- //—; 3 -////,)/// /;/7 4 /17///////” ; /r)ﬂ‘}

o~ Fo

M
4,
= K

<N

PATTERNS OF
ENTERPRISE
APPLICATION
ARCHITECTURE

&

“og

MARTIN FOWLER
Wit CONTRIBUTIONS BY

Davip RicE,

MartHew FOEMMEL,

EpwArD Hieart,

ROBERT MEE, Axn

RANDY STAFFORD

FREE SAMPLE CHAPTER

SHARE WITH OTHERS

E a8 088

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321127426
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321127426
https://plusone.google.com/share?url=http://www.informit.com/title/9780321127426
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321127426
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321127426/Free-Sample-Chapter

Patterns of
Enterprise Application
Architecture

This page intentionally left blank

Patterns of
Enterprise Application
Architecture

Martin Fowler

With contributions from David Rice,
Matthew Foemmel, Edward Hieatt,
Robert Mee, and Randy Stafford

vvAddison-Wesley

Boston ® San Francisco ® New York e Toronto ® Montreal
London ® Munich e Paris ® Madrid
Capetown e Sydney ¢ Tokyo e Singapore ¢ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases
and special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Fowler, Martin, 1963—
Patterns of enterprise application architecture / Martin Fowler.
p. cm.
Includes bibliographical references and index.
ISBN 0-321-12742-0 (alk. paper)
1. System design. 2. Computer architecture. 3. Application software—
Development. 4. Business—Data processing. 1. Title.

QA76.9.588 F69 2003
005.1—dc21
2002027743

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Per-
missions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN 0-321-12742-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

Twentieth printing, March 2014

For Denys William Fowler, 1922-2000
in memoriam

—Martin

This page intentionally left blank

Contents

Preface oottt e et xvii
Who This Book Is For XX
Acknowledgments xxi
Colophon ... e xxiii

INtroductiono vttt e ettt e e e e e e 1
Architecturet e 1
Enterprise Applicationsvvt vttt 2
Kinds of Enterprise Applicationcuuiiranin .. 5
Thinking About Performance ci.... 6
Patterns e 9

The Structure of the Patterns 11
Limitations of These Patterns, 13

PART 1: The Narrativesovvievnennennennennennennenns 15

Chapter 1: Layering . ..o oot vntnneentnneeneeneeneenneeneanennnns 17
The Evolution of Layers in Enterprise Applications 18
The Three Principal Layers, 19
Choosing Where to Run Your Layers 22

Chapter 2: Organizing Domain Logic.ooviiin i, 25
Making a Choicettt e e e 29
Service Layer e 30

Chapter 3: Mapping to Relational Databases........................ 33
Architectural Patternsvvitn it e 33
The Behavioral Problem 38

vii

CONTENTS

ReadinginDatat 40
Structural Mapping Patternso it 41
Mapping Relationships 41
Inheritance . .. o.v vt e 45

Building the Mappingoiuiiiiiii i 47

Double Mapping oo it e 48

Using Metadataouvittn i e e e e 49
Database Connectionsuuuiereeneenenneennnnn.. 50

Some Miscellaneous Pointsvutnt e enennn. 52

Further Readingo i e 53
Chapter 4: Web Presentation ... oo vt v teenneneenenneeneenenns 55
View Patternso e 58

Input Controller Patternscovuiniiininnnnnnnn.. 61

Further Reading i i 61
Chapter 5: Concurrency (by Martin Fowler and David Rice). 63
Concurrency Problems 64
Execution COntexXtsvvvuut ettt 65
Isolation and Immutability 66
Optimistic and Pessimistic Concurrency Control 67
Preventing Inconsistent Reads 68
Deadlocks ...t e 70
TranSactions . . v v vt vttt et e 71

ACID 71
Transactional Resourcesot 72

Reducing Transaction Isolation for Liveness 73

Business and System Transactionso..... 74

Patterns for Offline Concurrency Control 76
Application Server CONCUITENCY + v oot vv vt e e e e e eeeann 78

Further Reading 80
Chapter 6: Session State. . . oo vv vt v v e eeeereneneneenrneneanannnns 81
The Value of Statelessness, 81

SeSSION StAte . o v vttt e 83

Ways to Store Session Stateoiiiiiiiiiiin. 84
Chapter 7: Distribution Strategies ovveeeneneenenneeneenenns 87
The Allure of Distributed Objects 87

Remote and Local Interfaces 88

CONTENTS

Where You Have to Distribute 90
Working with the Distribution Boundary 91
Interfaces for Distribution 92
Chapter 8: Putting It All Togetherccvtieiiinnnnnnn.. 95
Starting with the Domain Layer 96
Down to the Data Source Layercoviiiinnvn.... 97
Data Source for Transaction Script (110) 97
Data Source Table Module (125) 98
Data Source for Domain Model (116) 98
The Presentation Layer, 99
Some Technology-Specific Advice, 100
Javaand J2EE 100
NET e 101
Stored Proceduresttt 102
Web Services . v v vttt e e e 103
Other Layering Schemes 103
PART 2: The Patternsovvuetnneennneenneenneeenneenns 107
Chapter 9: Domain LogicPatternsovvninninnenneeneeneennn. 109
Transaction SCrIPt « o v v v v vttt ettt ettt 110
How It Works i i 110
WhentoUseltt 111
The Revenue Recognition Problem 112
Example: Revenue Recognition (Java) 113
Domain Model 116
How It Works i i 116
WhentoUselt ...t e 119
FurtherReading 119
Example: Revenue Recognition (Java) 120
Table Module 125
How It Works i i 126
WhentoUselt ...t e 128
Example: Revenue Recognition with a Table Module (C#) 129
Service Layer (by Randy Stafford) 133
How It Works e 134

WhentoUse Tt . .ooiu it 137

CONTENTS

Further Reading i 137
Example: Revenue Recognition (Java) 138
Chapter 10: Data Source Architectural Patterns.ccvvun... 143
Table Data Gatewayciiiuiuinininnnnenenn... 144
How It Worksoo ot i 144
WhentoUselt. ..ot 145
FurtherReading i, 146
Example: Person Gateway (C#)coviiiinnnnn.. 146
Example: Using ADO.NET Data Sets (C#) 148
Row Data Gatewaytitiiiiiiiiiie e 152
How It Works 152
WhentoUseltot 153
Example: A Person Record (Java), 155
Example: A Data Holder for a Domain Object (Java) 158
Active Record 160
How It Workso 160
WhentoUseltot e 161
Example: A Simple Person (Java), 162
Data Mapper e 165
How It Works o i 165
WhentoUselt. ..ot i 170
Example: A Simple Database Mapper (Java) 171
Example: Separating the Finders (Java) 176
Example: Creating an Empty Object (Java) 179
Chapter 11: Object-Relational Behavioral Patterns 183
Unit of Work .. .ovt i i e e e 184
How It Workst i 184
WhentoUselt....oovuinonn i 189
Example: Unit of Work with Object Registration (Java)
(by David Rice)t i 190
Identity Map . ..oit i e 195
How It Works 195
WhentoUseTt. ..ot 198

Example: Methods for an Identity Map (Java) 198

CONTENTS

Lazy Loado i 200
How It Workso i 200
WhentoUselt i 203
Example: Lazy Initialization (Java) 203
Example: Virtual Proxy (Java) ..., 203
Example: Using a Value Holder (Java) 205
Example: Using Ghosts (C#)ccciviieinnan... 206

Chapter 12: Object-Relational Structural Patterns 215

Identity Field i 216
How It Works i i 216
WhentoUselt ..o e 220
FurtherReading 221
Example: Integral Key (C#)c i, 221
Example: Using a Key Table (Java) 222
Example: Using a Compound Key (Java) 224

Foreign Key Mapping i 236
How It Works i 236
WhentoUselt ... 239
Example: Single-Valued Reference (Java) 240
Example: Multitable Find (Java) 243
Example: Collection of References (C#) 244

Association Table Mappingc.otiiiiinenn.... 248
How It Works i i i 248
WhentoUselt . ..o e 249
Example: Employees and Skills (C#) 250
Example: Using Direct SQL (Java)cooven... 253
Example: Using a Single Query for Multiple Employees (Java)

(by Matt Foemmel and Martin Fowler). 256

Dependent Mapping . ..o vvv vt i it 262
How It Works 262
WhentoUselt ..ot 263
Example: Albums and Tracks (Java)ovn.n. 264

Embedded Value 268
How It Works 268

WhentoUse Tt . .oviu it 268

CONTENTS

Further Reading i 270
Example: Simple Value Object (Java) 270
Serialized LOBot e 272
How It Workst 272
When toUse Tt . oo vttt e e e 274
Example: Serializing a Department Hierarchy in
XML (JAVA) © ot et e e e et e e 274
Single Table Inheritance, 278
How It Workso 278
WhentoUselt . ..o e e 279
Example: A Single Table for Players (C#) 280
Loading an Object from the Database 281
Class Table Inheritance i .. 285
How It Works 28S
WhentoUselt .. .oooiii e e e 286
Further Reading 287
Example: Players and Their Kin (C#) 287
Concrete Table Inheritance it .. 293
How It Workso 293
WhentoUselt .. .oooiii e e e 295
Example: Concrete Players (C#), 296
Inheritance Mappersouuvninn it 302
How It Works oot e 303
WhentoUselt . ..ot 304
Chapter 13: Object-Relational Metadata Mapping Patterns 305
Metadata Mappingcvvt vttt 306
How It Works 306
When toUse Tt . oo v vttt et e e e e 308
Example: Using Metadata and Reflection (Java) 309
Query ObjJect .« vv it e 316
How It Worksot 316
WhentoUseltot 317
Further Reading i 318

Example: A Simple Query Object (Java)co.... 318

CONTENTS

Repository (by Edward Hieatt and Rob Mee) 322
How It Works i 323
WhentoUseltt 324
FurtherReading 325
Example: Finding a Person’s Dependents (Java) 325
Example: Swapping Repository Strategies (Java) 326

Chapter 14: Web Presentation Patterns. ovovveeeennenneenennnn. 329

Model View Controller 330
How It Works i e 330
WhentoUselt ...t e 332

Page Controller i 333
How It Works e e 333
WhentoUseltt e 334
Example: Simple Display with a Servlet Controller

and a JSP View (Java) .. .oviiini i 335
Example: Using a JSP as a Handler (Java) 337
Example: Page Handler with a Code Behind (C#) 340

Front Controller 344
How It Works e 344
WhentoUselt . ..ot 346
Further Readingo i, 347
Example: Simple Display (Java), 347

Template VIEWttt e 350
How It Works e 351
WhentoUselt . ..ot 354
Example: Using a JSP as a View with a Separate

Controller (Java) ...t 355
Example: ASP.NET Server Page (C#) 357

Transform Viewt 361
How It Works e 361
WhentoUseltt 362
Example: Simple Transform (Java) 363

TWO Step VIEW .« o v ittt e 365
How It Works e 365

WhentoUse Tt . .oviu e 367

CONTENTS

Example: Two Stage XSLT (XSLT) ..., 371
Example: JSP and Custom Tags (Java) 374
Application Controller i, 379
How It Workst 380
When toUse Tt . oo vttt e e e 381
Further Reading i 382
Example: State Model Application Controller (Java) 382
Chapter 15: Distribution Patternsovitieenenenennnnn. 387
Remote Facade i 388
How It Workso 389
WhentoUseltot 392
Example: Using a Java Session Bean as a Remote Facade (Java) 392
Example: Web Service (CH#)o, 395
Data Transfer Object i 401
How It Workso 401
WhentoUseltot 406
FurtherReading i 407
Example: Transferring Information About Albums (Java) 407
Example: Serializing Using XML (Java) 411
Chapter 16: Offline Concurrency Patterns.ccovveeneenennnn. 415
Optimistic Offline Lock (by David Rice). 416
How It Workso i 417
WhentoUselt .. .ooui e 420
Example: Domain Layer with Data Mappers (165) (Java) 421
Pessimistic Offline Lock (by David Rice). 426
How It Worksot 427
When toUse Tt . oo vttt e e e 431
Example: Simple Lock Manager (Java) 431
Coarse-Grained Lock (by David Rice and Mait Foemmel) 438
How It Worksttt 438
WhentoUselt . ..o 441
Example: Shared Optimistic Offline Lock (416) (Java) 441
Example: Shared Pessimistic Offline Lock (426) (Java) 446

Example: Root Optimistic Offline Lock (416) (Java) 447

CONTENTS

Implicit Lock (by David Rice) vvvu i 449
How It Works i 450
WhentoUseltt 451
Example: Implicit Pessimistic Offline Lock (426) (Java) 451

Chapter 17: Session State Patternsoveeieenenenennnnenen. 455

Client Session State . ..t vii ettt et 456
How It Works e 456
WhentoUseltt e 457

Server Session Statettt e 458
How It Works i 458
WhentoUseltt 460

Database Session Statet 462
How It Works i e 462
WhentoUselt . ..ot 464

Chapter 18: Base Patterns.o vt vitn it inninnennenneenennnns 465

GaTEWAY o oottt e et e e ettt e e 466
How It Works i e 466
WhentoUselt ...ttt e 467
Example: A Gateway to a Proprietary Messaging

Service (Java) ..o e 468

Mapper . .o e 473
How It Works e 473
WhentoUselt e 474

Layer SUpPertypevv it 475
How It Works i 475
WhentoUselt ...ttt e 475
Example: Domain Object (Java)covvviviin... 475

Separated Interface i 476
How It Works e 477
WhentoUselto e 478

RegIStry oot e 480
How It Works i 480

WhentoUse It .o ov e 482

CONTENTS

Example: A Singleton Registry (Java) 483
Example: Thread-Safe Registry (Java)
(by Matt Foemmel and Martin Fowler) 484
Value Object ... 486
How It Workso e 486
WhentoUseltot e 487
Money ..o e 488
How It Works e 488
WhentoUselt. ... 490
Example: A Money Class (Java)
(by Matt Foemmel and Martin Fowler) 491
Special Case .. v vt 496
How It Works o e 497
WhentoUselto 497
Further Reading i i 497
Example: A Simple Null Object (C#) 498
Plugin (by David Rice and Matt Foemmel) 499
How It Works o e 499
WhentoUseltot 500
Example: An Id Generator (Java)covvivienn.. 501
Service Stub (by David Rice)., 504
How It Workso e 504
WhentoUselto e 505
Example: Sales Tax Service (Java)coouuenn... 505
Record Set . ..ot e e 508
How It Works 508
WhentoUselt. ... 510
References . ..vvviiii ittt ittt ittt ittt et 511

Preface

In the spring of 1999 I flew to Chicago to consult on a project being done by
ThoughtWorks, a small but rapidly growing application development company.
The project was one of those ambitious enterprise application projects: a back-
end leasing system. Essentially it deals with everything that happens to a lease
after you've signed on the dotted line: sending out bills, handling someone
upgrading one of the assets on the lease, chasing people who don’t pay their
bills on time, and figuring out what happens when someone returns the assets
early. That doesn’t sound too bad until you realize that leasing agreements are
infinitely varied and horrendously complicated. The business “logic” rarely fits
any logical pattern, because, after all, it’s written by business people to capture
business, where odd small variations can make all the difference in winning a
deal. Each of those little victories adds yet more complexity to the system.

That’s the kind of thing that gets me excited: how to take all that complexity
and come up with a system of objects that can make the problem more tracta-
ble. Indeed, I believe that the primary benefit of objects is in making complex
logic tractable. Developing a good Domain Model (116) for a complex business
problem is difficult but wonderfully satisfying.

Yet that’s not the end of the problem. Our domain model had to be persisted
to a database, and, like many projects, we were using a relational database. We
also had to connect this model to a user interface, provide support to allow
remote applications to use our software, and integrate our software with third-
party packages. All of this on a new technology called J2EE, which nobody in
the world had any real experience in using.

Even though this technology was new, we did have the benefit of experience.
I’d been doing this kind of thing for ages with C++, Smalltalk, and CORBA.
Many of the ThoughtWorkers had a lot of experience with Forte. We already
had the key architectural ideas in our heads, and we just had to figure out how

xvii

PREFACE

to apply them to J2EE. Looking back on it three years later, the design is not
perfect but it has stood the test of time pretty damn well.

