

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382–3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Humble, Jez.
 Continuous delivery : reliable software releases through build, test, and deployment automation
/ Jez Humble, David Farley.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-60191-9 (hardback : alk. paper) 1. Computer software--Development.
2. Computer software--Reliability. 3. Computer software--Testing. I. Farley, David, 1959-
II. Title.
 QA76.76.D47H843 2010
 005.1--dc22
 2010022186

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978–0–321–60191–9
ISBN-10: 0–321–60191–2
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing August 2010

xxiForeword ..

xxiiiPreface ..

xxxiAcknowledgments ...

xxxiiiAbout the Authors ..

1Part I: Foundations ...

3Chapter 1: The Problem of Delivering Software
3Introduction ...
4Some Common Release Antipatterns ...
5Antipattern: Deploying Software Manually

7
Antipattern: Deploying to a Production-like Environment Only after
Development Is Complete ...

9
Antipattern: Manual Configuration Management of Production Environ-
ments ..

10Can We Do Better? ..
11How Do We Achieve Our Goal? ..
13Every Change Should Trigger the Feedback Process
14The Feedback Must Be Received as Soon as Possible
15The Delivery Team Must Receive Feedback and Then Act on It
16Does This Process Scale? ...
17What Are the Benefits? ...
17Empowering Teams ..
18Reducing Errors ...
20Lowering Stress ...
21Deployment Flexibility ..
22Practice Makes Perfect ..

Contents

ix

22The Release Candidate ...
23Every Check-in Leads to a Potential Release
24Principles of Software Delivery ..
24Create a Repeatable, Reliable Process for Releasing Software
25Automate Almost Everything ...
26Keep Everything in Version Control ...
26If It Hurts, Do It More Frequently, and Bring the Pain Forward
27Build Quality In ...
27Done Means Released ...
28Everybody Is Responsible for the Delivery Process
28Continuous Improvement ..
29Summary ...

31Chapter 2: Configuration Management ..
31Introduction ...
32Using Version Control ...
33Keep Absolutely Everything in Version Control
35Check In Regularly to Trunk ...
37Use Meaningful Commit Messages ...
38Managing Dependencies ..
38Managing External Libraries ...
39Managing Components ...
39Managing Software Configuration ...
40Configuration and Flexibility ...
41Types of Configuration ...
43Managing Application Configuration ..
47Managing Configuration across Applications
47Principles of Managing Application Configuration
49Managing Your Environments ...
53Tools to Manage Environments ..
53Managing the Change Process ..
54Summary ...

55Chapter 3: Continuous Integration ...
55Introduction ...
56Implementing Continuous Integration ...
56What You Need Before You Start ...
57A Basic Continuous Integration System ...

Contents Contentsx

59Prerequisites for Continuous Integration ..
59Check In Regularly ...
60Create a Comprehensive Automated Test Suite
60Keep the Build and Test Process Short ..
62Managing Your Development Workspace ..
63Using Continuous Integration Software ...
63Basic Operation ...
63Bells and Whistles ..
66Essential Practices ..
66Don’t Check In on a Broken Build ...

66
Always Run All Commit Tests Locally before Committing, or Get Your
CI Server to Do It for You ...

67Wait for Commit Tests to Pass before Moving On
68Never Go Home on a Broken Build ..
69Always Be Prepared to Revert to the Previous Revision
70Time-Box Fixing before Reverting ..
70Don’t Comment Out Failing Tests ..
70Take Responsibility for All Breakages That Result from Your Changes .
71Test-Driven Development ...
71Suggested Practices ..
71Extreme Programming (XP) Development Practices
72Failing a Build for Architectural Breaches ..
73Failing the Build for Slow Tests ..
73Failing the Build for Warnings and Code Style Breaches
75Distributed Teams ...
75The Impact on Process ..
76Centralized Continuous Integration ..
76Technical Issues ...
77Alternative Approaches ...
79Distributed Version Control Systems ...
82Summary ...

83Chapter 4: Implementing a Testing Strategy ...
83Introduction ...
84Types of Tests ..
85Business-Facing Tests That Support the Development Process
89Technology-Facing Tests That Support the Development Process
89Business-Facing Tests That Critique the Project

xiContents Contents

91Technology-Facing Tests That Critique the Project
91Test Doubles ...
92Real-Life Situations and Strategies ...
92New Projects ...
94Midproject ..
95Legacy Systems ..
96Integration Testing ...
99Process ...

100Managing Defect Backlogs ..
101Summary ...

103Part II: The Deployment Pipeline ..

105Chapter 5: Anatomy of the Deployment Pipeline
105Introduction ...
106What Is a Deployment Pipeline? ..
111A Basic Deployment Pipeline ...
113Deployment Pipeline Practices ...
113Only Build Your Binaries Once ..
115Deploy the Same Way to Every Environment
117Smoke-Test Your Deployments ..
117Deploy into a Copy of Production ..
118Each Change Should Propagate through the Pipeline Instantly
119If Any Part of the Pipeline Fails, Stop the Line
120The Commit Stage ...
121Commit Stage Best Practices ..
122The Automated Acceptance Test Gate ...
124Automated Acceptance Test Best Practices
126Subsequent Test Stages ..
128Manual Testing ..
128Nonfunctional Testing ..
128Preparing to Release ..
129Automating Deployment and Release ...
131Backing Out Changes ...
132Building on Success ..
133Implementing a Deployment Pipeline ...
133Modeling Your Value Stream and Creating a Walking Skeleton
134Automating the Build and Deployment Process

Contents Contentsxii

135Automating the Unit Tests and Code Analysis
136Automating Acceptance Tests ..
136Evolving Your Pipeline ...
137Metrics ..
140Summary ...

