

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Library of Congress Cataloging-in-Publication Data

Sliger, Michele, 1964-
The software project manager’s bridge to agility / Michele Sliger, Stacia Broderick.

p. cm.
Includes bibliographical references and index.
ISBN 0-321-50275-2 (pbk. : alk. paper) 1. Computer software—Development—Management.

2. Agile software development . I. Broderick, Stacia, 1974- II. Title.

QA76.76.D47S563 2008
005.1068—dc22

2008008524

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-50275-9
ISBN-10: 0-321-50275-2

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing May 2008

This Book Is Safari Enabled
The Safari® Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45
days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical
books, find code samples, download chapters, and access technical information whenever and wher-
ever you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.informit.com/onlineedition
• Complete the brief registration form
• Enter the coupon code I1GL-5UBF-62GU-7QF5-HBBE

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail
customer-service@safaribooksonline.com.

Editor-in-Chief
Karen Gettman

Executive Editor
Chris Guzikowski

Senior Development Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Bart Reed

Indexer
Erika Millen

Proofreader
Paula Lowell

Publishing Coordinator
Raina Chrobak

Cover Designer
Alan Clements

Compositor
Nonie Ratcliff

http://www.informit.com/onlineedition

Preface

We are dedicated to the use of agile practices in software development
(a.k.a. agilists), but we didn’t start out that way. We began as Project Man-
agement Professionals (PMP®)1 who used more traditional methods in the
development of software.

Why We Wrote This Book
We followed the approaches outlined in the Project Management Institute’s
A Guide to the Project Management Body of Knowledge—Third Edition
(PMBOK® Guide) for much of our careers, and in moving to agile
approaches we became more aware of the misconceptions out there sur-
rounding the subject matter of this book—incorrect ideas that we once
believed as well. Now as agile consultants, we continue to hear our clients
say that they believe (incorrectly) that if they are to keep their PMP certifica-
tion and follow the practices outlined in the PMBOK® Guide that they must
use a waterfall-like methodology. We also hear the mistaken belief that agile
approaches lack discipline and rigor. And we see the fear and dismay of
those who believe that their investment in the Project Management Institute
(PMI) may be for naught if they follow the path to agility.

It is our goal to dispel these myths in our book and show that the Third
Edition of the PMBOK® Guide does in fact support agile software develop-
ment methods and that the investment that project managers have made in
the PMI and in the practices outlined in the PMBOK® Guide are still solid
and appropriate to pursue. It is clear to us that the PMBOK® Guide is
methodology-neutral and supports good project management practices
regardless of the approach chosen. Although many are already aware of this
fact, we find that there are still many who are not. As PMPs who are now
agile enthusiasts, we feel it is important to also dispel the mistaken notion in
the agile community that PMPs cannot be good agile project managers. We
would like to build a bridge between the two—thus the need for this book.

• xvii •

Structure and Content of the Book
Accordingly, we’ve put much of the detail concerning this bridging in Part
II, where we map the PMBOK® Guide’s practices to agile practices. It is our
intent to show project managers that in moving to an agile methodology,
they do not move away from implementing PMI-recommended practices—
they simply implement the practices in a different way, making sure that the
intent behind these practices remains true. In some chapters you’ll find a
clear mapping, whereas in others the mapping is more imprecise. This book
is intended to be a guide, a way to take the lexicon you are already familiar
with and relate it to a new way of developing software. This book will not
replace any of the more specific agile practice books in the market today,
and we encourage you to supplement this reading with other books on par-
ticular agile methods (Scrum, XP, Lean, Crystal, and so on).

The next several sections provide a quick preview of the book.

Part I: An Agile Overview

Part I introduces you to the basic terms and concepts of agile software
development. We begin in the first chapter (“What Is Agile?”) with a look
back at the emergence of agile ideas in the history of software development.
You may be surprised to learn that even Winston Royce’s paper on the
waterfall approach recommended an iterative cycle and the involvement of
the end user in the whole of the project! From this history we move forward
and review the concepts behind the Agile Manifesto and its associated prin-
ciples, which are the basis of all agile software development frameworks.

In Chapter 2, “Mapping from the PMBOK® Guide to Agile,” we look at
the history of the PMI and its most famous contribution to the practice of
project management, the PMBOK® Guide. We’ll examine how the PMBOK®

Guide project lifecycle phases and project management process groups can
be related to the Agile Fractal. And we’ll reiterate again that you can be agile
and be in keeping with the recommendations outlined in the PMBOK®

Guide.
Chapter 3, “The Agile Project Lifecycle in Detail,” describes the agile

project lifecycle—from release planning to iteration planning to daily
planning—and how demos, reviews, and retrospectives at the end of each

• xviii • P R E FA C E

iteration allow the team to continually improve. This chapter begins the use
of terminology and concepts that we expand on throughout the rest of
the book.

Part II: The Bridge: Relating PMBOK® Guide Practices to
Agile Practices

This is the part of the book where we review each of the PMBOK® Guide
knowledge areas and discuss what you used to do as a traditional project
manager, and what you should consider doing instead as an agile project
manager. As the title implies, we are trying to build an explicit bridge
between the traditional and the agile, and provide you with guidance on
what tasks and activities you should substitute—or keep.

As it is in the PMBOK® Guide, the knowledge areas are not in any type
of chronological order. In both traditional and agile project management
settings, you will find yourself doing most of these activities in parallel.

Because there is some overlap in the knowledge areas, you may find
some ideas and concepts repeated. We did this intentionally, because we
expect many of you to use this part of the book as a reference guide, and
may therefore start with any of these chapters in any order. However, to
keep the repetition to a minimum, we do use references to other chapters
rather than rewrite large sections.

The chapters in Part II include the following:

• Chapter 4: “Integration Management”
• Chapter 5: “Scope Management”
• Chapter 6: “Time Management”
• Chapter 7: “Cost Management”
• Chapter 8: “Quality Management”
• Chapter 9: “Human Resources Management”
• Chapter 10: “Communications Management”
• Chapter 11: “Risk Management”
• Chapter 12: “Procurement Management”

• xix •P R E FA C E

Part III: Crossing the Bridge to Agile

Whereas Part II covers the specific practical activity changes, Part III covers
the softer skills of being an agent of change and what this change means for
you personally and professionally. Having answered much of the “what”
you need to do in Part II, we turn our focus to “how” to make these changes
in Part III. From how your role changes, to how you’ll work with others who
aren’t agile, to what to watch out for, we respond to the commonly asked
questions of those who are about to cross the bridge. The chapters in Part
III complete the main body of the book:

• Chapter 13: “How Will My Responsibilities Change?”
• Chapter 14: “How Will I Work with Other Teams Who Aren’t

Agile?”
• Chapter 15: “How Can a Project Management Office Support

Agile?”
• Chapter 16: “Selling the Benefits of Agile”
• Chapter 17: “Common Mistakes”

Appendixes

We’ve included two appendixes we hope you will find useful. Appendix A,
“Agile Methodologies,” runs down a number of the software development
methodologies that fall under the agile umbrella. Appendix B, “Agile Arti-
facts,” includes a look at the typical agile project “artifacts.”

Who This Book Is For
Although this book is targeted at software project managers who are mem-
bers of the PMI, anyone who is doing traditional software project manage-
ment will benefit from seeing agility presented in terminology to which they
are accustomed. We will refer to these long-established methodologies as
“waterfall,” “plan-driven,” or “traditional,” all of which refer to sequential,
phased, noniterative approaches to software development.

• xx • P R E FA C E

Final Thoughts
We should also make it clear that we are not sanctioned by PMI or any of its
representatives. This book is the result of our research, interpretation, and
experience. Although we used the Third Edition of the PMBOK® Guide in
our studies, we expect that as the PMBOK® Guide goes through further
revisions, you will still find the concepts presented here to be relevant.

Endnote
1. “PMP,” “PMI,” and “PMBOK Guide” are registered marks of Project

Management Institute, Inc.

• xxi •P R E FA C E

Introduction

How One Project
Manager Crossed

the Bridge

I’m Stacia Broderick, and I want to convey a deeply personal story of
change in hopes of helping you recognize the importance of listening to
yourself and learning how to grow, even when it is quite uncomfortable and
scary.

I have been a project manager since 1993, agile since 2003. I am also a
PMP, formally trained in the lexicon of the thousands of certified Project
Management Professionals who went before me. When I started managing
projects, I took certain pride in my abilities to plan a project, learned how to
enter data into a project management tool, held status meetings, negotiated
with contractors and third-party sourcing for resources and materials, miti-
gated risks in the project and, of course, controlled scope. I could perform
forward- and backward-pass calculations in my sleep.

Project management was a perfect fit for me, who, as a third-grader,
resource-loaded my two sisters and I into weekly rotating chore schedules. I
even designed a process for reducing the number of dishwashing loads by
only emptying the dishwasher based on a pull-and-batch system (pull a dish
only when needed, and no more frequently; gather all dirty dishes in the
sink until time to reload dishwasher; reload all at once), but my father did
not support this new approach. For me—a self-admitted control freak—
project management was a perfect fit.

