 usage();
 }
 }
 argc -= optind;
 argv += optind;

 do {

 if (argc > 0) {
 if (freopen(argv[0], "r", stdin) == NULL) {
 perror(argv[0]);
 exit(1);
 }
 argc--, argv++;
 }

 column = 0;
 while ((c = getchar()) != EOF) {

 switch (c) {

 if (nstops == 0) {
 do {
 putchar(’ ’);
 column++;
 } while (column & 07);
 continue;
 }
 if (nstops == 1) {
 do {
 putchar(’ ’);
 column++;
 } while (((column - 1) % tabstops[0]) != (tabstops[0] - 1));
 continue;
 }
 for (n = 0; n < nstops; n++)
 if (tabstops[n] > column)
 break;
 if (n == nstops) {
 putchar(’ ’);
 column++;
 continue;
 }
 while (column < tabstops[n]) {
 putchar(’ ’);
 column++;
 }
 continue;

 case ’\b’:
 if (column)
 column--;
 putchar(’\b’);
 continue;

 putchar(c);
 column++;

 continue;

 case ’\n’:
 putchar(c);
 column = 0;

 continue;

}

 } while (argc > 0);)
 exit(0);
}

int
main(int argc, char *argv)
{
 int c, column;
 int n;

 while ((c = getopt (argc, argv, "t:")) != -1) {
 switch (c) {
 case ’t’:
 getstops(optarg);
 break;

 usage();
 }
 }
 argc -= optind;
 argv += optind;

 do {

 if (argc > 0) {
 if (freopen(argv[0], "r", stdin) == NULL) {
 perror(argv[0]);
 exit(1);
 }
 argc--, argv++;
 }

 column = 0;
 while ((c = getchar()) != EOF) {

 switch (c) {

 if (nstops == 0) {
 do {
 putchar(’ ’);
 column++;
 } while (column & 07);
 continue;
 }
 if (nstops == 1) {
 do {
 putchar(’ ’);
 column++;
 } while (((column - 1) % tabstops[0]) != (tabstops[0] - 1));
 continue;
 }
 for (n = 0; n < nstops; n++)
 if (tabstops[n] > column)
 break;
 if (n == nstops) {
 putchar(’ ’);
 column++;
 continue;
 }
 while (column < tabstops[n]) {
 putchar(’ ’);
 column++;
 }
 continue;

 case ’\b’:
 if (column)
 column--;
 putchar(’\b’);
 continue;

 putchar(c);
 column++;

 continue;

 case ’\n’:
 putchar(c);
 column = 0;

 continue;

}

 } while (argc > 0);)
 exit(0);
}

int
main(int argc, char *argv)
{
 int c, column;
 int n;

1 Variables local to main

 while ((c = getopt (argc, argv, "t:")) != -1) {
 switch (c) {
 case ’t’:
 getstops(optarg);
 break;

3 Process the -t option

 case ’?’: default: Switch labels grouped together
 usage();
 } 4 End of switch block
 }
 argc -= optind;
 argv += optind;

2 Argument processing using getopt

 do { 5 At least once

 if (argc > 0) {
 if (freopen(argv[0], "r", stdin) == NULL) {
 perror(argv[0]);
 exit(1);
 }
 argc--, argv++;
 }

6 Process remaining arguments

 column = 0;
 while ((c = getchar()) != EOF 7 Read characters until EOF) {

 switch (c) {
 case ’\t’: Tab character
 if (nstops == 0) {
 do {
 putchar(’ ’);
 column++;
 } while (column & 07);
 continue; 8 Process next character
 }
 if (nstops == 1) {
 do {
 putchar(’ ’);
 column++;
 } while (((column - 1) % tabstops[0]) != (tabstops[0] - 1));
 continue; 8

}
 for (n = 0; n < nstops; n++)
 if (tabstops[n] > column)
 break;
 if (n == nstops) {
 putchar(’ ’);
 column++;
 continue; 8

 }
 while (column < tabstops[n]) {
 putchar(’ ’);
 column++;
 }
 continue; 8

 case ’\b’: Backspace

 if (column)
 column--;
 putchar(’\b’);
 continue; 8

 default: All other characters
 putchar(c);
 column++;

 continue; 8

 case ’\n’: Newline
 putchar(c);
 column = 0;

 continue; 8
} End of switch block

} End of while block

 } while (argc > 0);) End of do block
 exit(0);
}

Figure 2.3 Expanding tab stops (main part).

28 Basic Programming Elements

will gradually pick up names and naming conventions for variables and functions.
These will help you correctly guess what they do. However, you should always be
prepared to revise your initial guesses following new evidence that your code reading
will inevitably unravel. In addition, when modifying code based on guesswork, you
should plan the process that will verify your initial hypotheses. This process can
involve checks by the compiler, the introduction of assertions, or the execution of
appropriate test cases.

The role of getstops is more difficult to understand. There is no comment, the
code in the function body is not trivial, and its name can be interpreted in different ways.
Noting that it is used in a single part of the program (Figure 2.3:3) can help us further.
The program part where getstops is used is the part responsible for processing the
program’s options (Figure 2.3:2). We can therefore safely (and correctly in our case)
assume that getstops will process the tab stop specification option. This form of
gradual understanding is common when reading code; understanding one part of the
code can make others fall into place. Based on this form of gradual understanding you
can employ a strategy for understanding difficult code similar to the one often used
to combine the pieces of a jigsaw puzzle: start with the easy parts.

Exercise 2.7 Examine the visibility of functions and variables in programs in your envi-
ronment. Can it be improved (made more conservative)?

Exercise 2.8 Pick some functions or methods from the book’s CD-ROM or from your
environment and determine their role using the strategies we outlined. Try to minimize the
time you spend on each function or method. Order the strategies by their success rate.

2.3 while Loops, Conditions, and Blocks
We can now examine how options are processed. Although expand accepts only a
single option, it uses the Unix library function getopt to process options. A sum-
marized version of the Unix on-line documentation for the getopt function appears
in Figure 2.4. Most development environments provide on-line documentation for
library functions, classes, and methods. On Unix systems you can use the man com-
mand and on Windows the Microsoft Developer Network Library (MSDN),13 while
the Java API is documented in HTML format as part of the Sun JDK. Make it a habit to
read the documentation of library elements you encounter; it will enhance both your
code-reading and code-writing skills.

13http://msdn.microsoft.com

http://msdn.microsoft.com

2.3 while Loops, Conditions, and Blocks 29

GETOPT (3) UNIX Programmer’s Manual GETOPT (3)

NAME
getopt – get option character from command line argument list

SYNOPSIS
#include <unistd.h>

extern char ∗optarg;
extern int optind;
extern int optopt;
extern int opterr;
extern int optreset;

int
getopt (int argc , char ∗const ∗argv , const char ∗optstring)

DESCRIPTION
The getopt() function incrementally parses a command line argument list argv and returns the next
known option character. An option character is known if it has been specified in the string of accepted option
characters, optstring .

The option string optstring may contain the following elements: individual characters, and characters
followed by a colon to indicate an option argument is to follow. For example, an option string "x" recog-
nizes an option “–x”, and an option string "x:" recognizes an option and argument “–x argument ”. It
does not matter to getopt() if a following argument has leading white space.

On return from getopt(), optarg points to an option argument, if it is anticipated, and the variable optind
contains the index to the next argv argument for a subsequent call to getopt(). The variable optopt saves
the last known option character returned by getopt().

The variable opterr and optind are both initialized to 1. The optind variable may be set to another value be-
fore a set of calls to getopt() in order to skip over more or less argv entries.

The getopt() function returns –1 when the argument list is exhausted, or a non-recognized option is en-
countered. The interpretation of options in the argument list may be cancelled by the option ‘--’ (double
dash) which causes getopt() to signal the end of argument processing and returns –1. When all options
have been processed (i.e., up to the first non-option argument), getopt() returns –1.

DIAGNOSTICS
If the getopt() function encounters a character not found in the string optstring or detects a missing
option argument it writes an error message to stderr and returns ‘?’. Setting opterr to a zero will disable
these error messages. If optstring has a leading ‘:’ then a missing option argument causes a ‘:’ to be re-
turned in addition to suppressing any error messages.

Option arguments are allowed to begin with “–”; this is reasonable but reduces the amount of error checking
possible.

HISTORY
The getopt() function appeared 4.3BSD.

BUGS
The getopt() function was once specified to return EOF instead of –1. This was changed by POSIX 1003.2–
92 to decouple getopt() from<stdio.h>.

4.3 Berkeley Distribution April 19, 1994 1

Figure 2.4 The getopt manual page.

30 Basic Programming Elements

Based on our understanding of getopt, we can now examine the relevant code
(Figure 2.3:2). The option string passed to getopt allows for a single option -t,
which is to be followed by an argument. getopt is used as a condition expression in
a while statement. A while statement will repeatedly execute its body as long as the
condition specified in the parentheses is true (in C/C++, if it evaluates to a value other
than 0). In our case the condition for the while loop calls getopt, assigns its result
to c, and compares it with -1, which is the value used to signify that all options have
been processed. To perform these operations in a single expression, the code uses the
fact that in the C language family assignment is performed by an operator (=), that
is, assignment expressions have a value. The value of an assignment expression is the
value stored in the left operand (the variable c in our case) after the assignment has
taken place. Many programs will call a function, assign its return value to a variable,
and compare the result against some special-case value in a single expression. The
following typical example assigns the result of readLine to line and compares it
against null (which signifies that the end of the stream was reached).14

if ((line = input.readLine()) == null) [...]

return errors;

It is imperative to enclose the assignment within parentheses, as is the case in the
two examples we have examined. As the comparison operators typically used in
conjunction with assignments bind more tightly than the assignment, the following
expression

c = getopt (argc, argv, "t:") != -1

will evaluate as

c = (getopt (argc, argv, "t:") != -1)

thus assigning to c the result of comparing the return value of getopt against -1
rather than the getopt return value. In addition, the variable used for assigning the
result of the function call should be able to hold both the normal function return values
and any exceptional values indicating an error. Thus, typically, functions that return
characters such as getopt and getc and also can return an error value such as -1 or

14cocoon/src/java/org/apache/cocoon/components/language/programming/java/Javac.java:106–112

2.3 while Loops, Conditions, and Blocks 31

EOF have their results stored in an integer variable, not a character variable, to hold
the superset of all characters and the exceptional value (Figure 2.3:7). The following
is another typical use of the same construct, which copies characters from the file
stream pf to the file stream active until the pf end of file is reached.15

while ((c = getc(pf)) != EOF)

putc(c, active);

The body of a while statement can be either a single statement or a block: one or
more statements enclosed in braces. The same is true for all statements that control the
program flow, namely, if, do, for, and switch. Programs typically indent lines to
show the statements that form part of the control statement. However, the indentation
is only a visual clue for the human program reader; if no braces are given, the control
will affect only the single statement that follows the respective control statement,
regardless of the indentation. As an example, the following code does not do what is
suggested by its indentation.16

for (ntp = nettab; ntp != NULL; ntp = ntp->next) {

if (ntp->status == MASTER)

rmnetmachs(ntp);

ntp->status = NOMASTER;

}

The line ntp->status = NOMASTER; will be executed for every iteration of the for
loop and not just when the if condition is true.

Exercise 2.9 Discover how the editor you are using can identify matching braces and
parentheses. If it cannot, consider switching to another editor.

Exercise 2.10 The source code of expand contains some superfluous braces. Identify
them. Examine all control structures that do not use braces and mark the statements that will
get executed.

Exercise 2.11 Verify that the indentation of expand matches the control flow. Do the same
for programs in your environment.

Exercise 2.12 The Perl language mandates the use of braces for all its control structures.
Comment on how this affects the readability of Perl programs.

15netbsdsrc/usr.bin/m4/eval.c:601–602
16netbsdsrc/usr.sbin/timed/timed/timed.c:564–568

32 Basic Programming Elements

2.4 switch Statements
The normal return values of getopt are handled by a switch statement. You will find
switch statements used when a number of discrete integer or character values are
being processed. The code to handle each value is preceded by a case label. When
the value of the expression in the switch statement matches the value of one of the
case labels, the program will start to execute statements from that point onward.
If none of the label values match the expression value and a default label exists,
control will transfer to that point; otherwise, no code within the switch block will get
executed. Note that additional labels encountered after transferring execution control
to a label will not terminate the execution of statements within the switch block; to
stop processing code within the switch block and continue with statements outside it,
a break statement must be executed. You will often see this feature used to group case
labels together, merging common code elements. In our case whengetopt returns

‚
t
‚
,

the statements that handle -t are executed, with break causing a transfer of execution
control immediately after the closing brace of the switch block (Figure 2.3:4). In
addition, we can see that the code for the default switch label and the error return
value

‚
?
‚

is common since the two corresponding labels are grouped together.
When the code for a given case or default label does not end with a statement

that transfers control out of the switch block (such as break, return, or continue),
the program will continue to execute the statements following the next label. When
examining code, look out for this error. In rare cases the programmer might actually
want this behavior. To alert maintainers to that fact, it is common to mark these places
with a comment, such as FALLTHROUGH, as in the following example.17

case
‚
a
‚
:

fts–options |= FTS–SEEDOT;

/* FALLTHROUGH */

case
‚
A
‚
:

f–listdot = 1;

break;

The code above comes from the option processing of the Unix ls command, which
lists files in a directory. The option -A will include in the list files starting with a
dot (which are, by convention, hidden), while the option -a modifies this behavior
by adding to the list the two directory entries. Programs that automatically verify

17netbsdsrc/bin/ls/ls.c:173–178

2.4 switch Statements 33

source code against common errors, such as the Unix lint command, can use the
FALLTHROUGH comment to suppress spurious warnings.

A switch statement lacking a default label will silently ignore unexpected
values. Even when one knows that only a fixed set of values will be processed by a
switch statement, it is good defensive programming practice to include a default

label. Such a default label can catch programming errors that yield unexpected
values and alert the program maintainer, as in the following example.18

switch (program) {

case ATQ:

[...]

case BATCH:

writefile(time(NULL),
‚
b
‚
);

break;

default:

panic("Internal error");

break;

}

In our case the switch statement can handle two getopt return values.

1.
‚
t
‚

is returned to handle the -t option. Optind will point to the argument
of -t. The processing is handled by calling the function getstops with the
tab specification as its argument.

2.
‚
?
‚

is returned when an unknown option or another error is found by getopt.
In that case the usage function will print program usage information and
exit the program.

A switch statement is also used as part of the program’s character-processing
loop (Figure 2.3:7). Each character is examined and some characters (the tab, the
newline, and the backspace) receive special processing.

Exercise 2.13 The code body of switch statements in the source code collection is
formatted differently from the other statements. Express the formatting rule used, and explain
its rationale.

Exercise 2.14 Examine the handling of unexpected values in switch statements in the
programs you read. Propose changes to detect errors. Discuss how these changes will affect
the robustness of programs in a production environment.

18netbsdsrc/usr.bin/at/at.c:535–561

34 Basic Programming Elements

Exercise 2.15 Is there a tool or a compiler option in your environment for detecting
missing break statements in switch code? Use it, and examine the results on some sample
programs.

2.5 for Loops
To complete our understanding of how expand processes its command-line options,
we now need to examine the getstops function. Although the role of its single cp

argument is not obvious from its name, it becomes apparent when we examine how
getstops is used. getstops is passed the argument of the -t option, which is a
list of tab stops, for example, 4, 8, 16, 24. The strategies outlined for determining
the roles of functions (Section 2.2) can also be employed for their arguments. Thus
a pattern for reading code slowly emerges. Code reading involves many alternative
strategies: bottom-up and top-down examination, the use of heuristics, and review of
comments and external documentation should all be tried as the problem dictates.

After setting nstops to 0, getstops enters a for loop. Typically a for loop is
specified by an expression to be evaluated before the loop starts, an expression to be
evaluated before each iteration to determine if the loop body will be entered, and an
expression to be evaluated after the execution of the loop body. for loops are often
used to execute a body of code a specific number of times.19

for (i = 0; i < len; i++) {

Loops of this type appear very frequently in programs; learn to read them as “execute
the body of code len times.” On the other hand, any deviation from this style, such as
an initial value other than 0 or a comparison operator other than <, should alert you
to carefully reason about the loop’s behavior. Consider the number of times the loop
body is executed in the following examples.

Loop extrknt + 1 times:20

for (i = 0; i <= extrknt; i++)

Loop month - 1 times:21

for (i = 1; i < month; i++)

19cocoon/src/java/org/apache/cocoon/util/StringUtils.java:85
20netbsdsrc/usr.bin/fsplit/fsplit.c:173
21netbsdsrc/usr.bin/cal/cal.c:332

2.5 for Loops 35

Loop nargs times:22

for (i = 1; i <= nargs; i++)

Note that the last expression need not be an increment operator. The following line
will loop 256 times, decrementing code in the process:23

for (code = 255; code >= 0; code--) {

In addition, you will find for statements used to loop over result sets returned by
library functions. The following loop is performed for all files in the directory dir.24

if ((dd = opendir(dir)) == NULL)

return (CC–ERROR);

for (dp = readdir(dd); dp != NULL; dp = readdir(dd)) {

The call to opendir returns a value that can be passed to readdir to sequentially
access each directory entry of dir. When there are no more entries in the directory,
readdir will return NULL and the loop will terminate.