143Chapter 6: Build and Deployment Scripting ...
143Introduction ...
144An Overview of Build Tools ..
146Make ..
147Ant ...
148NAnt and MSBuild ...
149Maven ..
150Rake ...
151Buildr ...
151Psake ..
152Principles and Practices of Build and Deployment Scripting
152Create a Script for Each Stage in Your Deployment Pipeline
152Use an Appropriate Technology to Deploy Your Application
153Use the Same Scripts to Deploy to Every Environment
154Use Your Operating System’s Packaging Tools
155Ensure the Deployment Process Is Idempotent
157Evolve Your Deployment System Incrementally
157Project Structure for Applications That Target the JVM
157Project Layout ...
160Deployment Scripting ..
162Deploying and Testing Layers ..
163Testing Your Environment’s Configuration
164Tips and Tricks ..
164Always Use Relative Paths ...
165Eliminate Manual Steps ...
165Build In Traceability from Binaries to Version Control
166Don’t Check Binaries into Version Control as Part of Your Build
166Test Targets Should Not Fail the Build ..
167Constrain Your Application with Integrated Smoke Tests
167.NET Tips and Tricks ...
168Summary ...

xiiiContents Contents

169Chapter 7: The Commit Stage ..
169Introduction ...
170Commit Stage Principles and Practices ...
171Provide Fast, Useful Feedback ..
172What Should Break the Commit Stage? ...
172Tend the Commit Stage Carefully ...
173Give Developers Ownership ..
174Use a Build Master for Very Large Teams
174The Results of the Commit Stage ...
175The Artifact Repository ...
177Commit Test Suite Principles and Practices
178Avoid the User Interface ...
179Use Dependency Injection ...
179Avoid the Database ..
180Avoid Asynchrony in Unit Tests ...
180Using Test Doubles ..
183Minimizing State in Tests ..
184Faking Time ..
185Brute Force ...
185Summary ...

187Chapter 8: Automated Acceptance Testing ..
187Introduction ...
188Why Is Automated Acceptance Testing Essential?
190How to Create Maintainable Acceptance Test Suites
192Testing against the GUI ..
193Creating Acceptance Tests ...
193The Role of Analysts and Testers ..
193Analysis on Iterative Projects ...
195Acceptance Criteria as Executable Specifications
198The Application Driver Layer ..
200How to Express Your Acceptance Criteria
201The Window Driver Pattern: Decoupling the Tests from the GUI
204Implementing Acceptance Tests ...
204State in Acceptance Tests ...
206Process Boundaries, Encapsulation, and Testing
207Managing Asynchrony and Timeouts ..
210Using Test Doubles ..

Contents Contentsxiv

213The Acceptance Test Stage ...
214Keeping Acceptance Tests Green ..
217Deployment Tests ..
218Acceptance Test Performance ..
219Refactor Common Tasks ...
219Share Expensive Resources ..
220Parallel Testing ..
220Using Compute Grids ...
222Summary ...

225Chapter 9: Testing Nonfunctional Requirements
225Introduction ...
226Managing Nonfunctional Requirements ..
227Analyzing Nonfunctional Requirements ..
228Programming for Capacity ...
231Measuring Capacity ...
232How Should Success and Failure Be Defined for Capacity Tests?
234The Capacity-Testing Environment ..
238Automating Capacity Testing ..
240Capacity Testing via the User Interface ...
241Recording Interactions against a Service or Public API
241Using Recorded Interaction Templates ..
244Using Capacity Test Stubs to Develop Tests
244Adding Capacity Tests to the Deployment Pipeline
247Additional Benefits of a Capacity Test System
248Summary ...

249Chapter 10: Deploying and Releasing Applications
249Introduction ...
250Creating a Release Strategy ..
251The Release Plan ..
252Releasing Products ...
253Deploying and Promoting Your Application
253The First Deployment ...
254Modeling Your Release Process and Promoting Builds
257Promoting Configuration ..
258Orchestration ..
258Deployments to Staging Environments ..

xvContents Contents

259Rolling Back Deployments and Zero-Downtime Releases
260Rolling Back by Redeploying the Previous Good Version
260Zero-Downtime Releases ..
261Blue-Green Deployments ..
263Canary Releasing ...
265Emergency Fixes ..
266Continuous Deployment ..
267Continuously Releasing User-Installed Software
270Tips and Tricks ..

270
The People Who Do the Deployment Should Be Involved in Creating
the Deployment Process ..

271Log Deployment Activities ..
271Don’t Delete the Old Files, Move Them ..
271Deployment Is the Whole Team’s Responsibility
271Server Applications Should Not Have GUIs
272Have a Warm-Up Period for a New Deployment
273Fail Fast ..
273Don’t Make Changes Directly on the Production Environment
273Summary ...

275Part III: The Delivery Ecosystem ...