• 1 •

My conflict with Scrum, one of the agile approaches to software devel-
opment, began in 2003. I was vehemently opposed to this new, lightweight,
not-sponsored-by-any-formal-governing-body methodology (or so I had
thought). My life was turned upside down when Ken Schwaber came to
train and mentor our team of managers and software developers. As a
devout PMP, or perhaps as a result of still being relatively new to software
development, I was a bit leery of Ken’s initial teachings about self-managed
teams and iterative development. As I drifted in and out of the two days of
ScrumMaster training, the line that caught most of my attention was, “You
have no power.” Ken meant it in the sense that the product owner and deliv-
ery team roles would be collaborative in nature, and that a project manager
wasn’t the decision-maker in Scrum. Like a mantra, I repeated this line to
see if I could get used to it. I kept thinking, “How could you possibly man-
age a project or people without power? Wasn’t it a prerequisite that you had
to muscle your way through a project and demand that people work over-
time and weekends (but promise to feed them free pizza)? As the project
team grew fatter and physically slower, didn’t this mean you could more eas-
ily beat them into submission?” (I kid, I kid.)

When my boss failed to show up to ScrumMaster training, I was auto-
matically thrown to the lions as my (now ex)-boss’s replacement. Congratu-
lations to me: I was the newly minted ScrumMaster of three project teams.

Wow. So now I had to lead people. I had never lead people before. I had
certainly managed them, and collected the status of their tasks, and quizzed
them on how much time was remaining on those tasks. And, of course, I
questioned their estimates. (Everyone knows that developers are horrible
estimators!) I sometimes even gave my helpful opinion on whether certain
technical tasks were easy or difficult, much to the developers’ delight, I
am sure.

Of course, what I didn’t realize at the time was that I really had no
power to begin with. You see, I had always managed a group of knowledge
workers—folks who grew up crunching numbers, writing complex code,
creatively banging out products that at their roots consisted of only 1s and
0s. I truly believe that up until learning to lead, these knowledge workers
merely tolerated me. I had never really managed them. They managed me by
deciding to make me happy by filling out their timesheets. They humored
me when I asked to be walked through the testing phase of the project plan,
again. They certainly knew way more about how stuff really worked than I
did. My life was ruled by impossible project plans (see Figure I-1). For a few

• 2 • I N T R O D U C T I O N

months straight I made great overtime by staying late at the office to perfect
the Gantt chart, knowing in my heart that it would be out of date the very
next day, if not the very next minute. Often, I was asked to “create a dash-
board” for the executives: a report that I knew reflected a false, positive real-
ity. Now that I look back, I wonder how I survived the “manager” title.

• 3 •H O W O N E P R O J E C T M A N A G E R C R O S S E D T H E B R I D G E

Figure I-1
Author’s rendering
of the “impossible
project plan”

My first thoughts turned to tracking the status of projects. How will we
know “where we are”? How will we know how much value we’ve earned?
(My CEO at the time had written a book on earned value management.)
How will we manage scope? (I had produced a scope change management
process for the department and had spent weeks perfecting the diagram.)
Most frightening of all, I wondered how insane our customers would think
we are since we’d no longer be able to tell them when they could have every-
thing they wanted. And what’s with the paltry Scrum project tracking mech-
anisms? A burndown chart? What does that possibly tell us? That can’t
possibly tell us if we’re on track! I want my percent-complete status reports!
And let me say that the first few meetings with executives were disasters. I
know that I left red-faced on many occasions.

All of these questions were fueled by the personal struggle I was going
through: “Wow, if teams are self-managing, they’ll no longer need me.

I don’t have a place in this organization now that we’re using Scrum.” I had
no idea how to act within this new realm. I had a very real struggle with get-
ting past the “me” and focusing on the team. I was also troubled with
ownership issues. I routinely struggled with not owning the administrative
task of updating the product backlog; for me, this represented scope, and
not having it within my charge was very frightening. I felt powerless and as if
I had no role.

Somewhere around the third sprint, I started to get it. Once the teams
started delivering real value that could be seen and touched, the light bulb
went on. What were once yelling product owners were now engaged, ener-
gized product owners, who actually worked with the teams to talk about the
user experience, helping developers deliver valuable product increments.
Observing collocated team members who were often heard laughing, work-
ing closely together, and enjoying their personal lives again touched me in a
way that no perfectly calculated project Gantt chart or nested work break-
down structure ever could. I began to realize what it meant for teams to
work at a sustainable pace and to focus their energy on what really mattered:
creating software for the company that they work for, while being able to
enjoy their personal lives the rest of the time (after all, isn’t this the founda-
tion that keeps us all sane?). Coupled with a VP who “got it” and banned
overtime for the department, the agile principle of sustainable pace really
lifted morale and improved the quality of work life. I even had time one
evening to visit the home of one of our developers, meet his wife, and learn
more about real Indian food. It was a wonderful, personal experience (and I
now love soan papdi, a wonderful Indian dessert).

After my personal light bulb went off about the value of agile develop-
ment, I began to realize how I could provide value as an agile project man-
ager. First of all, I let go of the backlog, and it relinquished its grip on me. By
doing so, I gave control to someone else, namely the product owner, and let
him prioritize the list. This gave me more time to focus on building teams. I
moved into the collocated space with one of my teams, and I worked on jus-
tifying budget for other teams to collocate (and succeeded!). I created a
newsletter for all of the project teams, called the Daily Collaborator, that
included photos, stories, and interesting facts about the project. I learned
how to report to executives, which was no small feat, by understanding their
needs and by asking the team to help me determine how to show the project
data. I made sure that stakeholders were involved in product reviews; some-
times it was difficult to get their time. I involved people from training and

• 4 • I N T R O D U C T I O N

support in our iteration reviews and garnered their support in the testing lab
when we were manually testing part of the system. I helped set up product
backlog meetings that replaced our traditional change control meetings. I
worked with customers as they implemented early releases of our products
to gather feedback and understand how we could improve their experi-
ences. And when I was in a period of quietness, I observed, observed, and
observed some more—in the team rooms, daily standup meetings, reviews,
and general team interactions. These observations helped me determine
which obstacles to tackle next; I kept detailed notes and added tasks to my
own impediment backlog when I saw a change or an organizational impedi-
ment that needed attention. I was a chameleon and a peacock at the same
time, retaining the ability to blend in with the environment, while standing
out and displaying my feathers when the environment needed to change.

We celebrated a very successful release nine months after instituting
Scrum. It was a proud moment for us all; we had each traveled a personal
journey and transformation unlike any other. Our release t-shirts said
“Develop with Heart; Deliver with Pride.” That department of 85 people
always will remain my fondest memory of a truly performing Scrum devel-
opment organization.

My first three Scrum teams—the ones that truly scared the bejeezus out
of me—will forever remain in my heart as the kind people who taught me
the tough lessons of letting go.

The best day of my professional life was the day that I walked into one
of my Scrum team’s daily meetings and the team looked at me, smiling, and
said, “We don’t need you here, Stacia. Maybe you can use this time to work
on other things or to help another team. We’ve got it under control.” And
you know, they did have it under control. I walked away on the verge of
tears, but the tears weren’t for me and my “loss”; they were from the happi-
ness I felt at being able to let go and know that all would be just fine, and
from the satisfaction I felt from helping individuals become empowered.

For me to cross the agility bridge, I had to understand what it meant to
put others before me. This wasn’t something that came naturally to me;
because of a tough upbringing and lack of sense of self, I created a strong
identity in my project manager title. I had to learn how to facilitate and listen
for problems underneath the surface. Most importantly, I had to learn that
the people doing the work know the work the best and will figure out the
best way to get from point A to Z. All they really needed me for was to clear
the path. They knew this already; Scrum helped me see it.

• 5 •H O W O N E P R O J E C T M A N A G E R C R O S S E D T H E B R I D G E

Whereas Michele got it right away, it took me awhile. We each came
from very different places when embarking on our own personal bridges to
agility. Michele’s bridge was short and level; mine was a swaying suspension
bridge, on a 45-degree angle, fraught with high winds and torrential down-
pours. What we both agree on is that since we’ve been helping teams—hun-
dreds of teams—move to agile methods, we have never been happier in our
professional careers. In the following chapters, we are pleased to present
some ideas for translating what you already know about managing projects
into your own agile paradigm. We’ll dig deeper into what you should expect,
how to successfully make the transition, and what steps you’ll need to take
in order to cross the bridge to agility.

• 6 • I N T R O D U C T I O N

Chapter 5

Scope Management

Project Scope Management includes the processes required to ensure
that the project includes all the work required, and only the work
required, to complete the project successfully.

—PMBOK® Guide

It is not the strongest of the species that survive, nor the most
intelligent, but the ones most responsive to change.

—Charles Darwin, The Origin of Species

Next week there can’t be any crisis. My schedule is already full.

—Henry Kissinger

“Scope creep” has always been the bane of traditional project managers, as
requirements continue to change in response to customer business needs,
changes in the industry, changes in technology, and things that were learned
during the development process. Scope planning, scope definition, scope
verification, and scope control are all processes that are defined in the
PMBOK® Guide to prevent scope creep, and these areas earn great atten-
tion from project managers. Those who use agile methods believe these
deserve great attention as well, but their philosophy on managing scope is
completely different. Plan-driven approaches work hard to prevent changes
in scope, whereas agile approaches expect and embrace scope change. The
agile strategy is to fix resources and schedule, and then work to implement
the highest value features as defined by the customer. Thus, the scope

• 67 •

remains flexible. This is in contrast to a typical waterfall approach, as shown
in Figure 5-1, where features (scope) are first defined in detail, driving the
cost and schedule estimates. Agile has simply flipped the triangle.