The three parts of the for specification are expressions and not statements. There-
fore, if more than one operation needs to be performed when the loop begins or at
the end of each iteration, the expressions cannot be grouped together using braces.
You will, however, often find expressions grouped together using the expression-
sequencing comma (,) operator.25

for (cnt = 1, t = p; cnt <= cnt–orig; ++t, ++cnt) {

The value of two expressions joined with the comma operator is just the value of the
second expression. In our case the expressions are evaluated only for their side effects:
before the loop starts, cnt will be set to 1 and t to p, and after every loop iteration t

and cnt will be incremented by one.
Any expression of a for statement can be omitted. When the second expression

is missing, it is taken as true. Many programs use a statement of the form for (;;) to
perform an “infinite” loop. Very seldom are such loops really infinite. The following

22netbsdsrc/usr.bin/apply/apply.c:130
23netbsdsrc/usr.bin/compress/zopen.c:510
24netbsdsrc/usr.bin/ftp/complete.c:193–198
25netbsdsrc/usr.bin/vi/vi/vs smap.c:389

36 Basic Programming Elements

static void
getstops(char *cp)
{
 int i;

 nstops = 0;
 for (;;) {

 i = 0;
 while (*cp >= ’0’ && *cp <= ’9’)
 i = i * 10 + *cp++ - ’0’;

 if (i <= 0 || i > 256) {
 bad:
 fprintf(stderr, "Bad tab stop spec\n");
 exit(1);

 }
 if (nstops > 0 && i <= tabstops[nstops-1])
 goto bad;
 tabstops[nstops++] = i;
 if (*cp == 0)
 break;

 if (*cp != ’,’ && *cp != ’ ’)
 goto bad;
 cp++;
 }
}

static void
usage(void)
{
 (void)fprintf (stderr, "usage: expand [-t tablist] [file ...]\n");
 exit(1);
}

static void
getstops(char *cp)
{
 int i;

 nstops = 0;
 for (;;) {

 i = 0;
 while (*cp >= ’0’ && *cp <= ’9’)
 i = i * 10 + *cp++ - ’0’;

 if (i <= 0 || i > 256) {
 bad:
 fprintf(stderr, "Bad tab stop spec\n");
 exit(1);

 }
 if (nstops > 0 && i <= tabstops[nstops-1])
 goto bad;
 tabstops[nstops++] = i;
 if (*cp == 0)
 break;

 if (*cp != ’,’ && *cp != ’ ’)
 goto bad;
 cp++;
 }
}

static void
usage(void)
{
 (void)fprintf (stderr, "usage: expand [-t tablist] [file ...]\n");
 exit(1);

static void
getstops(char *cp)
{
 int i;

 nstops = 0;
 for (;;) {

 i = 0;
 while (*cp >= ’0’ && *cp <= ’9’)
 i = i * 10 + *cp++ - ’0’;

 if (i <= 0 || i > 256) {
 bad:
 fprintf(stderr, "Bad tab stop spec\n");
 exit(1);

 }
 if (nstops > 0 && i <= tabstops[nstops-1])
 goto bad;
 tabstops[nstops++] = i;
 if (*cp == 0)
 break;

 if (*cp != ’,’ && *cp != ’ ’)
 goto bad;
 cp++;
 }
}

static void
usage(void)
{
 (void)fprintf (stderr, "usage: expand [-t tablist] [file ...]\n");
 exit(1);
}

static void
getstops(char *cp)
{
 int i;

 nstops = 0;
 for (;;) {

 i = 0;
 while (*cp >= ’0’ && *cp <= ’9’)
 i = i * 10 + *cp++ - ’0’;

2 Convert string to number

 if (i <= 0 || i > 256) {
 bad:
 fprintf(stderr, "Bad tab stop spec\n");
 exit(1);

3 Complain about unreasonable specifications

 }
 if (nstops > 0 && i <= tabstops[nstops-1])
 goto bad;

4 Verify ascending order

 tabstops[nstops++] = i;
 if (*cp == 0)
 break;

5 Break out of the loop

 if (*cp != ’,’ && *cp != ’ ’)
 goto bad;

6 Verify valid delimiters

 cp++;
 } 7 break will transfer control here
}

1 Parse tab stop specification

static void
usage(void)
{
 (void)fprintf (stderr, "usage: expand [-t tablist] [file ...]\n");
 exit(1);

8 Print program usage and exit

Figure 2.5 Expanding tab stops (supplementary functions).

example—taken out of init, the program that continuously loops, controlling all Unix
processes—is an exception.26

for (;;) {

s = (state–t) (*s)();

quiet = 0;

}

In most cases an “infinite” loop is a way to express a loop whose exit condition(s)
cannot be specified at its beginning or its end. These loops are typically exited either
by a return statement that exits the function, a break statement that exits the loop
body, or a call to exit or a similar function that exits the entire program. C++, C#,
and Java programs can also exit such loops through an exception (see Section 5.2).

A quick look through the code of the loop in Figure 2.5 provides us with the
possible exit routes.

26netbsdsrc/sbin/init/init.c:540–545

2.6 break and continue Statements 37

• A bad stop specification will cause the program to terminate with an error
message (Figure 2.5:3).

• The end of the tab specification string will break out of the loop.

Exercise 2.16 The for statement in the C language family is very flexible. Examine the
source code provided to create a list of ten different uses.

Exercise 2.17 Express the examples in this section using while instead of for. Which
of the two forms do you find more readable?

Exercise 2.18 Devise a style guideline specifying when while loops should be used in
preference to for loops. Verify the guideline against representative examples from the book’s
CD-ROM.

2.6 break and continue Statements
A break statement will transfer the execution to the statement after the innermost
loop or switch statement (Figure 2.5:7). In most cases you will find break used
to exit early out of a loop. A continue statement will continue the iteration of the
innermost loop without executing the statements to the end of the loop. A continue

statement will reevaluate the conditional expression of while and do loops. In for

loops it will evaluate the third expression and then the conditional expression. You
will find continue used where a loop body is split to process different cases; each
case typically ends with a continue statement to cause the next loop iteration. In the
program we are examining, continue is used after processing each different input
character class (Figure 2.3:8).

Note when you are reading Perl code that break and continue are correspond-
ingly named last and next.27

while (<UD>) {

chomp;

if (s/0x[\d\w]+\s+\((.*?)\)// and $wanted eq $1) {

[...]

last;

}

}

27perl/lib/unicode/mktables.PL:415–425

38 Basic Programming Elements

To determine the effect of a break statement, start reading the program upward
from break until you encounter the first while, for, do, or switch block that en-
closes the break statement. Locate the first statement after that loop; this will be
the place where control will transfer when break is executed. Similarly, when ex-
amining code that contains a continue statement, start reading the program upward
from continue until you encounter the first while, for, or do loop that encloses the
continue statement. Locate the last statement of that loop; immediately after it (but
not outside the loop) will be the place where control will transfer when continue is
executed. Note that continue ignores switch statements and that neither break nor
continue affect the operation of if statements.

There are situations where a loop is executed only for the side effects of its
controlling expressions. In such cases continue is sometimes used as a placeholder
instead of the empty statement (expressed by a single semicolon). The following
example illustrates such a case.28

for (; *string && isdigit(*string); string++)

continue;

In Java programs break and continue can be followed by a label identifier. The
same identifier, followed by a colon, is also used to label a loop statement. The labeled
form of the continue statement is then used to skip an iteration of a nested loop; the
label identifies the loop statement that the corresponding continue will skip. Thus,
in the following example, the continue skip; statement will skip one iteration of
the outermost for statement.29

skip:

for ([...]) {

if (ch == limit.charAt(0)) {

for (int i = 1 ; i < limlen ; i++) {

if ([...])

continue skip;

}

return ret;

}

}

28netbsdsrc/usr.bin/error/pi.c:174–175
29jt4/jasper/src/share/org/apache/jasper/compiler/JspReader.java:472–482

2.7 Character and Boolean Expressions 39

Similarly, the labeled form of the break statement is used to exit from nested
loops; the label identifies the statement that the corresponding break will terminate.
In some cases a labeled break or continue statements is used, even when there are
no nested loops, to clarify the corresponding loop statement.30

comp : while(prev < length) {

[...]

if (pos >= length || pos == -1) {

[...]

break comp;

}

}

Exercise 2.19 Locate ten occurrences of break and continue in the source code pro-
vided with the book. For each case indicate the point where execution will transfer after the
corresponding statement is executed, and explain why the statement is used. Do not try to un-
derstand in full the logic of the code; simply provide an explanation based on the statement’s
use pattern.

2.7 Character and Boolean Expressions
The body of the for loop in the getstops function starts with a block of code
that can appear cryptic at first sight (Figure 2.5:2). To understand it we need to
dissect the expressions that comprise it. The first, the condition in the while loop, is
comparing *cp (the character cp points to) against two characters:

‚
0
‚

and
‚
9
‚
. Both

comparisons must be true and both of them involve *cp combined with a different
inequality operator and another expression. Such a test can often be better understood
by rewriting the comparisons to bring the value being compared in the middle of the
expression and to arrange the other two values in ascending order. This rewriting in
our case would yield

while (
‚
0
‚
<= *cp && *cp <=

‚
9
‚
)

This can then be read as a simple range membership test for a character c.

0 ≤ c ≤ 9

30cocoon/src/scratchpad/src/org/apache/cocoon/treeprocessor/MapStackResolver.java:201–244

40 Basic Programming Elements

Note that this test assumes that the digit characters are arranged sequentially in
ascending order in the underlying character set. While this is true for the digits in
all character sets we know, comparisons involving alphabetical characters may yield
surprising results in a number of character sets and locales. Consider the following
typical example.31

if (
‚
a
‚
<= *s && *s <=

‚
z
‚
)

*s -= (
‚
a
‚
-

‚
A
‚
);

The code attempts to convert lowercase characters to uppercase by subtracting from
each character found to be lowercase (as determined by the if test) the character set
distance from

‚
a
‚

to
‚
A
‚
. This fragment will fail to work when there are lowercase

characters in character set positions outside the range a. . .z, when the character set
range a. . .z contains nonlowercase characters, and when the code of each lowercase
character is not a fixed distance away from the corresponding uppercase character.
Many non-ASCII character sets exhibit at least one of these problems.

The next line in the block (Figure 2.5:2) can also appear daunting. It modifies the
variable i based on the values of i and *cp and two constants: 10 and

‚
0
‚

while at
the same time incrementing cp. The variable names are not especially meaningful,
and the program author has not used macro or constant definitions to document the
constants; we have to make the best of the information available.

We can often understand the meaning of an expression by applying it on sample
data. In our case we can work based on the initial value of i (0) and assume that cp
points to a string containing a number (for example, 24) based on our knowledge of the
formatting specifications that expand accepts. We can then create a table containing
the values of all variables and expression parts as each expression part is evaluated.
We use the notation i′ and *cp′ to denote the variable value after the expression has
been evaluated.

Iteration i i*10 *cp *cp-
‚
0
‚

i′ *cp′

0 0 0
‚
2
‚

2 2
‚
4
‚

1 2 20
‚
4
‚

4 24 0

The expression *cp -
‚
0
‚

uses a common idiom: by subtracting the ordinal
value of

‚
0
‚

from *cp the expression yields the integer value of the character digit
pointed to by *cp. Based on the table we can now see a picture emerging: after the

31netbsdsrc/games/hack/hack.objnam.c:352–253

2.7 Character and Boolean Expressions 41

loop terminates, i will contain the decimal value of the numeric string pointed to by
cp at the beginning of the loop.

Armed with the knowledge of what i stands for (the integer value of a tab-stop
specification), we can now examine the lines that verify the specification. The expres-
sion that verifies i for reasonable values is straightforward. It is a Boolean expression
based on the logical OR (||) of two other expressions. Although this particular expres-
sion reads naturally as English text (print an error message if i is either less than or
equal to zero, or greater than 255), it is sometimes useful to transform Boolean expres-
sions to a more readable form. If, for example, we wanted to translate the expression
into the range membership expression we used above, we would need to substitute
the logical OR with a logical AND (&&). This can easily be accomplished by using
De Morgan’s rules.32

!(a || b) <=> !a && !b

!(a && b) <=> !a || !b

We can thus transform the testing code as follows:

i <= 0 || i > 256 <=>

!(!(i <= 0) && !(i > 256)) <=>

!(i > 0 && i <= 256) <=>

!(0 < i && i <= 256) <=>

¬(0 < i ≤ 256)

In our example we find both the initial and final expressions equally readable; in
other cases you may find that De Morgan’s rules provide you a quick and easy way
to disentangle a complicated logical expression.

When reading Boolean expressions, keep in mind that in many modern languages
Boolean expressions are evaluated only to the extent needed. In a sequence of expres-
sions joined with the && operator (a conjunction), the first expression to evaluate to
false will terminate the evaluation of the whole expression yielding a false result. Sim-
ilarly, in a sequence of expressions joined with the || operator (a disjunction), the first
expression to evaluate to true will terminate the evaluation of the whole expression
yielding a true result. Many expressions are written based on this short-circuit evalu-
ation property and should be read in the same way. When reading a conjunction, you
can always assume that the expressions on the left of the expression you are examining

32We use the operator <=> to denote that two expressions are equivalent. This is not a C/C++/C#/Java
operator.

42 Basic Programming Elements

are true; when reading a disjunction, you can similarly assume that the expressions on
the left of the expression you are examining are false. As an example, the expression
in the following if statement will become true only when all its constituent elements
are true, and t->type will be evaluated only when t is not NULL.33

if (t != NULL && t->type != TEOF && interactive && really–exit)

really–exit = 0;

Conversely, in the following example argv[1] will be checked for being NULL only
if argv is not NULL.34

if (argv == NULL || argv[1] == NULL || argv[2] == NULL)

return -1;

In both cases, the first check guards against the subsequent dereference of a NULL
pointer. Our getstops function also uses short-circuit evaluation when checking
that a delimiter specified (i) is larger than the previous one (tabstops[nstops-1])
(Figure 2.5:4). This test will be performed only if at least one additional delimiter
specification has been processed (nstops > 0). You can depend on the short-circuit
evaluation property in most C-derived languages such as C++, Perl, and Java; on the
other hand, Fortran, Pascal, and most Basic dialects will always evaluate all elements
of a Boolean expression.

Exercise 2.20 Locate expressions containing questionable assumptions about character
code values in the book’s CD-ROM. Read about the Java Character class test and conversion
methods such as isUpper and toLowerCase or the corresponding ctype family of C functions
(isupper, tolower, and so on). Propose changes to make the code less dependent on the target
architecture character set.

Exercise 2.21 Find, simplify, and reason about five nontrivial Boolean expressions in the
source code base. Do not spend time on understanding what the expression elements mean;
concentrate on the conditions that will make the expression become true or false. Where
possible, identify and use the properties of short-circuit evaluation.

Exercise 2.22 Locate and reason about five nontrivial integer or character expressions in
the source code base. Try to minimize the amount of code you need to comprehend in order to
reason about each expression.

33netbsdsrc/bin/ksh/main.c:606–607
34netbsdsrc/lib/libedit/term.c:1212–1213

2.8 goto Statements 43

static int
gen_init(void)
{
 [...]
 if ((sigaction(SIGXCPU, &n_hand, &o_hand) < 0) &&
 (o_hand.sa_handler == SIG_IGN) &&
 (sigaction(SIGXCPU, &o_hand, &o_hand) < 0))
 goto out;

 n_hand.sa_handler = SIG_IGN;
 if ((sigaction(SIGPIPE, &n_hand, &o_hand) < 0) ||
 (sigaction(SIGXFSZ, &n_hand, &o_hand) < 0))
 goto out;

 return(0);

 out:
 syswarn(1, errno, "Unable to set up signal handler");
 return(-1);
}

static int
gen_init(void)
{
 [...]
 if ((sigaction(SIGXCPU, &n_hand, &o_hand) < 0) &&
 (o_hand.sa_handler == SIG_IGN) &&
 (sigaction(SIGXCPU, &o_hand, &o_hand) < 0))
 goto out;

 n_hand.sa_handler = SIG_IGN;
 if ((sigaction(SIGPIPE, &n_hand, &o_hand) < 0) ||
 (sigaction(SIGXFSZ, &n_hand, &o_hand) < 0))
 goto out;

 return(0);

 out:
 syswarn(1, errno, "Unable to set up signal handler");
 return(-1);
}

static int
gen_init(void)
{
 [...]
 if ((sigaction(SIGXCPU, &n_hand, &o_hand) < 0) &&
 (o_hand.sa_handler == SIG_IGN) &&
 (sigaction(SIGXCPU, &o_hand, &o_hand) < 0))
 goto out; 1 Failure; exit with an error

 n_hand.sa_handler = SIG_IGN;
 if ((sigaction(SIGPIPE, &n_hand, &o_hand) < 0) ||
 (sigaction(SIGXFSZ, &n_hand, &o_hand) < 0))
 goto out; 2 Failure; exit with an error

 return(0); 3 Normal function exit (success)

 out:
 syswarn(1, errno, "Unable to set up signal handler");
 return(-1);

4 Common error handling code

}

Figure 2.6 The goto statement used for a common error handler.

2.8 goto Statements
The code segment that complains about unreasonable tab specifications (Figure 2.5:3)
begins with a word followed by a colon. This is a label: the target of a goto instruction.
Labels and goto statements should immediately raise your defenses when reading
code. They can be easily abused to create “spaghetti” code: code with a flow of control
that is difficult to follow and figure out. Therefore, the designers of Java decided not
to support the goto statement. Fortunately, most modern programs use the goto

statement in a small number of specific circumstances that do not adversely affect the
program’s structure.

You will find goto often used to exit a program or a function after performing
some actions (such as printing an error message or freeing allocated resources). In our
example the exit(1) call at the end of the block will terminate the program, returning
an error code (1) to the system shell. Therefore all goto statements leading to the
bad label are simply a shortcut for terminating the program after printing the error
message. In a similar manner, the listing in Figure 2.635 illustrates how a common
error handler (Figure 2.6:4) is used as a common exit point in all places where an error
is found (Figure 2.6:1, Figure 2.6:2). A normal exit route for the function, located
before the error handler (Figure 2.6:3), ensures that the handler will not get called
when no error occurs.