That’s the kind of situation this book was written for. Over the years I've
seen many enterprise application projects. These projects often contain similar
design ideas that have proven effective in dealing with the inevitable complexity
that enterprise applications possess. This book is a starting point to capture
these design ideas as patterns.

The book is organized in two parts, with the first part a set of narrative chap-
ters on a number of important topics in the design of enterprise applications.
These chapters introduce various problems in the architecture of enterprise appli-
cations and their solutions. However, they don’t go into much detail on these
solutions. The details of the solutions are in the second part, organized as pat-
terns. These patterns are a reference, and I don’t expect you to read them cover to
cover. My intention is that you read the narrative chapters in Part 1 from start to
finish to get a broad picture of what the book covers; then you dip into the pat-
terns chapters of Part 2 as your interest and needs drive you. Thus, the book is a
short narrative book and a longer reference book combined into one.

This is a book on enterprise application design. Enterprise applications are
about the display, manipulation, and storage of large amounts of often complex
data and the support or automation of business processes with that data.
Examples include reservation systems, financial systems, supply chain systems,
and many others that run modern business. Enterprise applications have their
own particular challenges and solutions, and they are different from embedded
systems, control systems, telecoms, or desktop productivity software. Thus, if
you work in these other fields, there’s nothing really in this book for you (unless
you want to get a feel for what enterprise applications are like.) For a general
book on software architecture, I'd recommend [POSA].

There are many architectural issues in building enterprise applications. 'm
afraid this book can’t be a comprehensive guide to them. In building software
I’'m a great believer in iterative development. At the heart of iterative develop-
ment is the notion that you should deliver software as soon as you have some-
thing useful to the user, even if it’s not complete. Although there are many
differences between writing a book and writing software, this notion is one that
I think the two share. That said, this book is an incomplete but (I trust) useful
compendium of advice on enterprise application architecture. The primary top-
ics I talk about are

e Layering of enterprise applications

e Structuring domain (business) logic

PREFACE

e Structuring a Web user interface

e Linking in-memory modules (particularly objects) to a relational database
e Handling session state in stateless environments

e Principles of distribution

The list of things I don’t talk about is rather longer. I really fancied writing
about organizing validation, incorporating messaging and asynchronous com-
munication, security, error handling, clustering, application integration, archi-
tectural refactoring, structuring rich-client user interfaces, among other topics.
However, because of space and time constraints and lack of cogitation, you
won’t find them in this book. I can only hope to see some patterns for this work
in the near future. Perhaps I’ll do a second volume someday and get into these
topics, or maybe someone else will fill these and other gaps.

Of these, message-based communication is a particularly big issue. People
who are integrating multiple applications are increasingly making use of asyn-
chronous message-based communication approaches. There’s much to be said
for using them within an application as well.

This book is not intended to be specific for any particular software platform.
I first came across these patterns while working with Smalltalk, C++, and
CORBA in the late ’80s and early *90s. In the late *90s I started to do extensive
work in Java and found that these patterns applied well to both early Java/
CORBA systems and later J2EE-based work. More recently I’'ve been doing
some initial work with Microsoft’s .NET platform and find the patterns apply
again. My ThoughtWorks colleagues have also introduced their experiences,
particularly with Forte. I can’t claim generality across all platforms that have
ever been or will be used for enterprise applications, but so far these patterns
have shown enough recurrence to be useful.

I have provided code examples for most of the patterns. My choice of lan-
guage for them is based on what I think most readers are likely to be able to read
and understand. Java is a good choice here. Anyone who can read C or C++ can
read Java, yet Java is much less complex than C++. Essentially most C++ pro-
grammers can read Java but not vice versa. P'm an object bigot, so I inevitably
lean to an OO language. As a result, most of the code examples are in Java. As |
was working on the book, Microsoft started stabilizing its .NET environment,
and its C# language has most of the same properties as Java for an author. So I
did some of the code examples in C# as well, although that introduced some risk
since developers don’t have much experience with .NET and so the idioms for
using it well are less mature. Both are C-based languages, so if you can read one

PREFACE

you should be able to read both, even if you aren’t deeply into that language or
platform. My aim was to use a language that the largest amount of software
developers can read, even if it’s not their primary or preferred language. (My
apologies to those who like Smalltalk, Delphi, Visual Basic, Perl, Python, Ruby,
COBOL, or any other language. I know you think you know a better language
than Java or C#. All I can say is I do, too!)

The examples are there for inspiration and explanation of the ideas in the
patterns. They aren’t canned solutions; in all cases you’ll need to do a fair bit of
work to fit them into your application. Patterns are useful starting points, but
they are not destinations.

Who This Book Is For

I've written this book for programmers, designers, and architects who are
building enterprise applications and who want to improve either their under-
standing of architectural issues or their communication about them.

I’m assuming that most of my readers will fall into two groups: those with
modest needs who are looking to build their own software and readers with
more demanding needs who will be using a tool. For those of modest needs, my
intention is that these patterns should get you started. In many areas you’ll need
more than the patterns will give you, but I’ll provide you more of a headstart in
this field than I got. For tool users I hope this book will give you some idea of
what’s happening under the hood and also help you choose which of the tool-
supported patterns to use. Using, say, an object-relational mapping tool still
means that you have to make decisions about how to map certain situations.
Reading the patterns should give you some guidance in making the choices.

There is a third category; those with demanding needs who want to build their
own software. The first thing I’d say here is to look carefully at using tools. I’ve
seen more than one project get sucked into a long exercise at building frame-
works, which wasn’t what the project was really about. If you’re still convinced,
go ahead. Remember in this case that many of the code examples in this book are
deliberately simplified to help understanding, and you’ll find you’ll need to do a
lot tweaking to handle the greater demands you face.

Since patterns are common solutions to recurring problems, there’s a good
chance that you have already come across some of them. If you’ve been work-
ing in enterprise applications for a while, you may well know most of them. I'm
not claiming to present anything new in this book. Indeed, I claim the oppo-
site—this is a book of (for our industry) old ideas. If you’re new to this field, I

PREFACE

hope the book will help you learn about these techniques. If you’re familiar
with the techniques, I hope the book will help you communicate and teach
them to others. An important part of patterns is trying to build a common
vocabulary, so you can say that this class is a Remote Facade (388) and other
designers will know what you mean.

Acknowledgments

As with any book, what’s written here has a great deal to do with the many
people who have worked with me in various ways over the years. Lots of peo-
ple have helped in lots of ways. Often I don’t recall important things people
said that went into this book, but I can acknowledge those contributions I do
remember.

I’ll start with my contributors. David Rice, a colleague of mine at Thought-
Works, has made a huge contribution—a good tenth of the book. As we
worked hard to hit the deadline (while he was also supporting a client), we had
several late-night instant message conversations where he confessed to finally
seeing why writing a book is both so hard and so compulsive.

Matt Foemmel is another ThoughtWorker, and although the Arctic will need
air conditioning before he writes prose for fun, he’s been a great contributor of
code examples (as well as a very succinct critic of the book.) I was pleased that
Randy Stafford contributed Service Layer (133) as he’s been such a strong
advocate for it. I’d also like to thank Edward Hieatt and Rob Mee for their con-
tribution, which arose from Rob’s noticing a gap while he was doing his review
of the text. He became my favorite reviewer: Not only does he notice something
missing, he helps write a section to fix it!

As usual, T owe more than I can say to my first-class panel of official reviewers:

John Brewer Rob Mee

Kyle Brown Gerard Meszaros
Jens Coldewey Dirk Riehle
John Crupi Randy Stafford
Leonard Fenster David Siegel
Alan Knight Kai Yu

I could almost list the ThoughtWorks telephone directory here, for so many
of my colleagues have helped this project by talking over their designs and
experiences with me. Many patterns formed in my mind because I had the

PREFACE

opportunity to talk with the many talented designers we have, so I have little
choice but to thank the whole company.

Kyle Brown, Rachel Reinitz, and Bobby Woolf have gone out of their way to
have long and detailed review sessions with me in North Carolina. Their fine-
tooth comb has injected all sorts of wisdom, not including this particularly hei-
nous mixed metaphor. In particular I’ve enjoyed several long telephone calls
with Kyle that contributed more than I can list.

Early in 2000 I prepared a talk for Java One with Alan Knight and Kai Yu
that was the earliest genesis of this material. As well as thanking them for their
help in that, I should also thank Josh Mackenzie, Rebecca Parsons, and Dave
Rice for helping me refine these talks, and the ideas, later on. Jim Newkirk did
a great deal in helping me get used to the new world of .NET.

Ive learned a lot from the many people working in this field with whom T’ve
had good conversations and collaborations. In particular I’d like to thank Col-
leen Roe, David Muirhead, and Randy Stafford for sharing their work on the
Foodsmart example system at Gemstone. I’ve also had great conversations at
the Crested Butte workshop that Bruce Eckel has hosted and must thank all
the people who attended that event in the last couple of years. Joshua
Kerievsky didn’t have time to do a full review, but he was an excellent patterns
consultant.

As usual, T had the remarkable help of the UIUC reading group with their
unique brand of no-holds-barred audio reviews. My thanks to: Ariel Gertzen-
stein, Bosko Zivaljevic , Brad Jones, Brian Foote, Brian Marick, Federico Bal-
aguer, Joseph Yoder, John Brant, Mike Hewner, Ralph Johnson, and Weerasak
Witthawaskul.

Dragos Manolescu, an ex-UTUC hitman, got his own group together to give me
feedback. My thanks to Muhammad Anan, Brian Doyle, Emad Ghosheh, Glenn
Graessle, Daniel Hein, Prabhaharan Kumarakulasingam, Joe Quint, John Reinke,
Kevin Reynolds, Sripriya Srinivasan, and Tirumala Vaddiraju.

Kent Beck has given me more good ideas than I can remember. But I do remem-
ber that he came up with the name for Special Case (496). Jim Odell was respon-
sible for getting me into the world of consulting, teaching, and writing—no
acknowledgment will ever do his help justice.

As 1 was writing this book, I put drafts on the Web. During this time many
people sent me e-mails pointing out problems, asking questions, or talking about
alternatives. These people include Michael Banks, Mark Bernstein, Graham Ber-
risford, Bjorn Beskow, Bryan Boreham, Sean Broadley, Peris Brodsky, Paul
Campbell, Chester Chen, John Coakley, Bob Corrick, Pascal Costanza, Andy
Czerwonka, Martin Diehl, Daniel Drasin, Juan Gomez Duaso, Don Dwiggins,
Peter Foreman, Russell Freeman, Peter Gassmann, Jason Gorman, Dan Green,

PREFACE

Lars Gregori, Rick Hansen, Tobin Harris, Russel Healey, Christian Heller, Rich-
ard Henderson, Kyle Hermenean, Carsten Heyl, Akira Hirasawa, Eric Kaun,
Kirk Knoernschild, Jesper Ladegaard, Chris Lopez, Paolo Marino, Jeremy
Miller, Ivan Mitrovic, Thomas Neumann, Judy Obee, Paolo Parovel, Trevor
Pinkney, Tomas Restrepo, Joel Rieder, Matthew Roberts, Stefan Roock, Ken
Rosha, Andy Schneider, Alexandre Semenov, Stan Silvert, Geoff Soutter, Volker
Termath, Christopher Thames, Volker Turau, Knut Wannheden, Marc Wallace,
Stefan Wenig, Brad Wiemerslage, Mark Windholtz, Michael Yoon.

There are many others who gave input whose names I either never knew or
can’t remember, but my thanks is no less heartfelt.

My biggest thanks is, as ever, to my wife Cindy, whose company I appreciate
much more than anyone can appreciate this book.

Colophon

This is the first book that I wrote using XML and related technologies. The
master text was written as a series of XML documents using trusty TextPad. I
also used a home-grown DTD. While I was working I used XSLT to generate
the web pages for the HTML site. For the diagrams I relied on my old friend
Visio using Pavel Hruby’s wonderful UML templates (much better than those
that come with the tool. I have a link on my Web site if you want them.) I wrote
a small program that automatically imported the code examples into the out-
put, which saved me from the usual nightmare of code cut and paste. For my
first draft I tried XSL-FO with Apache FOP. At the time it wasn’t quite up to the
job, so for later work I wrote scripts in XSLT and Ruby to import the text into
FrameMaker.

I used several open source tools while working on this book—in particular,
JUnit, NUnit, ant, Xerces, Xalan, Tomcat, Jboss, Ruby, and Hsql. My thanks to
the many developers of these tools. There was also a long list of commercial
tools. In particular, I relied on Visual Studio for .NET and on Intelli]’s wonder-
ful Idea—the first IDE that’s excited me since Smalltalk—for Java.

The book was acquired for Addison Wesley by Mike Hendrickson who,
assisted by Ross Venables, has supervised its publication. I started work on the
manuscript in November 2000 and released the final draft to production in
June 2002. As I write this, the book is due for release in November 2002 at
OOPSLA.

Sarah Weaver was the production editor, coordinating the editing, composi-
tion, proofreading, indexing, and production of final files. Dianne Wood was

PREFACE

the copy editor, carrying out the tricky job of cleaning up my English without
introducing any untoward refinement. Kim Arney Mulcahy composed the book
into the design you see here, cleaned up the diagrams, set the text in Sabon, and
prepared the final Framemaker files for the printer. The text design is based on
the format we used for Refactoring. Cheryl Ferguson proofread the pages and
ferreted out any errors that had slipped through the cracks. Irv Hershman pre-
pared the index.

About the Cover Picture

During the couple of years I spent writing this book a more significant construc-
tion project was going on in Boston. The Leonard P. Zakim Bunker Hill Bridge
(try fitting that name on a road sign) will replace the ugly double-decker that
now carries Interstate 93 over the Charles River. The Zakim bridge is a cable-
stayed bridge, a style that hasn’t been widely used in the U.S. so far, but is very
popular in Europe. The Zakim bridge isn’t particularly long, but it is the
world’s widest cable-stayed bridge and also the first U.S. cable-stayed bridge to
have an asymmetric design. It’s a very beautiful bridge, but that doesn’t stop me
from teasing Cindy about Henry Petroski’s conjecture that we are due for a
major failure in a cable-stayed bridge soon.

Martin Fowler, Melrose, Massachusetts, August 2002
http:/Imartinfowler.com

http://martinfowler.com

Introduction

In case you haven’t realized it, building computer systems is hard. As the com-
plexity of the system gets greater, the task of building the software gets expo-
nentially harder. As in any profession, we can progress only by learning, both
from our mistakes and from our successes. This book represents some of this
learning written in a form that I hope will help you to learn these lessons
quicker than I did, or to communicate to others more effectively than I did
before I boiled these patterns down.

In this introduction I want to set the scope of the book and provide some of
the background that will underpin its ideas.

Architecture

The software industry delights in taking words and stretching them into a myr-
iad of subtly contradictory meanings. One of the biggest sufferers is “architec-
ture.” T tend to look at “architecture” as one of those impressive-sounding
words, used primarily to indicate that we’re talking something that’s important.
But I’'m pragmatic enough not to let my cynicism get in the way of attracting
people to my book. :-)

“Architecture” is a term that lots of people try to define, with little agree-
ment. There are two common elements: One is the highest-level breakdown of a
system into its parts; the other, decisions that are hard to change. It’s also
increasingly realized that there isn’t just one way to state a system’s architec-
ture; rather, there are multiple architectures in a system, and the view of what is
architecturally significant is one that can change over a system’s lifetime.

From time to time Ralph Johnson has a truly remarkable posting on a mail-
ing list, and he did one on architecture just as I was finishing the draft of this
book. In this posting he brought out the point that architecture is a subjective
thing, a shared understanding of a system’s design by the expert developers on a

1

INTRODUCTION

project. Commonly this shared understanding is in the form of the major com-
ponents of the system and how they interact. It’s also about decisions, in that
it’s the decisions that developers wish they could get right early on because
they’re perceived as hard to change. The subjectivity comes in here as well
because, if you find that something is easier to change than you once thought,
then it’s no longer architectural. In the end architecture boils down to the
important stuff—whatever that is.

In this book I present my perception of the major parts of an enterprise
application and of the decisions I wish I could get right early on. The architec-
tural pattern I like the most is that of layers, which I describe more in Chapter
1. This book is thus about how you decompose an enterprise application into
layers and how these layers work together. Most nontrivial enterprise applica-
tions use a layered architecture of some form, but in some situations other
approaches, such as pipes and filters, are valuable. T don’t go into those situa-
tions, focusing instead on the context of a layered architecture because it’s the
most widely useful.