277Chapter 11: Managing Infrastructure and Environments
277Introduction ...
279Understanding the Needs of the Operations Team
280Documentation and Auditing ...
281Alerts for Abnormal Events ...
282IT Service Continuity Planning ..
282Use the Technology the Operations Team Is Familiar With
283Modeling and Managing Infrastructure ...
285Controlling Access to Your Infrastructure
287Making Changes to Infrastructure ..
288Managing Server Provisioning and Configuration
288Provisioning Servers ...
290Ongoing Management of Servers ..
295Managing the Configuration of Middleware
296Managing Configuration ...
298Research the Product ..
298Examine How Your Middleware Handles State

Contents Contentsxvi

299Look for a Configuration API ..
299Use a Better Technology ...
300Managing Infrastructure Services ...
301Multihomed Systems ...
303Virtualization ...
305Managing Virtual Environments ..
308Virtual Environments and the Deployment Pipeline
310Highly Parallel Testing with Virtual Environments
312Cloud Computing ..
313Infrastructure in the Cloud ..
314Platforms in the Cloud ..
315One Size Doesn’t Have to Fit All ..
316Criticisms of Cloud Computing ..
317Monitoring Infrastructure and Applications
318Collecting Data ..
320Logging ..
321Creating Dashboards ..
323Behavior-Driven Monitoring ...
323Summary ...

325Chapter 12: Managing Data ...
325Introduction ...
326Database Scripting ...
327Initializing Databases ...
327Incremental Change ...
328Versioning Your Database ...
329Managing Orchestrated Changes ..
331Rolling Back Databases and Zero-Downtime Releases
331Rolling Back without Losing Data ...
333Decoupling Application Deployment from Database Migration
334Managing Test Data ..
335Faking the Database for Unit Tests ...
336Managing the Coupling between Tests and Data
337Test Isolation ...
337Setup and Tear Down ...
337Coherent Test Scenarios ..
338Data Management and the Deployment Pipeline
338Data in Commit Stage Tests ..

xviiContents Contents

339Data in Acceptance Tests ..
341Data in Capacity Tests ..
342Data in Other Test Stages ...
343Summary ...

345Chapter 13: Managing Components and Dependencies
345Introduction ...
346Keeping Your Application Releasable ..
347Hide New Functionality Until It Is Finished
349Make All Changes Incrementally ..
349Branch by Abstraction ..
351Dependencies ...
352Dependency Hell ..
354Managing Libraries ..
356Components ..
356How to Divide a Codebase into Components
360Pipelining Components ...
361The Integration Pipeline ..
363Managing Dependency Graphs ..
363Building Dependency Graphs ..
365Pipelining Dependency Graphs ..
369When Should We Trigger Builds? ...
370Cautious Optimism ..
372Circular Dependencies ..
373Managing Binaries ...
373How an Artifact Repository Should Work

374
How Your Deployment Pipeline Should Interact with the Artifact
Repository ..

375Managing Dependencies with Maven ..
377Maven Dependency Refactorings ..
379Summary ...

381Chapter 14: Advanced Version Control ...
381Introduction ...
382A Brief History of Revision Control ...
382CVS ...
383Subversion ..
385Commercial Version Control Systems ...
386Switch Off Pessimistic Locking ..

Contents Contentsxviii

388Branching and Merging ...
389Merging ..
390Branches, Streams, and Continuous Integration
393Distributed Version Control Systems ...
393What Is a Distributed Version Control System?
395A Brief History of Distributed Version Control Systems
396Distributed Version Control Systems in Corporate Environments
397Using Distributed Version Control Systems
399Stream-Based Version Control Systems ..
399What Is a Stream-Based Version Control System?
400Development Models with Streams ...
403Static and Dynamic Views ...
403Continuous Integration with Stream-Based Version Control Systems ...
405Develop on Mainline ...
406Making Complex Changes without Branching
408Branch for Release ...
410Branch by Feature ..
412Branch by Team ...
415Summary ...

417Chapter 15: Managing Continuous Delivery ..
417Introduction ...
419A Maturity Model for Configuration and Release Management
419How to Use the Maturity Model ..
421Project Lifecycle ...
422Identification ...
423Inception ..
424Initiation ...
425Develop and Release ...
428Operation ...
429A Risk Management Process ..
429Risk Management 101 ..
430Risk Management Timeline ...
431How to Do a Risk-Management Exercise ..
432Common Delivery Problems—Their Symptoms and Causes
433Infrequent or Buggy Deployments ..
434Poor Application Quality ..
435Poorly Managed Continuous Integration Process

xixContents Contents

436Poor Configuration Management ...
436Compliance and Auditing ..
437Automation over Documentation ...
438Enforcing Traceability ..
439Working in Silos ..
440Change Management ..
442Summary ...

443Bibliography ...

445Index ..

Contents Contentsxx

In the late 90s, I paid a visit to Kent Beck, then working in Switzerland for an
insurance company. He showed me around his project, and one of the interesting
aspects of his highly disciplined team was the fact that they deployed their soft-
ware into production every night. This regular deployment gave them many ad-
vantages: Written software wasn’t waiting uselessly until it was deployed, they
could respond quickly to problems and opportunities, and the rapid turnaround
led to a much deeper relationship between them, their business customer, and
their final customers.

In the last decade I’ve worked at ThoughtWorks, and a common theme of our
projects has been reducing the cycle time between an idea and usable software.
I see plenty of project stories, and almost all involve a determined shortening of
that cycle. While we don’t usually do daily deliveries into production, it’s now
common to see teams doing bi-weekly releases.