35netbsdsrc/bin/pax/pax.c:309–412

44 Basic Programming Elements

again:
 if ((p = fgets(line, BUFSIZ, servf)) == NULL)
 return (NULL);

 if (*p == ’#’)
 goto again;

 if (cp == NULL)
 goto again;

 *cp = ’\0’;

 return (&serv);

 if ((p = fgets(line, BUFSIZ, servf)) == NULL)
 return (NULL);

 if (*p == ’#’)
 goto again;
 cp = strpbrk(p, "#\n");
 if (cp == NULL)
 goto again;

 *cp = ’\0’;

 return (&serv);

again:
 if ((p = fgets(line, BUFSIZ, servf)) == NULL)
 return (NULL);

Read a line; return on EOF

 if (*p == ’#’)
 goto again;

Comment? Retry

 cp = strpbrk(p, "#\n");
 if (cp == NULL)
 goto again;

Incomplete line? Retry

 *cp = ’\0’; Complete entry

[...]
 return (&serv);

Figure 2.7 The use of goto to reexecute code.

You will also find the goto statement often used to reexecute a portion of code,
presumably after some variables have changed value or some processing has been per-
formed. Although such a construct can often be coded by using a structured loop
statement (for example, for (;;)) together with break and continue, in practice
the coder’s intent is sometimes better communicated by using goto. A single label,
almost invariably named again or retry, is used as the goto target. The example
in Figure 2.7,36 which locates the entry of a specific service in the system’s database
while ignoring comments and overly large lines, is a typical case. (Interestingly, the
code example also seems to contain a bug. If a partial line is read, it continues by
reading the remainder as if it were a fresh line, so that if the tail of a long line happened
to look like a service definition it would be used. Such oversights are common targets
for computer security exploits.)

Finally, you will find the goto statement used to change the flow of control in
nested loop and switch statements instead of using break and continue, which
affect only the control flow in the innermost loop. Sometimes goto is used even if
the nesting level would allow the use of a break or continue statement. This is
used in large, complex loops to clarify where the flow of control will go and to avoid
the possibility of errors should a nested loop be added around a particular break or
continue statement. In the example in Figure 2.837 the statement goto have–msg

is used instead of break to exit the for loop.

Exercise 2.23 Locate five instances of code that use the goto statement in the code base.
Categorize its use (try to locate at least one instance for every one of the possible uses we
outlined), and argue whether each particular goto could and should be replaced with a loop or
other statement.

36netbsdsrc/lib/libc/net/getservent.c:65–104
37netbsdsrc/sys/dev/ic/ncr5380sbc.c:1575–1654

2.9 Refactoring in the Small 45

 for (;;) {
 [...]
 if ((sc->sc_state & NCR_DROP_MSGIN) == 0) {
 if (n >= NCR_MAX_MSG_LEN) {
 ncr_sched_msgout(sc, SEND_REJECT);
 sc->sc_state |= NCR_DROP_MSGIN;
 } else {
 [...]
 if (n == 1 && IS1BYTEMSG(sc->sc_imess[0]))
 goto have_msg;

 [...]
 }
 }
 [...]

 }
have_msg:

 for (;;) {
 [...]
 if ((sc->sc_state & NCR_DROP_MSGIN) == 0) {
 if (n >= NCR_MAX_MSG_LEN) {
 ncr_sched_msgout(sc, SEND_REJECT);
 sc->sc_state |= NCR_DROP_MSGIN;
 } else {
 [...]
 if (n == 1 && IS1BYTEMSG(sc->sc_imess[0]))

 goto have_msg;

 [...]
 }
 }
 [...]

have_msg:

 for (;;) {
 [...]
 if ((sc->sc_state & NCR_DROP_MSGIN) == 0) {
 if (n >= NCR_MAX_MSG_LEN) {
 ncr_sched_msgout(sc, SEND_REJECT);
 sc->sc_state |= NCR_DROP_MSGIN;
 } else {
 [...]
 if (n == 1 && IS1BYTEMSG(sc->sc_imess[0]))
 goto have_msg;

 [...]
 }
 }
 [...]

have_msg:

 for (;;) {
 [...]
 if ((sc->sc_state & NCR_DROP_MSGIN) == 0) {
 if (n >= NCR_MAX_MSG_LEN) {
 ncr_sched_msgout(sc, SEND_REJECT);
 sc->sc_state |= NCR_DROP_MSGIN;
 } else {
 [...]
 if (n == 1 && IS1BYTEMSG(sc->sc_imess[0]))
 goto have_msg; Exit the for loop

 [...]
 }
 }
 [...]

}

for loop

have_msg: goto target

Figure 2.8 Exiting a loop using the goto statement.

Exercise 2.24 The function getstops produces the same error message for a number
of different errors. Describe how you could make its error reporting more user-friendly while
at the same time eliminating the use of the goto statement. Discuss when such source code
changes are appropriate and when they should be avoided.

2.9 Refactoring in the Small
The rest of the getstops code is relatively straightforward. After checking that each
tab stop is greater than the previous one (Figure 2.5:4), the tab stop offset is stored in
the tabstops array. After a single tab stop number has been converted into an integer
(Figure 2.5:2), cp will point to the first nondigit character in the string (that is, the
loop will process all digits and terminate at the first nondigit). At that point, a series
of checks specified by if statements control the program’s operation. If cp points
to the end of the tab stop specification string (the character with the value 0, which
signifies the end of a C string), then the loop will terminate (Figure 2.5:5). The last if
(Figure 2.5:6) will check for invalid delimiters and terminate the program operation
(using the goto bad statement) if one is found.

The body of each one of the if statements will transfer control somewhere else
via a goto or break statement. Therefore, we can also read the sequence as:

if (*cp == 0)

break;

else if (*cp !=
‚
,
‚
&& *cp !=

‚ ‚
)

goto bad;

else

cp++;

46 Basic Programming Elements

This change highlights the fact that only one of the three statements will ever get
executed and makes the code easier to read and reason about. If you have control
over a body of code (that is, it is not supplied or maintained by an outside vendor or
an open-source group), you can profit by reorganizing code sections to make them
more readable. This improvement of the code’s design after it has been written is
termed refactoring. Start with small changes such as the one we outlined—you can
find more than 70 types of refactoring changes described in the relevant literature.
Modest changes add up and often expose larger possible improvements.

As a further example, consider the following one-line gem.38

op = &(!x ? (!y ? upleft : (y == bottom ? lowleft : left)) :

(x == last ? (!y ? upright : (y == bottom ? lowright : right)) :

(!y ? upper : (y == bottom ? lower : normal))))[w->orientation];

The code makes excessive use of the conditional operator ?:. Read expressions
using the conditional operator like if code. As an example, read the expression39

sign ? -n : n

as follows:

“If sign is true, then the value of the expression is -n; otherwise, the value of the expression
is n”.

Since we read an expression like an if statement, we can also format it like an if
statement; one that uses x ? instead of if (x), parentheses instead of curly braces,
and : instead of else. To reformat the expression, we used the indenting features of
our editor in conjunction with its ability to show matching parentheses. You can see
the result in Figure 2.9 (left).

Reading the conditional expression in its expanded form is certainly easier, but
there is still room for improvement. At this point we can discern that the x and y

variables that control the expression evaluation are tested for three different values:

1. 0 (expressed as !x or !y)

2. bottom or last

3. All other values

38netbsdsrc/games/worms/worms.c:419
39netbsdsrc/bin/csh/set.c:852

2.9 Refactoring in the Small 47

op = &(

!x ? (

!y ?

upleft

: (

y == bottom ?

lowleft

:

left

)

) : (

x == last ? (

!y ?

upright

: (

y == bottom ?

lowright

:

right

)

) : (

!y ?

upper

: (

y == bottom ?

lower

:

normal

)

)

))[w->orientation];

op = &(

!x ? (

!y ?

upleft

: (y == bottom ?

lowleft

:

left

)

) : (x == last ? (

!y ?

upright

: (y == bottom ?

lowright

:

right

)

) : (

!y ?

upper

: (y == bottom ?

lower

:

normal

)

)

))[w->orientation];

Figure 2.9 A conditional expression formatted like an if statement (left) and like
cascading if–else statements (right).

We can therefore rewrite the expression formatted as a series of cascading if–else
statements (expressed using the ?: operator) to demonstrate this fact. You can see the
result in Figure 2.9 (right).

The expression’s intent now becomes clear: the programmer is selecting one
of nine different location values based on the combined values of x and y. Both
alternative formulations, however, visually emphasize the punctuation at the expense

48 Basic Programming Elements

struct options *locations[3][3] = {

 {upleft, upper, upright},
 {left, normal, right},
 {lowleft, lower, lowright},

};
int xlocation, ylocation;

if (x == 0)
 xlocation = 0;
else if (x == last)
 xlocation = 2;
else
 xlocation = 1;

if (y == 0)
 ylocation = 0;
else if (y == bottom)
 ylocation = 2;
else
 ylocation = 1;

op = &(locations[ylocation][xlocation])[w->orientation];

struct options *locations[3][3] = {

 {upleft, upper, upright},
 {left, normal, right},
 {lowleft, lower, lowright},

};
int xlocation, ylocation;

if (x == 0)
 xlocation = 0;
else if (x == last)
 xlocation = 2;
else
 xlocation = 1;

if (y == 0)
 ylocation = 0;
else if (y == bottom)
 ylocation = 2;
else
 ylocation = 1;

op = &(locations[ylocation][xlocation])[w->orientation];

struct options *locations[3][3] = {

 {upleft, upper, upright},
 {left, normal, right},
 {lowleft, lower, lowright},

Location map

};
int xlocation, ylocation; To store the x, y map offsets

if (x == 0)
 xlocation = 0;
else if (x == last)
 xlocation = 2;
else
 xlocation = 1;

Determine x offset

if (y == 0)
 ylocation = 0;
else if (y == bottom)
 ylocation = 2;
else
 ylocation = 1;

Determine y offset

op = &(locations[ylocation][xlocation])[w->orientation];

Figure 2.10 Location detection code replacing the conditional expression.

of the semantic content and use an inordinate amount of vertical space. Nevertheless,
based on our newly acquired insight, we can create a two-dimensional array containing
these location values and index it using offsets we derive from the x and y values.
You can see the new result in Figure 2.10. Notice how in the initialization of the
array named locations, we use a two-dimensional textual structure to illustrate
the two-dimensional nature of the computation being performed. The initializers are
laid out two-dimensionally in the program text, the array is indexed in the normally
unconventional order [y][x], and the mapping is to integers “0, 2, 1” rather than the
more obvious “0, 1, 2”, so as to make the two-dimensional presentation coincide with
the semantic meanings of the words upleft, upper, and so on.

The code, at 20 lines, is longer than the original one-liner but still shorter by
7 lines from the one-liner’s readable cascading-else representation. In our eyes it
appears more readable, self-documenting, and easier to verify. One could argue that
the original version would execute faster than the new one. This is based on the fallacy
that code readability and efficiency are somehow incompatible. There is no need to
sacrifice code readability for efficiency. While it is true that efficient algorithms and
certain optimizations can make the code more complicated and therefore more difficult
to follow, this does not mean that making the code compact and unreadable will make
it more efficient. On our system and compiler the initial and final versions of the
code execute at exactly the same speed: 0.6 µs. Even if there were speed differences,
the economics behind software maintenance costs, programmer salaries, and CPU

performance most of the time favor code readability over efficiency.

2.9 Refactoring in the Small 49

However, even the code in Figure 2.10 can be considered a mixed blessing: it
achieves its advantages at the expense of two distinct disadvantages. First, it separates
the code into two chunks that, while shown together in Figure 2.10, would neces-
sarily be separated in real code. Second, it introduces an extra encoding (0, 1, 2), so
that understanding what the code is doing requires two mental steps rather than one
(map “0, last, other” to “0, 2, 1” and then map a pair of “0, 2, 1” values to one of
nine items). Could we somehow directly introduce the two-dimensional structure of
our computation into the conditional code? The following code fragment40 reverts to
conditional expressions but has them carefully laid out to express the computation’s
intent.

op =

&(!y ? (!x ? upleft : x!=last ? upper : upright) :

y!=bottom ? (!x ? left : x!=last ? normal : right) :

(!x ? lowleft : x!=last ? lower : lowright)

)[w->orientation];

The above formulation is a prime example on how sometimes creative code layout can
be used to improve code readability. Note that the nine values are right-justified within
their three columns, to make them stand out visually and to exploit the repetition of
“left” and “right” in their names. Note also that the usual practice of putting spaces
around operators is eschewed for the case of != in order to reduce the test expressions
to single visual tokens, making the nine data values stand out more. Finally, the fact
that the whole expression fits in five lines makes the vertical alignment of the first and
last parentheses more effective, making it much easier to see that the basic structure
of the entire statement is of the form

op = &(<conditional-mess>)[w->orientation];

The choice between the two new alternative representations is largely a matter of taste;
however, we probably would not have come up with the second formulation without
expressing the code in the initial, more verbose and explicit form.

The expression we rewrote was extremely large and obviously unreadable. Less
extreme cases can also benefit from some rewriting. Often you can make an expression
more readable by adding whitespace, by breaking it up into smaller parts by means
of temporary variables, or by using parentheses to amplify the precedence of certain
operators.

40Suggested by Guy Steele.

50 Basic Programming Elements

You do not always need to change the program structure to make it more read-
able. Often items that do not affect the program’s operation (such as comments, the
use of whitespace, and the choice of variable, function, and class names) can affect
the program’s readability. Consider the work we did to understand the code for the
getstops function. A concise comment before the function definition would enhance
the program’s future readability.

/*

* Parse and verify the tab stop specification pointed to by cp

* setting the global variables nstops and tabstops[].

* Exit the program with an error message on bad specifications.

*/

When reading code under your control, make it a habit to add comments as needed.
In Sections 2.2 and 2.3 we explained how names and indentation can provide

hints for understanding code functionality. Unfortunately, sometimes programmers
choose unhelpful names and indent their programs inconsistently. You can improve
the readability of poorly written code with better indentation and wise choice of
variable names. These measures are extreme: apply them only when you have full
responsibility and control over the source code, you are sure that your changes are a
lot better than the original code, and you can revert to the original code if something
goes wrong. Using a version management system such as the Revision Control System
(RCS), the Source Code Control System (SCCS), the Concurrent Versions System (CVS),
or Microsoft’s Visual SourceSafe can help you control the code modifications. The
adoption of a specific style for variable names and indentation can appear a tedious
task. When modifying code that is part of a larger body to make it more readable, try
to understand and follow the conventions of the rest of the code (see Chapter 7). Many
organizations have a specific coding style; learn it and try to follow it. Otherwise, adopt
one standard style (such as one of those used by the GNU41 or BSD42 groups) and use it
consistently. When the code indentation is truly inconsistent and cannot be manually
salvaged, a number of tools (such as indent) can help you automatically reindent it to
make it more readable (see Section 10.7). Use such tools with care: the judicious use
of whitespace allows programmers to provide visual clues that are beyond the abilities
of automated formatting tools. Applying indent to the code example in Figure 2.10
would definitely make it less readable.

Keep in mind that although reindenting code may help readability, it also messes
up the program’s change history in the revision control system. For this reason it

41http://www.gnu.org/prep/standards toc.html
42netbsdsrc/share/misc/style:1–315

http://www.gnu.org/prep/standards_toc.html

2.10 do Loops and Integer Expressions 51

is probably best not to combine the reformatting with any actual changes to the
program’s logic. Do the reformat, check it in, and then make the other changes. In this
way future code readers will be able to selectively retrieve and review your changes to
the program’s logic without getting overwhelmed by the global formatting changes.
On the flip side of the coin, when you are examining a program revision history that
spans a global reindentation exercise using the diff program, you can often avoid the
noise introduced by the changed indentation levels by specifying the -w option to have
diff ignore whitespace differences.

Exercise 2.25 Provide five examples from your environment or the book’s CD-ROM where
the code structure can be improved to make it more readable.

Exercise 2.26 You can find tens of intentionally unreadable C programs at the Interna-
tional Obfuscated C Code Contest Web site.43 Most of them use several layers of obfuscation
to hide their algorithms. See how gradual code changes can help you untangle their code. If
you are not familiar with the C preprocessor, try to avoid programs with a large number of
#define lines.

Exercise 2.27 Modify the position location code we examined to work on the mirror
image of a board (interchange the right and left sides). Time yourself in modifying the original
code and the final version listed in Figure 2.10. Do not look at the readable representations; if
you find them useful, create them from scratch. Calculate the cost difference assuming current
programmer salary rates (do not forget to add overheads). If the readable code runs at half
the speed of the original code (it does not), calculate the cost of this slowdown by making
reasonable assumptions concerning the number of times the code will get executed over the
lifetime of a computer bought at a given price.

Exercise 2.28 If you are not familiar with a specific coding standard, locate one and adopt
it. Verify local code against the coding standard.

2.10 do Loops and Integer Expressions
We can complete our understanding of the expand program by turning our attention
to the body that does its processing (Figure 2.3, page 27). It starts with a do loop. The
body of a do loop is executed at least once. In our case the do loop body is executed
for every one of the remaining arguments. These can specify names of files that are to
be tab-expanded. The code processing the file name arguments (Figure 2.3:6) reopens
the stdin file stream to access each successive file name argument. If no file name
arguments are specified, the body of the if statement (Figure 2.3:6) will not get

43http://www.ioccc.org

http://www.ioccc.org

52 Basic Programming Elements

executed and expand will process its standard input. The actual processing involves
reading characters and keeping track of the current column position. The switch

statement, a workhorse for character processing, handles all different characters that
affect the column position in a special way. We will not examine the logic behind the
tab positioning in detail. It is easy to see that the first three and the last two blocks
can again be written as a cascading if–else sequence. We will focus our attention
on some expressions in the code.

Sometimes equality tests such as the ones used for nstops (for example,
nstops == 0) are mistakenly written using the assignment operator = instead of
the equality operator ==. In C, C++, and Perl a statement like the following:44

if ((p = q))

q[-1] =
‚
\n

‚
;

uses a valid test expression for the if statement, assigning q to p and testing the result
against zero. If the programmer intended to test p against q, most compilers would
generate no error. In the statement we examined, the parentheses around (p = q) are
probably there to signify that the programmer’s intent was indeed an assignment and
a subsequent test against zero. One other way to make such an intention clear is to
explicitly test against NULL.45

if ((p = strchr(name,
‚
=
‚
)) != NULL) {

p++;

In this case the test could also have been written as if (p = strchr(name,
‚
=
‚
)),

but we would not know whether this was an intentional assignment or a mistake.
Finally, another approach you may come across is to adopt a style where all

comparisons with constants are written with the constant on the lefthand side of the
comparison.46

if (0 == serconsole)

serconsinit = 0;

When such a style is used, mistaken assignments to constants are flagged by the
compiler as errors.