Some of the patterns in this book can reasonably be called architectural, in
that they represent significant decisions about these parts; others are more
about design and help you to realize that architecture. I don’t make any strong
attempt to separate the two, since what is architectural or not is so subjective.

Enterprise Applications

Lots of people write computer software, and we call all of it software develop-
ment. However, there are distinct kinds of software out there, each of which has
its own challenges and complexities. This comes out when I talk with some of
my friends in the telecom field. In some ways enterprise applications are much
easier than telecoms software—we don’t have very hard multithreading prob-
lems, and we don’t have hardware and software integration. But in other ways
it’s much tougher. Enterprise applications often have complex data—and lots of
it—to work on, together with business rules that fail all tests of logical reason-
ing. Although some techniques and patterns are relevant for all kinds of soft-
ware, many are relevant for only one particular branch.

In my career I’ve concentrated on enterprise applications, so my patterns
here are all about that. (Other terms for enterprise applications include “infor-
mation systems” or, for those with a long memory, “data processing.”) But
what do I mean by the term “enterprise application”? I can’t give a precise defi-
nition, but I can give some indication of my meaning.

INTRODUCTION

Pll start with examples. Enterprise applications include payroll, patient
records, shipping tracking, cost analysis, credit scoring, insurance, supply
chain, accounting, customer service, and foreign exchange trading. Enterprise
applications don’t include automobile fuel injection, word processors, elevator
controllers, chemical plant controllers, telephone switches, operating systems,
compilers, and games.

Enterprise applications usually involve persistent data. The data is persistent
because it needs to be around between multiple runs of the program—indeed, it
usually needs to persist for several years. Also during this time there will be
many changes in the programs that use it. It will often outlast the hardware that
originally created much of it, and outlast operating systems and compilers. Dur-
ing that time there’ll be many changes to the structure of the data in order to
store new pieces of information without disturbing the old pieces. Even if
there’s a fundamental change and the company installs a completely new appli-
cation to handle a job, the data has to be migrated to the new application.

There’s usually a lot of data—a moderate system will have over 1 GB of data
organized in tens of millions of records—so much that managing it is a major
part of the system. Older systems used indexed file structures such as IBM’s
VSAM and ISAM. Modern systems usually use databases, mostly relational
databases. The design and feeding of these databases has turned into a subpro-
fession of its own.

Usually many people access data concurrently. For many systems this may be
less than a hundred people, but for Web-based systems that talk over the Inter-
net this goes up by orders of magnitude. With so many people there are definite
issues in ensuring that all of them can access the system properly. But even with-
out that many people, there are still problems in making sure that two people
don’t access the same data at the same time in a way that causes errors. Trans-
action manager tools handle some of this burden, but often it’s impossible to
hide this from application developers.

With so much data, there’s usually a lot of user interface screens to handle it.
It’s not unusual to have hundreds of distinct screens. Users of enterprise appli-
cations vary from occasional to regular, and normally they will have little tech-
nical expertise. Thus, the data has to be presented lots of different ways for
different purposes. Systems often have a lot of batch processing, which is easy
to forget when focusing on use cases that stress user interaction.

Enterprise applications rarely live on an island. Usually they need to inte-
grate with other enterprise applications scattered around the enterprise. The
various systems are built at different times with different technologies, and
even the collaboration mechanisms will be different: COBOL data files,
CORBA, messaging systems. Every so often the enterprise will try to integrate

INTRODUCTION

its different systems using a common communication technology. Of course, it
hardly ever finishes the job, so there are several different unified integration
schemes in place at once. This gets even worse as businesses seek to integrate
with their business partners as well.

Even if a company unifies the technology for integration, they run into prob-
lems with differences in business process and conceptual dissonance with the
data. One division of the company may think a customer is someone with
whom it has a current agreement; another division also counts those that had a
contract but don’t any longer; another counts product sales but not service
sales. That may sound easy to sort out, but when you have hundreds of records
in which every field can have a subtly different meaning, the sheer size of the
problem becomes a challenge—even if the only person who knows what the
field really means is still with the company. (And, of course, all of this changes
without warning.) As a result, data has to be constantly read, munged, and
written in all sorts of different syntactic and semantic formats.

Then there’s the matter of what comes under the term “business logic.” 1
find this a curious term because there are few things that are less logical than
business logic. When you build an operating system you strive to keep the
whole thing logical. But business rules are just given to you, and without major
political effort there’s nothing you can do to change them. You have to deal
with a haphazard array of strange conditions that often interact with each
other in surprising ways. Of course, they got that way for a reason: Some
salesman negotiated to have a certain yearly payment two days later than
usual because that fit with his customer’s accounting cycle and thus won a cou-
ple of million dollars in business. A few thousand of these one-off special cases
is what leads to the complex business “illogic” that makes business software so
difficult. In this situation you have to organize the business logic as effectively
as you can, because the only certain thing is that the logic will change over
time.

For some people the term “enterprise application” implies a large system.
However, it’s important to remember that not all enterprise applications are
large, even though they can provide a lot of value to the enterprise. Many peo-
ple assume that, since small systems aren’t large, they aren’t worth bothering
with, and to some degree there’s merit here. If a small system fails, it usually
makes less noise than a big system. Still, I think such thinking tends to short-
change the cumulative effect of many small projects. If you can do things that
improve small projects, then that cumulative effect can be very significant on an
enterprise, particularly since small projects often have disproportionate value.
Indeed, one of the best things you can do is turn a large project into a small one
by simplifying its architecture and process.

INTRODUCTION

Kinds of Enterprise Application

When we discuss how to design enterprise applications, and what patterns to
use, it’s important to realize that enterprise applications are all different and
that different problems lead to different ways of doing things. T have a set of
alarm bells that go off when people say, “Always do this.” For me much of the
challenge (and interest) in design is in knowing about alternatives and judging
the trade-offs of using one alternative over another. There is a large space of
alternatives to choose from, but here I’ll pick three points on this very big
plane.

Consider a B2C (business to customer) online retailer: People browse and—
with luck and a shopping cart—buy. For such a system we need to be able to
handle a very high volume of users, so our solution needs to be not only reason-
ably efficient in terms of resources used but also scalable so that you can increase
the load by adding more hardware. The domain logic for such an application
can be pretty straightforward: order capturing, some relatively simple pricing
and shipping calculations, and shipment notification. We want anyone to be able
access the system easily, so that implies a pretty generic Web presentation that
can be used with the widest possible range of browsers. Data source includes a
database for holding orders and perhaps some communication with an inven-
tory system to help with availability and delivery information.

Contrast this with a system that automates the processing of leasing agree-
ments. In some ways this is a much simpler system than the B2C retailer’s
because there are many fewer users—no more than a hundred or so at one time.
Where it’s more complicated is in the business logic. Calculating monthly bills
on a lease, handling events such as early returns and late payments, and validat-
ing data as a lease is booked are all complicated tasks, since much of the leasing
industry’s competition comes in the form of little variations over deals done in
the past. A complex business domain such as this is challenging because the
rules are so arbitrary.

Such a system also has more complexity in the user interface (UI). At the
least this means a much more involved HTML interface with more, and more
complex, screens. Often these systems have UI demands that lead users to want
a more sophisticated presentation than a HTML front end allows, so a more
conventional rich-client interface is needed. A more complex user interaction
also leads to more complicated transaction behavior: Booking a lease may take
an hour or two, during which time the user is in a logical transaction.We also
see a complex database schema with perhaps two hundred tables and connec-
tions to packages for asset valuation and pricing.

INTRODUCTION

A third example point is a simple expense-tracking system for a small com-
pany. Such a system has few users and simple logic and can easily be made
accessible across the company with an HTML presentation. The only data
source is a few tables in a database. As simple as it is, a system like this is not
devoid of a challenge. You have to build it very quickly and you have to bear in
mind that it may grow as people want to calculate reimbursement checks, feed
them into the payroll system, understand tax implications, provide reports for
the CFO, tie into airline reservation Web services, and so on. Trying to use the
architecture for either of the other two example systems will slow down the
development of this one. If a system has business benefits (as all enterprise
applications should), delaying those benefits costs money. However, you don’t
want to make decisions now that will hamper future growth. But if you add
flexibility now and get it wrong, the complexity added for flexibility’s sake may
actually make it harder to evolve in the future and may delay deployment and
thus delay the benefit. Although such systems may be small, most enterprises
have a lot of them so the cumulative effect of an inappropriate architecture can
be significant.

Each of these three enterprise application examples has difficulties, and they
are different difficulties. As a result you can’t come up with a single architecture
that will be right for all three. Choosing an architecture means that you have to
understand the particular problems of your system and choose an appropriate
design based on that understanding. That’s why in this book I don’t give a sin-
gle solution for your enterprise needs. Instead, many of the patterns are about
choices and alternatives. Even when you choose a particular pattern, you’ll
have to modify it to meet your demands. You can’t build enterprise software
without thinking, and all any book can do is give you more information to base
your decisions on.

If this applies to patterns, it also applies to tools. Although it obviously
makes sense to pick as small a set of tools as you can to develop applications,
you also have to recognize that different tools are best for different purposes.
Beware of using a tool that is really suited for a different kind of application—it
may hinder more than help.

Thinking About Performance

Many architectural decisions are about performance. For most performance
issues I prefer to get a system up and running, instrument it, and then use a dis-
ciplined optimization process based on measurement. However, some architec-

INTRODUCTION

tural decisions affect performance in a way that’s difficult to fix with later
optimization. And even when it is easy to fix, people involved in the project
worry about these decisions early.

It’s always difficult to talk about performance in a book such as this. The
reason that it’s so difficult is that any advice about performance should not be
treated as fact until it’s measured on your configuration. Too often I’ve seen
designs used or rejected because of performance considerations, which turn out
to be bogus once somebody actually does some measurements on the real setup
used for the application.

I give a few guidelines in this book, including minimizing remote calls,
which has been good performance advice for quite a while. Even so, you
should verify every tip by measuring on your application. Similarly there are
several occasions where code examples in this book sacrifice performance for
understandability. Again it’s up to you to apply the optimizations for your
environment. Whenever you do a performance optimization, however, you
must measure both before and after, otherwise, you may just be making your
code harder to read.

There’s an important corollary to this: A significant change in configuration
may invalidate any facts about performance. Thus, if you upgrade to a new ver-
sion of your virtual machine, hardware, database, or almost anything else, you
must redo your performance optimizations and make sure they’re still helping.
In many cases a new configuration can change things. Indeed, you may find that
an optimization you did in the past to improve performance actually hurts per-
formance in the new environment.

Another problem with talking about performance is the fact that many terms
are used in an inconsistent way. The most noted victim of this is “scalability,”
which is regularly used to mean half a dozen different things. Here are the
terms I use.

Response time is the amount of time it takes for the system to process a
request from the outside. This may be a Ul action, such as pressing a button, or
a server API call.

Responsiveness is about how quickly the system acknowledges a request as
opposed to processing it. This is important in many systems because users may
become frustrated if a system has low responsiveness, even if its response time is
good. If your system waits during the whole request, then your responsiveness
and response time are the same. However, if you indicate that you’ve received
the request before you complete, then your responsiveness is better. Providing a
progress bar during a file copy improves the responsiveness of your user inter-
face, even though it doesn’t improve response time.

INTRODUCTION

Latency is the minimum time required to get any form of response, even if
the work to be done is nonexistent. It’s usually the big issue in remote systems.
If T ask a program to do nothing, but to tell me when it’s done doing nothing,
then I should get an almost instantaneous response if the program runs on my
laptop. However, if the program runs on a remote computer, [may get a few
seconds just because of the time taken for the request and response to make
their way across the wire. As an application developer, I can usually do noth-
ing to improve latency. Latency is also the reason why you should minimize
remote calls.

Throughput is how much stuff you can do in a given amount of time. If
you’re timing the copying of a file, throughput might be measured in bytes per
second. For enterprise applications a typical measure is transactions per second
(tps), but the problem is that this depends on the complexity of your transac-
tion. For your particular system you should pick a common set of transactions.

In this terminology performance is either throughput or response time—
whichever matters more to you. It can sometimes be difficult to talk about per-
formance when a technique improves throughput but decreases response time,
s0 it’s best to use the more precise term. From a user’s perspective responsive-
ness may be more important than response time, so improving responsiveness
at a cost of response time or throughput will increase performance.

Load is a statement of how much stress a system is under, which might be
measured in how many users are currently connected to it. The load is usually a
context for some other measurement, such as a response time. Thus, you may
say that the response time for some request is 0.5 seconds with 10 users and 2
seconds with 20 users.

Load sensitivity is an expression of how the response time varies with the
load. Let’s say that system A has a response time of 0.5 seconds for 10 through
20 users and system B has a response time of 0.2 seconds for 10 users that rises
to 2 seconds for 20 users. In this case system A has a lower load sensitivity than
system B. We might also use the term degradation to say that system B degrades
more than system A.

Efficiency is performance divided by resources. A system that gets 30 tps on
two CPUs is more efficient than a system that gets 40 tps on four identical
CPUs.

The capacity of a system is an indication of maximum effective throughput
or load. This might be an absolute maximum or a point at which the perfor-
mance dips below an acceptable threshold.

Scalability is a measure of how adding resources (usually hardware) affects
performance. A scalable system is one that allows you to add hardware and get
a commensurate performance improvement, such as doubling how many serv-

INTRODUCTION

ers you have to double your throughput. Vertical scalability, or scaling up,
means adding more power to a single server, such as more memory. Horizontal
scalability, or scaling out, means adding more servers.

The problem here is that design decisions don’t affect all of these perfor-
mance factors equally. Say we have two software systems running on a server:
Swordfish’s capacity is 20 tps while Camel’s capacity is 40 tps. Which has better
performance? Which is more scalable? We can’t answer the scalability question
from this data, and we can only say that Camel is more efficient on a single
server. If we add another server, we notice that Swordfish now handles 35 tps
and Camel handles 50 tps. Camel’s capacity is still better, but Swordfish looks
like it may scale out better. If we continue adding servers we’ll discover that
Swordfish gets 15 tps per extra server and Camel gets 10. Given this data we
can say that Swordfish has better horizontal scalability, even though Camel is
more efficient for less than five servers.

When building enterprise systems, it often makes sense to build for hardware
scalability rather than capacity or even efficiency. Scalability gives you the
option of better performance if you need it. Scalability can also be easier to do.
Often designers do complicated things that improve the capacity on a particular
hardware platform when it might actually be cheaper to buy more hardware. If
Camel has a greater cost than Swordfish, and that greater cost is equivalent to a
couple of servers, then Swordfish ends up being cheaper even if you only need
40 tps. It’s fashionable to complain about having to rely on better hardware to
make our software run properly, and I join this choir whenever I have to
upgrade my laptop just to handle the latest version of Word. But newer hard-
ware is often cheaper than making software run on less powerful systems. Simi-
larly, adding more servers is often cheaper than adding more programmers—
providing that a system is scalable.

Patterns

Patterns have been around for a long time, so part of me doesn’t want to regur-
gitate their history yet another time. Still, this is an opportunity for me to pro-
vide my view of patterns and what makes them a worthwhile approach to
describing design.

There’s no generally accepted definition of a pattern, but perhaps the best
place to start is Christopher Alexander, an inspiration for many pattern enthusi-
asts: “Each pattern describes a problem which occurs over and over again in
our environment, and then describes the core of the solution to that problem, in

INTRODUCTION

such a way that you can use this solution a million times over, without ever
doing it the same way twice” [Alexander et al.]. Alexander is an architect, so he
was talking about buildings, but the definition works pretty nicely for software
as well. The focus of the pattern is a particular solution, one that’s both com-
mon and effective in dealing with one or more recurring problems. Another
way of looking at it is that a pattern is a chunk of advice and the art of creating
patterns is to divide up many pieces of advice into relatively independent
chunks so that you can refer to them and discuss them more or less separately.