• 68 • S C O P E M A N A G E M E N T

Figure 5-1
Waterfall vs. Agile:
The paradigm shift
(original concept
courtesy of the DSDM
Consortium)

Traditional Agile

Fixed Features Resources Schedule

Variable Resources Schedule Features

Plan
Driven

Value/Vision
DrivenAgile flips the

triangle.

Scope Planning
The PMBOK® Guide defines the Project Scope Management Plan as the out-
put of the scope planning process.1 This document defines the processes that
will be followed in defining scope, documenting scope, verifying and accept-
ing scope and completed deliverables, and controlling and managing
requests for changes to the scope. In agile, the iterative and incremental
process itself is what manages scope. Unless documentation is required for
auditing purposes, no additional document outlining procedures for scope
management is needed. Scope is defined and redefined constantly in agile, as
part of the planning meetings—in particular, release planning and iteration
planning—and by the management of the product backlog. Remember,
resources and time are typically fixed in agile approaches, and it’s the scope
that is allowed to change. However, when fixed-scope projects are required,
it is the number of iterations that will change, in order to accommodate the
need for a full feature set prior to release. Additionally, one of the success cri-
teria in traditional projects is the extent to which we can “stick to the scope”;
in agile, it is more important to be able to efficiently and effectively respond
to change. The success criteria in agile thus changes to “Are we providing
value to our customer?” The primary measure of progress is working code.

Table 5-1 provides a summary comparison of scope planning from the
traditional and agile perspectives. In agile projects, scope planning is
referred to as “managing the product backlog.”

Table 5-1
Scope Planning

Traditional Agile

Prepare a Project Scope Management Commit to following the framework as
Plan document. outlined in the chosen agile process.

Scope Definition

The PMBOK® Guide practices of scope definition, work breakdown struc-
ture (WBS) creation, and scope verification occur iteratively in agile. A tra-
ditional WBS for software projects is usually divided at its highest level into
phases of analysis, design, coding, testing, and deployment activities. Each
of these phases is then decomposed into tasks or groups of tasks, referred to
as work packages in the PMBOK® Guide. Traditional project planning
begins top-down and relies on the elaboration of detailed tasks with esti-
mates and dependencies to drive the project schedule via use of critical path
analysis. Even though the PMBOK® Guide goes into great detail about
scope decomposition by way of WBS (work breakdown structure), it also
warns that “excessive decomposition can lead to nonproductive manage-
ment effort, inefficient use of resources, and decreased efficiency in per-
forming the work.”2

In agile, we approach these practices differently in that we define fea-
tures at a high level in the product backlog and then place features into iter-
ations during release planning. One can think of the iteration—or even the
feature itself—as the agile equivalent of work packages. The features are
estimated at a gross level in the product backlog—no detailed tasks or
resources are defined at this point in time. Once the iteration begins, the fea-
tures slated for that iteration—and only that iteration—are then elaborated
into tasks that represent a development plan for the feature. Think of it as
just-in-time elaboration, preventing a wasteful buildup of requirements
inventory that may never be processed. The PMBOK® Guide supports this
idea of “rolling wave planning”:3 As the work is decomposed to lower levels

• 69 •S C O P E P L A N N I N G

of detail, the ability to plan, manage, and control the work is enhanced
because the short timeframe of the iteration reduces the amount of detail
and the complexity of estimating. The agile approach assumes that because
things change so often, you shouldn’t spend the time doing “excessive
decomposition” until you’re ready to do the work.

Let’s look at how scope is defined throughout an agile project by exam-
ining five levels of planning common to most agile projects: the product
vision, the product roadmap, the release plan, the iteration plan, and the
daily plan.4

Product Vision

At the outset of a project, it is typical to hold a kickoff meeting. Agile is no
different; however, the way the agile vision meeting is conducted is unlike
what a traditional project manager might be accustomed to. Although the
vision is defined and presented by the customer or business representative,
it is the team that clarifies the vision during the discussions and subsequent
exercises. Therefore, the team is heavily involved, and group exercises are a
big part of determining the final outcomes. See Chapter 4, “Integration
Management,” for more detail on vision meetings.

The vision meeting is designed to present the big picture, get all team
members on the same page, and ensure a clear understanding of what it is
that they’ve been brought together to do. The vision defines the mission of
the project team and the boundaries within which they will work to achieve
the desired results. The project’s goal should be directly traceable to a cor-
porate strategic objective.

Here the scope is defined at a very high level. It is not uncommon to
leave the vision meeting with only a dozen or so features identified, such as
“provide online order capabilities,” “enable international ordering and
delivery,” “create data warehouse of customer orders to use for marketing
purposes,” and “integrate with our current brick-and-mortar inventory sys-
tem.” Clearly these are all very large pieces of functionality with little-to-no
detail—and this is what is appropriate at this stage of the project. The far-
ther away the delivery date, the broader the stroke given to feature details.

Product Roadmap

A product roadmap shows how the product will evolve over the next three
to four releases or some period of calendar time, typically quarters. The

• 70 • S C O P E M A N A G E M E N T

product roadmap is a high-level represen-
tation of what features or themes are to be
delivered in each release, the customer
targeted, the architecture needed to sup-
port the features, and the business value
the release is expected to meet. The cus-
tomer or product manager, agile project
manager, architect, and executive man-
agement should meet on average two to
three times a year to collaborate on the
development and revision of the product
roadmap. Figure 5-2 shows a sample roadmap template made popular by
Luke Hohmann in his book Beyond Software Architecture.5

• 71 •S C O P E P L A N N I N G

Note
In agile, the word “release” does
not solely mean a product release
to the end customer—it can also
mean an internal release to fulfill
integration milestones and con-
tinue to confirm that the product is
“potentially shippable.”

Figure 5-2
Product roadmap
template, courtesy of
Enthiosys and Luke
Hohmann, from his
book Beyond Soft-
ware Architecture

Market Map
(Target Market
Demographics)

Time Horizon -- Quarters work well…

Features/
Benefit Map

Technology/
Architecture
Roadmap

Market Events
/Rhythms

Biometric
ID

COMDEX

?
What

technology
should we use?

Small
Office

Managed
Service

Linux

Because the customer is responsible for maintaining and prioritizing the
backlog of work, the customer also owns the product roadmap. In large cor-
porations or on projects with multiple customers or product owners, the
customer assigned to the project will often first work with others in his busi-
ness unit to create a roadmap straw man as part of working out the priorities
of deliverables with the business. Then this straw man is presented to key
project team members (agile project manager, architect, and so on) for fur-
ther revision. Finally, the roadmap is presented to the entire team and inter-
ested stakeholders, usually as part of the vision meeting and/or release

planning meeting. Feedback is encouraged at all sessions because it helps to
better define a reasonable approach to product deliverables.

In addition to the vision plan and product roadmap, the end result of
the product vision and product roadmap discussions should be the priori-
tized product backlog. These are all inputs into the next level of planning:
release (or quarterly) planning.

Release (or Quarterly) Planning

In a release planning meeting, the team reviews the strategies and vision
shared by the customer and determines how to map the work from the pri-
oritized backlog into the iterations that make up a release or that make up a
period of time such as a quarter. Figure 5-3 shows a typical release plan
agenda, and Figure 5-4 shows the release plan done using a whiteboard and
sticky notes, as is common in agile meetings when the team is co-located.
The release plan is divided up into iterations (usually one flipchart page per
iteration), with associated high-level features. The release plan also includes
any assumptions, dependencies, constraints, decisions made, concerns,
risks, or other issues that may affect the release. Again, documentation of
these additional items can be as simple as posting the flipchart that they
were originally recorded on or taking a picture of it and posting it on a
shared website.

• 72 • S C O P E M A N A G E M E N T

Last Responsible Moment Decision Points
Note that one of the items on the release planning meeting agenda is the identifica-
tion of “Last Responsible Moment (LRM) decision points.” LRM decision points
identify points in the release where a decision must be made on an issue so as not to
allow a default decision to occur. In other words, they identify “the moment at which
failing to make a decision eliminates an important alternative”.6 Up until this point,
the team can continue its momentum and gather additional information that will help
in the decision-making. For example, one team knew it would have to make a deci-
sion between going with a Sybase database and an Oracle database. But the team did
not have to decide this before they could start on the project—indeed, the team real-
ized that it could develop code that was database-independent until the third iteration,
when integration and reporting were required. Therefore, the team set the end of the
second iteration as its LRM on the database decision, giving the architect and the
DBA time to experiment with the work being developed concurrently.

• 73 •S C O P E P L A N N I N G

Figure 5-3
Release planning
meeting agendaRelease Planning

Meeting Agenda

 Introductions, ground rules, review of purpose and agenda (Project manager)

 Do we need to review our current situation and/or existing product roadmap?

 (Project manager, architect, customer/product owner)

 Do we remember the product vision? Has it changed? (Customer/product

 owner)

 What is the release date? How many iterations make up this release? (Project

 Manager)

 What is the theme for this release? (Customer/product owner)

 What are the features we need for this release? (Customer/product owner)

 What assumptions are we making? What constraints are we dealing with?