44netbsdsrc/bin/ksh/history.c:313–314
45netbsdsrc/bin/sh/var.c:507–508
46netbsdsrc/sys/arch/amiga/dev/ser.c:227–228

2.10 do Loops and Integer Expressions 53

When reading Java or C# programs, there are fewer chances of encountering such
errors since these languages accept only Boolean values as control expressions in the
corresponding flow statements. We were in fact unable to locate a single suspicious
statement in the Java code found in the book’s CD-ROM.

The expressioncolumn & 7used to control the firstdo loop of the loop-processing
code is also interesting. The & operator performs a bitwise-and between its two
operands. In our case, we are not dealing with bits, but by masking off the most
significant bits of the column variable it returns the remainder of column divided
by 8. When performing arithmetic, read a & b as a % (b + 1) when b = 2n − 1.
The intent of writing an expression in this way is to substitute a division with a—
sometimes more efficiently calculated—bitwise-and instruction. In practice, modern
optimizing compilers can recognize such cases and do the substitution on their own,
while the speed difference between a division and a bitwise-and instruction on modern
processors is not as large as it used to be. You should therefore learn to read code that
uses these tricks, but avoid writing it.

There are two other common cases where bit instructions are used as substitutes
for arithmetic instructions. These involve the shift operators << and >>, which shift
an integer’s bits to the left or right. Since every bit position of an integer has a value
equal to a power of 2, shifting an integer has the effect of multiplying or dividing it
by a power of 2 equal to the number of shifted bits. You can therefore think of shift
operators in an arithmetic context as follows.

• Read a << n as a * k, where k = 2n . The following example uses the shift
operator to multiply by 4.47

n = ((dp - cp) << 2) + 1; /* 4 times + NULL */

• Read a >> n as a / k, where k = 2n . The following example from a binary
search routine uses the right shift operator to divide by 2.48

bp = bp1 + ((bp2 - bp1) >> 1);

Keep in mind that Java’s logical shift right operator >>> should not be used to
perform division arithmetic on signed quantities since it will produce erroneous results
when applied on negative numbers.

47netbsdsrc/bin/csh/str.c:460
48netbsdsrc/bin/csh/func.c:106

54 Basic Programming Elements

Exercise 2.29 Most compilers provide a facility to view the compiled code in assembly
language. Find out how to generate assembly code when compiling a C program in your
environment and examine the code generated by your compiler for some instances of arithmetic
expressions and the corresponding expressions using bit instructions. Try various compiler
optimization levels. Comment on the readability and the code efficiency of the two alternatives.

Exercise 2.30 What type of argument could cause expand to fail? Under what circum-
stances could such an argument be given? Propose a simple fix.

2.11 Control Structures Revisited
Having examined the syntactic details of the control flow statements we can now focus
our attention on the way we can reason about them at an abstract level.

The first thing you should remember is to examine one control structure at a time,
treating its contents as a black box. The beauty of structured programming is that the
control structures employed allow you to abstract and selectively reason about parts
of a program, without getting overwhelmed by the program’s overall complexity.

Consider the following code sequence.49

while (enum.hasMoreElements()) {

[...]

if (object instanceof Resource) {

[...]

if (!copy(is, os))

[...]

} else if (object instanceof InputStream) {

[...]

if (!copy((InputStream) object, os))

[...]

} else if (object instanceof DirContext) {

[...]

}

}

Although we have removed a large part of the 20 lines of code, the loop still appears
quite complex. However, the way you should read the above loop is

while (enum.hasMoreElements()) {

// Do something

}

49jt4/catalina/src/share/org/apache/catalina/loader/StandardLoader.java:886–905

2.11 Control Structures Revisited 55

At that level of abstraction you can then focus on the loop body and examine its
functioning without worrying about the control structure in which it is enclosed. This
idea suggests a second rule we should follow when examining a program’s flow of
control: treat the controlling expression of each control structure as an assertion for
the code it encloses. Although the above statement may appear obtuse or trivial, its
significance to the understanding of code can be profound. Consider again the while
statement we examined. The typical reading of the control structure would be that
while enum.hasMoreElements() is true the code inside the loop will get executed.
When, however, you examine the loop’s body (in isolation as we suggested above), you
can always assume that enum.hasMoreElements() will be true and that, therefore,
the enclosed statement

NameClassPair ncPair = (NameClassPair) enum.nextElement();

will execute without a problem. The same reasoning also applies to if statements. In
the code below you can be sure that when links.add is executed the links collection
will not contain a next element.50

if (!links.contains(next)) {

links.add(next);

}

Unfortunately, some control statements taint the rosy picture we painted above.
The return, goto, break, and continue statements as well as exceptions interfere
with the structured flow of execution. Reason about their behavior separately since
they all typically either terminate or restart the loop being processed. This assumes
that for goto statements their target is the beginning or the end of a loop body, that
is, that they are used as a multilevel break or continue. When this is not the case,
all bets are off.

When going over loop code, you may want to ensure that the code will perform ac-
cording to its specification under all circumstances. Informal arguments are sufficient
for many cases, but sometimes a more rigorous approach is needed.

Consider the binary search algorithm. Getting the algorithm right is notoriously
difficult. Knuth [Knu98] details how its use was first discussed in 1946, but nobody
published a correct algorithm working for arrays with a size different from 2n −1 until
1962. Bentley [Ben86] adds that when he asked groups of professional programmers
to implement it as an exercise, only 10% got it right.

50cocoon/src/java/org/apache/cocoon/Main.java:574–576

56 Basic Programming Elements

void *
bsearch(key, base0, nmemb, size, compar)
 register const void *key;

 const void *base0;
 size_t nmemb;

 register size_t size;

 register int (*compar) __P((const void *, const void *));
{
 register const char *base = base0;
 register int lim, cmp;
 register const void *p;

 for (lim = nmemb; lim != 0; lim >>= 1) {
 p = base + (lim >> 1) * size;

 cmp = (*compar)(key, p);

 if (cmp == 0)
 return ((void *)p);
 if (cmp > 0) { /* key > p: move right */
 base = (char *)p + size;

 lim--;

 } /* else move left */
 }
 return (NULL);
}

void *
bsearch(key, base0, nmemb, size, compar)
 register const void *key;

 const void *base0;
 size_t nmemb;

 register size_t size;

 register int (*compar) __P((const void *, const void *));
{
 register const char *base = base0;
 register int lim, cmp;
 register const void *p;

 for (lim = nmemb; lim != 0; lim >>= 1) {
 p = base + (lim >> 1) * size;

 cmp = (*compar)(key, p);

 if (cmp == 0)
 return ((void *)p);
 if (cmp > 0) { /* key > p: move right */
 base = (char *)p + size;

 lim--;

 } /* else move left */
 }
 return (NULL);
}

void *
bsearch(key, base0, nmemb, size, compar)
 register const void *key; Item to search for

 const void *base0 Start of element array;
 size_t nmemb Number of elements;

 register size_t size Size of each element;

 register int (*compar
Function to compare two elements

) __P((const void *, const void *));
{
 register const char *base = base0;
 register int lim, cmp;
 register const void *p;

 for (lim = nmemb; lim != 0; lim >>= 1) {
 p = base + (lim >> 1) * size; Locate a point in the middle

 cmp = (*compar)(key, p); Compare element against key

 if (cmp == 0)
 return ((void *)p);

Found; return its position

 if (cmp > 0) { /* key > p: move right */
 base = (char *)p + size; Adjust base upwards

 lim--; Not sure why this is needed

 } /* else move left */
 }
 return (NULL); Not found

}

Figure 2.11 Binary search implementation.

Consider the standard C library implementation of the binary search algorithm
listed in Figure 2.11.51. We can see that it works by gradually reducing the search
interval stored in the lim variable and adjusting the start of the search range stored
in base, but it is not self-evident whether the arithmetic calculations performed are
correct under all circumstances. If you find it difficult to reason about the code, the
comment that precedes it might help you.

The code below is a bit sneaky. After a comparison fails, we divide the work in half by moving
either left or right. If lim is odd, moving left simply involves halving lim: e.g., when lim is
5 we look at item 2, so we change lim to 2 so that we will look at items 0 & 1. If lim is even,
the same applies. If lim is odd, moving right again involves halving lim, this time moving the
base up one item past p: e.g., when lim is 5 we change base to item 3 and make lim 2 so
that we will look at items 3 and 4. If lim is even, however, we have to shrink it by one before
halving: e.g., when lim is 4, we still looked at item 2, so we have to make lim 3, then halve,
obtaining 1, so that we will only look at item 3.

If you—like myself—did not regard the above comment as particularly enlight-
ening or reassuring, you might consider employing more sophisticated methods.

A useful abstraction for reasoning about properties of loops is based around the
notions of variants and invariants. A loop invariant is an assertion about the program

51netbsdsrc/lib/libc/stdlib/bsearch.c

2.11 Control Structures Revisited 57

state that is valid both at the beginning and at the end of a loop. By demonstrating
that a particular loop maintains the invariant, and by choosing an invariant so that
when the loop terminates it can be used to indicate that the desired result has been
obtained, we can ensure that an algorithm’s loop will work within the envelope of the
correct algorithm results. Establishing this fact, however, is not enough. We also need
to ensure that the loop will terminate. For this we use a variant, a measure indicating
our distance from our final goal, which should be decreasing at every loop iteration.
If we can demonstrate that a loop’s operation decreases the variant while maintaining
the invariant, we determine that the loop will terminate with the correct result.

Let us start with a simple example. The following code finds the maximum value
in the depths array.52

max = depths[n];

while (n--) {

if (depths[n] > max)

max = depths[n];

}

If we define n0 as the number of elements in the depths array (initially held in variable
n), we can formally express the result we want at the end of the loop as

max = maximum{depths[0 : n0)}

We use the symbolism [a : b) to indicate a range than includes a but ends one element
before b, that is, [a : b − 1]. A suitable invariant can then be

max = maximum{depths[n : n0)}

The invariant is established after the first assignment to max, so it holds at the beginning
of the loop. Once n is decremented, it does not necessarily hold, since the range [n : n0)

contains the element at index n, which might be larger than the maximum value held
in max. The invariant is reestablished after the execution of the if statement, which
will adjust max if the value of the new member of the now extended range is indeed
larger than the maximum we had to this point. We have thus shown that the invariant
will also be true at the end of every loop iteration and that therefore it will be true when
the loop terminates. Since the loop will terminate when n (which we can consider as
our loop’s variant) reaches 0, our invariant can at that point be rewritten in the form

52XFree86-3.3/xc/lib/Xt/GCManager.c:252–256

58 Basic Programming Elements

 register const char *base = base0;
 for (lim = nmemb; lim != 0;) {
 p = base + lim / 2;
 cmp = (*compar)(key, p);
 if (cmp == 0)
 return ((void *)p);
 if (cmp > 0) {
 /*Key > p: move right*/

 base = p + 1;

 lim--;

 } /* else move left */

 lim /= 2;
 }
 return (NULL);
}

 register const char *base = base0;
 for (lim = nmemb; lim != 0;) {
 p = base + lim / 2;
 cmp = (*compar)(key, p);
 if (cmp == 0)
 return ((void *)p);
 if (cmp > 0) {
 /*Key > p: move right*/

 lim--;

 } /* else move left */

 lim /= 2;
 }
 return (NULL);
}

 register const char *base = base0 1 R in [base, base + nmemb);
 for (lim = nmemb 2 R in [base, base + lim); lim != 0;) {
 p = base + lim / 2;
 cmp = (*compar)(key, p);
 if (cmp == 0)
 return ((void *)p);
 if (cmp > 0) {
 /*Key > p: move right*/ 3 R in (p, base + lim)

R in [p + 1, base + lim)
 base = p + 1 4 base = base_old + lim / 2 + 1

base_old = base - lim / 2 - 1
R in [base, base_old + lim)
R in [base, base - lim / 2 - 1 + lim)

;

 lim--; 5 R in [base, base - (lim + 1) / 2 - 1 + lim + 1)
R in [base, base + lim - (lim + 1) / 2)
R in [base, base + lim / 2)

 } /* else move left */ 6 R in [base, p)
R in [base, base + lim / 2)

 lim /= 2; 7 R in [base, base + lim)
 }
 return (NULL);
}

Figure 2.12 Maintaining the binary search invariant.

of the original specification we wanted to satisfy, demonstrating that the loop does
indeed arrive at the result we want.

We can apply this reasoning to our binary search example. Figure 2.12 illustrates
the same algorithm slightly rearranged so as to simplify reasoning with the invariant.

• We substituted the right shift operations >> with division.

• We factored out the size variable since it is used only to simulate pointer
arithmetic without having to know the pointer’s type.

• We moved the last expression of the for statement to the end of the loop to
clarify the order of operations within the loop.

A suitable invariant can be the fact that the value we are looking for lies within
a particular range. We will use the notation R ∈ [a : b) to indicate that the result of
the search lies between the array elements a (including a) and b (excluding b). Since
base and lim are used within the loop to delimit the search range, our invariant will
be R ∈ [base : base + lim). We will show that the bsearch function will indeed
find the value in the array, if such a value exists, by demonstrating that the invariant is
maintained after each loop iteration. Since the comparison function compar is always
called with an argument from within the invariant’s range (base+ lim/2), and since
lim (our variant) is halved after every loop iteration, we can be sure that compar will
eventually locate the value if that value exists.

At the beginning of the bsearch function we can only assert the function’s
specification: R ∈ [base0 : base0 + nmemb). However, after Figure 2.12:1 this

2.11 Control Structures Revisited 59

can be expressed as R ∈ [base : base + nmemb), and after the for assignment
(Figure 2.12:2) as R ∈ [base : base+lim)—our invariant. We have thus established
that our invariant holds at the beginning of the loop.

The result of the compar function is positive if the value we are looking for is
greater than the value at point p. Therefore, at Figure 2.12:3 we can say that

R ∈ (p : base + lim) ≡
R ∈ [p + 1 : base + lim).

If we express the original base value as baseold our original invariant, after the
assignment at Figure 2.12:4, is now

R ∈ [base : baseold + lim).

Given that p was given the value of base + lim/2, we have

base = baseold + lim
2 + 1 ⇔

baseold = base − lim
2 − 1.

By substituting the above result in the invariant we obtain

R ∈
[
base : base − lim

2 − 1 + lim

)
.

When lim is decremented by one at Figure 2.12:5 we substitute lim+ 1 in our in-
variant to obtain

R ∈
[
base : base − lim+1

2 − 1 + lim + 1
)

≡
R ∈

[
base : base + lim − lim+1

2

)
≡

R ∈
[
base : base + lim

2

)
.

By a similar process, in the case where the result of the compar function is
negative, indicating that the value we are looking for is less than the value at point p,
we obtain

R ∈ [base : p) ≡
R ∈

[
base : base + lim

2

)
.

Note that the invariant is now the same for both comparison results. Furthermore,
when lim is halved at Figure 2.12:7 we can substitute its new value in the invariant to
obtain R ∈ [base : base + lim), that is, the invariant we had at the top of the loop.
We have thus shown that the loop maintains the invariant and therefore will correctly

60 Basic Programming Elements

locate the value within the array. Finally, when lim becomes zero, the range where
the value can lie is empty, and it is therefore correct to return NULL, indicating that
the value could not be located.

Exercise 2.31 Locate five control structures spanning more than 50 lines in the book’s
CD-ROM and document their body with a single-line comment indicating its function.

Exercise 2.32 Reason about the body of one of the above control structures, indicating
the place(s) where you use the controlling expression as an assertion.

Exercise 2.33 Provide a proof about the correct functioning of the insertion sort function53

found as part of the radix sort implementation in the book’s CD-ROM. Hint: The innermost for
loop just compares two elements; the swap function is executed only when these are not
correctly ordered.

Further Reading
Kernighan and Plauger [KP78] and, more recently, Kernighan and Pike [KP99, Chap-
ter 1] provide a number of suggestions to improve code style; these can be used to
disentangle badly written code while reading it. Apart from the specific style sheets
mentioned in Section 2.9, a well-written style guide is the Indian Hill C Style and
Coding Standard; you can easily find it on-line by entering its title in a Web search
engine. For a comprehensive bibliography on programming style, see Thomas and
Oman [TO90]. The now classic article presenting the problems associated with the
goto statement was written by Dijkstra [Dij68]. The effects of program indentation
on comprehensibility are studied in the work by Miara et al. [MMNS83], while the
effects of formatting and commenting are studied by Oman and Cook [OC90]. For an
experiment of how comments and procedures affect program readability, see Tenny
[Ten88]. Refactoring as an activity for improving the code’s design (and readability)
is presented in Fowler [Fow00, pp. 56–57]. If you want to see how a language is intro-
duced by its designers, read Kernighan and Ritchie [KR88] (covering C), Stroustrup
[Str97] (C++), Microsoft Corporation [Mic01] (C#), and Wall et al. [WCSP00] (Perl).
In addition, Ritchie [Rit79] provides an in-depth treatment of C and its libraries, while
Linden [Lin94] lucidly explains many of the C language’s finer points.

Invariants were introduced by C. A. R. Hoare [Hoa71]. You can find them also
described in references [Ben86, pp. 36–37; Mey88, pp. 140–143; Knu97, p. 17; HT00,
p. 116.] A complete analysis of the binary search algorithm is given in Knuth [Knu98].