Dave and Jez have been part of that sea change, actively involved in projects
that have built a culture of frequent, reliable deliveries. They and our colleagues
have taken organizations that struggled to deploy software once a year into the
world of Continuous Delivery, where releasing becomes routine.

The foundation for the approach, at least for the development team, is Contin-
uous Integration (CI). CI keeps the entire development team in sync, removing
the delays due to integration issues. A couple of years ago, Paul Duvall wrote a
book on CI in this series. But CI is just the first step. Software that’s been success-
fully integrated into a mainline code stream still isn’t software that’s out in pro-
duction doing its job. Dave and Jez’s book pick up the story from CI to deal with
that “last mile,” describing how to build the deployment pipeline that turns
integrated code into production software.

This kind of delivery thinking has long been a forgotten corner of software
development, falling into a hole between developers and operations teams. So
it’s no surprise that the techniques in this book rest upon bringing these teams
together—a harbinger of the nascent but growing DevOps movement. This process
also involves testers, as testing is a key element of ensuring error-free releases.

Foreword by Martin Fowler

xxi

Threading through all this is a high degree of automation, so things can be done
quickly and without error.

Getting all this working takes effort, but benefits are profound. Long, high-
intensity releases become a thing of the past. Customers of software see ideas
rapidly turn into working code that they can use every day. Perhaps most
importantly, we remove one of the biggest sources of baleful stress in software
development. Nobody likes those tense weekends trying to get a system upgrade
released before Monday dawns.

It seems to me that a book that can show you how to deliver your software
frequently and without the usual stresses is a no-brainer to read. For your team’s
sake, I hope you agree.

Foreword xxii

Introduction

Yesterday your boss asked you to demonstrate the great new features of your
system to a customer, but you can’t show them anything. All your developers
are halfway through developing new features and none of them can run the ap-
plication right now. You have code, it compiles, and all the unit tests pass on
your continuous integration server, but it takes a couple of days to release the
new version into the publicly accessible UAT environment. Isn’t it unreasonable
to expect the demo at such short notice?

You have a critical bug in production. It is losing money for your business
every day. You know what the fix is: A one-liner in a library that is used in all
three layers of your three-tier system, and a corresponding change to one database
table. But the last time you released a new version of your software to production
it took a weekend of working until 3 A.M., and the person who did the deployment
quit in disgust shortly afterward. You know the next release is going to overrun
the weekend, which means the application will be down for a period during the
business week. If only the business understood our problems.

These problems, although all too common, are not an inevitable outcome of
the software development process: They are an indication that something is
wrong. Software release should be a fast, repeatable process. These days, many
companies are putting out multiple releases in a day. This is possible even with
large projects with complex codebases. In this book, we will show you how this
is done.

Mary and Tom Poppendieck asked, “How long would it take your organization
to deploy a change that involves just one single line of code? Do you do this on
a repeatable, reliable basis?”1 The time from deciding that you need to make a
change to having it in production is known as the cycle time, and it is a vital
metric for any project.

1. Implementing Lean Software Development, p. 59.

Preface

xxiii

In many organizations, cycle time is measured in weeks or months, and the
release process is certainly not repeatable or reliable. It is manual and often re-
quires a team of people to deploy the software even into a testing or staging en-
vironment, let alone into production. However, we have come across equally
complex projects which started out like this but where, after extensive reengineer-
ing, teams were able to achieve a cycle time of hours or even minutes for a critical
fix. This was possible because a fully automated, repeatable, reliable process was
created for taking changes through the various stages of the build, deploy, test,
and release process. Automation is the key. It allows all of the common tasks
involved in the creation and deployment of software to be performed by
developers, testers, and operations personnel, at the push of a button.

This book describes how to revolutionize software delivery by making the path
from idea to realized business value—the cycle time—shorter and safer.

Software delivers no revenue until it is in the hands of its users. This is obvious,
but in most organizations the release of software into production is a manually
intensive, error-prone, and risky process. While a cycle time measured in months
is common, many companies do much worse than this: Release cycles of more
than a year are not unknown. For large companies every week of delay between
having an idea and releasing the code that implements it can represent millions
of dollars in opportunity costs—and yet these are often the ones with the longest
cycle times.

Despite all this, the mechanisms and processes that allow for low-risk delivery
of software have not become part of the fabric in most of today’s software
development projects.

Our aim is to make the delivery of software from the hands of developers into
production a reliable, predictable, visible, and largely automated process with
well-understood, quantifiable risks. Using the approach that we describe in this
book, it is possible to go from having an idea to delivering working code that
implements it into production in a matter of minutes or hours, while at the same
time improving the quality of the software thus delivered.

The vast majority of the cost associated with delivering successful software is
incurred after the first release. This is the cost of support, maintenance, adding
new features, and fixing defects. This is especially true of software delivered via
iterative processes, where the first release contains the minimum amount of
functionality providing value to the customer. Hence the title of this book,
Continuous Delivery, which is taken from the first principle of the Agile Mani-
festo: “Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software” [bibNp0]. This reflects the reality: For successful
software, the first release is just the beginning of the delivery process.