 (Team)

 What are the milestones/deliverables expected? Do we have any LRM decision

 points? (Team)

 What is the capacity of the team (iteration velocity)? (Team)

 Can we move the features into the iterations? Do we need to break them into

 smaller features so that they can be completed in a single iteration? (Team)

 What issues/concerns do we have? (Team)

 Can we commit to this release as a team, given what we know today? (Team)

 Close: empty parking lot, action items, next steps (Project manager)

Figure 5-4
Release plan

Teams that are not co-located should make every effort to bring every-
one together for this meeting. Agile emphasizes face-to-face communication
because of its benefits. However, balancing this with the realities of geo-
graphically dispersed teams means that budget constraints force teams to be
selective about when they can gather together as a group. The vision and
release planning meetings should receive high priority, because the informa-
tion shared and decisions made in these meetings guide the team through-
out the remainder of the release.

Iteration Planning

Traditional scope definition and many of the practices defined in the
PMBOK® Guide knowledge area of Project Time Management are done as
part of iteration planning. Here, features are elaborated (creating the equiv-
alent of PMBOK® Guide work packages), tasks are identified, and the time
needed to accomplish the tasks is estimated (see Figures 5-5 and 5-8). At the
beginning of each iteration, the team should hold an iteration planning
meeting to conduct this work. The team reviews the release plan and the pri-
oritized items in the backlog, reviews the features requested for the current

• 74 • S C O P E M A N A G E M E N T

Coordinated Release Planning
A colleague of ours once ran a release planning meeting with teams located in the
U.S. and in London. Because of the size of the team and the budget constraints, not
everyone could attend the day-long event. So the meeting was broken out into three
days. Day 1 was focused on the U.S. team’s release plan and all its assumptions
about and dependencies on the London team. Due to time zone issues, the London
team listened in on the phone for the first part of the meeting as the vision and the
high-level detail and expectations around the features were discussed, then dropped
off the call once the U.S. team started on the work of moving the features into the
iterations. On Day 2, the London team did its work of moving the features into the
iterations after reviewing the results of the U.S. team’s release plan (photos and notes
were made available on their shared wiki). At the end of Day 2, the London team
posted its release plan. Day 3 was devoted to the coordination of the two plans, mak-
ing sure all assumptions had been addressed and understood, all dependencies
accounted for, and proper prioritizations had been made reflecting the teams’ con-
straints. Both groups committed to the release plan on the third day after some final
tweaking.

iteration, and tasks out and estimates those features. See Figure 5-6 for a
typical iteration planning meeting agenda. In keeping with the agile practice
of just-in-time design, it is here that the details of the features are discussed
and negotiated.

• 75 •S C O P E P L A N N I N G

Figure 5-5
Iteration plan

Figure 5-6
Iteration planning
meeting agendaIteration Planning

Meeting Agenda

 Introductions, ground rules, review of purpose and agenda (Project manager)

 Do we know our iteration start and end dates? (Project manager)

 Do we know the team’s velocity? (Team)

 Do we know what “done” means? (Team)

 What are the features we need for this iteration? What is the acceptance criteria

 for each feature? (Customer/product owner)

 Do we have enough information about the features so that we can task them

 out? (Team)

 Can we estimate the time it takes to complete the tasks? (Team)

 What assumptions are we making? What constraints are we dealing with? Are

 there dependencies that affect our prioritization? (Team)

 Are we within our velocity limits? (Team)

 What issues/concerns do we have? (Team)

 Can we commit to this iteration as a team, given what we know today? (Team)

 Close: empty parking lot, action items, next steps (Project manager)

Again, planning and design work is done only for the pieces that are
being readied to code in that iteration, not for the entire system. It’s often
discovered during iteration planning that the sum of the task efforts exceeds
the size of the iteration timebox. When this occurs, some of the work needs
to be shifted either into the next iteration or back into the backlog. Similarly,
if a team discovers that it has chosen too little work for the iteration, it will
consult with the customer, who can then give the team an additional feature
or two to make up the difference. This allows the team to make a realistic
commitment to the scope of the work being defined.

Daily Stand-Up

One of the key heartbeats of agile development involves the practice of daily
stand-up meetings. It is just what it sounds like: a daily meeting, where all
team members attend, and while remaining standing, they each relate their
status to the other team members and their plan for the day based on the
progress that they’ve made. Standing helps keep the meetings short—stand-
ups should run only 5 to 15 minutes. Its primary purpose is for the team
members to inspect and adapt its work plan (iteration backlog) by quickly
sharing information about the progress (or lack of) being made by each
individual regarding the tasks that were committed to during the iteration
planning meeting. These stand-ups help the team to remain focused on the
agreed-to scope and goals of the iteration.

Summary Comparison

Table 5-2 provides a summary comparison of traditional and agile
approaches to scope definition. In agile projects this is called “multilevel
planning.”

Table 5-2
Scope Definition

Traditional Agile

Prepare a Project Scope Statement document Conduct a vision meeting to share the
that includes items such as the following: product vision; confirm and clarify the

Project boundaries and objectives, product boundaries, objectives, and product

scope description… scope description using exercises such as
the elevator statement and design the box.

• 76 • S C O P E M A N A G E M E N T

Traditional Agile

And major milestones and project Conduct a planning meeting to prepare the
deliverables… product roadmap, as well as release or quarterly

planning meetings that also include milestones
and deliverables at an iteration level.

And product specifications and Conduct an iteration planning meeting that
acceptance criteria… results in the detail around each feature, and the

tasks needed to complete the feature according to
the team’s definition of “done” and the acceptance
criteria defined by the customer.

And assumptions and constraints. All planning meetings identify and/or review
assumptions and constraints.

Create a WBS

Agile teams do not tend to create formal WBSs (work breakdown struc-
tures). Instead, flipcharts and whiteboards are used to capture the break-
down of work. You’ve seen examples of these in Figures 5-4 and 5-5. So at
the end of release planning, the agile equivalent of a WBS—a feature break-
down structure—would look like the sample release plan feature break-
down structure in Figure 5-7. If having iterations as work packages is not
sufficient for your organization/billing needs, then breaking the work down
further into smaller work packages would look like the results of an iteration
planning meeting, as illustrated in Figure 5-8.

Table 5-3 compares the traditional and agile approaches to work break-
down. In agile projects, the work breakdown structure is captured in the
release plan and the iteration plan.

Table 5-3
WBS Creation

Traditional Agile

Create a work breakdown structure Conduct planning meetings and give the team
diagram. the responsibility for breaking down the work

into smaller work packages (features and
tasks), displayed as the release plan at the
high level, and the iteration plan at the more
detailed level.

• 77 •S C O P E P L A N N I N G

• 78 • S C O P E M A N A G E M E N T

Figure 5-7
Release plan feature
breakdown structure

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Customer
Profile

Software
Product
Release

Order
Entry

Inventory
Report

Customer
Billing

Security
Options

Inventory
Updates

Trend
Reporting

Figure 5-8
Iteration plan (partial)

Tasks:
Confirm available inventory.
Capture customer info.
Capture shipping options.
Validate credit card.
Provide status to user (pass, fail).

Etc.

Estimate (hours):
5

13
8
2
2

Who:
Sue
Sue
Rob
Stu
Stu

Iteration 1

Order
Entry

Place Order
Using Credit

Card

Place Order
Using
PayPal

Access/Edit
Shopping

Cart

Cancel
Order

Scope Verification

Scope verification is accomplished within the iteration, as the customer gets
to review, test, and accept the implemented features. Ideally this happens
throughout the iteration, but it can also happen at the end of the iteration,
during the demo of the working code. Those features that were not accepted
(either because they weren’t ready or weren’t right) move back into the
backlog or into the next iteration at the discretion of the customer. Scope
change control is handled by the management of this backlog, as discussed
in the previous chapter on integration.

Table 5-4 makes the comparison between the traditional and agile
approaches to scope verification. Scope verification is captured by the agile
practices of acceptance testing and customer acceptance.

Table 5-4
Scope Verification

Traditional Agile

Document those completed deliverables Documentation of accepted features may
that have been accepted and those that be done informally (by moving the sticky
have not been accepted, along with the reason. notes to the “done” pile) or formally.

Document change requests. Customer updates the backlog.

Scope Control

Controlling scope in agile projects consists of two things: managing the
product backlog and protecting the iteration. Whereas the customer main-
tains the backlog, it is the agile project manager who protects the team and
helps prevent scope changes from occurring during the iteration.

When a team commits to the iteration at the end of the iteration plan-
ning meeting, the delivery team is effectively saying, “Given what we know
today, we believe we can deliver this work using our definition of ‘done’
within this iteration,” and the customer is effectively saying, “Given what I

• 79 •S C O P E P L A N N I N G

know today, this is the work that I am expecting by the end of the iteration,
and during that time I will not mess with the iteration backlog” (that is,
scope). The iteration backlog is thus locked in.

It is important to set the length of your iteration accordingly, because
the customer must wait until the next iteration to make changes. If there
happens to be lots of “requirements churn” (that is, requests for changes are
coming in very frequently), you may want to discuss shorter iteration cycles
with the team in order to enable more frequent changes. Maintenance teams
may have iteration lengths of only one week, whereas larger system develop-
ments with known requirements may have an iteration length of four to six
weeks. If the customer keeps trying to interrupt the team with changes, the
iteration length may be too long.