53netbsdsrc/lib/libc/stdlib/radixsort.c:310–330

Index

Symbols
||, operator, 41
(, 30
*, regular expression, 341
+, regular expression, 340
,, operator, 35
->, operator, 102
-flag, see the flag under the corresponding

command
-name, see the name under the

corresponding letter
.*, regular expression, 342
.\", troff command, 262
., 260
., regular expression, 341
/**/, operator, 176
/**, 231, 261
/*-, 231
/flag, see the flag under the corresponding

command

˜, 302

˜, regular expression, 340
ˆ], editor command, 343
ˆ, regular expression, 341
<<, operator, 53, 308
<, 261
==, operator, 52
=, operator, 30, 52
>>>, Java operator, 53
>>, operator, 53, 58, 308
>, 261

?, operator, 46, 174
?, regular expression, 340
@(#), revision-id tag, 206
@, 231, 261
@code, Texinfo command, 263
[], 341
[...], 11
[ˆ], 341
\<, regular expression, 341
\>, regular expression, 341
\, regular expression, 341
##, operator, 176
$*, 259
$*, identifier name, 194
$<, identifier name, 194
$>, identifier name, 194
$?, identifier name, 194
$@, identifier name, 194
$$, identifier name, 194
$, regular expression, 341
$name, see the name under the

corresponding letter
%, editor command, 346
%, regular expression, 340
%name, see the name under the

corresponding letter
&&, operator, 22, 41
&, operator, 53, 64

–, 297

–name, see the name under the
corresponding letter

459

460 Index

Digits
05.fastfs, sample, 243
16-bit, 238
4GL, 16

A
%A%, revision-id tag, 206
.a, file extension, 227
abort, C library, 168
abstract

class, see class, abstract
data type, 106, 249, 318
machine, 113

Abstract Windowing Toolkit, 286, 329
abstract, Java keyword, 276, 306
abstraction, 91
Acceptor, design pattern, 336
Access, see Microsoft Access
access method, 304
ace, sample, 329, 336, 338, 399
ace–min, 315
ActionGoToEdit.java, sample, 299
active class, 13
Active Object, design pattern, 336
Active Template Library, 325
ActiveX, 325
Ada, 16, 98, 126, 296, 299
Ada keyword
package, 299
use, 299
with, 299

Ada-95, 300
adaptation, 8
Adaptec, 280
Adapter, design pattern, 336
Adaptive Communication Environment, 329,

338
adb.c, sample, 108, 109
adb–direct.c, sample, 108, 109
Addr.i, sample, 308
administrator manual, 242
Adobe FrameMaker, 260
adornment, 276
ADT, 106, 318
aggregation association, 13

agile programming, 8
aha.c, sample, 281
aha–done, 281
aha–finish–ccbs, 281
aha–intr, 281
algebraic specification, 318
algorithms, 245
alias.c, sample, 119, 120, 233, 246
aliasing, through pointers, 70
all, pseudo-target, 194
alloc.c, sample, 217
alloca, Unix-specific function, 88
am-utils.texi, sample, 261
amd.c, sample, 219
Amoeba, 158
AND, bitwise, 53
AND, logical, 41
ant, program, 192, 196, 198
any.cpp, sample, 303
any.h, sample, 303
ap–snprintf.c, sample, 234
apache, program, xxv, 162, 181, 244, 260,

270, 322, 323
apache, sample, 399
API, see also under the name of the specific

API (e.g. Win32)
documentation, 249
Java platform documentation, 28, 264
thread, 162
providing OS services, 160
Sun RPC, 272

Api Spy, 370
APM, 292
applet, 20
AppleTalk, 186
application, 336
Application programming interface, see API

apply.c, sample, 35
apropos, program, 255
apropos.1, sample, 255
apropos.pdf, sample, 255
.Ar, troff command, 262
arc, 139
arch, directory name, 183
arch, sample, 186

Index 461

archeology, see software archeology
architecture, 180

centralized repository, 268
control models, 285
data-flow, 273
design pattern, 331
distributed, 268
domain-specific, 333
event-driven, 285
framework, 329
hierarchies, 282
layered, 279
non-trivial, 180
object-oriented, 275
packaging, 292
pipes-and-filters, 273
reuse, 328
state transition, 291
system manager, 289

$Archive:$, revision-id tag, 206
arcs.c, sample, 246
argc, identifier name, 20
ArgoEvent.java, sample, 289
ArgoModuleEvent.java, sample, 289
ArgoNotationEvent.java, sample, 289
ArgoUML, 278
argouml, sample, 399
args.c, sample, 200
argv, identifier name, 20
arithmetic.c, sample, 165
array, 96

as argument, 65
associative, 111
data structure, 96
dynamically allocated, 89
index, 111
results, 65
two-dimensional, 111

array.t, sample, 215
as, program, 323
AS, Modula keyword, 299
asc.c, sample, 282
asc–disp.out, 212
asc–intr, 282
ASCII characters, 40

ASCII diagram, 256
ascmagic.c, sample, 22
.asm, file extension, 227
.asp, file extension, 227
assembly code, see symbolic code
assert, C library, 218, 220
assert, Java method, 220
assertion, 28, 55, 56, 217, 219, 220
association navigation, 13
associative array, 111
astosc.c, sample, 213
astosc.out, 213
asymmetric bounds, 100
asynchronous, 143, 165, 167
Asynchronous Completion Token, design

pattern, 336
asynchronous signals, 156
at, program, 160
at.1, sample, 251
at.c, sample, 33
at.pdf, sample, 251
at, sample, 135
ATL, see Active Template Library
ATM, 186
atom.c, sample, 114
atrun.c, sample, 160
attribute, see class, property
$Author:$, revision-id tag, 206
$Author$, revision-id tag, 206
@author, javadoc tag, 263
autoconf, 199, 224
AVL tree, 130
awk, program, 209, 227, 309, 330, 357, 377
.awk, file extension, 227
AWT, see Abstract Windowing Toolkit

B
B+ tree, 319
b4light.c, sample, 108
%B%, revision-id tag, 206
b, Hungarian prefix, 236
.B, troff command, 262
backward-list, editor command, 346
backward-up-list, editor command, 346
bad, C++ library, 24

462 Index

.bas, file extension, 227
base case, 143, 146
base class, see class, base
BaseDirContextTestCase.java, sample,

220
Basic, 42, 309, 354
basic block, 372
basic block coverage analysis, 372
.bat, file extension, 227
beautifier, 365
.BI, troff command, 262
bin, directory name, 183
binary search, 55, 113
binary tree, 126
BIND, xxv, 248
bio–doread, 281
biodone, 281
biowait, 281
bit field, 77
bitwise-AND, 53
.Bl, troff command, 262
blackboard system, 270
bless, Perl keyword, 300, 309
block, 28, 31
block.cpp, sample, 297, 301
.bmp, file extension, 227
boolean expression, 39
boss/worker, 156, 157
bpb.h, sample, 77
.br, troff command, 262
.BR, troff command, 262
branch, 203
bread, 281
break, Java keyword, 38, 39, 152
break, keyword, 32, 36, 37, 55, 96, 231
breakpoint, 6, 374
brelse, 281
bremfree, 281
BRIEF, 340
browser, 365
BSD, 195, 225, 226
bsearch.c, sample, 56, 320
bsearch, C library, 69, 320
btree, sample, 125
buf, identifier name, 96

buffer, 96
buffer overflow, 99, 141, 254
bufinit, 281
bug tracking database, 209
bugs, documenting, 251
Bugs, manual section, 251, 254
Bugzilla, 209
build process, 189, 212, 321
build.bat, sample, 380
build.properties.sample, sample,

198
build.xml, sample, 196
build, directory name, 183
build, pseudo-target, 194
bus.h, sample, 176
bwrite, 281
bytecode, 334
.bz2, file extension, 227
bzip2, program, 227

C
C, 15, 98
C data type, 61
C library
abort, 168
assert, 218, 220
bsearch, 69, 320
cos, 388
ctime, 389
ctype, 42
EOF, 24
exit(1), 43
exit, 24, 36, 168
ferror, 24
fgets, 99
fread, 98
free, 85, 89
fwrite, 98, 280
gets, 98, 99
isupper, 42
longjmp, 168, 169
main, 20, 219
malloc, 80, 84, 85, 88, 101
memcpy, 97, 98
memmove, 97

Index 463

memset, 97
NULL, 52, 236
printf, 23, 73
qsort, 69, 98
realloc, 86
scanf, 99
setjmp, 169
signal, 168
sin, 388
snprintf, 99
sprintf, 98, 99
stdin, 51
stdio, 280
strcat, 99
strcmp, 22, 234
strcpy, 99
strdup, 66
strlen, 72
strncat, 99
strncpy, 99
tm–year, 390
tolower, 42
tv–sec, 76
tv–usec, 76
vsnprintf, 99
vsprintf, 99

C preprocessor, see preprocessor
C++, 42, 98, 276, 364
C++ keyword, see keyword
C++ library
bad, 24
fail, 24
good, 24
vector, 100

C++ operator, see operator
c++decl, program, 368
C-M-d, editor command, 346
C-M-m, editor command, 346
C-M-p, editor command, 346
C-M-u, editor command, 346
C#, 98, 227, 276, 300, 304
C# keyword, see keyword
C# operator, see operator
%C%, revision-id tag, 206
.c, file extension, 227

.C, file extension, 227
c, Hungarian prefix, 236
@c, Texinfo command, 263
cache.c, sample, 63
Cache.java, sample, 234
cal.c, sample, 34
Calendar, Java class, 382, 390
call

and return, 285
by name, 172
by reference, 63, 66
graph, 134, 372

case, keyword, 32, 219, 231
cat, program, 244
cat.1, sample, 244, 251
cat.c, sample, 24, 205, 243
cat.pdf, sample, 244, 251
Catalina.java, sample, 22
catalina, sample, 358
CatalinaService.java, sample, 23
catch, Java keyword, 150, 151, 152
cb, program, 367
cb, Hungarian prefix, 236
cbo, Hungarian prefix, 237
cbrowser, 366
cc, program, 323

-E, 361
-S, 362

.cc, file extension, 227
CC, identifier name, 193
CD-ROM, 14,399
cdecl, program, 368
centralized repository, 268
CFLAGS, identifier name, 193
CGI, 358
.cgi, file extension, 227
cgram.y, sample, 130
ch, Hungarian prefix, 236
change, 252
CHANGELOG.txt, sample, 397
ChangeLog, file name, 226, 252
Changes, file name, 226
character expression, 39
Character, Java class, 42
chatter.h, sample, 305

464 Index

check in, 203
checkError, Java method, 24
checknr.c, sample, 238
chio.c, sample, 97
chk, Hungarian prefix, 237
chown.c, sample, 230
@cindex, Texinfo command, 263
circular buffer, 108
circular list, 122
cksum.c, sample, 238
cl, program

/E, 361
/Fa, 362

class, 78, 249, 300
abstract, 276, 277, 306
attribute, see class, property
base, 272, 300, 365
browser, 300
constructor, 226, 302
derived, 300, 365
destructor, 154, 302
diagram, 276, 277
field, 78, 301, 303
finalizer, see class, destructor
method, 78, 226, 276, 300, 301, 303
name, 276
operation, see class, method
property, 78, 226, 276, 325
variable, see class, property

.class, file extension, 227
class, Java keyword, 300
classes, directory name, 183
clean, pseudo-target, 194
Cleanup–Strategies–T.h, sample,

256
client-server systems, 269, 338
close, Unix-specific function, 80, 281
closed range, 100
closedir, Unix-specific function,

319
CloseHandle, Win32 SDK, 163
.cmd, file extension, 227
cmd, Hungarian prefix, 237
COBOL, 16
cocoon, sample, 399

code
as exemplar, 5
as literature, 2
assembly, see symbolic code
beautifier, 365
browser, 365
generation, 212, 334
inspections, 9
languages, 15
object, 360, 362
portability, see portability
reuse, 320
searching, 346
standards, see guidelines
symbolic, 360, 362
wizard, 328, 330

codefind.pl, sample, 14
coding standards, 225, see also guidelines
cohesion, 283, 338
collaboration diagram, 276
collect.c, sample, 246
Column.java, sample, 316, 317
.com, file extension, 227
comma operator, 35
commands.c, sample, 122
commit, 203
Common Object Request Broker

Architecture, 271
common, directory name, 183
compile, directory name, 183
compiler, 360
compiler driver, 323
complete.c, sample, 35
complex numbers, 309
component, 180, 325
Component Configurator, design pattern,

336
compress, program, 227
compress.c, sample, 107
computer networks, 338
concurrent systems, 289
Concurrent Versions System, see CVS

condition, 28
conf.c, sample, 92, 246
conf, directory name, 183

Index 465

conference publications, 259
config.cache, file name, 199
config.h.in, file name, 200
config.h, file name, 199, 200, 226
config.h, sample, 199
config.log, file name, 199
config.status, file name, 199
config, sample, 211, 215
config–h.SH, file name, 226
configuration, 197, 210
configure, file name, 199, 226
confpars.c, sample, 334
conjunction, 41
connected, 139
Connector, design pattern, 337
connector, 278
connector, sample, 278
conservative garbage collector, 88
const, keyword, 64, 360
constant

array size, 113
documentation, 40
in assertion, 219
in conditional expression, 360
naming of, 234
on left side of comparison, 52
preprocessor defined, 361

constructor, see class, constructor
ContainerBase.java, sample, 151, 286
containers, 318
context diff, 209, 331, 355
ContextConfig.java, sample, 152
continue, Java keyword, 38, 39, 152
continue, keyword, 37, 55, 96
contrib, directory name, 183
control flow, 143
control flow statements, 25
control model, 156, 285

boss-worker, 157
event-driven, 285
multiple process, 159
mutual exclusion, 158
state transition, 291
system manager, 289
work crew, 157

conventions, see guidelines
convolve.c, sample, 104
Cookies, directory name, 325
copy constructor, 303
Copying, file name, 226
copyright, 20, 413
CORBA, 271, 325, 329, 337
corruption, 168
cos, C library, 388
coupling, 284, 338
CPAN.pm, sample, 299
cpp, program, 323
.cpp, file extension, 227
CPP, identifier name, 193
crc24.h, sample, 306
crc32.h, sample, 300
CreateEvent, Win32 SDK, 163
CreateMutex, Win32 SDK, 163
CreateThread, Win32 SDK, 162,

163
Critic.java, sample, 299
critical region, 163
cs4231reg.h, sample, 256
.cs, file extension, 227
cscope, program, 365
csh, program, 227
.csh, file extension, 227
ctags, program, 343
ctags.1, sample, 252
ctags.c, sample, 125
ctags.pdf, sample, 252
ctime, C library, 389
ctype, C library, 42
cur, Hungarian prefix, 237
currentThread, Java method, 163
curses.c, sample, 71
cursor, 65, 102
cut.1, sample, 260
CVS, 5, 50, 203, 208, 224, 268, 355
CVS, directory name, 183
cw, Hungarian prefix, 236
CWEB, 263, 266
.cxx, file extension, 227
cycle, in graph, 131
Cygwin, 376

466 Index

D
%D%, revision-id tag, 206
d, Hungarian prefix, 236
daemon, 216, 324
data

dictionary, 327
element access, 65
flow, 324
grouping, 75
link, 336
organization, 76
repository, 325
structure, 95
structure, dynamic allocation, 62
structure, linked, 62
type, 61, 105, 106, 318

data-flow architecture, 273
data-flow diagram, 275
database triggers, 285
Database.java, sample, 235, 395
DatabaseInformation.java, sample,

228
$Date:$, revision-id tag, 206
date.c, sample, 231
$Date$, revision-id tag, 206
date, Hungarian prefix, 237
Date, Java class, 387, 396
db, 256
db.h, sample, 91
db, sample, 319
DB, Unix-specific function, 319
db–load.c, sample, 334
db–update.c, sample, 247
dbopen, Unix-specific function, 319
DCOM, 271, 337
.Dd, troff command, 262
De Morgan’s rules, 41
dead code, 372
debug level, 217
Debug, directory name, 183
DEBUG, identifier name, 216, 222
debugger, 373
debugging output, 216
decomposition, 180
Decorator, design pattern, 337

deep copy, 303
.def, file extension, 227
default, keyword, 32
DefaultContext.java, sample, 298
defensive programming, 33
defficiencies, 252
defs.h, sample, 91, 172
del, Unix-specific function, 319
delete, keyword, 167, 168, 302, 303
deliver.c, ex, 246
demoGL, sample, 400
depend, pseudo-target, 194
dependency

graph, 189
isolation, 198
relationship, 13

@deprecated, javadoc tag, 263
deque, 121
derived class, see class, derived
design pattern, 331, 336, 337
design specification, 242
Desktop, directory name, 325
DESTROY, Perl keyword, 310
destructor, see class, destructor
/dev/null, file name, 350
Developer Studio, see Microsoft Developer

Studio
development process standards, 239
device driver, 155
dgl–dllstartupdialog.cpp, sample, 286
dhcp, sample, 268
diagram

and architecture modeling, 278
ASCII, 256
class, 276, 277
collaboration, 276
data-flow, 275
design, 2
for understanding code, 375
in practice, 337
modeling hierarchy, 283
object, 276
reverse engineering, 278
state transition, 247, 291
UML, 12, 276

Index 467

dialog box, 239
diff, program, 51, 355, 357

-b, 356
-c, 209
-i, 356
-w, 51, 356

differences between files, 355
dig.c, sample, 76
.digit, 227
direct access to memory, 74
directional, 139
directory name
Cookies, 325
Desktop, 325
doc, 248
Documents and Settings, 325
Favorites, 325
include/protocols, 269
My Documents, 325
net, 186
src, 181
Start Menu, 325
see also Table 6.1, 183

DirHandle.pm, sample, 309
disjunction, 41
disp–asc.c, sample, 212
disp–asc.out, 212
dispatch, 306
Distributed Component Object Model, 271
ditroff, program, 266
division, 53
DLL, 322, 323, see also shared library
DLL hell, 322
DLL.pm, sample, 311
.dll, file extension, 227
dlutils.c, sample, 323
DNS, 247
do, keyword, 51, 174
doc, directory name, 183, 248
doc, pseudo-target, 194
doc, sample, 248, 402
DocBook, 261, 265, 266
doclets, 265
docmd.c, sample, 120
{@docRoot}, javadoc tag, 263

documentation, 183, 214, 227, 241
algorithms, 245
bugs, 251
change, 252
defficiencies, 252
identifiers, 246
interfaces, 249
non-functional requirements, 247
overview, 243
requirements, 247
specifications, 244
system structure, 245
test cases, 249
tools, 214