All the techniques we describe in this book reduce the time and risks associated
with delivering new versions of your software to users. They do this by increasing
feedback and improving collaboration between the development, testing, and
operations personnel responsible for delivery. These techniques ensure that when
you need to modify applications, either to fix bugs or deliver new features, the

Preface xxiv

time between making modifications and having the results deployed and in use
is as low as possible, problems are found early when they are easy to fix, and
associated risks are well understood.

Who Is This Book for, and What Does It Cover?

One of the major aims of this book is to improve collaboration between the
people responsible for delivering software. In particular, we have in mind devel-
opers, testers, systems and database administrators, and managers.

We cover topics from traditional configuration management, source code
control, release planning, auditing, compliance, and integration to the automation
of your building, testing, and deployment processes. We also describe techniques
such as automated acceptance testing, dependency management, database migra-
tion, and the creation and management of testing and production environments.

Many people involved in creating software consider these activities secondary
to writing code. However, in our experience they take up a great deal of time
and effort, and are critical to successful software delivery. When the risks sur-
rounding these activities are not managed adequately, they can end up costing a
lot of money, often more than the cost of building the software in the first place.
This book provides the information that you need to understand these risks and,
more importantly, describes strategies to mitigate them.

This is an ambitious aim, and of course we can’t cover all these topics in detail
in one book. Indeed we run the risk of alienating each of our target audiences:
developers, by failing to treat topics such as architecture, behavior-driven devel-
opment, and refactoring in depth; testers, by not spending sufficient time on ex-
ploratory testing and test management strategies; operations personnel, by not
paying due attention to capacity planning, database migration, and production
monitoring.

However, books exist that address each of these topics in detail. What we
think is lacking in the literature is a book that discusses how all the moving parts
fit together: configuration management, automated testing, continuous integration
and deployment, data management, environment management, and release
management. One of the things that the lean software development movement
teaches is that it is important to optimize the whole. In order to do this, a holistic
approach is necessary that ties together every part of the delivery process and
everybody involved in it. Only when you have control over the progression of
every change from introduction to release can you begin to optimize and improve
the quality and speed of software delivery.

Our aim is to present a holistic approach, as well as the principles involved in
this approach. We will provide you with the information that you will need to
decide how to apply these practices in your own projects. We do not believe that
there is a “one size fits all” approach to any aspect of software development, let
alone a subject area as large as the configuration management and operational
control of an enterprise system. However, the fundamentals that we describe in

xxvPreface

this book are widely applicable to all sorts of different software projects—big,
small, highly technical or short sprints to early value.

As you begin to put these principles into practice, you will discover the areas
where more detail is required for your particular situation. There is a bibliography
at the end of this book, as well as pointers to other resources online where you
can find more information on each of the topics that we cover.

This book consists of three parts. The first part presents the principles behind
continuous delivery and the practices necessary to support it. Part two describes
the central paradigm of the book—a pattern we call the deployment pipeline.
The third part goes into more detail on the ecosystem that supports the deploy-
ment pipeline—techniques to enable incremental development; advanced version
control patterns; infrastructure, environment and data management; and
governance.

Many of these techniques may appear to apply only to large-scale applications.
While it is true that much of our experience is with large applications, we believe
that even the smallest projects can benefit from a thorough grounding in these
techniques, for the simple reason that projects grow. The decisions that you make
when starting a small project will have an inevitable impact on its evolution, and
by starting off in the right way, you will save yourself (or those who come after
you) a great deal of pain further down the line.

Your authors share a background in lean and iterative software development
philosophies. By this we mean that we aim to deliver valuable, working software
to users rapidly and iteratively, working continuously to remove waste from the
delivery process. Many of the principles and techniques that we describe were
first developed in the context of large agile projects. However, the techniques
that we present in this book are of general applicability. Much of our focus is
on improving collaboration through better visibility and faster feedback. This
will have a positive impact on every project, whether or not it uses iterative
software development processes.

We have tried to ensure that chapters and even sections can be read in isolation.
At the very least, we hope that anything you need to know, as well as references
to further information, are clearly sign-posted and accessible so that you can use
this book as a reference.

We should mention that we don’t aim for academic rigor in our treatment of
the subjects covered. There are plenty of more theoretical books on the market,
many of which provide interesting reading and insights. In particular, we will
not spend much time on standards, concentrating instead on battle-tested skills
and techniques every person working on a software project will find useful, and
explaining them clearly and simply so that they can be used every day in the real
world. Where appropriate, we will provide some war stories illustrating these
techniques to help place them in context.

Preface xxvi

Conspectus

We recognize that not everyone will want to read this book from end to end. We
have written it so that once you have covered the introduction, you can attack
it in several different ways. This has involved a certain amount of repetition,
but hopefully not at a level that becomes tedious if you do decide to read it
cover-to-cover.

This book consists of three parts. The first part, Chapters 1 to 4, takes you
through the basic principles of regular, repeatable, low-risk releases and the
practices that support them. Part two, Chapters 5 through 10, describe the de-
ployment pipeline. From Chapter 11 we dive into the ecosystem that supports
continuous delivery.

We recommend that everybody read Chapter 1. We believe that people who
are new to the process of releasing software, even experienced developers, will
find plenty of material challenging their view of what it means to do professional
software development. The rest of the book can be dipped into either at your
leisure—or when in a panic.