There will always be exceptions, and in those cases a discussion
between the customer and the agile project manager should help identify
potential resolutions. Iterations can be aborted and restarted, but this
should be the rare exception.

Given the short duration of iterations, it is easy to protect the iteration
backlog from change. However, changes in the product roadmap and the
release plan are expected and therefore should be reviewed regularly.

Table 5-5 lists out the differences between the traditional and agile
approaches to scope control. Agile users refer to scope control as “managing
the product backlog.”

Table 5-5
Scope Control

Traditional Agile

Use a change control system to The customer manages the product backlog; once
manage change. the team commits to the work to be done in an

iteration, the scope is protected for that duration.

Update all documents as appropriate The team revisits release plans and product
with the approved changes. roadmaps regularly, making changes as needed to

better reflect the team’s progress and changes
requested by the customer.

• 80 • S C O P E M A N A G E M E N T

Summary
The main points of this chapter can be summarized as follows:

• “Scope creep” doesn’t exist in agile projects, because scope is
expected to change.

• Scope management in agile is primarily a function of “rolling wave”
planning and the management of the product backlog.

• Scope is defined and redefined using five different levels of planning
that take the team from the broad vision down to what team mem-
bers plan to complete today.

• WBSs are not created per se; instead, release/quarterly plans and
iteration plans serve to break down the work into smaller work pack-
ages, referred to as “features and tasks.”

• Scope is verified by the customer, who is responsible for accepting or
rejecting the features completed each iteration.

• Scope is controlled through the use of the backlog, rolling wave plan-
ning, and the protection of the iteration.

Table 5-6 presents the differences in project management behavior
regarding scope management in traditional and agile projects.

Table 5-6
Agile Project Manager’s Change List for Scope Management

I used to do this: Now I do this:

Prepare a formal Project Scope Make sure the team understands the framework
Management plan. and process structure of the chosen agile

approach.

Prepare a formal Project Scope Facilitate planning meetings—vision, release,
Statement document. iteration, daily stand-up—and arrange for the

informally documented plans to be highly visible
to all stakeholders.

Create the WBS. Facilitate the release planning meeting so that the
team can create the plan showing the breakdown
of work across several iterations.

• 81 •S U M M A R Y

(continued)

Table 5-6
Agile Project Manager’s Change List for Scope Management (continued)

I used to do this: Now I do this:

Manage the change control system Step away from the backlog; it is owned by the
and try to prevent scope creep. customer. If needed, remind the customer that

during the iteration, the team is protected from
scope changes.

Manage the delivery of tasks to Allow team members to manage their daily tasks
prevent or correct scope creep and facilitate conversations with the customer to
at the task level. avoid unnecessary work or “gold plating.”

Endnotes
1. PMBOK® Guide, 107.

2. Ibid, 114.

3. Ibid.

4. Mike Cohn. Agile Estimating and Planning (Upper Saddle River, NJ: Pearson
Education, Inc., 2006), 28.

5. Luke Hohmann. Beyond Software Architecture (Boston: Addison-Wesley,
2003), 287.

6. Poppendieck. Lean Software Development, 57.

• 82 • S C O P E M A N A G E M E N T

Index

• 333 •

A
Abolishing Performance Appraisals, 154
acquisitions, 199-201
activities

definition, 94-97
duration estimating, 97-98
resource estimating, 101-102
sequencing, 99-100

adaptability, 225
Adaptive Software Development

(ASD), 299
AES Corporation, 146
agile development

Agile Manifesto
customer collaboration over

contract negotiation, 17-18
individuals and interactions over

processes and tools, 15-16
overview, 13-15
responding to change over

following a plan, 18-19
working software over

comprehensive
documentation, 16-17

agile project managers
allowing teams to self-manage,

219-221
assuming different leadership

styles, 221-224
facilitating collaboration, 229-230

flexibility/adaptability, 225
leading by serving, 225-226
overview, 217-219
partnering with skill

managers, 228-229
relinquishing inner

taskmaster, 229
removing impediments, 230-231
self-awareness, 226-228

artifacts
iteration backlogs, 312-314
iteration burndown charts, 314
iteration burnup charts, 315
iteration plans, 309-312
product backlogs, 317
product overview

documents, 303-304
release burndown charts, 316
release plans, 306-308
retrospective notes, 318
velocity logs, 315-316

common resistance to
complexity of situation, 275
expenses, 278-279
general resistance to

change, 274-275
geographically dispersed

teams, 272
gross-level estimating, 270-271
lack of information, 277

lack of long-term planning, 274
lack of need for, 275
lack of technical

planning, 271-272
lack of time, 279-280
lack of trust, 276
maximum efficiency

mindsets, 276
too many meetings, 267-270
unspoken thoughts, 272-273

communications management
change list for communications

management, 174-175
communicating basic project

information, 162-163
communications planning, 161
information distribution,

163-169
overview, 159-161
performance reporting, 170-172
stakeholders, 172-173

cost management
change list for cost

management, 126-127
cost budgeting, 119-120
cost control, 121-125
cost estimating, 113-118
overview, 111-113

history, 11-13
human resources management

acquiring project teams, 146-148
developing project

teams, 148-152
human resources planning, 145
managing project teams, 153-157
overview, 143-144

integration management
change list for, 65-66
controlling and monitoring

project work, 60-61
handoff iteration, 64
integrated change control, 61-63
iteration planning meetings, 52
overview, 51-52
project charter

development, 52-57
project closeout activities, 63-64
project execution, 60-61
project management plans, 57-60

methodologies
Agile Unified Process, 299
ASD (Adaptive Software

Development), 299
crystal methods, 297
DSDM (Dynamic

Systems Development
Method), 296-297

FDD (Feature-Driven
Development), 298

Lean Software
Development, 297-298

Scrum, 2, 295-296
XP (Extreme

Programming), 296
mistakes

cowboy coding, 287
eliminating retrospective, 293
lack of champion, 289-290
lack of documentation, 286-287
lack of participation by

businesses, 292
limiting agile practices to

teams, 289

• 334 • I N D E X

overview, 285-286
piecemeal agile practices, 288
poor leadership, 290-292
push-hard approach, 291
time estimates, 291
values mismatch, 293

overview, 9-10
PMOs (Project Management

Offices)
as educators/coaches, 261
backlog control versus

change control, 258
compliance, 254-255
members of, 262
need for, 262
overview, 249-253
project initiation, 253-254
project metrics, 259-261
resourcing, 255-257
retrospectives, 261

principles, 19-22
process groups, 32-33
procurement management

change list for procurement
management, 212

contract administration, 207-209
contract closure, 210-211
overview, 197-198
plan contracting, 201-202
plan purchases and

acquisitions, 199-201
requesting seller

responses, 203-204
seller selection, 204-206

project lifecycle, 28-32, 37
agile iterations, 42-44
agile projects, 39-40

agile releases, 40-41
agile versus plan-driven

approach, 46
daily work, 44-46
illustration, 38

projects. See projects
quality management

change list for quality
management, 141-142

overview, 129-130
quality assurance, 131-137
quality control, 137-140
quality planning, 130-131

risk management
change list for risk

management, 193-194
intrinsic schedule flaws, 178-179
overview, 177-178
personnel loss, 181-182
productivity variation, 182
risk analysis, 188-189
risk identification, 184-188
risk management

planning, 183-184
risk monitoring and

controlling, 191-193
risk response planning, 189-191
scope creep, 181
specification breakdown,

179-181
scope management

change list for scope
management, 81-82

overview, 67-69
scope control, 79-80
scope definition, 69-76

• 335 •I N D E X

scope verification, 79
WBSs, 77

selling benefits of
to customers/product

owners, 278-280
to management, 274-277
overview, 265-267
to other departments, 280-281
to teams, 267-273
tips, 281-282

stakeholder involvement, 31
time management

iteration planning. See

iteration planning
overview, 83-86
release planning, 87-93
strategic versus tactical

planning, 86-87
transitioning to, 1-6
in waterfall enterprises

auditors and assessors, 246
communications, 246-247
cost accounting and

reporting, 245-246
culture, 242-243
facilities and tooling, 245
integrating traditional process

requirements at-end, 236-237
integrating traditional process

requirements in
tandem, 237-238

integrating traditional
process requirements
upfront, 235-236

management resistance, 241-242
multiteam projects, 238-241

overview, 233-235
resource management, 243
vendors and contracting,

243-244
Agile Estimating and Planning, 170
agile iterations

iteration planning, 42-43
iteration retrospective, 44
iteration review, 43
overview, 42