Documents and Settings, directory name,
325

doexec.c, sample, 222
domain name system, 247
domain-specific

architectures, 333
languages, 181, 212, 330
protocols, 272
tools, 210

domain.h, sample, 78
Double Checked Locking, design pattern,

337
double-ended queue, 121
doubly linked list, 121
down-list, editor command, 346
Doxygen, 261
dry-run, 223
.dsp, file extension, 227
.dsw, file extension, 227
dt, Hungarian prefix, 237
.Dt, troff command, 262
dump, program, 269
Dump.h, sample, 308
dumpbin, 363
dumprestore.h, sample, 269
.Dv, troff command, 262
.dvi, file extension, 227
dw, Hungarian prefix, 236
dynamic

allocation of data structures, 62
dispatch, 180, 306

468 Index

link library, see DLL

linking, 322
memory allocation, 84
memory allocation pool, 168
shared objects, 322

E
%E%, revision-id tag, 206
EBCDIC, 212
echo.c, sample, 20
Eclipse, 377
ed, program, 170, 355
ed, sample, 171
edge, 62, 125, 131, 134, 137
editor, 343
editor command, 343
edu, directory name, 183
eg, directory name, 183
egrep, program, 161
Eiffel, 126, 276, 296, 300
.el, file extension, 227
elf.c, sample, 368
elf2aout.c, sample, 22
Emacs, 227, 229, 340, 344, 345, 365
@emph, Texinfo command, 263
empty statement, 38
encapsulation, 320
.encoding, 227
@end, Texinfo command, 263
endian.h, sample, 92
engine.c, sample, 173, 218
enum, keyword, 234
envelope.c, ex, 246
EOF, C library, 24
Epsilon, 340
eqn, program, 227
.eqn, file extension, 227
equals, Java method, 23

–errno.c, sample, 320
error messages, 215, 360
Error, Java class, 150, 151
Errors, manual section, 223
/etc/inetd.conf, file name, 325
etc, directory name, 183
EtherExpress, 76

Ethernet, 279
European Conference on Pattern Languages

of Programming, 338
eval.c, sample, 31, 125
event loop, 286
event pump, 286
event-driven architecture, 285
EventObject, Java class, 289
@example, Texinfo command, 263
exception, 36, 98, 150
Exception, Java class, 150
@exception, javadoc tag, 263
exclusive range, 100
exclusive-or, 114
exec, Unix-specific function, 281
execution profiler, 372
execve.pdf, sample, 223
execve, Unix-specific function, 222, 223
exercises, 13
exit, C library, 24, 36, 43, 168
ExitThread, Win32 SDK, 163
expand.c, sample, 25
expat-lite, sample, 322
exponent, 83
export, 299
Exporter, Perl module, 299
expr.c, sample, 130, 149
expression

boolean, 39
character, 39
integer, 51
pointer, 65, 72

ext2, 281
ext2fs–readwrite.c, sample, 281
ext2fs–vnops.c, sample, 282
ext2fs–write, 281
ExtendableRendererFactory.java,

sample, 332
extended linear hashing, 319
Extension Interface, design pattern, 337
extern.h, sample, 92
extern, keyword, 363
External Polymorphism, design pattern,

337
extra-functional property, 269

Index 469

extreme programming, 8, 10, 17, 378
exuberant ctags, 344
Eyes.c, sample, 231

F
%F%, revision-id tag, 206
f 771, program, 324
f, Hungarian prefix, 236
fail, C++ library, 24
FALLTHROUGH, 32, 231
FAQ, 260
fast file system, 243
FastDateFormat.java, sample, 220
fault isolation, 323
Favorites, directory name, 325
ferror, C library, 24
ffs.pdf, sample, 243
ffs, sample, 243
ffs–vnops.c, sample, 313
fgets, C library, 99
fgrep, program, 352
field separator, 275
field, class, see class, field
field, table, 101
FIFO, 77, 107
FigEdgeModelElement.java, sample, 302
file differences, 355
file extension
.h, 225
.info, 265
.ini, 202
.man, 227
.texi, 265
see also Table 7.2, 227

file name
/dev/null, 350
/etc/inetd.conf, 325
ChangeLog, 226, 252
Changes, 226
config.cache, 199
config.h.in, 200
config.h, 199, 200, 226
config.log, 199
config.status, 199
config–h.SH, 226

configure, 199, 226
Copying, 226
INSTALL, 226
LICENSE, 226
Makefile.in, 200
Makefile.SH, 226
Makefile, 137, 200, 223, 226
MANIFEST, 226
NEWS, 226
NUL, 350
patchlevel.h, 226
README, 226
tags, 343
TODO, 226
version.h, 226

file.h, sample, 79
@file, Texinfo command, 263
filename, 225
filter, 161, 273, 323, 324
final state, 291
finalize, Java keyword, 302
finally, Java keyword, 150, 152, 153
find, 14, 353
find.c, sample, 125
First, Hungarian prefix, 236
fix list, 252
fixed-width, 275
FIXME, 233
FIXME, identifier name, 354
.Fl, troff command, 264
floating-point numbers, 97
floppy distribution, 4
flow, 376
fn, Hungarian prefix, 236
folding, 345
for, Java keyword, 38
for, keyword, 34, 96, 118
Fork.C, sample, 166
fork, Unix-specific function, 160, 166,

281
formal practices, 180
formatting, 230
Fortran, 16, 42
fortunes2, sample, 457
forward list traversal, 119

470 Index

forward-list, editor command, 346
Foundation Classes, see Microsoft

Foundation Classes
fpu–sqrt.c, sample, 341
fractions, 309
FrameMaker, 227, 260
framework, 328, 329
fread, C library, 98
free memory, 87
free, C library, 85, 89
FreeBSD, 89
FreeBSD documentation project, 261
frexp.c, sample, 83
friend, keyword, 305, 307
.frm, file extension, 227
frm, Hungarian prefix, 237
FROM, Modula keyword, 299
fsplit.c, sample, 34
ftp, program, 7
FTP, 269
ftpd.c, sample, 69
func.c, sample, 53, 296
function, 25, 26

declaration, 25
pointer, 67
return values, 76

function.c, sample, 213
function.h, sample, 213
functional description, 242
functionality addition, 7
Future–Set.h, sample, 305
fwrite.c, sample, 280
fwrite, C library, 98, 280
fxp–intr, 282

G
g substitute flag, 348
g++, program, 323
%G%, revision-id tag, 206
garbage collector, 87, 88, 303
gcc, program, 195, 372

-a, 372
GCManager.c, sample, 57
gencode.h, sample, 132
generalization relationship, 13, 277

generic code, 313
generic implementation, 313
GENERIC, sample, 211
get, in method name, 304
get, Unix-specific function, 319
GetCurrentThreadId, Win32 SDK, 163
getenv, Unix-specific function, 201
getopt, Unix-specific function, 22, 24, 28,

238, 264, 273
getopt–long, Unix-specific function, 238
getProperty, Java method, 201
getpwent.c, sample, 72
gets, C library, 98, 99
getservent.c, sample, 44
getTime, Java method, 387
Glimpse, 354
global variable, 25
GNATS, 209
GNU, xxv, 4, 8, 14, 22, 89, 225, 261
GNU C compiler, 195, 364, see also gcc
gnu.getopt, Java package, 22
good, C++ library, 24
goto, 43, 169
goto, keyword, 43, 55, 159
GoToMatchBraceExtend, editor command,

346
GoToMatchBrace, editor command, 346
gperf, program, 141
gprof, program, 134, 372, 378
gprof.c, sample, 69
gprof.h, sample, 134
gprof.pdf, sample, 246
grammar, 129, 144, 147, 177, 191
graph, 95, 131
graphics algorithm, 105
GraphViz, 12
GregorianCalendar, Java class, 382, 386,

390
grep, program, 14, 264, 344, 346, 364, 398

-e, 354
-i, 354
-l, 348
-n, 354
-v, 351

groff, program, 365

Index 471

grok, 255
gtkdiff, program, 357
GUI, 236, 274, 285
guidelines

BSD, 50, 226
coding, 225
data interchange, 129
development process, 239
deviations from, 339
formatting, 230
GNU, 50
identation, 367
identifier names, 234
indentation, 228
Java code, 226
naming files, 225
portability, 237
programming practices, 237

.gz, file extension, 227
gzip, program, 162, 227

H
%H%, revision-id tag, 206
.h, file extension, 225, 227
h, Hungarian prefix, 236
hack.objnam.c, sample, 40
Half-Sync/Half-Async, design pattern, 333,

337
handler.c, sample, 286
hardware interrupt, 286
hash, 309
hash function, 114
hash table, 113
hash.c, sample, 229
Hashable, Java class, 392, 395
Hashtable, Java class, 319
head, 107, 117
$Header:$, revision-id tag, 206
header files, 20, 183, 226
$Header$, revision-id tag, 206
headers.c, sample, 246
heap, 89
help file, 190, 239
hidden structures, 139
hierarchical decomposition, 282

$History:$, revision-id tag, 206
history.c, sample, 52
homedir.c, sample, 86
Host.java, sample, 298
hostctlr.h, sample, 213
hp7lc2k.c, sample, 222
.hpp, file extension, 227
hSql.html, sample, 380
hsqldb, program, 249
hsqldb, sample, 400
hSqlSyntax.html, sample, 397
HTML, 28, 214, 249, 261, 265, 358, 359
HTTP, 244, 269, 271
http–core.c, sample, 271
http–protocol.c, sample, 244, 270
Hungarian naming notation, 225, 235
hunt, 149
hunt.c, sample, 147
Hypersonic SQL database engine, 249

I
i82365.c, sample, 282
%I%, revision-id tag, 206
i, Hungarian prefix, 236
.I, troff command, 262
IBM, 227
IBM 3270, 212
IBM VM/CMS, 212
.Ic, troff command, 262
ICMP, 101
ico.c, sample, 102, 157
.ico, file extension, 227
.icon, file extension, 227
Id, revision-id tag, 206
IDE, 198
idealized presentation, 254
ident, program, 207
identd.c, sample, 66, 73
identifier name
$*, 194
$<, 194
$>, 194
$?, 194
$@, 194
$$, 194

472 Index

argc, 20
argv, 20
buf, 96
CC, 193
CFLAGS, 193
CPP, 193
DEBUG, 216, 222
FIXME, 354
IN, 64
INCLUDES, 193
INSTALL, 193
left, 126
LFLAGS, 193
LIBS, 193
NDEBUG, 220
new, 63
next, 118
NULL, 20, 35, 42, 60, 118
OBJS, 193
OUT, 64
prev, 121
right, 126
SHELL, 193
SRCS, 193
STREQ, 22
usage, 26
xmalloc, 85
XXX, 233, 354

identifiers, 246
IDL, 261, 273
.idl, file extension, 227
idutils, 344
if–arp.c, sample, 234
if–atm.c, sample, 64
if, keyword, 23, 55, 360
if–cs–isa.c, sample, 230
if–ed.c, sample, 96
if–fxp.c, sample, 282
if–fxpreg.h, sample, 76, 77
IIS, see Microsoft Internet Information

Server
imake, 190, 195, 212
imake, sample, 212
implements, Java keyword, 277, 301
import, Java keyword, 299
IMPORT, Modula keyword, 299

IN, identifier name, 64
in–proto.c, sample, 113
inbound.c, sample, 213
include files, see header files
include/protocols, directory name, 269
include, directory name, 183
INCLUDES, identifier name, 193
inclusive range, 100
inconsistent, 231
indent, program, 231, 367
indentation, 228
index.html, sample, 249, 379
inetd, program, 327
inetd.conf, sample, 327
infblock.c, sample, 125
.info, file extension, 227, 265
information hiding, 296
information-hiding, 304
inheritance, 13, 180, 306
inheritance hierarchy, 300
.ini, file extension, 202
init.c, sample, 36
init, Java method, 20
init–main.c, sample, 290
initial state, 291
initialization files, 202
inline, keyword, 177
inode, 114
inspections, 9
INSTALL, file name, 226
INSTALL, identifier name, 193
install, pseudo-target, 194
installation instructions, 242
instance, variable, see class, property
integer expression, 51
integer.h, sample, 309
integrability, 269
integrated development environment, see

IDE

Intel, 76, 98
Interceptor, design pattern, 337
interface, 13, 106, 108, 317
see IDL, 273
interface, Java keyword, 277
INTERFACE, Modula keyword, 299
interfaces, 249

Index 473

intermediate files, 324
internal representation, 82
International Conference on Pattern

Languages of Programming, 338
Internet Information Server, see Microsoft

Internet Information Server
Internet Worm, 141
interpreter state, 336
interrupt, 105, 155, 156, 159
INTR, 281
intro, sample, 245
introductory guide, 242
invariant, 56
IOCCC, 361
ioconf.c, 211
ioctl, Unix-specific function, 80
iostream, 401
IP, 269
.IP, troff command, 262
IPX, 78
.IR, troff command, 262
ISA, Perl keyword, 311
isapnpres.c, sample, 125
isLeapYear, Java method, 386
ISO, 186
isolation of dependencies, see dependency

isolation
issue-tracking database, 259
isupper, C library, 42
isUpper, Java method, 42
.It, troff command, 262
@item, Texinfo command, 263
Iterator, design pattern, 337

J
Jade, 265
jam, program, 196
jamfile, 196
.jar, file extension, 227
JasperLogger.java, sample, 162
Java, 42, 98, 276, 365

API, 214
SDK, 214

Java class
Calendar, 382, 390
Character, 42

Date, 387, 396
Error, 150, 151
EventObject, 289
Exception, 150
GregorianCalendar, 382, 386, 390
Hashable, 392, 395
Hashtable, 319
java.lang.Exception, 150
RuntimeException, 151
Stack, 319
String, 20
System, 201
TestCase, 220
Throwable, 150
Thread, 162, 163
Vector, 319

Java interface
runnable, 162

Java keyword
abstract, 276, 306
break, 38, 39, 152
catch, 150, 151, 152
class, 300
continue, 38, 39, 152
finalize, 302
finally, 150, 152, 153
for, 38
implements, 277, 301
import, 299
interface, 277
package, 283, 298
private, 226, 276, 304
protected, 226, 276, 304
public, 226, 276, 304
return, 152
static, 276, 303, 332
synchronized, 163, 164, 165
this, 302, 309
throws, 151, 154
try, 150, 152, 153
see also keyword

Java method
assert, 220
checkError, 24
currentThread, 163
equals, 23

474 Index

getProperty, 201
getTime, 387
init, 20
isLeapYear, 386
isUpper, 42
length, 20
main, 220
notify, 163, 164
run, 162
setUp, 220
sleep, 163
start, 162
stop, 163
suite, 220
tearDown, 220
toLowerCase, 42
wait, 163, 164
yield, 163

Java operator
see also operator
>>>, 53

Java package
gnu.getopt, 22
java.util, 80, 319
Math, 388

Java server page, 325
Java Virtual Machine, 279
java.util, Java package, 80, 319
.java, file extension, 227
JavaBeans, 325
Javac.java, sample, 30
javadoc, 214, 231, 261, 263, 265, 382
JCL, 227
.jcl, file extension, 227
jdbcConnection.java, sample, 304
jdbcDatabaseMetaData.java, sample, 305
jdbcPreparedStatement.java, sample,

214
JDBCStore.java, sample, 150
jobs, shell command, 146
jobs.c, sample, 120, 146, 147
join, 203
jot, program, 374
journal publications, 259
JSP, 325

.jsp, file extension, 227
JspReader.java, sample, 38, 153
jt4, sample, 401
JUnit, 220, 224
$JustDate:$, revision-id tag, 206
JVM, see Java Virtual Machine

K
K&R C, 22
kbd.out, 213
kern–descrip.c, sample, 230
kern–lkm.c, sample, 322
kern–synch.c, sample, 256
kernel modules, 322
key.c, sample, 112, 129
keyword
break, 32, 36, 37, 55, 96, 231
case, 32, 219, 231
const, 64, 360
continue, 37, 55, 96
default, 32
delete, 167, 168, 302, 303
do, 51, 174
enum, 234
extern, 363
for, 34, 96, 118
friend, 305, 307
goto, 43, 55, 159
if, 23, 55, 360
inline, 177
namespace, 283, 293, 297
new, 168, 302, 303
operator, 307
pragma, 360
private, 304
protected, 304
public, 304
return, 36, 159, 169
sig–atomic–t, 168
static, 26, 66, 294, 296, 303, 363
struct, 62, 75, 92, 101, 145
switch, 32, 212, 231, 360
template, 315
this, 302, 309
throw, 154

Index 475

typedef, 91, 92, 296
union, 80, 145
using, 298
virtual, 306
void, 317
volatile, 77, 168
while, 30, 174, 360

keywords, 205

L
%L%, revision-id tag, 206
.l, file extension, 227
l, Hungarian prefix, 236
label, 43
language, 15, 129

block-structured, 105
markup, 105

.language-code, 227
large integers, 309
large projects, 179
laser printer, 264, 375
last, program, 255
last.1, sample, 255
last.pdf, sample, 255
Last, Hungarian prefix, 236
last, Perl keyword, 37
LaTeX, 228, 261, 265, 266, 359
Law of Demeter, 338
layered architecture, 279
lbl, Hungarian prefix, 237
ld, program, 323
LDAPTransformer.java, sample, 345
Leader/Followers, design pattern, 337
left, identifier name, 126
length, Java method, 20
LevelDown, editor command, 346
LevelUp, editor command, 346
lex, program, 194, 227
lex.c, sample, 119, 122, 291
lexical analysis, 333
LFLAGS, identifier name, 193
lib, directory name, 183
.lib, file extension, 227
libc, sample, 320
libcrypt, sample, 320

libcurses, sample, 320
libedit, sample, 320
libkvm, sample, 320
libpcap, 132
libpcap, sample, 320
library, 180, 227, 319
Library.html, sample, 397
Library.java, sample, 381, 382, 392, 393,