A key part of patterns is that they’re rooted in practice. You find patterns by
looking at what people do, observing things that work, and then looking for the
“core of the solution.” It isn’t an easy process, but once you’ve found some
good patterns they become a valuable thing. For me their value lies in being
able to create a book that serves as a reference. You don’t need to read all of
this book, or all of any patterns book, to find it useful. You just need to read
enough to have a sense of what the patterns are, what problems they solve, and
how they solve them. You don’t need to know all the details but just enough so
that if you run into one of the problems you can find the pattern in the book.
Only then do you need to really understand the pattern in depth.

Once you need the pattern, you have to figure out how to apply it to your
circumstances. A key thing about patterns is that you can never just apply the
solution blindly, which is why pattern tools have been such miserable failures. I
like to say that patterns are “half baked,” meaning that you always have to fin-
ish them off in the oven of your own project. Every time I use a pattern I tweak
it a little here and a little there. You see the same solution many times over, but
it’s never exactly the same.

Each pattern is relatively independent, but patterns aren’t isolated from each
other. Often one pattern leads to another or one occurs only if another is
around. Thus, you’ll usually only see Class Table Inberitance (285) if there’s a
Domain Model (116) in your design. The boundaries between the patterns are
naturally fuzzy, but I've tried to make each pattern as self-standing as I can. If
someone says “Use a Unit of Work (184),” you can look it up and see how to
apply it without having to read the entire book.

If you’re an experienced designer of enterprise applications, you’ll probably
find that most of these patterns are familiar to you. I hope you won’t be too dis-
appointed (I did try to warn you in the Preface). Patterns aren’t original ideas;
they’re very much observations of what happens in the field. As a result, we
pattern authors don’t say we “invented” a pattern but rather that we “discov-
ered” one. Our role is to note the common solution, look for its core, and then
write down the resulting pattern. For an experienced designer, the value of the
pattern is not that it gives you a new idea; the value lies in helping you commu-

INTRODUCTION

nicate your idea. If you and your colleagues all know what a Remote Facade
(388) is, you can communicate a lot by saying, “This class is a Remote Facade.”
It also allows you to say to someone newer, “Use a Data Transfer Object for
this,” and they can come to this book to look it up. The result is that patterns
create a vocabulary about design, which is why naming is such an important
issue.

While most of these patterns are truly for enterprise applications, those in the
base patterns chapter (Chapter 18) are more general and localized. T include
them because I refer to them in discussions of the enterprise application patterns.

The Structure of the Patterns

Every author has to choose his pattern form. Some base their forms on a classic
patterns book such as [Alexander et al.], [Gang of Four], or [POSA]. Others
make up their own. I’'ve long wrestled with what makes the best form. On the
one hand I don’t want something as small as the GOF form; on the other hand
I need to have sections that support a reference book. So this is what Pve used
for this book.

The first item is the name of the pattern. Pattern names are crucial, because
part of the purpose of patterns is to create a vocabulary that allows designers to
communicate more effectively. Thus, if I tell you my Web server is built around
a Front Controller (344) and a Transform View (361) and you know these pat-
terns, you have a very clear idea of my web server’s architecture.

Next are two items that go together: the intent and the sketch. The intent
sums up the pattern in a sentence or two; the sketch is a visual representation of
the pattern, often but not always a UML diagram. The idea is to create a brief
reminder of what the pattern is about so you can quickly recall it. If you already
“have the pattern,” meaning that you know the solution even if you don’t
know the name, then the intent and the sketch should be all you need to know
what the pattern is.

The next section describes a motivating problem for the pattern. This may
not be the only problem that the pattern solves, but it’s one that I think best
motivates the pattern.

How It Works describes the solution. In here I put a discussion of implemen-
tation issues and variations that 've come across. The discussion is as indepen-
dent as possible of any particular platform—where there are platform-specific
sections I’ve indented them so you can see them and easily skip over them.
Where useful I’'ve put in UML diagrams to help explain them.

When to Use It describes when the pattern should be used. Here I talk about
the trade-offs that make you select this solution compared to others. Many of

INTRODUCTION

the patterns in this book are alternatives; such Page Controller (333) and Front
Controller (344). Few patterns are always the right choice, so whenever I find a
pattern I always ask myself, “When would I not use this?” That question often
leads me to alternative patterns.

The Further Reading section points you to other discussions of this pattern.
This isn’t a comprehensive bibliography. I’ve limited my references to pieces
that I think are important in helping you understand the pattern, so I’ve elimi-
nated any discussion that I don’t think adds much to what I’ve written and of
course I’ve eliminated discussions of patterns I haven’t read. I also haven’t men-
tioned items that I think are going to be hard to find, or unstable Web links that
I fear may disappear by the time you read this book.

I like to add one or more examples. Each one is a simple example of the pat-
tern in use, illustrated with some code in Java or C#. I chose those languages
because they seem to be languages that the largest number of professional pro-
grammers can read. It’s absolutely essential to understand that the example is
not the pattern. When you use the pattern, it won’t look exactly like this exam-
ple so don’t treat it as some kind of glorified macro. I’ve deliberately kept the
example as simple as possible so you can see the pattern in as clear a form as I
can imagine. All sorts of issues are ignored that will become important when
you use it, but these will be particular to your own environment. This is why
you always have to tweak the pattern.

One of the consequences of this is that I’ve worked hard to keep each exam-
ple as simple as I can, while still illustrating its core message. Thus, I’'ve often
chosen an example that’s simple and explicit, rather than one that demonstrates
how a pattern works with the many wrinkles required in a production system.
It’s a tricky balance between simple and simplistic, but it’s also true that too
many realistic yet peripheral issues can make it harder to understand the key
points of a pattern.

This is also why I’ve gone for simple independent examples instead of a con-
nected running examples. Independent examples are easier to understand in iso-
lation, but give less guidance on how you put them together. A connected
example shows how things fit together, but it’s hard to understand any one pat-
tern without understanding all the others involved in the example. While in the-
ory it’s possible to produce examples that are connected yet understandable
independently, doing so is very hard—or at least too hard for me—so I chose
the independent route.

The code in the examples is written with a focus on making the ideas under-
standable. As a result several things fall aside—in particular, error handling,
which T don’t pay much attention to since I haven’t developed any patterns in

INTRODUCTION

this area yet. They are there purely to illustrate the pattern. They are not
intended to show how to model any particular business problem.

For these reasons the code isn’t downloadable from my Web site. Each code
example in this book is surrounded with too much scaffolding to simplify the
basic ideas so they’re worth anything in a production setting.

Not all the sections appear in all the patterns. If I couldn’t think of a good
example or motivation text, I left it out.

Limitations of These Patterns

As T indicated in the Preface, this collection of patterns is by no means a com-
prehensive guide to enterprise application development. My test for this book is
not whether it’s complete but merely if it’s useful. The field is too big for one
mind, let alone one book.

The patterns here are all ones that I’ve seen in the field, but I’'m not going to
claim I completely understand all of their ramifications and interrelationships.
This book reflects my current understanding, and that understanding has devel-
oped as I’ve been writing the book. I expect it will continue to evolve long after
this book has turned into paper. One certainty of software development is that
it never stands still.

As you consider using the patterns, never forget that they’re a starting point,
not a final destination. There’s no way that any author can see all the many
variations that software projects have. I’ve written these patterns to help pro-
vide a beginning, so you can read about lessons that I, and the people I’ve
observed, have learned from doing and struggling. You’ll have your own strug-
gles on top of these. Always remember that every pattern is incomplete and that
you have the responsibility, and the fun, of completing it in the context of your
own system.

This page intentionally left blank

Chapter 3

Mapping to
Relational Databases

The role of the data source layer is to communicate with the various pieces of
infrastructure that an application needs to do its job. A dominant part of this
problem is talking to a database, which, for the majority of systems built today,
means a relational database. Certainly there’s still a lot of data in older data
storage formats, such as mainframe ISAM and VSAM files, but most people
building systems today worry about working with a relational database.

One of the biggest reasons for the success of relational databases is the pres-
ence of SQL, a mostly standard language for database communication.
Although SQL is full of annoying and complicated vendor-specific enhance-
ments, its core syntax is common and well understood.

Architectural Patterns

The first set of patterns comprises the architectural patterns, which drive the
way in which the domain logic talks to the database. The choice you make here
is far-reaching for your design and thus difficult to refactor, so it’s one that you
should pay some attention to. It’s also a choice that’s strongly affected by how
you design your domain logic.

Despite SQLs widespread use in enterprise software, there are still pitfalls in
using it. Many application developers don’t understand SQL well and, as a
result, have problems defining effective queries and commands. Although vari-
ous techniques exist for embedding SQL in a programming language, they’re all
somewhat awkward. It would be better to access data using mechanisms that fit
in with the application development language. Database administrators (DBAs)
also like to get at the SQL that accesses a table so that they can understand how
best to tune it and how to arrange indexes.

33

MAPPING TO RELATIONAL DATABASES

Person Gateway

lastname
firstname
numberOfDependents

insert

update

delete

find (id)
findForCompany(companyID)

Figure 3.1 A Row Data Gateway (152) has one instance per row returned by a query.

For these reasons, it’s wise to separate SQL access from the domain logic and
place it in separate classes. A good way of organizing these classes is to base
them on the table structure of the database so that you have one class per data-
base table. These classes then form a Gateway (466) to the table. The rest of the
application needs to know nothing about SQL, and all the SQL that accesses
the database is easy to find. Developers who specialize in the database have a
clear place to go.

There are two main ways in which you can use a Gateway (466). The most
obvious is to have an instance of it for each row that’s returned by a query (Fig-
ure 3.1). This Row Data Gateway (152) is an approach that naturally fits an
object-oriented way of thinking about the data.

Many environments provide a Record Set (508)—that is, a generic data
structure of tables and rows that mimics the tabular nature of a database.
Because a Record Set (508) is a generic data structure, environments can use it
in many parts of an application. It’s quite common for GUI tools to have con-
trols that work with a Record Set (508). If you use a Record Set (508), you only
need a single class for each table in the database. This Table Data Gateway
(144) (see Figure 3.2) provides methods to query the database that return a
Record Set (508).

Person Gateway

find (id) : RecordSet

findWithLastName(String) : RecordSet

update (id, lastname, firstname, numberOfDependents)
insert (lastname, firstname, numberOfDependents)
delete (id)

Figure 3.2 A Table Data Gateway (144) has one instance per table.

ARCHITECTURAL PATTERNS

Even for simple applications I tend to use one of the gateway patterns. A
glance at my Ruby and Python scripts will confirm this. I find the clear separa-
tion of SQL and domain logic to be very helpful.

The fact that Table Data Gateway (144) fits very nicely with Record Set
(508) makes it the obvious choice if you are using Table Module (125). It’s also
a pattern you can use to think about organizing stored procedures. Many
designers like to do all of their database access through stored procedures
rather than through explicit SQL. In this case you can think of the collection of
stored procedures as defining a Table Data Gateway (144) for a table. I would
still have an in-memory Table Data Gateway (144) to wrap the calls to the
stored procedures, since that keeps the mechanics of the stored procedure call
encapsulated.

If you’re using Domain Model (116), some further options come into play.
Certainly you can use a Row Data Gateway (152) or a Table Data Gateway
(144) with a Domain Model (116). For my taste, however, that can be either
too much indirection or not enough.

In simple applications the Domain Model (116) is an uncomplicated struc-
ture that actually corresponds pretty closely to the database structure, with one
domain class per database table. Such domain objects often have only moder-
ately complex business logic. In this case it makes sense to have each domain
object be responsible for loading and saving from the database, which is Active
Record (160) (see Figure 3.3). Another way to think of the Active Record (160)
is that you start with a Row Data Gateway (152) and then add domain logic to
the class, particularly when you see repetitive code in multiple Transaction
Scripts (110).

In this kind of situation the added indirection of a Gateway (466) doesn’t pro-
vide a great deal of value. As the domain logic gets more complicated and you
begin moving toward a rich Domain Model (116), the simple approach of an
Active Record (160) starts to break down. The one-to-one match of domain

Customer

load(ResultSet)

delete
insert
update
checkCredit
sendBills Customer Table

Figure 3.3 In the Active Record (160) a customer domain object knows how to interact
with database tables.

MAPPING TO RELATIONAL DATABASES

classes to tables starts to fail as you factor domain logic into smaller classes. Rela-
tional databases don’t handle inheritance, so it becomes difficult to use strategies
[Gang of Four] and other neat OO patterns. As the domain logic gets feisty, you
want to be able to test it without having to talk to the database all the time.

All of these forces push you to in’direction as your Domain Model (116) gets
richer. In this case the Gateway (466) can solve some problems, but it still
leaves you with the Domain Model (116) coupled to the schema of the data-
base. As a result there’s some transformation from the fields of the Gateway
(466) to the fields of the domain objects, and this transformation complicates
your domain objects.

A better route is to isolate the Domain Model (116) from the database com-
pletely, by making your indirection layer entirely responsible for the mapping
between domain objects and database tables. This Data Mapper (165) (see Fig-
ure 3.4) handles all of the loading and storing between the database and the
Domain Model (116) and allows both to vary independently. It’s the most com-
plicated of the database mapping architectures, but its benefit is complete isola-
tion of the two layers.

I don’t recommend using a Gateway (466) as the primary persistence mecha-
nism for a Domain Model (116). If the domain logic is simple and you have a
close correspondence between classes and tables, Active Record (160) is the
simple way to go. If you have something more complicated, Data Mapper (165)
is what you need.

These patterns aren’t entirely mutually exclusive. In much of this discussion
we’re thinking of the primary persistence mechanism, by which we mean how
you save the data in some kind of in-memory model to the database. For that
you’ll pick one of these patterns; you don’t want to mix them because that ends
up getting very messy. Even if you’re using Data Mapper (165) as your primary
persistence mechanism, however, you may use a data Gateway (466) to wrap
tables or services that are being treated as external interfaces.

Customer Mapper

Customer
create
checkCredit < - oee e
sendBills save

Customer Table

Figure 3.4 A Data Mapper (165) insulates the domain objects and the database from
each other.

ARCHITECTURAL PATTERNS

In my discussion of these ideas, both here and in the patterns themselves, I
tend to use the word “table.” However, most of these techniques can apply
equally well to views, queries encapsulated through stored procedures, and
commonly used dynamic queries. Sadly, there isn’t a widely used term for table/
view/query/stored procedure, so I use “table” because it represents a tabular
data structure. I usually think of views as virtual tables, which is of course how
SQL thinks of them too. The same syntax is used for querying views as for que-
rying tables.

Updating obviously is more complicated with views and queries, as you can’t
always update a view directly but instead have to manipulate the tables that
underlie it. In this case encapsulating the view/query with an appropriate pat-
tern is a very good way to implement that update logic in one place, which
makes using the views both simpler and more reliable.

One of the problems with using views and queries in this way is that it can
lead to inconsistencies that may surprise developers who don’t understand how
a view is formed. They may perform updates on two different structures, both
of which update the same underlying tables where the second update overwrites
an update made by the first. Providing that the update logic does proper valida-
tion, you shouldn’t get inconsistent data this way, but you may surprise your
developers.

I should also mention the simplest way of persisting even the most complex
Domain Model (116). During the early days of objects many people realized
that there was a fundamental “impedance mismatch” between objects and rela-
tions. Thus, there followed a spate of effort on object-oriented databases, which
essentially brought the OO paradigm to disk storage. With an OO database
you don’t have to worry about mapping. You work with a large structure of
interconnected objects, and the database figures out when to move objects on
or off disks. Also, you can use transactions to group together updates and per-
mit sharing of the data store. To programmers this seems like an infinite
amount of transactional memory that’s transparently backed by disk storage.

The chief advantage of OO databases is that they improve productivity.
Although I'm not aware of any controlled tests, anecdotal observations put the
effort of mapping to a relational database at around a third of programming
effort—a cost that continues during maintenance.

Most projects don’t use OO databases, however. The primary reason against
them is risk. Relational databases are a well-understood and proven technology
backed by big vendors who have been around a long time. SQL provides a rela-
tively standard interface for all sorts of tools. (If you’re concerned about perfor-
mance, all I can say is that I haven’t seen any conclusive data comparing the
performance of OO against that of relational systems.)

MAPPING TO RELATIONAL DATABASES

Even if you can’t use an OO database, you should seriously consider buying
an O/R mapping tool if you have a Domain Model (116). While the patterns in
this book will tell you a lot about how to build a Data Mapper (165), it’s still a
complicated endeavor. Tool vendors have spent many years working on this
problem, and commercial O/R mapping tools are much more sophisticated
than anything that can reasonably be done by hand. While the tools aren’t
cheap, you have to compare their price with the considerable cost of writing
and maintaining such a layer yourself.