Agile Manifesto
customer collaboration over

contract negotiation, 17-18
individuals and interactions over

processes and tools, 15-16
overview, 13-15
responding to change over

following a plan, 18-19
working software over

comprehensive
documentation, 16-17

agile methodologies
Agile Unified Process, 299
ASD (Adaptive Software

Development), 299
crystal methods, 297
DSDM (Dynamic Systems

Development Method), 296-297
FDD (Feature-Driven

Development), 298
Lean Software

Development, 297-298
Scrum, 2, 295-296
XP (Extreme Programming), 296

Agile Project Management, 54, 301

• 336 • I N D E X

agile project managers
allowing teams to self-manage,

219-221
assuming different leadership

styles, 221-224
facilitating collaboration, 229-230
flexibility/adaptability, 225
leading by serving, 225-226
overview, 217-219
partnering with skill

managers, 228-229
relinquishing inner taskmaster, 229
removing impediments, 230-231
self-awareness, 226-228

agile projects. See projects
agile releases, 40-41
Agile Software Development

Ecosystems, 295
Agile Unified Process, 299
AgileEVM (Earned Value

Management), 123-125
Ambler, Scott, 299
analysis of risk, 188-189
annual performance reviews, 154-155
architectural planning, 271-272
Artful Making, 52
artifacts

iteration backlogs, 312-314
iteration burndown charts, 314
iteration burnup charts, 315
iteration plans, 309-312
product backlogs, 317
product overview

documents, 303-304
release burndown charts, 316
release plans, 306-308
retrospective notes, 318
velocity logs, 315-316

ASD (Adaptive Software
Development), 299

assessors, 246
Atern, 297
auditors, 246
audits, 135-136, 246
Austin, Rob, 52
avoiding risk, 190

B
Back, Kent, 296
backlogs

backlog control, 258
iteration backlogs, 312-314
product backlogs, 41, 317

Bakke, Dennis, 146
barely sufficient philosophy, 53, 235
Bayer, Sam, 299
BDUF (big design up front), 113
Bennis, Warren, 143
Beyond Software Architecture, 71
bibliography, 327-331
Biederman, Patricia Ward, 143
big design up front (BDUF), 113
Bohn, H. G., 285
Boone, Mary E., 220
budgeting

funding limit reconciliations, 120
overview, 119
reserve analysis, 120
traditional versus agile

approaches, 120
Buffett, Warren, 285
bullpens, 245

• 337 •I N D E X

burndown charts
iteration burndown charts, 314
release burndown charts, 316

burnup charts, 315
businesses, participation of, 292

C
Carter, Jimmy, 197
champions, need for, 289-290
change

change control, 61-63, 258
change lists

communications
management, 174-175

cost management, 126-127
integration management, 65-66
procurement management, 212
quality management, 141-142
risk management, 193-194
scope management, 81-82
time management, 107-108

resistance to, 274-275
responding to, 18-19

Charette, Bob, 297
Chrysler Corporation, 13
closeout activities, 63-64
closing contracts, 210-211
closing process group, 33
closure tasks

product backlogs, 317
release burndown charts, 316
retrospective notes, 318
velocity logs, 315-316

coaches, PMOs (Project
Management Offices) as, 261

Coad, Peter, 298
Cockburn, Alistair, 53, 235
Cohn, Mike, 170, 222
collaboration

facilitating, 229-230
importance of, 17-18

Collaboration Explained, 230
common mistakes. See mistakes
common work areas, 245
communications management

change list for communications
management, 174-175

communicating basic project
information, 162-163

communications effectiveness
pyramid, 164

communications planning, 161
in contract administration, 209
information distribution, 163

communications effectiveness
pyramid, 164

daily stand-up meetings, 166
highly visible information

radiators, 168
iteration demo and review

meetings, 164-165
retrospectives, 166-168
traditional versus agile

approaches, 169
overview, 159-161
performance reporting, 170-172
stakeholders, 172-173
in waterfall enterprises, 246-247

compliance, 254-255
conformity pressure, 179
containing risks, 190

• 338 • I N D E X

contracts, 201-202
administration, 207-209
closing, 210-211
negotiation, 17-18
waterfall enterprises, 243-244

controlling
costs

AgileEVM (Earned Value
Management), 123-125

informing stakeholders of cost
changes, 123

locking down iterations, 122
managing release backlog, 122
overview, 121
traditional versus agile

approaches, 125
project work, 60-61
risks, 191-193

cost management
change list for cost

management, 126-127
cost budgeting

funding limit reconciliations, 120
overview, 119
reserve analysis, 120
traditional versus agile

approaches, 120
cost control

AgileEVM (Earned Value
Management), 123-125

informing stakeholders of cost
changes, 123

locking down iterations, 122
managing release backlog, 122
overview, 121
traditional versus agile

approaches, 125

cost estimating
by delivery teams, 114, 117
overview, 113
realistic estimates, 118
refining estimates, 117-118
top-down estimating, 115-116
traditional versus agile

approaches, 118
overview, 111-113
waterfall enterprises, 245-246

Crosby, Philip B., 129
crunch mode, 291
Crystal Methods, 13, 297
culture, 242-243
Curtis, George William, 37
customers

collaboration, 17-18
selling agile development

to, 278-280

D
daily scrums, 239
daily stand-up meetings, 76, 166
daily work, 44-46
Darwin, Charles, 9, 67
Davis, Gordon, 26
De Luca, Jeff, 298
death march, 291
delivery teams, 114, 117
DeMarco, Tom, 177-178, 189
Deming, W. Edwards, 32, 143
demo, review, and retrospective

meetings, 132-137
Department of Defense (DoD), 11
design-the-box example, 56-57

• 339 •I N D E X

development
agile. See agile development
Evolutionary project

management (Evo), 11
IID (iterative and incremental

development), 11
Lean Product Development, 12
of project teams, 148-149

behaviors, 150-152
traditional versus agile

approaches, 152-153
values, 149-150

rugby approach, 11
scientific management, 12
waterfall model, 11

Devin, Lee, 52
distributing information, 163

communications effectiveness
pyramid, 164

daily stand-up meetings, 166
highly visible information

radiators, 168
iteration demo and review

meetings, 164-165
retrospectives, 166-168
traditional versus agile

approaches, 169
documentation, 16-17. See also artifacts

product overview
documents, 303-304

reassessing, 286-287
DoD (Department of Defense), 11
Drucker, Peter, 13, 129, 177, 217, 219
DSDM (Dynamic Systems

Development Method), 296-297

duration of activities, estimating, 97-98
Dynamic Systems Development

Method (DSDM), 296-297

E
Easel Corporation, 13
educators, PMOs (Project

Management Offices) as, 261
elevator statement, 54-56
Engman, A. E., 26
estimating

activity duration, 97-98
activity resources, 101-102
costs

by delivery teams, 114, 117
overview, 113
realistic estimates, 118
refining estimates, 117-118
top-down estimating, 115-116
traditional versus agile

approaches, 118
evading risks, 190
Evo (Evolutionary project

management), 11
Evolution, Theory of, 9
Evolutionary project

management (Evo), 11
Executing process group, 33
executing projects, 60-61
exit retrospectives, 211
Extreme Programming (XP),

13, 38, 45, 296

• 340 • I N D E X

F
facilitating collaboration, 229-230
facilities, 245
FDD (Feature-Driven

Development), 298
Federal Aviation Authority, 147
Fibonacci sequence, 88
“fist of five,” 194n

flexibility, 225
forming teams, 221-224
Fretty, Peter, 27
Freud, Anna, 220
funding limit reconciliations, 120
fuzzy logic, 283n

G
Gallagher, Susan C., 26
General Electric, 154
geographically dispersed teams, 272
Gilb, Thomas, 11
glossary, 321-325
grassroots engineering teams, 289
Greenleaf, Robert, 144, 225
gross-level estimating, 270-271
groups (process), 32-33
A Guide to the Project Management

Body of Knowledge—Third Edition.
See PMBOK® Guide

H
handoff iteration, 64
hardening iterations, 237
Hershey, Paul, 224

highly visible information
radiators, 168

Highsmith, Jim, 54, 295, 299, 301
history

of PMBOK® Guide, 26-28
of Project Management Institute, 26

history of agile development, 11-13
Hohmann, Luke, 71
human resources management

acquiring project teams, 146-148
developing project teams, 148-149

behaviors, 150-152
traditional versus agile

approaches, 152-153
values, 149-150

human resources planning, 145
managing project teams, 153-157
overview, 143-144

I
IBM Rational Unified Process, 13
identifying risks, 184-188
IID (iterative and incremental

development), 11
impediments, removing, 230-231
Independent Validation and

Verification (IV&V), 235
individuals, importance of, 15-16
information distribution, 163

communications effectiveness
pyramid, 164

daily stand-up meetings, 166
highly visible information

radiators, 168

• 341 •I N D E X

iteration demo and review
meetings, 164-165

retrospectives, 166-168
traditional versus agile

approaches, 169
informing stakeholders of cost

changes, 123
initiation phase (projects),

253-254, 301-303
iteration planning meetings, 309
iteration plans, 309-312
product overview documents,