395
LIBS, identifier name, 193
LICENSE, file name, 226
license, 20, 413
LifecycleException.java, sample, 151
LIFO, 105
Like.java, sample, 317
Lim, Hungarian prefix, 236
line counting, 372
{@link}, javadoc tag, 263
linked data structure, 62
linked list, 95, 117, 167, 335
lint, 33, 129, 231, 361, 377
lint1.h, sample, 129
Linux, xxv, 4, 8, 14, 183, 225
Linux documentation project, 266
Lisp, 227
list.c, sample, 107
listing, 360, 361
literate programming, 17, 266
localtime.c, sample, 111, 112
locate, program, 186
lock, 203
$Locker$, revision-id tag, 206
$Log:$, revision-id tag, 206
log4j, 216
Log, revision-id tag, 206
$Logfile:$, revision-id tag, 206
logging output, 216
logical AND, 41
logical OR, 41
longjmp, C library, 168, 169
lookup table, 111, 212
loop, 28, 34, 37, 51, 54
loop invariant, 56, 98
lorder.sh, sample, 259
lower bound, 100

476 Index

lpd, sample, 268
lpr, program, 160
ls.c, sample, 32, 90
ls.h, sample, 90
lsearch.c, sample, 317
lst, Hungarian prefix, 237
LXR, 366

M
-M

gcc option, 195
M-., editor command, 343
M-x outline-mode, editor command, 345
m4, program, 227, 256
.m4, file extension, 227
%M%, revision-id tag, 206
Mac, Hungarian prefix, 236
machdep.c, sample, 23, 74
Macintosh, 98
macro, 104, 172
macro.c, ex, 246
main program and subroutine, 268
main.c, sample, 42, 170, 286
Main.java, sample, 55
main, C library, 20, 219
main, directory name, 183
main, Java method, 220
maintenance

branch, 203
code beautifier, 367
cost, 17
documentation, 252
formatting changes, 50, 367
management, 17
organization, 183
reason for reading code, 6

.mak, file extension, 227
make, program, 137, 139, 186, 192, 224

-n, 196
make.h, sample, 137, 139
makedepend, program, 212
makedepend, sample, 212
makefile, 192
Makefile.in, file name, 200
Makefile.nt, sample, 137, 192

Makefile.SH, file name, 226
Makefile.tmpl, sample, 195, 240
makefile.win, sample, 196
Makefile, file name, 137, 200, 223, 226
Makefile, sample, 198, 223, 240
makewhatis, program, 274
makewhatis.sh, sample, 161, 274
malloc.c, sample, 80, 81, 173
malloc, C library, 80, 84, 85, 88, 101
man, program, 28, 260, 265

-t, 265
man, directory name, 183
.man, file extension, 227
MANIFEST, file name, 226
mantissa, 83
manual page, 183, 190
map, 95, 111, 113
MapStackResolver.java, sample, 39
marketing material, 260
markup language, 260
marshalling, 273
Martian, 256
master/slave, 157
math.c, sample, 106
Math.PI, Java method, 388
Math, Java package, 388
mathematical theorems, 3, 17
matrix, 95, 101, 309
mbuf.9, sample, 249
mbuf.pdf, sample, 249
md2.h, sample, 306
mdef.h, sample, 256
mdoc, macro package, 260
me, macro package, 227
.me, file extension, 227
member function, see class, method
member variable, see class, property
memcpy, C library, 97, 98
memmove, C library, 97
memory access, 74
memory leak, 85, 87, 303
memory management, 155
memset, C library, 97
Menu.cc, sample, 364
message, 300

Index 477

meta-characters, 340
method, see class, method
MFC, see Microsoft Foundation Classes
Microsoft

Access, 357
C/C++ compiler, 364, see also cl, program
C#, see C#
Developer Studio, 227
DOS, see MS-DOS

Foundation Classes, 286, 329
Internet Information Server, 327
Macro Assembler, 361
MSDN, 28, 327
.NET platform, 15, 271
OLE automation, 359
SDK element, see Win32 SDK

Visual Basic, 227, 235, 277, 300, 304,
325, 344, 357

Visual Basic for Applications, 235
Visual Source Safe, 203
Visual Studio, 346, 356, 372
Windows, 8, 20, 160, 189, 190, 202, 216,

323, 370, 376
Windows Explorer, 186
Windows Installer, 190, 240
Windows NT, 137, 227
Windows SDK, see Win32 SDK

Windows SDK source, 235
Windows Services for Unix, 377
Windows, resource files, 183
Word, 260, 345, 359

middleware, 271
midnight commander, program, 186
MIF, 265
.mif, file extension, 227
Min–Max.h, sample, 315
miNCurve.c, sample, 103
minurbs.c, sample, 103
misc.c, sample, 85, 166
mivaltree.c, sample, 125
.mk, file extension, 227
mkastods.c, sample, 212
mkastosc.c, sample, 213
mkdep, program, 195
mkdstoas.c, sample, 212

mkhits.c, sample, 213
MKS Toolkit, 377
mktables.PL, sample, 37
mm, macro package, 227
.mm, file extension, 227
MMDF, 160
mnu, Hungarian prefix, 237
mod–so.c, sample, 323
Model-View-Controller, 329
modifications, 7
$Modtime:$, revision-id tag, 206
Modula, 293
Modula keyword
AS, 299
FROM, 299
IMPORT, 299
INTERFACE, 299
MODULE, 299

Modula-3, 299
module, 293, 297
MODULE, Modula keyword, 299
modulo division, 53
Monitor Object, design pattern, 337
more, sample, 11, 168
Motif, 286, 329
mount–nfs.c, sample, 336
move.c, sample, 216
MP3, 259
mp, Hungarian prefix, 236
MS-DOS, 77, 227, 370
MSDN, see Microsoft MSDN

msdosfs–write, 281
msdosfs–vnops.c, sample, 281
muldi3.c, sample, 245
multiplayer games, 268
multiple inheritance, 277
multiple precision floating-point numbers,

309
multithread.c, sample, 162
multithread.h, sample, 162
multithreaded, 168
mutex, 159
mutex–clear, Unix-specific function, 162
mutual exclusion, 159
mutual recursion, 147

478 Index

mv.c, sample, 87
MVC, 329
My Documents, directory name, 325

N
n, Hungarian prefix, 236
name mangling, 364
$Name$, revision-id tag, 206
named, program, 126
namespace, 296
namespace pollution, 296
namespace, keyword, 283, 293, 297
ncr–intr, 282
ncr.c, sample, 282
ncr5380sbc.c, sample, 44
NDEBUG, identifier name, 220
ne2100.c, sample, 218
.NET, see Microsoft .NET

net, directory name, 186
net, sample, 337
netatalk, sample, 186
NETBIOS, 279
NetBSD, xxvi, 183
netbsdsrc, sample, 400
netinet, sample, 186, 337
netiso, sample, 186, 337
netnatm, sample, 186, 337
netpbm, package, 275
network, 336
Network File System, 272
Network Information Center, 269
Network Information System, 272
network interface, 76
network time protocol, 240
new, identifier name, 63
new, keyword, 168, 302, 303
new, Perl identifier, 309
NEWS, file name, 226
Next, Hungarian prefix, 236
next, identifier name, 118
next, Perl keyword, 37
NFS, 272
nfs–vnops.c, sample, 281
nfsd, sample, 268
nfsspec–write, 281

Nil, Hungarian prefix, 236
NIS, 272
nm, program, 363
.Nm, troff command, 262
nmake, program, 192
node, 62, 125, 131
@node, Texinfo command, 263
nodetypes, sample, 145
noise, 350
$NoKeywords:$, revision-id tag, 206
non-function requirements, 247
non-software tools, 375
nonexistshell, sample, 223
notify, blackboard operation, 270
notify, Java method, 163, 164
NOTREACHED, 232, 291
.nr, file extension, 227
ns–validate.c, sample, 84
NTP, 240
ntp–io.c, sample, 201
NUL, file name, 350
NULL, C library, 52, 236
NULL, identifier name, 20, 35, 42, 60,

118
nullfs, sample, 330
NumberGuessBean.java, sample, 325
numguess.jsp, sample, 325
nvi, program, 294, 365

O
.o, file extension, 227
obj, directory name, 183
.obj, file extension, 227
object, 78, 300

browser, 300
code, 319, 360, 362
diagram, 276
request broker, 271
see also class

Object Lifetime Manager, design pattern,
337

Object Management Group, 271
object-oriented, 78, 180
object-oriented architecture, 275
OBJS, identifier name, 193

Index 479

Observer, design pattern, 337
off-by-one errors, 100, 141
ofisa.c, sample, 89
ofw.c, sample, 159
.ok, file extension, 227
OLE automation, see Microsoft OLE

automation
OMG, 271
on-line messaging, 268
.Op, troff command, 262, 264
open range, 100
open-source software, xxv, 3, 16, 20

as scientific communication vehicle, 3
contributing, 5, 260
languages used, 15
reorganising code, 46
searching, 260
source browsers, 365
see also individual project names

open, Unix-specific function, 281
opencl.h, sample, 306
OpenCL, sample, 401
opendir, Unix-specific function, 35,

319
OpenJade, 265
OpenNt, 376
operating system, 155, 338

specific code, 183
operation, see class, method
operator
||, 41
,, 35
->, 102
/**/, 176
<<, 53, 308
==, 52
=, 30, 52
>>, 53, 58, 308
?:, 46, 174
##, 176
&&, 22, 41
&, 53, 64
sizeof, 73, 85, 97

operator overloading, 180, 305, 307
operator, keyword, 307

opt, Hungarian prefix, 237
optimize.c, sample, 133
options.c, sample, 201, 312
OR, logical, 41
ORB, 271
org, directory name, 183
OS.cpp, sample, 315
OS/2, 193, 227
OS/32, 377
os2thread.h, sample, 162
os, directory name, 183
.Os, troff command, 262
OSI, 336
OUT, identifier name, 64
outline mode, 345
output.c, sample, 70
outwit, package, 377
overview, 243

P
%P%, revision-id tag, 206
p, Hungarian prefix, 236
.Pa, troff command, 262
package, 300
package, Ada keyword, 299
package, Java keyword, 283, 298
package, Perl keyword, 299, 309
packaging abstraction, 292

abstract data type, 318
component, 325
data repository, 325
filter, 323
generic implementation, 313
library, 319
module, 293
namespace, 296
object, 300
process, 323
see also the individual terms

page.h, sample, 256
pair programming, 10
parallelism, 154
@param, javadoc tag, 263
parse tree, 129, 334
parse.c, sample, 122, 124, 216

480 Index

parseaddr.c, ex, 246
parser generator, 130, 228
Parser.java, sample, 334
parsing, 129, 147, 333
Pascal, 42, 293
patch, program, 137
patchlevel.h, file name, 226
pattern, see design pattern
pax.c, sample, 43
pax.h, sample, 312
pb, Hungarian prefix, 237
pcic–intr, 282
PclText.c, sample, 104
PDF, 261
perfect hash function, 141
Perkin-Elmer, 377
Perl, 42, 98, 201, 214, 227, 276, 300, 309,

330, 348, 349, 377
perl

-e, 349
-i, 349
-p, 349
inheritance, 311

Perl classes, 309
Perl identifier
new, 309
self, 309

Perl keyword
bless, 300, 309
DESTROY, 310
ISA, 311
last, 37
next, 37
package, 299, 309
use, 299
see also keyword

Perl module
Exporter, 299

Perl operator, see operator
perl, sample, 401
perlbug.PL, sample, 224
perlguts.pdf, sample, 249
perlguts.pod, sample, 249
pgp–s2k.cpp, sample, 306
pgp–s2k.h, sample, 306

physical, 336
physical boundary, 293
pi.c, sample, 38
pic, program, 227
.pic, file extension, 227
pic, Hungarian prefix, 237
pickmove.c, sample, 97, 125
ping.c, sample, 64
pipeline, 157, 161, 274, 324
pipes-and-filters architecture, 273
pippen.pl, sample, 309
pk–subr.c, sample, 256
.pl, file extension, 227
.pm, file extension, 227
pmap.c, sample, 218
PMC–Ruser.cpp, sample, 368
.png, file extension, 227
pod, documentation format, 214
.pod, file extension, 227
pod, sample, 214
pointer, 61, 62, 84, 102

aliasing, 70
and strings, 72
to function, 67

poll, 156, 286
poll, Unix-specific function, 80
polymorphic functions, 316
polymorphism, 79
pom.c, sample, 383, 384, 386, 387, 389
pop, 105
POP-3, 269
portability, 97, 98, 237, 360

Makefile, 196
POSIX, 15, 201, 280, 319
postcondition, 218
postincrement operator, 315
PostInputStream.java, sample, 300
postp.me, sample, 246
Postscript, 228, 261, 265, 359
Power PC, 98
pr.c, sample, 102
practices, 237

formal, 180
pragma, keyword, 360
precondition, 218

Index 481

preen.c, sample, 62
prep, program, 372
preprocessor, 172, 181, 296, 315, 350, 360,

361, see also header files
presentation, 336
pretty-printer, 359, 368
Prev, Hungarian prefix, 236
prev, identifier name, 121
print-icmp.c, sample, 101
print.c, sample, 64
printf.c, sample, 364, 374
printf, C library, 23, 73
private, 304
private, Java keyword, 226, 276,

304
Proactor, design pattern, 337
process, 155, 323

in UML diagrams, 13
process standards, 239
process.c, sample, 335
processor architecture, 183
program listing, 360, 361
program slice, 283
program state, 336
programming practices, 237
project organization, 181
ProjectBrowser.java, sample, 286
protected, 304
protected, Java keyword, 226, 276,

304
ps, program, 87, 323
.ps, file extension, 228
pseudo-target, 194, 195
.psp, file extension, 227
pthread–cond–signal, Unix-specific

function, 163, 164
pthread–cond–wait, Unix-specific

function, 163, 164
pthread–cond–destroy, Unix-specific

function, 163
pthread–cond–init, Unix-specific

function, 163
pthread–create, Unix-specific function,

162, 163
pthread–exit, Unix-specific function, 163

pthread–mutex–destroy, Unix-specific
function, 162, 163

pthread–mutex–init, Unix-specific
function, 163

pthread–mutex–lock, Unix-specific
function, 163

pthread–mutex–unlock, Unix-specific
function, 163

pthread–self, Unix-specific function,
163

pthread–yield, Unix-specific function,
163

pty.c, sample, 73
public, 304
public, Java keyword, 226, 276, 304
publications, 259
PulseEvent, Win32 SDK, 163
purenum, sample, 401
push, 105
put, Unix-specific function, 319
px–intr, 282
px.c, sample, 282
@pxref, Texinfo command, 263
.py, file extension, 228
Python, 228, 276, 357, 377

Q
qry, Hungarian prefix, 237
qsort.c, sample, 374
qsort, C library, 69, 98
qtchat, sample, 401
qualifier, 77, 235
quarks.c, sample, 158
queue, 95, 107
queue.c, sample, 246
queue.h, sample, 319
Queue.java, sample, 164
queue, Unix-specific function, 319
quicksort, 143
quot.c, sample, 101

R
%R%, revision-id tag, 206
race condition, 166
radix.c, sample, 126

482 Index

radixsort.c, sample, 60
random.c, sample, 71
range, 100
Rational Rose, 279
rayshade, package, 320
.rb, file extension, 228
.RB, troff command, 262
rc, directory name, 183
.rc, file extension, 228
rcp.c, sample, 161, 175
RCS, 50, 203, 208, 224, 268, 327, 349, 355
RCS, directory name, 183
$RCSfile$, revision-id tag, 206
rdisc.c, sample, 67, 99
reactive systems, 274
Reactor, design pattern, 337
read, blackboard operation, 270
read-only access, 305
read, Unix-specific function, 80, 281
readcf.c, sample, 246
readdir, Unix-specific function, 35,

319
README, file name, 226
README, sample, 346
realization relationship, 13, 277
realloc, C library, 86
reap, 166
record, 75, 101
record.h, sample, 89
recursion, 105, 143

tail, 147
recursive descent parser, 130, 147
Red Hat Linux, 190
reentrancy, 66, 166
refactoring, 8, 17, 45, 46
reference architectures, 336
reference count, 88
reference manual, 242
reflection, 325
RegCloseKey, Win32 SDK, 201
RegOpenKey, Win32 SDK, 201
RegQueryValueEx, Win32 SDK, 201
regcomp.c, sample, 174, 175
regedit, program, 328
regex, sample, 322

regexp.c, sample, 233
regression testing, 203, 222
regular expression, 13, 291, 322, 340, 377
[ˆ], 341
[], 341
and editors, 340
and grep, 346
building blocks, 340
character classes, 342
eliminating noise, 350
listing matching files, 348
locating definitions, 341
metacharacters, 342
Perl syntax, 344, 352
replacements, 348
starting with dash, 354

relational database, 101, 269, 327, 377, see
also SQL

release, 203
Release, directory name, 183
ReleaseMutex, Win32 SDK, 163
Remote Method Invocation, 271, 337
Remote Procedure Call, 82, 271, 337
RemoteAddrValve.java, sample, 277
remove, blackboard operation, 270
ReportEvent, Win32 SDK, 216
repository, 203
RequestFilterValve.java, sample, 276
requirements, 247
requirements specification, 4, 241, 242
res, directory name, 183
.res, file extension, 228
resource files, 183
resource script, 228
return, Java keyword, 152
@return, javadoc tag, 263
return, keyword, 36, 159, 169
reuse

and architecture, 180
and code reading, 1, 9, 10
and design patterns, 331
and libraries, 319
bibliographic references, 17
example, 382
exercise, 357

Index 483

file differences, 355
of architecture, 328
of data transformations, 273
of generic implementations, 318
of leaky code, 87
of search results, 348
through processes, 159

reverse engineering
modeling tools, 275, 276, 278
references, 338
slicing, 283

$Revision:$, revision-id tag, 206
revision control, 202
revision control system, 183, 203, 252, 254,