There are moves to provide an OO-database-style layer that can work with
relational databases. JDO is such a beast in the Java world, but it’s still too
early to tell how they’ll work out. I haven’t had enough experience with them to
draw any conclusions for this book.

Even if you do buy a tool, however, it’s a good idea to be aware of these pat-
terns. Good O/R tools give you a lot of options in mapping to a database, and
these patterns will help you understand when to use the different choices. Don’t
assume that a tool makes all the effort go away. It makes a big dent, but you’ll
still find that using and tuning an O/R tool takes a small but significant chunk
of work.

The Behavioral Problem

When people talk about O/R mapping, they usually focus on the structural
aspects—how you relate tables to objects. However, I’ve found that the hardest
part of the exercise is its architectural and behavioral aspects. I've already
talked about the main architectural approaches; the next thing to think about is
the behavioral problem.

That behavioral problem is how to get the various objects to load and save
themselves to the database. At first sight this doesn’t seem to be much of a
problem. A customer object can have load and save methods that do this task.
Indeed, with Active Record (160) this is an obvious route to take.

If you load a bunch of objects into memory and modify them, you have to
keep track of which ones you’ve modified and make sure to write all of them
back out to the database. If you only load a couple of records, this is easy. As
you load more and more objects it gets to be more of an exercise, particularly
when you create some rows and modify others since you’ll need the keys from
the created rows before you can modify the rows that refer to them. This is a
slightly tricky problem to solve.

As you read objects and modify them, you have to ensure that the database
state you’re working with stays consistent. If you read some objects, it’s impor-

THE BEHAVIORAL PROBLEM v

tant to ensure that the reading is isolated so that no other process changes any of
the objects you’ve read while you’re working on them. Otherwise, you could
have inconsistent and invalid data in your objects. This is the issue of concur-
rency, which is a very tricky problem to solve; we’ll talk about this in Chapter 5.

A pattern that’s essential to solving both of these problems is Unit of Work
(184). A Unit of Work (184) keeps track of all objects read from the database,
together with all objects modified in any way. It also handles how updates are
made to the database. Instead of the application programmer invoking explicit
save methods, the programmer tells the unit of work to commit. That unit of
work then sequences all of the appropriate behavior to the database, putting all of
the complex commit processing in one place. Unit of Work (184) is an essential
pattern whenever the behavioral interactions with the database become awkward.

A good way of thinking about Unit of Work (184) is as an object that acts as
the controller of the database mapping. Without a Unit of Work (184), typi-
cally the domain layer acts as the controller; deciding when to read and write to
the database. The Unit of Work (184) results from factoring the database map-
ping controller behavior into its own object.

As you load objects, you have to be wary about loading the same one twice.
If you do that, you’ll have two in-memory objects that correspond to a single
database row. Update them both, and everything gets very confusing. To deal
with this you need to keep a record of every row you read in an Identity Map
(195). Each time you read in some data, you check the Identity Map (195) first
to make sure that you don’t already have it. If the data is already loaded, you
can return a second reference to it. That way any updates will be properly coor-
dinated. As a benefit you may also be able to avoid a database call since the
Identity Map (195) also doubles as a cache for the database. Don’t forget, how-
ever, that the primary purpose of an Identity Map (195) is to maintain correct
identities, not to boost performance.

If you’re using a Domain Model (116), you’ll usually arrange things so that
linked objects are loaded together in such a way that a read for an order object
loads its associated customer object. However, with many objects connected
together any read of any object can pull an enormous object graph out of the
database. To avoid such inefficiencies you need to reduce what you bring back
yet still keep the door open to pull back more data if you need it later on. Lazy
Load (200) relies on having a placeholder for a reference to an object. There are
several variations on the theme, but all of them have the object reference modi-
fied so that, instead of pointing to the real object, it marks a placeholder. Only
if you try to follow the link does the real object get pulled in from the database.
Using Lazy Load (200) at suitable points, you can bring back just enough from
the database with each call.

MAPPING TO RELATIONAL DATABASES

Reading in Data

When reading in data I like to think of the methods as finders that wrap SQL
select statements with a method-structured interface. Thus, you might have
methods such as find(id) or findForCustomer(customer). Clearly these methods can
get pretty unwieldy if you have 23 different clauses in your select statements,
but these are, thankfully, rare.

Where you put the finder methods depends on the interfacing pattern used. If
your database interaction classes are table based—that is, you have one
instance of the class per table in the database—then you can combine the finder
methods with the inserts and updates. If your interaction classes are row
based—that is, you have one interaction class per row in the database—this
doesn’t work.

With row-based classes you can make the find operations static, but doing so
will stop you from making the database operations substitutable. This means
that you can’t swap out the database for testing purposes with Service Stub
(504). To avoid this problem the best approach is to have separate finder
objects. Each finder class has many methods that encapsulate a SQL query.
When you execute the query, the finder object returns a collection of the appro-
priate row-based objects.

One thing to watch for with finder methods is that they work on the data-
base state, not the object state. If you issue a query against the database to find
all people within a club, remember that any person objects you’ve added to the
club in memory won’t get picked up by the query. As a result it’s usually wise to
do queries at the beginning.

When reading in data, performance issues can often loom large. This leads to
a few rules of thumb.

Try to pull back multiple rows at once. In particular, never do repeated que-
ries on the same table to get multiple rows. It’s almost always better to pull
back too much data than too little (although you have to be wary of locking too
many rows with pessimistic concurrency control). Therefore, consider a situa-
tion where you need to get 50 people that you can identify by a primary key in
your domain model, but you can only construct a query such that you get 200
people, from which you’ll do some further logic to isolate the 50 you need. It’s
usually better to use one query that brings back unnecessary rows than to issue
50 individual queries.

Another way to avoid going to the database more than once is to use joins so
that you can pull multiple tables back with a single query. The resulting record
set looks odd but can really speed things up. In this case you may have a Gate-

STRUCTURAL MAPPING PATTERNS

way (466) that has data from multiple joined tables, or a Data Mapper (165)
that loads several domain objects with a single call.

However, if you’re using joins, bear in mind that databases are optimized to
handle up to three or four joins per query. Beyond that, performance suffers,
although you can restore a good bit of this with cached views.

Many optimizations are possible in the database. These things involve clus-
tering commonly referenced data together, careful use of indexes, and the data-
base’s ability to cache in memory. These are outside the scope of this book but
inside the scope of a good DBA.

In all cases you should profile your application with your specific database
and data. General rules can guide your thinking, but your particular circum-
stances will always have their own variations. Database systems and applica-
tion servers often have sophisticated caching schemes, and there’s no way I can
predict what will happen for your application. For every rule of thumb I've
used, ve heard of surprising exceptions, so set aside time to do performance
profiling and tuning.

Structural Mapping Patterns

When people talk about object-relational mapping, mostly what they mean is
these kinds of structural mapping patterns, which you use when mapping
between in-memory objects and database tables. These patterns aren’t usually
relevant for Table Data Gateway (144), but you may use a few of them if you
use Row Data Gateway (152) or Active Record (160). You’ll probably need to
use all of them for Data Mapper (165).

Mapping Relationships

The central issue here is the different way in which objects and relations handle
links, which leads to two problems. First there’s a difference in representation.
Objects handle links by storing references that are held by the runtime of either
memory-managed environments or memory addresses. Relational databases
handle links by forming a key into another table. Second, objects can easily use
collections to handle multiple references from a single field, while normaliza-
tion forces all relation links to be single valued. This leads to reversals of the
data structure between objects and tables. An order object naturally has a col-
lection of line item objects that don’t need any reference back to the order.
However, the table structure is the other way around—the line item must

MAPPING TO RELATIONAL DATABASES

include a foreign key reference to the order since the order can’t have a multi-
valued field.

The way to handle the representation problem is to keep the relational
identity of each object as an Identity Field (216) in the object, and to look up
these values to map back and forth between the object references and the rela-
tional keys. It’s a tedious process but not that difficult once you understand
the basic technique. When you read objects from the disk you use an Identity
Map (195) as a lookup table from relational keys to objects. Each time you
come across a foreign key in the table, you use Foreign Key Mapping (236)
(see Figure 3.5) to wire up the appropriate inter-object reference. If you don’t
have the key in the Identity Map (195), you need to either go to the database
to get it or use a Lazy Load (200). Each time you save an object, you save it
into the row with the right key. Any inter-object reference is replaced with the
target object’s ID field.

On this foundation the collection handling requires a more complex version
of Foreign Key Mapping (236) (see Figure 3.6). If an object has a collection,
you need to issue another query to find all the rows that link to the ID of the
source object (or you can now avoid the query with Lazy Load (200)). Each
object that comes back gets created and added to the collection. Saving the col-
lection involves saving each object in it and making sure it has a foreign key to
the source object. This gets messy, especially when you have to detect objects
added or removed from the collection. This can get repetitive when you get the
hang of it, which is why some form of metadata-based approach becomes an
obvious move for larger systems (I’ll elaborate on that later). If the collection

Album Artist
title: String name: String
«table» «table»
Albums Artists
ID:int ID:int
title: varchar name: varchar
artistID: int

Figure 3.5 Use a Foreign Key Mapping (236) to map a single-valued field.

STRUCTURAL MAPPING PATTERNS

Album 1 Track
title: String sk title: String
«table» «table»
Albums Tracks
ID: int ID:int
title: varchar albumID: int
title: varchar

Figure 3.6 Use a Foreign Key Mapping (236) to map a collection field.

objects aren’t used outside the scope of the collection’s owner, you can use
Dependent Mapping (262) to simplify the mapping.

A different case comes up with a many-to-many relationship, which has a
collection on both ends. An example is a person having many skills and each
skill knowing the people who use it. Relational databases can’t handle this
directly, so you use an Association Table Mapping (248) (see Figure 3.7) to cre-
ate a new relational table just to handle the many-to-many association.

Employee Skill
& *k
«table» «table» «table»
Employees skill-employees Skills
ID employeelD ID
skilllD

Figure 3.7 Use an Association Table Mapping (248) to map a many-to-many association.

MAPPING TO RELATIONAL DATABASES

When you’re working with collections, a common gotcha is to rely on the
ordering within the collection. In OO languages it’s common to use ordered col-
lections such as lists and arrays—indeed, it often makes testing easier. Neverthe-
less, it’s very difficult to maintain an arbitrarily ordered collection when saved to
a relational database. For this reason it’s worth considering using unordered sets
for storing collections. Another option is to decide on a sort order whenever you
do a collection query, although that can be quite expensive.

In some cases referential integrity can make updates more complex. Modern
systems allow you to defer referential integrity checking to the end of the trans-
action. If you have this capability, there’s no reason not to use it. Otherwise, the
database will check on every write. In this case you have to be careful to do your
updates in the right order. How to do this is out of the scope of this book, but
one technique is to do a topological sort of your updates. Another is to hardcode
which tables get written in which order. This can sometimes reduce deadlock
problems inside the database that cause transactions to roll back too often.

Identity Field (216) is used for inter-object references that turn into foreign
keys, but not all object relationships need to be persisted that way. Small Value
Objects (486), such as date ranges and money objects clearly shouldn’t be rep-
resented as their own table in the database. Instead, take all the fields of the
Value Object (486) and embed them into the linked object as an Embedded
Value (268). Since Value Objects (486) have value semantics, you can happily
create them each time you get a read and you don’t need to bother with an
Identity Map (195). Writing them out is also easy—just dereference the object
and spit out its fields into the owning table.

You can do this kind of thing on a larger scale by taking a whole cluster of
objects and saving them as a single column in a table as a Serialized LOB (272).
LOB stands for “Large OBject,” which can be either binary (BLOB) or textual
(CLOB—Character Large OBject). Serializing a clump of objects as an XML
document is an obvious route to take for a hierarchic object structure. This way
you can grab a whole bunch of small linked objects in a single read. Often data-
bases perform poorly with small highly interconnected objects—where you
spend a lot of time making many small database calls. Hierarchic structures
such as org charts and bills of materials are where a Serialized LOB (272) can
save a lot of database roundtrips.

The downside is that SQL isn’t aware of what’s happening, so you can’t
make portable queries against the data structure. Again, XML may come to the
rescue here, allowing you to embed XPath query expressions within SQL calls,
although the embedding is largely nonstandard at the moment. As a result Seri-
alized LOB (272) is best used when you don’t want to query for the parts of the
stored structure.

STRUCTURAL MAPPING PATTERNS

Usually a Serialized LOB (272) is best for a relatively isolated group of
objects that make part of an application. If you use it too much, it ends up turn-
ing your database into little more than a transactional file system.

Inheritance

In the above hierarchies I'm talking about compositional hierarchies, such as a
parts tree, which relational systems traditionally do poorly. There’s another kind
of hierarchy that causes relational headaches: a class hierarchy linked by inher-
itance. Since there’s no standard way to do inheritance in SQL, we again have a
mapping to perform. For any inheritance structure there are basically three
options. You can have one table for all the classes in the hierarchy: Single Table
Inheritance (278) (see Figure 3.8); one table for each concrete class: Concrete
Table Inberitance (293) (see Figure 3.9); or one table per class in the hierarchy:
Class Table Inheritance (285) (see Figure 3.10).

The trade-offs are all between duplication of data structure and speed of
access. Class Table Inheritance (285) is the simplest relationship between the
classes and the tables, but it needs multiple joins to load a single object, which
usually reduces performance. Concrete Table Inberitance (293) avoids the joins,
allowing you pull a single object from one table, but it’s brittle to changes. With
any change to a superclass you have to remember to alter all the tables (and the

Player
name
«table»
Players
| | name
Footballer Cricketer club
batting average
club batting average bowling average
f type
Bowler

bowling average

Figure 3.8 Single Table Inheritance (278) uses one table to store all the classes in a
hierarchy.

MAPPING TO RELATIONAL DATABASES

Player

name

Footballer

club

«table»
Footballers

name
club

Cricketer

batting average

«table»
Cricketers

name
batting average

Bowler

bowling average

«table»
Bowlers

name
batting average
bowling average

Figure 3.9 Concrete Table Inheritance (293) uses one table to store each concrete class

in a hierarchy.

Player

name

Footballer

club

«table»
Footballers

club

Cricketer

«table»
Cricketers

batting average

batting average

«table»
Bowlers

Bowler

bowling average

bowling average

Figure 3.10 Class Table Inheritance (285) uses

«table»
Players

name

one table for each class in a hierarchy.

BUILDING THE MAPPING v

mapping code). Altering the hierarchy itself can cause even bigger changes. Also,
the lack of a superclass table can make key management awkward and get in the
way of referential integrity, although it does reduce lock contention on the super-
class table. In some databases Single Table Inheritance (278)’s biggest downside is
wasted space, since each row has to have columns for all possible subtypes and
this leads to empty columns. However, many databases do a very good job of
compressing wasted table space. Another problem with Single Table Inheritance
(278) is its size, making it a bottleneck for accesses. Its great advantage is that it
puts all the stuff in one place, which makes modification easier and avoids joins.

The three options aren’t mutually exclusive, and in one hierarchy you can
mix patterns. For instance, you could have several classes pulled together with
Single Table Inheritance (278) and use Class Table Inheritance (285) for a few
unusual cases. Of course, mixing patterns adds complexity.

There’s no clearcut winner here. You need to take into account your own cir-
cumstances and preferences, much as with all the rest of these patterns. My first
choice tends to be Single Table Inberitance (278), as it’s easy to do and is resil-
ient to many refactorings. I tend to use the other two as needed to help solve the
inevitable issues with irrelevant and wasted columns. Often the best is to talk to
the DBAs; they often have good advice as to the sort of access that makes the
most sense for the database.

All the examples just described, and in the patterns, use single inheritance.
Although multiple inheritance is becoming less fashionable these days and most
languages are increasingly avoiding it, the issue still appears in O/R mapping
when you use interfaces, as in Java and .NET. The patterns here don’t go into this
topic specifically, but essentially you cope with multiple inheritance using varia-
tions of the trio of inheritance patterns. Single Table Inberitance (278) puts all
superclasses and interfaces into the one big table, Class Table Inheritance (285)
makes a separate table for each interface and superclass, and Concrete Table
Inheritance (293) includes all interfaces and superclasses in each concrete table.