303-304
release planning meetings, 305-306
release plans, 306-308

initiation process group, 33
integrated change control, 61-63
integrating agile development with

waterfall enterprises
auditors and assessors, 246
communications, 246-247
cost accounting and

reporting, 245-246
culture, 242-243
facilities and tooling, 245
integrating traditional process

requirements at-end, 236-237
integrating traditional process

requirements in tandem, 237-238
integrating traditional process

requirements upfront, 235-236
management resistance, 241-242
multiteam projects, 238-241
overview, 233-235
resource management, 243
vendors and contracting, 243-244

integration management
change list for, 65-66
controlling and monitoring

project work, 60-61
handoff iteration, 64
integrated change control, 61-63
iteration planning meetings, 52
overview, 51-52
project charter development, 52

traditional versus agile
approach, 57

vision meetings, 54-57
project closeout activities, 63-64
project execution, 60-61
project management plans, 57-60

interactions, importance of, 15-16
intrinsic schedule flaws, 178-179
involvement of stakeholders, 31
Iteration 0 (zero), 89
iteration backlogs, 312-314
iteration burndown charts, 314
iteration burnup charts, 315
Iteration H, 89
iteration planning, 74-76, 309-312

activity definition, 94-97
activity duration estimating, 97-98
activity resource

estimating, 101-102
activity sequencing, 99-100
overview, 93-94
planning meetings, 52, 309
schedule control, 102-106

iterations
hardening iterations, 237
iteration backlogs, 312-314
iteration burndown charts, 314
iteration burnup charts, 315

• 342 • I N D E X

iteration demo and review
meetings, 164-165

iteration planning, 74-76, 309-312
activity definition, 94-97
activity duration

estimating, 97-98
activity resource

estimating, 101-102
activity sequencing, 99-100
overview, 93-94
planning meetings, 52, 309
schedule control, 102-106

iteration retrospective, 44
iteration review, 43
locking down, 122
overview, 42

iterative and incremental
development (IID), 11

IV&V (Independent Validation and
Verification), 235

J
Jackson, Jesse, 83
James, William, 25, 233
Jeffries, Ron, 37, 265
Jenett, Eric, 26
Joy at Work, 146

K
kanban, 168
Kelleher, Herb, 51
Kissinger, Henry, 67
knowledge workers, 85
Kohn, Alfie, 154

L
Last Responsible Moment (LRM)

decision points, 72
“A Leader’s Framework for Decision

Making” (article), 220
leadership, 221-224, 290-292
Lean Product Development, 12
Lean Software Development, 297-298
Leffingwell, Dean, 271
lifecycle (project), 28-32, 37

agile iterations
iteration planning, 42-43
iteration retrospective, 44
iteration review, 43
overview, 42

agile projects, 39-40
agile releases, 40-41
agile versus plan-driven

approach, 46
daily work, 44-46
illustration, 38

Lister, Tim, 177-178, 189
locking down iterations, 122
logs, velocity, 315-316
long-term planning, 274
LRM (Last Responsible Moment)

decision points, 72

M
management

integration management
change list for, 65-66
controlling and monitoring

project work, 60-61
handoff iteration, 64

• 343 •I N D E X

integrated change control, 61-63
iteration planning meetings, 52
overview, 51-52
project charter

development, 52-57
project closeout activities, 63-64
project execution, 60-61
project management plans, 57-60

management resistance to agile
development, 241-242

selling agile development
to, 274-277

“Managing the Development of Large
Software Systems” (paper), 11

maximum efficiency mindsets, 276
McGregor, Douglas, 148
meetings

daily stand-up meetings, 76, 166
demo, review, and retrospective

meetings, 132-137
iteration demo and review

meetings, 164-165
iteration planning meetings, 309
one-on-one meetings, 155
Open Space meetings, 185
release planning meetings, 72-74,

256-257, 305-306
retrospectives. See retrospectives
selling teams on, 267-270
virtual stand-up meetings, 147
vision meetings, 54, 70

design-the-box example, 56-57
elevator statement, 54-56

metrics, 259-261
mistakes

cowboy coding, 287
eliminating retrospective, 293

lack of champion, 289-290
lack of documentation, 286-287
lack of participation by

businesses, 292
limiting agile practices to teams, 289
overview, 285-286
piecemeal agile practices, 288
poor leadership, 290-292
push-hard approach, 291
time estimates, 291
values mismatch, 293

mitigating risk factors. See risk
management

monitoring
project work, 60-61
risks, 191-193

monitoring and controlling
process group, 33

multiteam projects, 238-241

N
NASA, 11
“The New New Product Development

Game” (paper), 11, 295
Nonaka, Ikujiro, 217, 295
norming, 223

O
one-on-one meetings, 155
Open Space meetings, 185
origins

of agile development, 11-13
of PMBOK® Guide, 26-28

• 344 • I N D E X

P
performance reporting, 170-172
performance reviews, 154-155
personnel loss, 181-182
phases of project lifecycle, 28-32, 37

agile iterations
iteration planning, 42-43
iteration retrospective, 44
iteration review, 43
overview, 42

agile projects, 39-40
agile releases, 40-41
agile versus plan-driven

approach, 46
daily work, 44-46
illustration, 38

Plan-Do-Check-Act cycle, 32
Plan-Do-Study-Act cycle, 32
plan-driven approach, 19, 46
Planck, Max, 25
planning process group, 33
plans

communications planning, 161
contracting, 201-202
human resources planning, 145
iteration planning, 42-43

activity definition, 94-97
activity duration

estimating, 97-98
activity resource

estimating, 101-102
activity sequencing, 99-100
overview, 93-94
schedule control, 102-106

iteration plans, 309-312
project management plans, 57-60

Project Scope Management Plans
change list for scope

management, 81-82
overview, 68-69
scope control, 79-80
scope definition, 69-76
scope verification, 79
WBSs, 77

purchases and
acquisitions, 199-201

quality planning, 130-131
release planning, 40, 306-308

overview, 87-88
meetings, 256-257
schedule control, 91-93
schedule development, 88-90

revising, 18-19
risk management planning, 183-184
risk response planning, 189-191
strategic versus tactical

planning, 86-87
PM Network®, 27
PMBOK® Guide

origins of, 26-28
overview, xvii
project communications

management
change list for communications

management, 174-175
communicating basic project

information, 162-163
communications planning, 161
information distribution,

163-169
overview, 159-161
performance reporting, 170-172
stakeholders, 172-173

• 345 •I N D E X

project cost management
change list for cost

management, 126-127
cost budgeting, 119-120
cost control, 121-125
cost estimating, 113-118
overview, 111-113
waterfall enterprises, 245-246

project human resources
management
acquiring project teams, 146-148
developing project

teams, 148-152
human resources planning, 145
managing project teams, 153-157
overview, 143-144

project integration management
change list for, 65-66
controlling and monitoring

project work, 60-61
handoff iteration, 64
integrated change control, 61-63
iteration planning meetings, 52
overview, 51-52
project charter

development, 52-57
project closeout activities, 63-64
project execution, 60-61
project management plans, 57-60

process groups, 32-33
project procurement management

change list for procurement
management, 212

contract administration, 207-209
contract closure, 210-211
overview, 197-198
plan contracting, 201-202

plan purchases and
acquisitions, 199-201

requesting seller
responses, 203-204

seller selection, 204-206
project lifecycle, 28-32, 37

agile iterations, 42-44
agile releases, 40-41
agile versus plan-driven

approach, 46
daily work, 44-46
illustration, 38

project quality management
change list for quality

management, 141-142
overview, 129-130
quality assurance, 131-137
quality control, 137-140
quality planning, 130-131

project risk management
change list for risk

management, 193-194
intrinsic schedule flaws, 178-179
overview, 177-178
personnel loss, 181-182
productivity variation, 182
risk analysis, 188-189
risk identification, 184-188
risk management

planning, 183-184
risk monitoring and

controlling, 191-193
risk response planning, 189-191
scope creep, 181
specification

breakdown, 179-181
project scope management, 67-68

• 346 • I N D E X

“PMI Special Report on Ethics,
Standards, and Accreditation”
(paper), 26

PMOs (Project Management Offices)
backlog control versus change

control, 258
compliance, 254-255
as educators/coaches, 261
members of, 262
need for, 262
overview, 249-253
project initiation, 253-254
project metrics, 259-261
resourcing, 255-257
retrospectives, 261

Poppendieck, Mary, 12, 18, 83, 200
Poppendieck, Tom, 12
principles of agile development, 19-22
Pritchard, Carl, 183
process groups, 32-33
procurement management

change list for procurement
management, 212

contract administration, 207-209
contract closure, 210-211
overview, 197-198
plan contracting, 201-202
plan purchases and

acquisitions, 199-201
requesting seller responses, 203-204
seller selection, 204-206

product overview documents, 303-304
product owners, selling agile

development to, 278-280
product roadmap planning, 39
productivity, 147, 182

products
backlogs. See backlogs
product overview

documents, 303-304
product roadmap, 70, 72
product vision, 70

project charters, 52
traditional versus agile approach, 57
vision meetings, 54-57

project lifecycle, 28-32, 37
agile iterations

iteration planning, 42-43
iteration retrospective, 44
iteration review, 43
overview, 42

agile projects, 39-40
agile releases, 40-41
agile versus plan-driven

approach, 46
daily work, 44-46
illustration, 38

Project Management Institute, 26-27
Project Management Offices.