259, 263, 268, 327
$Revision$, revision-id tag, 206
rexx, 227
RFC, 269
rfc2068.txt, sample, 244
rfc793.txt, sample, 247
rg, Hungarian prefix, 236
right, identifier name, 126
ring buffer, 108
rmdir.c, sample, 368
RMI, 271, 337
rnd.c, sample, 109
rnd.h, sample, 297
.roff, file extension, 227
room.c, sample, 70
round-robin, 289
round-trip engineering modeling, 279
round.c, sample, 219
route, program, 336
route.c, sample, 336
route, sample, 336
routed, program, 269, 336
routed.h, sample, 269
routed, sample, 336
RPC, 82, 271, 337
rpc–msg.h, sample, 82
RPM, 190, 240
RTF, 261, 265, 359
Ruby, 228, 276
run-time configuration, 200
run-time tool, 370

run, Java method, 162
runnable, Java interface, 162
RuntimeException, Java class, 151
rup.c, sample, 86, 118
rusers–proc.c, sample, 91
rwhod, program, 269
rwhod.h, sample, 269

S
s Perl/sed command, 348
S/Key, 87
%S%, revision-id tag, 206
.s, file extension, 227
@samp, Texinfo command, 263
save.c, sample, 98
sbdsp.c, sample, 282
sbdsp–intr, 282
scanf, C library, 99
SCCS, 23, 50, 203, 207, 224
SCCS, directory name, 183
schema, 327
Scoped Locking, design pattern, 337
SCSI, 281
scsipi–done, 281
scsipi–base.c, sample, 281
sd.c, sample, 281
sdbm, sample, 322
sdstrategy, 281
@section, Texinfo command, 263
sed, program, 162, 205, 228, 335, 348, 357,

377
.sed, file extension, 228
sed, sample, 343
@see, javadoc tag, 263
seekdir, Unix-specific function, 319
selection, 23, 32, 47
Selection.c, sample, 88
selective display, 345
self, Perl identifier, 309
semantic analysis, 334
semaphore, 163
sendmail, xxv, 160, 245
sendmail.pdf, sample, 245
seq, Unix-specific function, 319
Sequence–T.cpp, sample, 252

484 Index

ser.c, sample, 52
@serial, javadoc tag, 263
@serialData, javadoc tag, 263
@serialField, javadoc tag, 263
server.cpp, sample, 330
ServerConnection.java, sample, 164
Service Configurator, design pattern, 337
services, 216
servlet, 20
session, 336
set, 95, 116
set foldenable, editor command, 345
set, in method name, 304
set-selective-display, editor command,

345
set.c, sample, 46, 116
setjmp, C library, 169
setUp, Java method, 220
SGML, 261
sh, program, 227

-c, 161
.sh, file extension, 227
.Sh, troff command, 262
.SH, troff command, 262
shallow copy, 303
.shar, file extension, 227
shared library, 202, 227, 322, see also DLL

sharing, 88
shell, 146
SHELL, identifier name, 193
shift, 53, 117
short-circuit evaluation, 41, 174
shutdown, 160
sig–atomic–t, keyword, 168
sigaction, Unix-specific function, 167
SIGCHLD, 166
SIGCONT, 165
SIGFPE, 165
SIGILL, 165
SIGINT, 165, 168
signal, 150, 165
signal handler, 165
signal, C library, 168
signal, Unix-specific function, 167
signature, 358

SIGSEGV, 165
SIGWINCH, 168
silence, 350
sin, C library, 388
@since, javadoc tag, 263
Singleton, design pattern, 332, 337
sizeof, operator, 73, 85, 97
skeyinit, 87
skeyinit.c, sample, 87
skipjack.h, sample, 297
Sleep(0), Win32 SDK, 163
sleep, 281
sleep, Java method, 163
sleep, Unix-specific function, 163
Sleep, Win32 SDK, 163
slicing, 6, 283
slicing criterion, 283
smail, package, 160
Smalltalk, 276, 300, 365
smart pointers, 308
smbfs, 252
SMTP, 269
smtp.C, sample, 308
SNA, 78
snake.c, sample, 75
snprintf, C library, 99
.so, file extension, 227
social processes, 3, 17
Socket.pm, sample, 312
socket, sample, 401
sockunix.C, sample, 303
software archeology, 17
software maintenance, see maintenance
software process, 179
software requirements specification, see

requirements specification
Solaris, 8
SONET, 279
sort, program, 275, 352, 357, 374
source code control system, see revision

control system
source code tree, 181
source examples, see example source
Source-Navigator, 366
$Source$, revision-id tag, 206

Index 485

SourceForge Bug Tracker, 209
SourceForge.net, 16
sox, package, 275
spec–strategy, 281
spec–vnops.c, sample, 281
specifications, 244
spglyph.c, sample, 219
split, 203
sprintf, C library, 98, 99
Spy++, 372
SQL, 6, 269, 327
SQLTransformer.java, sample, 153
src, directory name, 181, 183
src, sample, 245, 275, 329
SRCS, identifier name, 193
stack, 89, 95, 99, 105
stack pointer, 106
Stack, Java class, 319
standard document, 259
standard template library, see STL

StandardContext.java, sample, 201
StandardLoader.java, sample, 54, 151
standards, see guidelines
StandardWrapperValve.java, sample, 217
Start Menu, directory name, 325
start, Java method, 162
state machine, 291
state transition, 291
state transition diagram, 291
$State$, revision-id tag, 206
static, Java keyword, 276, 303, 332
static, keyword, 26, 66, 294, 296, 363
stdin, C library, 51
stdio.h, sample, 297
stdio, C library, 166, 280
StdString.h, sample, 309
STL, 80, 100, 318
stop, Java method, 163
storage efficiency, 80, 322
str.c, sample, 53
strace, program, 370
Strategized Locking, design pattern, 337
Strategy Bridge, design pattern, 337
strcat, C library, 99
strcmp, C library, 22, 234

strcpy, C library, 99
strcspn.c, sample, 232
strdup, C library, 66
stream editor, 228, 348, see also sed,

program
STREQ, identifier name, 22
strftime.3, sample, 251
strftime.pdf, sample, 251
string, 72
String, Java class, 20
StringUtils.java, sample, 34
strlen.c, sample, 72
strlen, C library, 72
strncat, C library, 99
strncpy, C library, 99
@strong, Texinfo command, 263
struct, keyword, 62, 75, 92, 101, 145
structured programming, 54
stub, 272
stubs.c, sample, 121, 122, 125
style guide, see guidelines
style, sample, 50
suffix, 225
.SUFFIX, makefile command, 194
suite, Java method, 220
Sun, 8
supplementary material, 14
Swing, 286, 329
switch, keyword, 32, 212, 231, 360
symbol table, 124
symbolic code, 227, 360, 362
symbolic name, 203
synchronization, 162
synchronized, Java keyword, 163, 164,

165
sys–write, 280
sys, sample, 165, 295, 346, 353, 368
sys–generic.c, sample, 280
syscalls.master, sample, 280, 355
syslog, Unix-specific function, 216
system manager, 289
system specification, see requirements

specification
system structure, 245, 268
System V, 162

486 Index

System, Java class, 201
systime.c, sample, 217
sz, Hungarian prefix, 236

T
%T%, revision-id tag, 206
\t, 25
.t, file extension, 228
T, Hungarian prefix, 236
tab, 25, 228
table, 95, 101
tables.c, sample, 114
tag, 203, 235, 354
tags, file name, 343
tail, 107
tail recursion, 147
talk, program, 268
talkd.h, sample, 268
TAO–Singleton.h, sample, 332
tape.c, sample, 67, 154
tar, program, 82
tar.h, sample, 82
.tar, file extension, 227
task manager, 87, 323
tbl, program, 227
.tbl, file extension, 227
tbl, Hungarian prefix, 237
Tcl/Tk, 98, 201, 228, 330
.tcl, file extension, 228
TCP, 77, 269
tcp.h, sample, 77
TCP/IP, 186, 247, 279
tcp–fsm.h, sample, 246
tcpdump, program, 132, 249, 371
tcpdump.8, sample, 249
tcpdump.pdf, sample, 249
tearDown, Java method, 220
tee, program, 275
telldir, Unix-specific function, 319
template, keyword, 315
temporary files, 274
term.c, sample, 42
Test, 228
test case, 28, 220, 249, 259
test harness, 220, 374

Test scripts, 183
test specification, 242
test suite, 220
test, directory name, 183
.test, file extension, 228
test, pseudo-target, 194
TEST, sample, 214, 215
TestCase, Java class, 220
testing, 214, 215
TestRunner, 220
TeX, 227, 228, 260, 263, 265, 266
.tex, file extension, 228
.texi, file extension, 228, 265
Texinfo, 227, 228, 239, 260
.TH, troff command, 262
THE, 337
this, 302, 309
this, Java keyword, 302
this, keyword, 309
thread, 66, 155, 162, 216
Thread Pool, design pattern, 337
Thread-per Request, design pattern, 337
Thread-per Session, design pattern, 337
Thread-Safe Interface, design pattern, 337
thread.h, sample, 162
Thread, Java class, 162, 163
three-tier, 269
throw, keyword, 154
Throwable, Java class, 150
throws, Java keyword, 151, 154
@throws, javadoc tag, 263
tiered architectures, 269
time, Hungarian prefix, 237
timed, program, 269
timed.c, sample, 31
timed.h, sample, 269
TLD, 183
tm–year, C library, 390
TMPfunc.out, 213
tmr, Hungarian prefix, 237
tn3270, 212
TODO, 233
TODO, file name, 226
Together ControlCenter, 249, 279
token, 129, 333

Index 487

Tokenizer.java, sample, 391, 392
tolower, C library, 42
toLowerCase, Java method, 42
Tomcat, 277, 278
tool, 183

compiler, 360
non-software, 375
roll your own, 357
run-time, 370

tools, 14, 210, 275, 339
tools, directory name, 183
top, program, 87
topological sort, 131, 192
trace, 203, 370
trace.c, sample, 67
Trace.java, sample, 394
tracing statement, 216
transaction monitor, 269
transport, 336
traversal, 128, 139
traverse

circular list, 122
singly linked list, 117
tree, 128

tree, 95, 125
AVL, 130
binary, 126
parse, 129

tree.c, sample, 127, 128
tree.h, sample, 126
troff, program, 227, 260, 263, 274, 359
try, Java keyword, 150, 152, 153
tsleep, 165
tsort, program, 131, 376
tsort.c, sample, 131, 139
tsort, sample, 376
tty noise, 385
tty.c, sample, 70
tv–sec, C library, 76
tv–usec, C library, 76
two-tier, 269
txt, Hungarian prefix, 237
type field, 82
typedef, keyword, 91, 92, 296
types.h, sample, 92

typographical conventions, 10
tzfile.h, sample, 386

U
%U%, revision-id tag, 206
UDP/IP, 279
ufs–strategy, 281
ufs–vnops.c, sample, 281
ufsspec–write, 281
UML, 203, 249, 275, 291, 332, 378, see also

diagram
undo, 105
undocumented features, 254
Unicode, 97, 248
Unified Modeling Language, see UML

uninitialized variables, 23
union–write, 281
union, keyword, 80, 145
union–vnops.c, sample, 281
uniq, program, 352, 357
Unix, 160, 371
Unix-specific function
alloca, 88
close, 80, 281
closedir, 319
DB, 319
dbopen, 319
del, 319
exec, 281
execve, 222, 223
fork, 160, 166, 281
get, 319
getenv, 201
getopt, 22, 24, 28, 238, 264, 273
getopt–long, 238
ioctl, 80
mutex–clear, 162
open, 281
opendir, 35, 319
poll, 80
pthread–cond–signal, 163, 164
pthread–cond–wait, 163, 164
pthread–cond–destroy, 163
pthread–cond–init, 163
pthread–create, 162, 163

488 Index

pthread–exit, 163
pthread–mutex–destroy, 162, 163
pthread–mutex–init, 163
pthread–mutex–lock, 163
pthread–mutex–unlock, 163
pthread–self, 163
pthread–yield, 163
put, 319
queue, 319
read, 80, 281
readdir, 35, 319
seekdir, 319
seq, 319
sigaction, 167
signal, 167
sleep, 163
syslog, 216
telldir, 319
wait, 166
write, 80, 166, 280, 281

unix.kbd, sample, 213
upgrade.sh, sample, 20
upper bound, 100
usage, identifier name, 26
use, Ada keyword, 299
use, Perl keyword, 299
user documentation, 242
user reference manual, 242
using, keyword, 298
util.c, sample, 7, 161
util–win32.c, sample, 234
utils.h, sample, 296
UWIN, 376

V
v–increment.c, sample, 294
valves, sample, 277
var.c, sample, 52, 233
@var, Texinfo command, 263
variable, 25
variant, 56
.vbp, file extension, 227
vcf, sample, 401
vcfLicense.txt, sample, 457
vector, 95, 96

vector.s, sample, 281
vector, C++ library, 100
Vector, Java class, 319
version, 203
version control system, see revision control

system
version.c, sample, 73
version.h, file name, 226
@version, javadoc tag, 263
vertex, 62, 131
vfs–bio.c, sample, 281
vfs–subr.c, sample, 79, 234
vfs–vnops.c, sample, 280
vgrind, program, 368
vi, program, 253, 340, 344, 385
vi, sample, 294, 347, 353
viewres.c, sample, 96
vim, program, 229, 233, 344, 345,

365
virtual

function table, 313
machine, 113, 279
method, 79, 282

virtual, keyword, 306
virus, 99
Visitor, design pattern, 337
Visual . . . , see Microsoft . . .
vixie-security.pdf, sample, 248
vixie-security.ps, sample, 248
vm86.c, sample, 176
vm–glue.c, sample, 289
vm–swap.c, sample, 174
VMS, 227
vn–write, 280
vnode.h, sample, 313
vnode–if.c, sample, 313
vnode–if.h, sample, 313
vnode–if.src, sample, 280, 281, 313
void, keyword, 317
volatile, keyword, 77, 168
VOP–STRATEGY, 281
VOP–WRITE, 280
vs–smap.c, sample, 35
vsnprintf, C library, 99
vsprintf, C library, 99

Index 489

VT-100, 222
vtbl, 313
vttest, 222
vttest, sample, 222

W
%W%, revision-id tag, 206
w, Hungarian prefix, 236
wait, Java method, 163, 164
wait, Unix-specific function, 166
WaitForSingleObject, Win32 SDK,

163
wakeup, 281
WARDirContextTestCase.java, sample,

220
warning messages, 26, 360
wc.c, sample, 283, 372
wd80x3.c, sample, 355
Web browser, 186
WebServer.java, sample, 299
what, program, 206, 207
while, keyword, 30, 174, 360
wildmat.c, sample, 99
Win32, 15, 376
Win32 SDK

CloseHandle, 163
CreateEvent, 163
CreateMutex, 163
CreateThread, 162, 163
ExitThread, 163
GetCurrentThreadId, 163
PulseEvent, 163
RegCloseKey, 201
RegOpenKey, 201
RegQueryValueEx, 201
ReleaseMutex, 163
ReportEvent, 216
Sleep, 163
WaitForSingleObject, 163
WinMain, 20

win32thread.c, sample, 162
win32thread.h, sample, 162
windiff, program, 356
window, 294
window manager, 286

window.c, sample, 126
window, sample, 268, 294
Windows . . . , see Microsoft Windows . . .
WinDump, 371
WinMain, Win32 SDK, 20
with, Ada keyword, 299
Word, see Microsoft Word
work crew, 156, 157
$Workfile:$, revision-id tag, 206
World Wide Web, 268
worm, 99
worms.c, sample, 46
Wrapper Facade, design pattern, 337
write, blackboard operation, 270
write, Unix-specific function, 80, 166, 280,

281

X
X Window System, 158, 162, 190, 195, 201,

212, 322
X Window System library
XtGetApplicationResources, 201

X.25, 256
xargs, program, 353
.xbm, file extension, 227
xcalc.c, sample, 201
xdiff, program, 357
xdryp.c, sample, 272
Xev, 372
xf86bcache.c, sample, 125
xfontsel.c, sample, 286
XFree86-3.3, sample, 402
xmalloc, identifier name, 85
Xman.ad, sample, 286
xmessage, sample, 329
XML, 191, 196, 261, 263, 327
XMLByteStreamCompiler.java, sample,

299
Xpoll.h, sample, 116, 117
.Xr, troff command, 262
xref.c, sample, 63, 126
xref.h, sample, 63
@xref, Texinfo command, 263
Xrm.c, sample, 117
XrmUniqueQuark, 158

490 Index

Xserver, sample, 268
Xt, 286, 329
Xt, sample, 313
XtGetApplicationResources,

X-Windows library, 201
Xthreads.h, sample, 162
Xtransam.c, sample, 158
xxdiff, program, 357
xxgdb, program, 374
XXX, identifier name, 233, 354

Y
%Y%, revision-id tag, 206
.y, file extension, 228
yacc, 130, 191, 194, 228
yes.c, sample, 11

yield, Java method, 163
yp–first.c, sample, 272
ypserv.c, sample, 272

Z
%Z%, revision-id tag, 206
.Z, file extension, 227
Zc, editor command, 345
zic.c, sample, 334
Zm, editor command, 345
Zo, editor command, 345
zombie, 166
zopen.c, sample, 35, 65, 74
Zr, editor command, 345
zsh, program, 353
zutil.h, sample, 296

	Contents
	Foreword
	Preface
	2 Basic Programming Elements
	2.1 A Complete Program
	2.2 Functions and Global Variables
	2.3 while Loops, Conditions, and Blocks
	2.4 switch Statements
	2.5 for Loops
	2.6 break and continue Statements
	2.7 Character and Boolean Expressions
	2.8 goto Statements
	2.9 Refactoring in the Small
	2.10 do Loops and Integer Expressions
	2.11 Control Structures Revisited
	Further Reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