Building the Mapping
When you map to a relational database, there are essentially three situations
that you encounter:

® You choose the schema yourself.

® You have to map to an existing schema, which can’t be changed.

® You have to map to an existing schema, but changes to it are negotiable.

MAPPING TO RELATIONAL DATABASES

The simplest case is where you’re doing the schema yourself and have little
to moderate complexity in your domain logic, resulting in a Transaction Script
(110) or Table Module (125) design. In this case you can design the tables
around the data using classic database design techniques. Use a Row Data
Gateway (152) or Table Data Gateway (144) to pull the SQL away from the
domain logic.

If you’re using a Domain Model (116), you should beware of a design that
looks like a database design. In this case build your Domain Model (116) with-
out regard to the database so that you can best simplify the domain logic. Treat
the database design as a way of persisting the objects’ data. Data Mapper (165)
gives you the most flexibility here, but it’s more complex. If a database design
isomorphic to the Domain Model (116) makes sense, you might consider an
Active Record (160) instead.

Although building the model first is a reasonable way of thinking about it,
this advice only applies within short iterative cycles. Spending six months build-
ing a database-free Domain Model (116) and then deciding to persist it once
you’re done is highly risky. The danger is that the resulting design will have
crippling performance problems that take too much refactoring to fix. Instead,
build up the database with each iteration, of no more than six weeks in length
and preferably fewer. That way you’ll get rapid and continuous feedback about
how your database interactions work in practice. Within any particular task
you should think about the Domain Model (116) first, but integrate each piece
of Domain Model (116) in the database as you go.

When the schema’s already there, your choices are similar but the process is
slightly different. With simple domain logic you build Row Data Gateway
(152) or Table Data Gateway (144) classes that mimic the database, and layer
domain logic on top of that. With more complex domain logic you’ll need a
Domain Model (116), which is highly unlikely to match the database design.
Therefore, gradually build up the Domain Model (116) and include Data Map-
pers (165) to persist the data to the existing database.

Double Mapping

Occasionally T run into situations where the same kind of data needs to be
pulled from more than one source. There may be multiple databases that hold
the same data but have small differences in the schema because of some copy
and paste reuse. (In this situation the amount of annoyance is inversely propor-
tional to the amount of the difference.) Another possibility is using different
mechanisms, storing the data sometimes in a database and sometimes in mes-
sages. You may want to pull similar data from both XML messages, CICS
transactions, and relational tables.

USING METADATA v

The simplest option is to have multiple mapping layers, one for each data
source. However, if data is very similar this can lead to a lot of duplication. In
this situation you might consider a two-step mapping scheme. The first step
converts data from the in-memory schema to a logical data store schema. The
logical data store schema is designed to maximize the similarities in the data
source formats. The second step maps from the logical data store schema to the
actual physical data store schema. This second step contains the differences.

The extra step only pays for itself when you have many commonalities, so
you should use it when you have similar but annoyingly different physical data
stores. Treat the mapping from the logical data store to the physical data store
as a Gateway (466) and use any of the mapping techniques to map from the
application logic to the logical data store.

Using Metadata

In this book most of my examples use handwritten code. With simple and
repetitive mapping this can lead to code that’s simple and repetitive—and repet-
itive code is a sign of something wrong with the design. There’s much you can
do by factoring out common behaviors with inheritance and delegation—good,
honest OO practices—but there’s also a more sophisticated approach using
Metadata Mapping (306).

Metadata Mapping (306) is based on boiling down the mapping into a meta-
data file that details how columns in the database map to fields in objects. The
point of this is that once you have the metadata you can avoid the repetitive
code by using either code generation or reflective programming.

Using metadata buys you a lot of expressiveness from a little metadata. One
line of metadata can say something like

<field name = customer targetClass = "Customer", dbColumn = "custID", targetTable = "customers"
TowerBound = "1" upperBound = "1" setter = "ToadCustomer"/>

From that you can define the read and write code, automatically generate
ad hoc joins, do all of the SQL, enforce the multiplicity of the relationship,
and even do fancy things like computing write orders under the presence of
referential integrity. This is why commercial O/R mapping tools tend to use
metadata.

When you use Metadata Mapping (306) you have the necessary foundation
to build queries in terms of in-memory objects. A Query Object (316) allows
you to build your queries in terms of in-memory objects and data in such a way
that developers don’t need to know either SQL or the details of the relational

MAPPING TO RELATIONAL DATABASES

schema. The Query Object (316) can then use the Metadata Mapping (306) to
translate expressions based on object fields into the appropriate SQL.

Take this far enough and you can form a Repository (322) that largely hides
the database from view. Any queries to the database can be made as Query
Objects (316) against a Repository (322), and developers can’t tell whether the
objects were retrieved from memory or from the database. Repository (322)
works well with rich Domain Model (116) systems.

Despite the many advantages of metadata, in this book I’'ve focused on hand-
written examples because I think they’re easier to understand first. Once you
get the hang of the patterns and can handwrite them for your application, you’ll
be able to figure out how to use metadata to make matters easier.

Database Connections

Most database interfaces rely on some kind of database connection object to act
as the link between application code and the database. Typically a connection
must be opened before you can execute commands against the database. Indeed,
usually you need an explicit connection to create and execute a command. The
whole time you execute the command this same connection must be open. Que-
ries return a Record Set (508). Some interfaces provide for disconnected Record
Sets (508), which can be manipulated after the connection is closed. Other inter-
faces provide only connected Record Sets (508), implying that the connection
must remain open while the Record Set (508) is manipulated. If you’re running
inside a transaction, usually the transaction is bound to a particular connection
and the connection must remain open while it is taking place.

In many environments it’s expensive to create a connection, which makes it
worthwhile to create a connection pool. In this situation developers request a
connection from the pool and release it when they’re done, instead of creating
and closing the connection. Most platforms these days give you pooling, so
you’ll rarely have to do it yourself. If you do have to do it yourself, first check
to see if pooling actually does help performance. Increasingly environments
make it quicker to create a new connection so there’s no need to pool.

Environments that give you pooling often put it behind an interface that
looks like creating a new connection. That way you don’t know whether you’re
getting a brand new connection or one allocated from a pool. That’s a good
thing, as the choice to pool or not is properly encapsulated. Similarly, closing
the connection may not actually close it but just return it to the pool for some-

DAaTABASE CONNECTIONS

one else to use. In this discussion I'll use “open” and “close,” which you can
substitute for “getting” from the pool and “releasing” back to the pool.

Expensive to create or not, connections need management. Since they’re
expensive resources to manage, they must be closed as soon as you’re done
using them. Furthermore, if you’re using a transaction, usually you need to
ensure that every command inside a particular transaction goes with the same
connection.

The most common advice is to get a connection explicitly, using a call to a
pool or connection manager, and then supply it to each database command you
want to make. Once you’re done with the connection, close it. This advice leads
to a couple of issues: making sure you have the connection everywhere you
need it and ensuring that you don’t forget to close it at the end.

To ensure that you have a connection where you need it there are two
choices. One is to pass the connection around as an explicit parameter. The
problem with this is that the connection gets added to all sorts of method calls
where its only purpose is to be passed to some other method five layers down
the call stack. Of course, this is the situation to bring out Registry (480). Since
you don’t want multiple threads using the same connection, youw’ll want a
thread-scoped Registry (480).

If you’re half as forgetful as I am, explicit closing isn’t such a good idea. It’s
just too easy to forget to do it when you should. You also can’t close the con-
nection with every command because you may be running inside a transaction
and the closing will usually cause the transaction to roll back.

Like a connection, memory is a resource that needs to be freed up when
you’re not using it. Modern environments these days provide automatic mem-
ory management and garbage collection, so one way to ensure that connections
are closed is to use the garbage collector. In this approach either the connection
itself or some object that refers to it closes the connection during garbage col-
lection. The good thing about this is that it uses the same management scheme
that’s used for memory and so it’s both convenient and familiar. The problem is
that the close of the connection only happens when the garbage collector actu-
ally reclaims the memory, and this can be quite a bit later than when the con-
nection lost its last reference. As a result unreferenced connections may sit
around a while before they’re closed. Whether this is a problem or not depends
very much on your specific environment.

On the whole T don’t like relying on garbage collection. Other schemes—
even explicit closing—are better. Still, garbage collection makes a good backup
in case the regular scheme fails. After all, it’s better to have the connections
close eventually than to have them hanging around forever.

MAPPING TO RELATIONAL DATABASES

Since connections are so tied to transactions, a good way to manage them is
to tie them to a transaction. Open a connection when you begin a transaction,
and close it when you commit or roll back. Have the transaction know what
connection it’s using so you can ignore the connection completely and just deal
with the transaction. Since the transaction’s completion has a visible effect, it’s
easier to remember to commit it and to spot if you forget. A Unit of Work (184)
makes a natural fit to manage both the transaction and the connection.

If you do things outside of your transaction, such as reading immutable data,
you use a fresh connection for each command. Pooling can deal with any issues
in creating short-lived connections.

If you’re using a disconnected Record Set (508), you can open a connection
to put the data in the record set and close it while you manipulate the Record
Set (508) data. Then, when you’re done with the data, you can open a new con-
nection, and transaction, to write the data out. If you do this, you’ll need to
worry about the data being changed while the Record Set (508) was being
manipulated. This is a topic I'll talk about with concurrency control.

The specifics of connection management are very much a feature of your
database interaction software, so the strategy you use is often dictated by your
environment.

Some Miscellaneous Points

You’ll notice that some of the code examples use select statements in the form
select * from while others use named columns. Using select * can have serious
problems in some database drivers, which break if a new column is added or a
column is reordered. Although more modern environments don’t suffer from
this, it’s not wise to use select * if you’re using positional indices to get informa-
tion from columns, as a column reorder will break code. It’s okay to use column
name indices with a select *, and indeed column name indices are clearer to
read; however, column name indices may be slower, although that probably
won’t make much difference given the time for the SQL call. As usual, measure
to be sure.

If you do use column number indices, you need to make sure that the
accesses to the result set are very close to the definition of the SQL statement so
they don’t get out of sync if the columns are reordered. Consequently, if you’re
using Table Data Gateway (144), you should use column name indices as the
result set is used by every piece of code that runs a find operation on the gate-

way. As a result it’s usually worth having simple create/read/update/delete test

FURTHER READING

cases for each database mapping structure you use. This will help catch cases
when your SQL gets out of sync with your code.

It’s always worth making the effort to use static SQL that can be precom-
piled, rather than dynamic SQL that has to be compiled each time. Most plat-
forms give you a mechanism for precompiling SQL. A good rule of thumb is to
avoid using string concatenation to put together SQL queries.

Many environments give you the ability to batch multiple SQL queries into
a single database call. I haven’t done that for these examples, but it’s certainly
a tactic you should use in production code. How you do it varies with the
platform.

For connections in these examples, I just conjure them up with a call to a
“DB” object, which is a Registry (480). How you get a connection will depend
on your environment so you’ll substitute this with whatever you need to do. I
haven’t involved transactions in any of the patterns other than those on concur-
rency. Again, you’ll need to mix in whatever your environment needs.

Further Reading

Object-relational mapping is a fact of life for most people, so it’s no surprise
that there’s been a lot written on the subject. The surprise is that there isn’t a
single coherent, complete, and up-to-date book, which is why I’ve devoted so
much of this one to this tricky yet interesting subject.

The nice thing about database mapping is that there’s a lot of ideas out
there to steal from. The most victimized intellectual banks are [Brown and
Whitenack], [Ambler], [Yoder], and [Keller and Coldewey]. I’d certainly urge
you to have a good surf through this material to supplement the patterns in
this book.

This page intentionally left blank

Index

A

ACID (atomicity, consistency, isolation, and durability), 71-76
business and system transactions, 74-76
reducing transaction isolation for liveness, 73-74

transactional resources, 72-73

Active Record, 160-64
example
simple person (Java), 162-64
how it works, 160-61
when to use it, 161-62
ADO.NET data sets, 148-51
Advice, some technology-specific,
100-103
Java and J2EE, 100-101
.NET, 101-2
stored procedures, 102-3
Web services, 103
Affinity, server, 85
Albums and tracks (Java), 264-67
Albums, transferring information about,
407-11
Application Controller, 379-86
example
state model Application Controller
(Java), 382-86
further reading, 382
how it works, 380-81
when to use it, 381-82
Application Controller, state model,
382-86
Application server concurrency, 78-80

Applications, evolution of layers in enter-

prise, 18-19
Architectural patterns, 33-38
Architectural patterns, data source,
143-81
Active Record, 160-64

Data Mapper, 165-81
Row Data Gateway, 152-59
Table Data Gateway, 144-51
ASP.NET server page (C#), 357-60
Association Table Mapping, 248-61
examples
employees and skills (C#), 250-53
using direct SQL (Java), 253-56
using single query for multiple
employees (Java), 256-61
how it works, 248-49
when to use it, 249

B
Base patterns, 465-510

Gateway, 466—72

Layer Supertype, 475

Mapper, 473-74

Money, 488-95

Plugin, 499-503

Record Set, 508-10

Registry, 480-85

Separated Interface, 476-79

Service Stub, 504-7

Special Case, 496-98

Value Object, 486-87
Behavioral patterns, object-relational,

183-214

Identity Map, 195-99

Lazy Load, 200-214

Unit of Work, 184-94
Behavioral problem, 38-39
Boosters, complexity, 24

517

518

Index

Boundaries, working with distribution,
91-92

Brown layers, 104

Business and system transactions, 74-76

Business logic, 20

C
C#

ASP.NET server page, 357-60
collection of references, 244-47
concrete players, 296-301
employees and skills, 250-53
integral key, 221-22
page handler with code behind, 340-43
Person Gateway, 146-48
players and their kin, 287-92
revenue recognition with Table Module,
129-32
simple null objects, 498
single table for players, 280-81
using ADO.NET data sets, 148-51
using ghosts, 206-14
Web service, 395-400
Cases, Special, 496-98
example
simple null objects (C#), 498
further reading, 497
how it works, 497
when to use it, 497
Class, money, 491-95
Class Table Inheritance, 285-92
example
players and their kin (C#), 287-92
further reading, 287
how it works, 285-86
when to use it, 286-87
Client Session State, 456-57
how it works, 456-57
when to use it, 457
Coarse-Grained Lock, 438-48
examples
root Optimistic Offline Lock (Java),
447-48
shared Optimistic Offline Lock
(Java), 441-46
shared Pessimistic Offline Lock
(Java), 446-47

how it works, 438-41
when to use it, 441
Committed, read, 73
Complexity boosters defined, 24
Compound key (Java), 224-35
Concrete players (C#), 296-301
Concrete Table Inheritance, 293-301
example
concrete players (C#), 296-301
how it works, 293-95
when to use it, 295-96
Concurrency, 63-80
application server, 78-80
application server concurrency, 78-80
concurrency problems, 64-65
execution contexts, 65-66
isolation and immutability, 66-67
off line, 75
offline, 63
optimistic and pessimistic concurrency
controls, 67-71
patterns for off line concurrency con-
trol, 76-78
Concurrency controls
optimistic and pessimistic, 67-71
ACID (atomicity, consistency, isola-
tion, and durability), 71-76
deadlocks, 70-71
preventing inconsistent reads, 68—69
transactions, 71
patterns for offline, 76-78
Concurrency patterns, offline, 415-53
Connections, database, 50-52
Contexts, execution, 65-66
Controller, Front, 344-49
example
simple display (Java), 347-49
further reading, 347
how it works, 344-46
when to use it, 346
Controller, Page, 333-43
examples
page handler with code behind (C#),
340-43
simple display with JSP view (Java),
335-37

simple display with servlet controller
(Java), 335-37
using JSP as handler (Java), 337-40
how it works, 333-34
when to use it, 334-35
Controller patterns, input, 61
Controllers
simple display with, 335-37
state model Application, 382-86
using JSP as view with separate, 355-57
Controllers, Application, 379-86
example
state model Application Controller
(Java), 382-86
further reading, 382
how it works, 380-81
when to use it, 381-82
Controls
optimistic and pessimistic concurrency,
67-71
ACID (atomicity, consistency, isola-
tion, and durability), 71-76
deadlocks, 70-71
preventing inconsistent reads,
68-69
transactions, 71
patterns for offline concurrency,
76-78
Correctness, 65
Custom tags, JSP and, 374-78