Part I—Foundations

Part I describes the prerequisites for understanding the deployment pipeline. Each
chapter builds upon the last.

Chapter 1, “The Problem of Delivering Software,” starts by describing some
common antipatterns that we see in many software development teams, and
moves on to describe our goal and how to realize it. We conclude by setting out
the principles of software delivery upon which the rest of the book is based.

Chapter 2, “Configuration Management,” sets out how to manage everything
required to build, deploy, test, and release your application, from source code
and build scripts to your environment and application configuration.

Chapter 3, “Continuous Integration,” covers the practice of building and
running automated tests against every change you make to your application so
you can ensure that your software is always in a working state.

Chapter 4, “Implementing a Testing Strategy,” introduces the various kinds
of manual and automated testing that form an integral part of every project, and
discusses how to decide which strategy is appropriate for your project.

Part II—The Deployment Pipeline

The second part of the book covers the deployment pipeline in detail, including
how to implement the various stages in the pipeline.

Chapter 5, “Anatomy of the Deployment Pipeline,” discusses the pattern that
forms the core of this book—an automated process for taking every change from
check-in to release. We also discuss how to implement pipelines at both the team
and organizational levels.

xxviiPreface

Chapter 6, “Build and Deployment Scripting,” discusses scripting technologies
that can be used for creating automated build and deployment processes, and
the best practices for using them.

Chapter 7, “The Commit Stage,” covers the first stage of the pipeline, a set of
automated processes that should be triggered the moment any change is introduced
into your application. We also discuss how to create a fast, effective commit test
suite.

Chapter 8, “Automated Acceptance Testing,” presents automated acceptance
testing, from analysis to implementation. We discuss why acceptance tests are
essential to continuous delivery, and how to create a cost-effective acceptance
test suite that will protect your application’s valuable functionality.

Chapter 9, “Testing Nonfunctional Requirements,” discusses nonfunctional
requirements, with an emphasis on capacity testing. We describe how to create
capacity tests, and how to set up a capacity testing environment.

Chapter 10, “Deploying and Releasing Applications,” covers what happens
after automated testing: push-button promotion of release candidates to manual
testing environments, UAT, staging, and finally release, taking in essential topics
such as continuous deployment, roll backs, and zero-downtime releases.

Part III—The Delivery Ecosystem

The final part of the book discusses crosscutting practices and techniques that
support the deployment pipeline.

Chapter 11, “Managing Infrastructure and Environments,” covers the auto-
mated creation, management, and monitoring of environments, including the use
of virtualization and cloud computing.

Chapter 12, “Managing Data,” shows how to create and migrate testing and
production data through the lifecycle of your application.

Chapter 13, “Managing Components and Dependencies,” starts with a discus-
sion of how to keep your application in a releasable state at all times without
branching. We then describe how to organize your application as a collection of
components, and how to manage building and testing them.

Chapter 14, “Advanced Version Control,” gives an overview of the most
popular tools, and goes into detail on the various patterns for using version
control.

Chapter 15, “Managing Continuous Delivery,” sets out approaches to risk
management and compliance, and provides a maturity model for configuration
and release management. Along the way, we discuss the value of continuous
delivery to the business, and the lifecycle of iterative projects that deliver
incrementally.

Preface xxviii

Web Links in This Book

Rather than putting in complete links to external websites, we have shortened
them and put in the key in this format: [bibNp0]. You can go to the link in one
of two ways. Either use bit.ly, in which case the url for the example key would
be http://bit.ly/bibNp0. Alternatively, you can use a url shortening service
we’ve installed at http://continuousdelivery.com/go/ which uses the same keys—so
the url for the example key is http://continuousdelivery.com/go/bibNp0. The
idea is that if for some reason bit.ly goes under, the links are preserved. If
the web pages change address, we’ll try to keep the shortening service at
http://continuousdelivery.com/go/ up-to-date, so try that if the links don’t work
at bit.ly.

About the Cover

All books in Martin Fowler’s Signature Series have a bridge on the cover. We’d
originally planned to use a photo of the Iron Bridge, but it had already been
chosen for another book in the series. So instead, we chose another British bridge:
the Forth Railway Bridge, captured here in a stunning photo by Stewart Hardy.

The Forth Railway Bridge was the first bridge in the UK constructed using
steel, manufactured using the new Siemens-Martin open-hearth process, and de-
livered from two steel works in Scotland and one in Wales. The steel was delivered
in the form of manufactured tubular trusses—the first time a bridge in the UK
used mass-produced parts. Unlike earlier bridges, the designers, Sir John Fowler,
Sir Benjamin Baker, and Allan Stewart, made calculations for incidence of erection
stresses, provisions for reducing future maintenance costs, and calculations for
wind pressures and the effect of temperature stresses on the structure—much like
the functional and nonfunctional requirements we make in software. They also
supervised the construction of the bridge to ensure these requirements were met.