See PMOs
project management plans, 57-60
project managers

allowing teams to self-manage,
219-221

assuming different leadership
styles, 221-224

facilitating collaboration, 229-230
flexibility/adaptability, 225
leading by serving, 225-226
overview, 217-219
partnering with skill

managers, 228-229

• 347 •I N D E X

relinquishing inner taskmaster, 229
removing impediments, 230-231
self-awareness, 226-228

Project Scope Management Plans
change list for scope

management, 81-82
overview, 68-69
scope control, 79-80
scope definition, 69-76

daily stand-up meetings, 76
iteration planning, 74-76
product roadmap, 70-72
product vision, 70
release planning, 72-76
traditional versus agile

approaches, 76-77
scope verification, 79
WBSs, 77

project teams. See teams
projects, 39-40. See also PMOs

(Project Management Offices)
charters, 52

traditional versus agile
approach, 57

vision meetings, 54-57
closure tasks, 63-66

product backlogs, 317
release burndown charts, 316
retrospective notes, 318
velocity logs, 315-316

communications management
change list for communications

management, 174-175
communicating basic project

information, 162-163
communications planning, 161

information distribution,
163-169

overview, 159-161
performance reporting, 170-172
stakeholders, 172-173

cost management
change list for cost

management, 126-127
cost budgeting, 119-120
cost control, 121-125
cost estimating, 113-118
overview, 111-113

execution, 60-61
human resources management

acquiring project teams, 146-148
developing project

teams, 148-152
human resources planning, 145
managing project teams, 153-157
overview, 143-144

initiation, 253-254, 301-303
iteration planning meetings, 309
iteration plans, 309-312
product overview

documents, 303-304
release planning

meetings, 305-306
release plans, 306-308

integration management
change list for, 65-66
controlling and monitoring

project work, 60-61
handoff iteration, 64
integrated change control, 61-63
iteration planning meetings, 52
overview, 51-52

• 348 • I N D E X

project charter
development, 52-57

project closeout activities, 63-64
project execution, 60-61
project management plans, 57-60

iterations
hardening iterations, 237
iteration backlogs, 312-314
iteration burndown charts, 314
iteration burnup charts, 315
iteration demo and review

meetings, 164-165
iteration planning, 52, 74-76,

94-106, 309-312
iteration retrospective, 44
iteration review, 43
locking down, 122
overview, 42

metrics, 259-261
procurement management

change list for procurement
management, 212

contract administration, 207-209
contract closure, 210-211
overview, 197-198
plan contracting, 201-202
plan purchases and

acquisitions, 199-201
requesting seller

responses, 203-204
seller selection, 204-206

quality management
change list for quality

management, 141-142
overview, 129-130
quality assurance, 131-137
quality control, 137-140
quality planning, 130-131

risk management
change list for risk

management, 193-194
intrinsic schedule flaws, 178-179
overview, 177-178
personnel loss, 181-182
productivity variation, 182
risk analysis, 188-189
risk identification, 184-188
risk management

planning, 183-184
risk monitoring and

controlling, 191-193
risk response planning, 189-191
scope creep, 181
specification breakdown,

179-181
time management

change list for time
management, 107-108

iteration planning, 93-102
overview, 83-86
release planning, 86-93

Punished by Rewards, 154
purchases, 199-201
push-hard approach, 291

Q
QA (quality assurance)

demo, review, and retrospective
meetings, 132-137

overview, 131-132
traditional versus agile

approaches, 137

• 349 •I N D E X

quality management
change list for quality

management, 141-142
overview, 129-130
quality assurance

demo, review, and retrospective
meetings, 132-137

overview, 131-132
traditional versus agile

approaches, 137
quality control, 137-140
quality planning, 130-131

R
Rational Unified Process, 13
realistic cost estimates, 118
“Reconciling Differences” (article), 27
refining cost estimates, 117-118
regression, 220
release backlog, 122
release burndown charts, 316
release planning, 74, 306-308

overview, 87-88
release planning meetings, 72-74,

256-257, 305-306
schedule control, 91-93
schedule development, 88-90

releases, 40-41
release backlog, 122
release planning, 74, 306-308

overview, 87-88
release planning meetings, 72-74,

256-257, 305-306
schedule control, 91-93
schedule development, 88-90

removing impediments, 230-231
reports

performance reporting, 170-172
waterfall enterprises, 245-246

requesting seller responses, 203-204
reserve analysis, 120
resistance to agile

development, 241-242
resource estimating, 101-102
resource management, 243
resourcing, 255-257
responding to change, 18-19
response to risk, 189-191
retrospectives, 44, 166-168, 211

definition, 133
importance of, 293
PMOs (Project Management

Offices), 261
retrospective notes, 318

revising plans, 18-19
risk management

change list for risk
management, 193-194

intrinsic schedule flaws, 178-179
overview, 177-178
personnel loss, 181-182
productivity variation, 182
risk analysis, 188-189
risk identification, 184-188
risk management planning, 183-184
risk monitoring and

controlling, 191-193
risk response planning, 189-191
scope creep, 181
specification breakdown, 179-181

roadmaps, 70-72, 256-257
rolling wave planning, 69

• 350 • I N D E X

Royce, Winston, 11
rugby approach, 11

S
Sarbanes-Oxley (SOX), 255, 263n

Satir, Virginia, 218
Scaling Software Agility, 271
schedules, intrinsic schedule

flaws, 178-179
Schwaber, Ken, 2, 43, 239, 295
scientific management, 12
scope creep, 67, 181
scope management

change list for scope
management, 81-82

overview, 67-69
scope control, 79-80
scope creep, 67, 181
scope definition, 69-76

daily stand-up meetings, 76
iteration planning, 74-76
product roadmap, 70-72
product vision, 70
release planning, 72-74
traditional versus agile

approaches, 76-77
scope statements, 52

traditional versus agile
approach, 57

vision meetings, 54-57
scope verification, 79
WBSs, 77

Scrum, 2, 12, 38, 295-296
Scrum-of-Scrums model, 239
selecting sellers, 204-206

self-awareness, 226-228
self-management, 219-221
self-transcendence, 15
sellers

requesting seller responses, 203-204
selecting, 204-206

selling agile development
to customers/product

owners, 278-280
to management, 274-277
to other departments, 280-281
overview, 265-267
to teams, 267-273
tips, 281-282

sequencing activities, 99-100
The Servant as Leader, 144
servant leaders, 225-226
Shewhart, Walter A., 32
Shine Technologies, 27
simplicity, 21
situational leadership, 224
Smits, Hubert, 265
Snowden, David J., 220
Snyder, James, 26
Software Development: An

Agile Toolkit, 12
Southwest Airlines, 51
SOX (Sarbanes-Oxley), 255, 263n

specification breakdown, 179-181
Stacey, Ralph, 219
staff, loss of, 181-182
staged contracts, 18
stakeholders

informing of cost changes, 123
involvement, 31
managing, 172-173

• 351 •I N D E X

storming, 222
strategic planning, 86-87
sustainable pace, maintaining, 291
Sutherland, Jeff, 295

T
Tabaka, Jean, 230
tactical planning, 86-87
Takeuchi, Hirotaka, 295
Talese, Gay, 249
Taylor, Frederick, 12, 149
team working agreements, 59
teams

acquiring, 146-148
allowing to self-manage, 219-221
conformity pressure, 179
delivery teams, 114, 117
developing, 148-149

behaviors, 150-152
traditional versus agile

approaches, 152-153
values, 149-150

forming, 221-224
geographically dispersed teams, 272
leading by serving, 225-226
managing, 153-157
selling agile development

to, 267-273
working agreements, 59

technical debt, 138
technical planning, 271-272
Theory of Evolution, 9
Theory X, 148
Theory Y, 149
time estimates, 291

time management
change list for time

management, 107-108
iteration planning

activity definition, 94-97
activity duration

estimating, 97-98
activity resource

estimating, 101-102
activity sequencing, 99-100
overview, 93-94
schedule control, 102-106

overview, 83-86
release planning

overview, 87-88
schedule control, 91-93
schedule development, 88-90

strategic versus tactical
planning, 86-87

tooling, 245
top-down cost estimating, 115-116
Toyota

plan purchases and
acquisitions, 200

TPS (Toyota Production
System), 12

transforming ideas, 218
transitioning to agile development, 1-6
Tuckman, Bruce, 221
Tzu, Sun, 249

U-V
Udall, Morris, 233
United States Department of

Defense (DoD), 11

• 352 • I N D E X

values, 149-151
values mismatch, 293
variation in productivity, 182
velocity, 85, 182
velocity logs, 315-316
vendors, 243-244
verification of scope, 79
virtual stand-up meetings, 147
vision

overview, 39, 70
vision meetings

design-the-box example, 56-57
elevator statement, 54-56

W-Z-Y-Z
Waltzing with Bears, 178, 189
war rooms, 245
waterfall enterprises

agile teams in
auditors and assessors, 246
communications, 246-247
cost accounting and

reporting, 245-246
culture, 242-243
facilities and tooling, 245
integrating traditional process

requirements at-end, 236-237
integrating traditional process

requirements in
tandem, 237-238

integrating traditional process
requirements
upfront, 235-236

management resistance, 241-242

multiteam projects, 238-241
overview, 233-235
resource management, 243
vendors and

contracting, 243-244
waterfall model, 11

WBS (work breakdown
structure), 77, 115

“Where Do You Start in Building a
Risk Standard?” (article), 183

work breakdown structure (WBS), 115
working agreements (teams), 59
working software, 16-17

XP (Extreme Programming),
13, 38, 45, 296

• 353 •I N D E X

	Preface
	Introduction
	CHAPTER 5 Scope Management
	Scope Planning
	Summary
	Endnotes

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U-V
	W-X-Y-Z