D
Data

immutable, 67
reading in, 40-41
record, 83
Data holder for domain object (Java),
158-59
Data Mapper, 165-81
domain layer with, 421-25
examples
creating empty objects (Java), 179-81
separating finders (Java), 176-79
simple database mapper (Java),
171-76
how it works, 165-70

Index

when to use it, 170-71
Data sets, ADO.NET, 148-51
Data source
architectural patterns, 143-81
Active Record, 160-64
Data Mapper, 165-81
Row Data Gateway, 152-59
Table Data Gateway, 144-51
for Domain Models, 98-99
logic, 20
Table Modules, 98
for Transaction Scripts, 97-98
Data source layers, down to, 97-100
data source for Domain Models, 98-99
data source for Transaction Scripts,
97-98
data source Table Modules, 98
presentation layers, 99-100
Data Transfer Objects, 401-13
examples
serializing using XML (Java), 411-13
transferring information about
albums (Java), 407-11
further reading, 407
how it works, 401-6
when to use it, 406
Database connections, 50-52
Database mapper, simple, 171-76
Database Session State, 462-64
how it works, 462-63
when to use it, 464
Databases
loading objects from, 281-84
mapping to relational, 33-53
architectural patterns, 33-38
behavioral problem, 38-39
building mapping, 47-49
database connections, 50-52
Databases, mapping to relational, contin-
ued
reading in data, 40-41
some miscellaneous points, 52-53
structural mapping patterns, 41-47
using metadata, 49-50
Deadlocks, 70-71
Department hierarchy, serializing, 274-77

519

520

Index

Dependent Mapping, 262—67
example
albums and tracks (Java), 264-67
how it works, 262-63
when to use it, 263-64
Dependents, finding person’s, 325-26
Dirty reads, 74
Display, simple, 347-49
Distributed objects, allure of, 87-88
Distribution boundaries, working with,
91-92
Distribution, interfaces for, 92-93
Distribution patterns, 387-413
Data Transfer Objects, 401-13
Remote Facade, 388-400
Distribution strategies, 87-93
allure of distributed objects, 87-88
interfaces for distribution, 92-93
remote and local interfaces, 88-90
where you have to distribute, 90-91
working with distribution boundaries,
91-92
DNA layers, Microsoft, 105
Domain layer with Data Mappers (Java),
421-25
Domain layers, starting with, 96-97
Domain logic, 20
organizing, 25-32
making choices, 29-30
Service Layers, 30-32
patterns, 109-41
Domain Model, 116-24
Service Layer, 13341
Table Module, 125-32
Transaction Script, 110-15
Domain Model, 116-24
data source for, 98-99
example
revenue recognition (Java),
120-24
further reading, 119-20
how it works, 116-19
when to use it, 119
Domain objects, data holder for, 158-59
Domain objects (Java), 475

E

EAI (Enterprise Application Integration),
468
Embedded Value, 268-71
example
simple value objects (Java), 270-71
further reading, 270
how it works, 268
when to use it, 268-69
Employees and skills (C#), 250-53
Employees, using single query for multi-
ple, 256-61
Enterprise Application Integration (EAI),
468
Enterprise applications, evolution of layers
in, 18-19
Examples
albums and tracks (Java), 264-67
ASP.NET server page (C#), 357-60
collection of references (C#), 244-47
concrete players (C#), 296-301
data holder for domain object (Java),
158-59
domain objects (Java), 475
employees and skills (C#), 250-53
finding person’s dependents (Java),
325-26
gateway to proprietary messaging ser-
vice (Java), 468-72
Id Generator (Java), 501-3
implicit Pessimistic Offline Lock (Java),
451-53
integral key (C#), 221-22
lazy initialization (Java), 203
methods for Identity Map (Java),
198-99
money class (Java), 491-95
multitable find (Java}, 243-44
Person Gateway (C#), 146-48
person record (Java), 155-58
players and their kin (C#), 287-92
revenue recognition (Java), 120-24,
138-41
revenue recognition with Table Module
(C#), 129-32
root Optimistic Offline Lock (Java),
447-48
sales tax service (Java), 505-7

separating finders (Java), 176-79

serializing department hierarchy in
XML (Java), 274-77

serializing using XML (Java), 411-13

shared Optimistic Offline Lock (Java),
441-46

shared Pessimistic Offline Lock (Java),
446-47

simple database mapper (Java), 171-76

simple display (Java), 347-49

simple display with servlet controller
(Java), 335-37

simple lock manager (Java), 431-37

simple null objects (C#), 498

simple person (Java), 162-64

simple Query Object (Java), 318-21

simple transform (Java), 363-64

simple value objects (Java), 270-71

single table for players (C#), 280-81

single-valued reference (Java), 240-43

singleton registry (Java), 483-84

state model Application Controller
(Java), 382-86

swapping Repository strategies (Java),
326-27

thread-safe registry (Java), 484-85

transferring information about albums
(Java), 407-11

two-stage XSLT (XSLT), 371-74

Unit of Work with object registration
(Java), 190-94

using ADO.NET data sets (C#),
148-51

using compound key (Java), 224-35

using direct SQL (Java), 253-56

using ghosts (C#), 206-14

using Java session been as Remote
Facade (Java), 392-95

using JSP as handler (Java), 337-40

using key table (Java), 222-24

using metadata and reflection(Java),
309-15

using single query for multiple employ-
ees (Java), 256-61

using value holder (Java), 205-6

virtual proxy (Java), 203-5

Web service (C#), 395-400

Index

Execution contexts, 65-66

F
Facade, Remote, 388-400

examples
using Java session been as Remote
Facade (Java), 392-95
Web service (C#), 395-400
how it works, 389-92
when to use it, 392
Fields, Identity, 216-35
examples
integral key (C#), 221-22
using compound key (Java), 224-35
using key table (Java), 222-24
further reading, 221
how it works, 216-20
when to use it, 220-21
Find, multitable, 243-44
Finders, separating, 176-79
Foreign Key Mapping, 236-47
examples
collection of references (C#), 244-47
multitable find (Java}, 243-44
single-valued reference (Java),
240-43
how it works, 236-39
when to use it, 239-40
Front Controller, 344-49
example
simple display (Java), 347-49
further reading, 347
how it works, 344-46
when to use it, 346

G
Gateway, 466—72

example
gateway to proprietary messaging ser-
vice (Java), 468-72
how it works, 466-67
Gateway, continued
Person, 14648
when to use it, 467-68
Gateway, Row Data, 152-59
examples
data holder for domain object (Java),
158-59

521

522

Index

person record (Java), 155-58
how it works, 152-53
when to use it, 153-55
Gateway, Table Data, 144-51
examples
Person Gateway (C#), 146-48
using ADO.NET data sets (C#),
148-51
further reading, 146
how it works, 144-45
when to use it, 145-46
Gateway to proprietary messaging service
(Java), 468-72
Generator, Id, 501-3
Ghosts, 202, 206-14
Globally Unique IDentifier (GUID), 219
GUID (Globally Unique IDentifier), 219

H
Handlers
page, 340-43
using JSP as, 337-40
Hierarchy, serializing department, 274-77
Holder, using value, 205-6

1
Id Generator (Java), 501-3

Identity Field, 216-35
examples
integral key (C#), 221-22
using compound key (Java), 224-35
using key table (Java), 222-24
further reading, 221
how it works, 216-20
when to use it, 220-21
Identity Map, 195-99
example
methods for Identity Map (Java),
198-99
how it works, 195-97
methods for, 198-99
when to use it, 198
Immutability, isolation and, 66—67
Immutable data, 67
Implicit Lock, 449-53
example

implicit Pessimistic Offline Lock
(Java), 451-53
how it works, 450-51
when to use it, 451
Implicit Pessimistic Offline Lock (Java),
451-53
Inconsistent reads, 64
preventing, 68—69
Inheritance, 45-47
Inheritance, Class Table, 285-92
example
players and their kin (C#), 287-92
further reading, 287
how it works, 285-86
when to use it, 286-87
Inheritance, Concrete Table, 293-301
example
concrete players (C#), 296-301
how it works, 293-95
when to use it, 295-96
Inheritance Mappers, 302-4
how it works, 3034
when to use it, 304
Inheritance, Single Table
example
single table for players (C#), 280-81
how it works, 278-79
loading objects from databases, 281-84
when to use it, 279-80
Initialization, lazy, 203
Input controller patterns, 61
Integral key (C#), 221-22
Interfaces
for distribution, 92-93
remote and local, 88-90
Separated, 476-79
how it works, 477-78
when to use it, 478-79
Isolated threads, 66
Isolation
and immutability, 66-67
reducing transaction for liveness,
73-74

J
J2EE, Java and, 100-101
J2EE layers, core, 104

Java

albums and tracks, 264-67

creating empty objects, 179-81

data holder for domain object, 158-59

domain layer with Data Mappers,
421-25

domain objects, 475

finding person’s dependents, 325-26

gateway to proprietary messaging ser-
vice, 468-72

Id Generator, 501-3

and J2EE, 100-101

JSP and custom tags, 374-78

methods for Identity Map, 198-99

money class, 491-95

multitable find, 243-44

person record, 155-58

revenue recognition, 113-15, 120-24,
138-41

root Optimistic Offline Lock, 447-48

sales tax service, 505-7

separating finders, 176-79

serializing department hierarchy in
XML, 274-77

serializing using XML, 411-13

shared Optimistic Offline Lock, 441-46

shared Pessimistic Offline Lock, 446-47

simple database mapper, 171-76

simple display, 347-49

simple display with JSP view, 335-37

simple display with servlet controller,
335-37

simple person, 162-64

simple Query Object, 318-21

simple transform, 363-64

simple value objects, 270-71

single-valued reference (Java),
240-43

singleton registry, 483-84

state model Application Controller,
382-86

swapping Repository strategies,
326-27

thread-safe registry, 484-85

transferring information about albums,
407-11

Index

Unit of Work with object registration,
190-94
using compound key, 224-35
using direct SQL, 253-56
using Java session bean as Remote
Facade, 392-95
using JSP as handler, 337-40
using JSP as view with separate control-
ler, 355-57
using key table, 222-24
using metadata and reflection,
309-15
using single query for multiple employ-
ees, 256-61
using value holder, 205-6
Java session bean, using as Remote Facade
(Java), 392-95
Jsp
using as handler, 337-40
using as view, 355-57
JSP and custom tags (Java), 374-78
JSP view, simple display with, 335-37

K
Key Mapping, Foreign, 236-47
Key table, 222-24
Keys
compound, 224-35
integral, 221-22
Kin, players and their, 287-92

L
Late transactions, 72

Layer Supertype, 475

example

domain objects (Java), 475

how it works, 475

when to use it, 475
Layering, 17-24

choosing to run your layers, 22-24

evolution of layers in enterprise applica-

tions, 18-19

schemes, 103-6

three principal layers, 19-22
Layers

Brown, 104

choosing to run your, 22-24

523

524

Index

core J2EE, 104
down to data source, 97-100
data source for Domain Models,
98-99
data source for Transaction Scripts,
97-98
data source Table Modules, 98
presentation layers, 99-100
Marinescu, 105
Microsoft DNA, 105
Nilsson, 106
presentation, 99-100
Service, 30-32
starting with domain, 96-97
three principal, 19-22
Layers, evolution of, 18-19
Layers, Service, 133-41
example
revenue recognition (Java), 138-41
further reading, 137
how it works, 134-37
when to use it, 137
Lazy initialization (Java), 203
Lazy Load, 200-214
examples
lazy initialization (Java), 203
using ghosts (C#), 206-14
using value holder (Java), 205-6
virtual proxy (Java), 203-5
how it works, 200-203
when to use it, 203
Liveness, 65
reducing transactions isolation for,
73-74
Load, Lazy, 200-214
examples
lazy initialization (Java), 203
using ghosts (C#), 206-14
using value holder (Java), 205-6
virtual proxy (Java), 203-5
how it works, 200-203
when to use it, 203
Loading, ripple, 202
LOBs (large objects), serialized, 272-77
example
serializing department hierarchy in
XML (Java), 274-77

how it works, 272-73
when to use it, 274
Local interfaces, remote and, 8§8-90
Lock manager, simple, 431-37
Locking
optimistic, 67
pessimistic, 67
Locks
root Optimistic Offline, 447-48
shared Optimistic Offline, 441-46
shared Pessimistic Offline, 446-47
Locks, Coarse-Grained, 438-48
examples
root Optimistic Offline Lock (Java),
447-48
shared Optimistic Offline Lock
(Java), 441-46
shared Pessimistic Offline Lock
(Java), 446-47
how it works, 438-41
when to use it, 441
Locks, Implicit, 449-53
example
implicit Pessimistic Offline Lock
(Java), 451-53
how it works, 450-51
when to use it, 451
Locks, implicit Pessimistic Offline, 451-53
Locks, Optimistic Offline, 416-25
example
domain layer with Data Mappers
(Java), 421-25
how it works, 417-20
when to use it, 420-21
Locks, Pessimistic Offline, 426-37
example
simple lock manager (Java),
431-37
how it works, 427-31
when to use it, 431
Logic
business, 20
data source, 20
domain, 20
organizing domain, 25-32
making choices, 29-30
Service Layers, 30-32

presentation, 19-20
Logic patterns, domain, 109-41
Domain Model, 116-24
Service Layer, 133-41
Table Module, 125-32
Transaction Script, 110-15
Long transactions, 72
Lost updates, 64

M
Manager, simple lock, 431-37

Map, Identity, 195-99
example
methods for Identity Map (Java),
198-99
how it works, 195-97
when to use it, 198
Mapper, 473-74
how it works, 473
when to use it, 474
Mapper, Data, 165-81
examples
creating empty objects (Java), 179-81
separating finders (Java), 176-79
simple database mapper (Java),
171-76
how it works, 165-70
when to use it, 170-71
Mapper, simple database, 171-76
Mappers, domain layer with Data,
421-25
Mappers, Inheritance, 302-4
how it works, 3034
when to use it, 304
Mapping, Association Table, 248-61
examples
employees and skills (C#), 250-53
using direct SQL (Java), 253-56
using single query for multiple
employees (Java), 256-61
how it works, 248-49
when to use it, 249
Mapping, building, 47-49
Mapping, Dependent, 262-67
example
albums and tracks (Java), 264-67
how it works, 262-63
when to use it, 263-64

Index

Mapping, Foreign Key, 236-47
examples
collection of references (C#),
244-47
multitable find (Java}, 243-44
single-valued reference (Java),
240-43
how it works, 236-39
when to use it, 239-40
Mapping, Metadata
example
using metadata and reflection(Java),
309-15
how it works, 306-8
when to use it, 308-9
Mapping patterns
object-relational metadata, 305-27
Metadata Mapping, 306-15
Query Object, 316-21
Repository, 322-27
structural, 41-47
inheritance, 45-47
mapping relationships, 41-45
Mapping relationships, 41-45
Mapping to relational databases, 33-53
architectural patterns, 33-38
behavioral problem, 38-39
building mapping, 47-49
database connections, 50-52
reading in data, 40-41
some miscellaneous points, 52-53
structural mapping patterns, 41-47
using metadata, 49-50
Marinescu layers, 105
Messaging service, gateway to, 468-72
Metadata and reflection, using, 309-15
Metadata Mapping, 306-15
example
using metadata and reflection (Java),
309-15
Metadata Mapping, continued
how it works, 306-8
when to use it, 308-9
Metadata mapping patterns, object-
relational, 305-27
Metadata Mapping, 306-15
Query Object, 316-21

525

526

Index

Repository, 322-27
Metadata, using, 49-50
Microsoft DNA layers, 105
Migration, session, 85
Model, Domain, 116-24
example
revenue recognition (Java), 120-24
further reading, 119-20
how it works, 116-19
when to use it, 119
Model View Controller (MVC), 330-32
Models, data source for Domain, 98-99
Modules, data source Table, 98
Modules, Table, 125-32
example
revenue recognition with Table
Module (C#), 129-32
how it works, 126-28
when to use it, 128
Money, 488-95
example
money class (Java), 491-95
how it works, 488-90
when to use it, 490-91
Money class (Java), 491-95
Multiple employees, using single query for,
256-61
Multitable find (Java), 243-44
MVC (Model View Controller), 330-32
how it works, 330-32
when to use it, 332