The bridge’s construction involved more than 4,600 workers, of whom tragi-
cally around one hundred died and hundreds more were crippled. However, the
end result is one of the marvels of the industrial revolution: At the time of com-
pletion in 1890 it was the longest bridge in the world, and at the start of the 21st
century it remains the world’s second longest cantilever bridge. Like a long-lived
software project, the bridge needs constant maintenance. This was planned for
as part of the design, with ancillary works for the bridge including not only a
maintenance workshop and yard but a railway “colony” of some fifty houses at
Dalmeny Station. The remaining working life of the bridge is estimated at over
100 years.

xxixPreface

http://continuousdelivery.com/go/
http://continuousdelivery.com/go/

Colophon

This book was written directly in DocBook. Dave edited the text in TextMate,
and Jez used Aquamacs Emacs. The diagrams were created with OmniGraffle.
Dave and Jez were usually not in the same part of the world, and collaborated
by having everything checked in to Subversion. We also employed continuous
integration, using a CruiseControl.rb server that ran dblatex to produce a PDF
of the book every time one of us committed a change.

A month before the book went to print, Dmitry Kirsanov and Alina Kirsanova
started the production work, collaborating with the authors through their
Subversion repository, email, and a shared Google Docs table for coordination.
Dmitry worked on copyediting of the DocBook source in XEmacs, and Alina
did everything else: typesetting the pages using a custom XSLT stylesheet and an
XSL-FO formatter, compiling and editing the Index from the author’s indexing
tags in the source, and final proofreading of the book.

Preface xxx

Introduction

Continuous integration is an enormous step forward in productivity and quality
for most projects that adopt it. It ensures that teams working together to create
large and complex systems can do so with a higher level of confidence and control
than is achievable without it. CI ensures that the code that we create, as a team,
works by providing us with rapid feedback on any problems that we may intro-
duce with the changes we commit. It is primarily focused on asserting that the
code compiles successfully and passes a body of unit and acceptance tests.
However, CI is not enough.

CI mainly focuses on development teams. The output of the CI system normally
forms the input to the manual testing process and thence to the rest of the release
process. Much of the waste in releasing software comes from the progress of
software through testing and operations. For example, it is common to see

• Build and operations teams waiting for documentation or fixes

• Testers waiting for “good” builds of the software

• Development teams receiving bug reports weeks after the team has moved
on to new functionality

• Discovering, towards the end of the development process, that the applica-
tion’s architecture will not support the system’s nonfunctional requirements

This leads to software that is undeployable because it has taken so long to get
it into a production-like environment, and buggy because the feedback cycle
between the development team and the testing and operations team is so long.

There are various incremental improvements to the way software is delivered
which will yield immediate benefits, such as teaching developers to write
production-ready software, running CI on production-like systems, and instituting
cross-functional teams. However, while practices like these will certainly improve

105

Chapter 5

Anatomy of the Deployment
Pipeline

matters, they still don’t give you an insight into where the bottlenecks are in the
delivery process or how to optimize for them.

The solution is to adopt a more holistic, end-to-end approach to delivering
software. We have addressed the broader issues of configuration management
and automating large swathes of our build, deploy, test, and release processes.
We have taken this to the point where deploying our applications, even to pro-
duction, is often done by a simple click of a button to select the build that we
wish to deploy. This creates a powerful feedback loop: Since it’s so simple to
deploy your application to testing environments, your team gets rapid feedback
on both the code and the deployment process. Since the deployment process
(whether to a development machine or for final release) is automated, it gets run
and therefore tested regularly, lowering the risk of a release and transferring
knowledge of the deployment process to the development team.

What we end up with is (in lean parlance) a pull system. Testing teams deploy
builds into testing environments themselves, at the push of a button. Operations
can deploy builds into staging and production environments at the push of a
button. Developers can see which builds have been through which stages in the
release process, and what problems were found. Managers can watch such key
metrics as cycle time, throughput, and code quality. As a result, everybody in the
delivery process gets two things: access to the things they need when they need
them, and visibility into the release process to improve feedback so that bottle-
necks can be identified, optimized, and removed. This leads to a delivery process
which is not only faster but also safer.

The implementation of end-to-end automation of our build, deploy, test, and
release processes has had a number of knock-on effects, bringing some unexpected
benefits. One such outcome is that over the course of many projects utilizing such
techniques, we have identified much in common between the deployment pipeline
systems that we have built. We believe that with the abstractions we have iden-
tified, some general patterns have, so far, fit all of the projects in which we have
tried them. This understanding has allowed us to get fairly sophisticated build,
test, and deployment systems up and running very quickly from the start of our
projects. These end-to-end deployment pipeline systems have meant that we have
experienced a degree of freedom and flexibility in our delivery projects that would
have been hard to imagine a few years ago. We are convinced that this approach
has allowed us to create, test, and deploy complex systems of higher quality and
at significantly lower cost and risk than we could otherwise have done.

This is what the deployment pipeline is for.

What Is a Deployment Pipeline?

At an abstract level, a deployment pipeline is an automated manifestation of your
process for getting software from version control into the hands of your users.
Every change to your software goes through a complex process on its way to

Chapter 5 Anatomy of the Deployment Pipeline106

being released. That process involves building the software, followed by the
progress of these builds through multiple stages of testing and deployment. This,
in turn, requires collaboration between many individuals, and perhaps several
teams. The deployment pipeline models this process, and its incarnation in a
continuous integration and release management tool is what allows you to see
and control the progress of each change as it moves from version control through
various sets of tests and deployments to release to users.

Thus the process modeled by the deployment pipeline, the process of getting
software from check-in to release, forms a part of the process of getting a feature
from the mind of a customer or user into their hands. The entire process—from
concept to cash—can be modeled as a value stream map. A high-level value
stream map for the creation of a new product is shown in Figure 5.1.