N

.NET, 101-2

Nilsson layers, 106

Null objects, simple, 498

O
Object registration, 186

Object registration, Unit of Work with,
190-94
Object-relational behavioral patterns,
183-214
Identity Map, 195-99
Lazy Load, 200-214
Unit of Work, 184-94
Object-relational metadata mapping pat-
terns, 305-27
Metadata Mapping, 306-15

Query Object, 316-21
Repository, 322-27
Object-relational structural patterns,
215-84
Association Table Mapping, 248-61
Class Table Inheritance, 285-92
Concrete Table Inheritance, 293-301
Dependent Mapping, 262-67
Embedded Value, 268-71
Foreign Key Mapping, 236-47
Identity Field, 216-35
Inheritance Mappers, 302-4
serialized LOBs (large objects), 272-77
Single Table Inheritance, 278-84
Object, simple Query, 318-21
Objects
allure of distributed, 87-88
creating empty, 179-81
domain, 475
loading from databases, 281-84
simple null, 498
simple value, 270-71
Objects, Data Transfer, 401-13
examples
serializing using XML (Java), 411-13
transferring information about
albums (Java), 407-11
further reading, 407
how it works, 401-6
when to use it, 406
Objects, Query, 316-21
example
simple Query Object (Java), 318-21
further reading, 318
how it works, 316-17
when to use it, 317-18
Objects, Value, 486-87
how it works, 486-87
when to use it, 487
Offline concurrency, 63, 75
Offline concurrency control, patterns for,
76-78
Offline concurrency patterns, 415-53
Coarse-Grained Lock, 438-48
Implicit Lock, 449-53
Optimistic Offline Lock, 416-25
Pessimistic Offline Lock, 426-37
Offline Lock, implicit Pessimistic, 451-53

Offline Lock, Optimistic, 416-25
example
domain layer with Data Mappers
(Java), 421-25
how it works, 417-20
when to use it, 420-21
Offline Lock, Pessimistic, 426-37
example
simple lock manager (Java), 431-37
how it works, 427-31
when to use it, 431
Offline Lock, root Optimistic, 447-48
Offline Lock, shared Optimistic, 441-46
Offline Lock, shared Pessimistic, 446-47
Optimistic and pessimistic concurrency
controls, 67-71
Optimistic locking, 67
Optimistic Offline Lock, 416-25
example
domain layer with Data Mappers
(Java), 421-25
how it works, 417-20
root, 447-48
shared, 441-46
when to use it, 420-21

P
Page Controller, 333-43

examples
page handler with code behind (C#),
340-43
simple display with JSP view (Java),
335-37
simple display with servlet controller
(Java), 335-37
using JSP as handler (Java), 337-40
how it works, 333-34
when to use it, 334-35
Page handler with code behind,
340-43
Patterns
architectural, 33-38
base, 465-510
Gateway, 466-72
Layer Supertype, 475
Mapper, 473-74
Money, 488-95
Plugin, 499-503
Record Set, 508-10

Index

Registry, 480-85
Separated Interface, 476-79
Service Stub, 504-7
Special Case, 496-98
Value Object, 486-87
data source architectural, 143-81
Active Record, 160-64
Data Mapper, 165-81
Row Data Gateway, 152-59
Table Data Gateway, 144-51
distribution, 387-413
Data Transfer Objects, 401-13
Remote Facade, 388-400
domain logic, 109-41
input controller, 61
mapping structural, 41-47
inheritance, 45-47
mapping relationships, 41-45
object-relational behavioral, 183-214
Identity Map, 195-99
Lazy Load, 200-214
Unit of Work, 184-94
object-relational metadata mapping,
305-27
Metadata Mapping, 306-15
Query Object, 316-21
Repository, 322-27
object-relational structural, 215-84
Association Table Mapping, 248-61
Class Table Inheritance, 285-92
Concrete Table Inheritance, 293-301
Dependent Mapping, 262-67
Embedded Value, 268-71
Foreign Key Mapping, 236-47
Identity Field, 216-35
Inheritance Mappers, 302—4
Serialized LOBs (large objects),
272-77
Single Table Inheritance, 278-84

Patterns, continued

offline concurrency, 415-53
Coarse-Grained Lock, 438-48
Implicit Lock, 449-53
Optimistic Offline Lock, 416-25
Pessimistic Offline Lock, 426-37

session state, 455-64
Client Session State, 456-57
Database Session State, 462-64

527

Index

Server Session State, 458-61
view, 58-60
Web presentation, 329-86
Application Controller, 379-86
Front Controller, 344-49
MVC (Model View Controller),
330-32
Page Controller, 333-43
Template View, 350-60
Transform View, 361-64
Two Step View, 365-78
Person Gateway (C#), 146—48
Person record (Java), 155-58
Person, simple, 162-64
Person’s dependents, finding, 325-26
Pessimistic concurrency controls, optimis-
tic and, 67-71
Pessimistic locking, 67
Pessimistic Offline Lock, 426-37
example
simple lock manager (Java),
431-37
how it works, 427-31
implicit, 451-53
shared, 446-47
when to use it, 431
Phantoms, 73
Plain old Java objects (POJOs), 392
Players
concrete, 296-301
single table for, 280-81
Players and their kin (C#), 287-92
Plugin, 499-503
example
Id Generator (Java), 501-3
how it works, 499-500
when to use it, 500
POJOs (plain old Java objects), 392
Presentation
layers, 99-100
logic, 19-20
Web, 55-61
Presentation patterns, Web, 329-86
Application Controller, 379-86
Front Controller, 344-49
MVC (Model View Controller), 330-32
Page Controller, 333-43

Template View, 350-60
Transform View, 361-64
Two Step View, 365-78
Problems
behavioral, 38-39
concurrency, 64-65
Procedures, stored, 102-3
Process-per-request, 78
Process-per-session, 78
Processes defined, 66
Proxy, virtual, 203-5
Putting it all together, 95-106
down to data source layers, 97-100
miscellaneous layering schemes, 103-6
some technology-specific advice,
100-103
starting with domain layers, 96-97

8uery Object, 316-21
example
simple Query Object (Java), 318-21
further reading, 318
how it works, 316-17
when to use it, 317-18
Query Object, simple, 318-21
Query, using single, 256-61

R
Read

inconsistent, 64
repeatable, 73
Read committed, 73
Read uncommitted, 74
Reads
dirty, 74
preventing inconsistent, 68—69
Temporal, 69
unrepeatable, 73
Record data, 83
Record Set, 508-10
how it works, 508-10
when to use it, 510
Records, Active, 160-64
example
simple person (Java), 162-64
how it works, 160-61
when to use it, 161-62

References
collection of, 244-47
single-valued, 240-43
Reflection, using metadata and,
309-15
Registration
object, 186
Unit of Work with object, 190-94
Registry, 480-85
examples
singleton registry (Java), 483-84
thread-safe registry (Java), 484-85
how it works, 480-82
singleton, 483-84
thread-safe, 484-85
when to use it, 482-83
Relational databases, mapping to,
33-53
architectural patterns, 33-38
behavioral problem, 38-39
building mapping, 47-49
database connections, 50-52
reading in data, 40-41
some miscellaneous points, 52-53
structural mapping patterns, 41-47
using metadata, 49-50
Relationships, mapping, 41-45
Remote and local interfaces, §8-90
Remote Facade, 388-400
examples
using Java session been as Remote
Facade (Java), 392-95
Web service (C#), 395-400
how it works, 389-92
when to use it, 392
Remote Facade, using Java session bean
as, 392-95
Repeatable read, 73
Repository, 322-27
examples
finding person’s dependents (Java),
325-26
swapping Repository strategies
(Java), 326-27
further reading, 325
how it works, 323-24
when to use it, 324-25

Index

Repository strategies, swapping, 326-27
Request transactions, 72
Requests, 65
Resources, transactional, 72-73
Revenue recognition (Java), 113-15,
120-24
Revenue recognition problem, 112-13
Revenue recognition with Table Module
(C#), 129-32
Ripple loading, 202
Root Optimistic Offline Lock (Java),
447-48
Row Data Gateway, 152-59
examples
data holder for domain object (Java),
158-59
person record (Java), 155-58
how it works, 152-53
when to use it, 153-55

S
Safety, 65

Sales tax service (Java), 505-7
Schemes, miscellaneous layering, 103-6
SCM (source code management), 420
Scripts, data source for Transaction,
97-98
Scripts, Transaction, 110-15
example
revenue recognition (Java), 113-15
how it works, 110-11
revenue recognition problem, 112-13
when to use it, 111-12
Separate controller, using JSP as view
with, 355-57
Separated Interface, 476-79
how it works, 477-78
when to use it, 478-79
Serializable, transactions are, 73
Serialized LOBs (large objects), 272-77
example
serializing department hierarchy in
XML (Java), 274-77
how it works, 272-73
when to use it, 274
Serializing using XML (Java), 411-13
Server affinity, 85
Server concurrency, application, 78-80

529

530

Index

Server page, ASPNET, 357-60
Server Session State, 458—61
how it works, 458-60
when to use it, 460-61
Servers, stateless, 81
Service Layer, 30-32, 133-41
example
revenue recognition (Java), 138—41
further reading, 137
how it works, 134-37
when to use it, 137
Service Stub, 504-7
example
sales tax service (Java), 505-7
how it works, 504-5
when to use it, 505
Services, gateway to proprietary messag-
ing, 468-72
Services, Web, 103, 395-400
Servlet controller, simple display with,
335-37
Session migration, 85
Session state, 81, 83-86
Session State
Client, 456-57
how it works, 456-57
when to use it, 457
Database, 462-64
how it works, 462—-63
when to use it, 464
Server, 458-61
how it works, 458-60
when to use it, 460-61
Session state
value of statelessness, 81-83
ways to store, 84-86
ways to store session state, 84-86
Session state patterns, 455-64
Client Session State, 456-57
Database Session State, 462-64
Server Session State, 458-61
Sessions defined, 66
Shared Optimistic Offline Lock (Java),
441-46
Shared Pessimistic Offline Lock (Java),
446-47
Simple display (Java), 347-49

Simple person (Java), 162-64
Simple transform (Java), 363-64
Single Table Inheritance
example
single table for players (C#),
280-81
how it works, 278-79
loading objects from databases,
281-84
when to use it, 279-80
Singleton registry (Java), 483-84
Skills, employees and, 250-53
Source code management (SCM), 420
Source layers, down to data, 97-100
Special Case, 496-98
example
simple null objects (C#), 498
further reading, 497
how it works, 497
when to use it, 497
SQL, using direct, 253-56
State
session, 81, 83-86
ways to store session, 84-86
State model Application Controller (Java),
382-86
Stateless servers, 81
Stored procedures, 102-3
Strategies
distribution, 87-93
allure of distributed objects, 87-88
interfaces for distribution, 92-93
remote and local interfaces, 88-90
where you have to distribute, 90-91
working with distribution boundar-
ies, 91-92
swapping Repository, 326-27
Structural mapping patterns., 41-47
inheritance, 45-47
mapping relationships, 41-45
Structural patterns, object-relational,
215-84
Association Table Mapping, 248-61
Class Table Inheritance, 285-92
Concrete Table Inheritance, 293-301
Dependent Mapping, 262-67
Embedded Value, 268-71

Foreign Key Mapping, 236-47
Identity Field, 216-35
Inheritance Mappers, 302—4
serialized LOBs (large objects),
272-77
Single Table Inheritance, 278-84
Stub, Service, 504-7
example
sales tax service (Java), 505-7
how it works, 504-5
when to use it, 505
System transactions, business and,
74-76

T
Table Data Gateway, 144-51
examples
Person Gateway (C#), 146—48
using ADO.NET data sets (C#),
148-51
further reading, 146
how it works, 144-45
when to use it, 145-46
Table Inheritance, Class, 285-92
Table Inheritance, Concrete, 293-301
example
concrete players (C#), 296-301
how it works, 293-95
when to use it, 295-96
Table Inheritance, Single
example
single table for players (C#),
280-81
how it works, 278-79
loading objects from databases,
281-84
when to use it, 279-80
Table Mapping, Association, 248-61
examples
employees and skills (C#), 250-53
using direct SQL (Java), 253-56
using single query for multiple
employees (Java), 256-61
how it works, 248-49
when to use it, 249
Table Modules, 125-32
data source, 98
example

Index

revenue recognition with Table
Module (C#), 129-32
how it works, 126-28
when to use it, 128
Tables, key, 222-24
Tags, JSP and custom, 374-78
Tax service, sales, 505-7
Technology-specific advice, some,
100-103
Java and J2EE, 100-101
.NET, 101-2
stored procedures, 102-3
Web services, 103
Template View, 350-60
examples
ASP.NET server page (C#),
357-60
using JSP as view with separate con-
troller (Java), 355-57
how it works, 351-54
when to use it, 354-55
Temporal Reads, 69
Thread-safe registry (Java), 484-85
Threads
defined, 66
isolated, 66
Together, putting it all, 95-106
down to data source layers, 97-100
miscellaneous layering schemes,
103-6
some technology-specific advice,
100-103
starting with domain layers, 96-97
Tracks, albums and, 264-67
Transaction isolation, reducing for live-
ness, 73-74
Transaction Script, 110-15
example
revenue recognition (Java), 113-15
how it works, 110-11
revenue recognition problem, 112-13
when to use it, 111-12
Transaction Scripts, data source for,
97-98
Transactional resources, 72-73
Transactions, 66, 71
business and system, 74-76

531

532

Index

late, 72
long, 72
request, 72
system, 74-76
Transform, simple, 363-64
Transform View, 361-64
example
simple transform (Java), 363-64
when to use it, 362-63
Two-stage XSLT (XSLT), 371-74
Two Step View, 365-78
examples
JSP and custom tags (Java), 374-78
two-stage XSLT (XSLT), 371-74
how it works, 365-67
when to use it, 367-71

U
Uncommitted, read, 74

Unit of Work, 184-94
example
Unit of Work with object registration
(Java), 190-94
how it works, 184-89
when to use it, 189-90
Unit of Work with object registration
(Java), 190-94
Unrepeatable reads, 73
Updates, lost, 64

\%
Value holder, using, 205-6
Value Object, 486-87
how it works, 486-87
when to use it, 487
Value objects, simple, 270-71
Values, Embedded, 268-71
example
simple value objects (Java), 270-71
further reading, 270
how it works, 268
when to use it, 268-69
View patterns, 58-60
View, simple display with JSP, 335-37
Views, Template, 350-60
examples

ASP.NET server page (C#),
357-60
using JSP as view with separate con-
troller (Java), 355-57
how it works, 351-54
when to use it, 354-55
Views, Transform, 361-64
example
simple transform (Java), 363-64
how it works, 361-62
when to use it, 362-63
Views, Two Step, 365-78
examples
JSP and custom tags (Java),
374-78
two-stage XSLT (XSLT), 371-74
how it works, 365-67
when to use it, 367-71
Virtual proxy (Java), 203-5

W
Web presentation, 55-61

input controller patterns, 61
view patterns, 58-60
Web presentation patterns, 329-86
Application Controller, 379-86
Front Controller, 344-49
MVC (Model View Controller),
330-32
Page Controller, 33343
Template View, 350-60
Transform View, 361-64
Two Step View, 365-78
Web service (C#), 395-400
Web services, 103
Work, Unit of, 184-94
example
Unit of Work with object registration
(Java), 190-94
how it works, 184-89
when to use it, 189-90

X
XML

serializing department hierarchy in,
274-77
serializing using, 411-13

Index 533

XSLT, two stage, 371-74

	Contents
	Preface
	Who This Book Is For
	Acknowledgments
	Colophon

	Introduction
	Architecture
	Enterprise Applications
	Kinds of Enterprise Application
	Thinking About Performance
	Patterns
	The Structure of the Patterns
	Limitations of These Patterns

	Chapter 3: Mapping to Relational Databases
	Architectural Patterns
	The Behavioral Problem
	Reading in Data
	Structural Mapping Patterns
	Building the Mapping
	Using Metadata
	Database Connections
	Some Miscellaneous Points
	Further Reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