Product
opportunity
assessment

Product
discovery

Development
Final testing
and approval

Release
Product

planning and
estimation

Elapsed time

Value-added time

3 days 1 week 10 days 7 weeks 1 week
2

hours

1 week 10 days 3 days 5 days 2 days

Figure 5.1 A simple value stream map for a product

This value stream map tells a story. The whole process takes about three and
a half months. About two and a half months of that is actual work being
done—there are waits between the various stages in the process of getting the
software from concept to cash. For example, there is a five-day wait between the
development team completing work on the first release and the start of the testing
process. This might be due to the time it takes to deploy the application to a
production-like environment, for example. As an aside, it has been left deliber-
ately unclear in this diagram whether or not this product is being developed in
an iterative way. In an iterative process, you’d expect to see the development
process itself consist of several iterations which include testing and showcasing.
The whole process from discovery to release would also be repeated many times1

Creating a value stream map can be a low-tech process. In Mary and Tom
Poppendieck’s classic, Lean Software Development: An Agile Toolkit, they
describe it as follows.

1. The importance of iterative discovery based on customer feedback in the product
development process is emphasized in books like Inspired by Marty Cagan and The
Four Steps to the Epiphany by Steven Gary Blank.

107What Is a Deployment Pipeline?

With a pencil and pad in hand, go to the place where a customer request comes into
your organization. You goal is to draw a chart of the average customer request, from
arrival to completion. Working with the people involved in each activity, you sketch
all the process steps necessary to fill the request, as well as the average amount of
time that a request spends in each step. At the bottom of the map, draw a timeline
that shows how much time the request spends in value-adding activities and how
much in waiting states and non-value-adding activities.

If you were interested in doing some organizational transformation work to
improve the process, you would need to go into even more detail and describe
who is responsible for which part of the process, what subprocesses occur in
exceptional conditions, who approves the hand-offs, what resources are required,
what the organizational reporting structures are, and so forth. However, that’s
not necessary for our discussion here. For more details on this, consult Mary and
Tom Poppendieck’s book Implementing Lean Software Development: From
Concept to Cash.

The part of the value stream we discuss in this book is the one that goes from
development through to release. These are the shaded boxes in the value stream
in Figure 5.1. One key difference of this part of the value stream is that builds
pass through it many times on their way to release. In fact, one way to understand
the deployment pipeline and how changes move through it is to visualize it as a
sequence diagram,2 as shown in Figure 5.2.

Notice that the input to the pipeline is a particular revision in version control.
Every change creates a build that will, rather like some mythical hero, pass
through a sequence of tests of, and challenges to, its viability as a production
release. This process of a sequence of test stages, each evaluating the build from
a different perspective, is begun with every commit to the version control system,
in the same way as the initiation of a continuous integration process.

As the build passes each test of its fitness, confidence in it increases. Therefore,
the resources that we are willing to expend on it increase, which means that the
environments the build passes through become progressively more production-
like. The objective is to eliminate unfit release candidates as early in the process
as we can and get feedback on the root cause of failure to the team as rapidly as
possible. To this end, any build that fails a stage in the process will not generally
be promoted to the next. These trade-offs are shown in Figure 5.3.

There are some important consequences of applying this pattern. First, you
are effectively prevented from releasing into production builds that are not
thoroughly tested and found to be fit for their intended purpose. Regression bugs
are avoided, especially where urgent fixes need releasing into production (such
fixes go through the same process as any other change). In our experience, it is
also extremely common for newly released software to break down due to some
unforeseen interaction between the components of the system and its environment,
for example due to a new network topology or a slight difference in the

2. Chris Read came up with this idea [9EIHHS].

Chapter 5 Anatomy of the Deployment Pipeline108

Delivery team Version control Build & unit
tests

Automated
acceptance tests

F

User acceptance
tests

Release

Check in

FFeedback

Trigger

Check in

P

Feedback

Trigger

Trigger

P

Check in

P

Trigger

Trigger

Approval

P Approval

P

Feedback

Feedback

Feedback

Feedback

F = fail
P = pass

Figure 5.2 Changes moving through the deployment pipeline

configuration of a production server. The discipline of the deployment pipeline
mitigates this.

Second, when deployment and production release themselves are automated,
they are rapid, repeatable, and reliable. It is often so much easier to perform
a release once the process is automated that they become “normal”
events—meaning that, should you choose, you can perform releases more
frequently. This is particularly the case where you are able to step back to an
earlier version as well as move forward. When this capability is available,
releases are essentially without risk. The worst that can happen is that you find
that you have introduced a critical bug—at which point you revert to an earlier
version that doesn’t contain the bug while you fix the new release offline (see
Chapter 10, “Deploying and Releasing Applications”).

To achieve this enviable state, we must automate a suite of tests that prove
that our release candidates are fit for their purpose. We must also automate de-
ployment to testing, staging, and production environments to remove these
manually intensive, error-prone steps. For many systems, other forms of testing
and so other stages in the release process are also needed, but the subset that is
common to all projects is as follows.

109What Is a Deployment Pipeline?

Commit stage
Compile
Unit test
Analysis

Build installers

Acceptance
test stage

User
acceptance

testing

Capacity
testing

Production

Increasing confidence in build's production readiness

Environments become more production-like

Faster feedback

Figure 5.3 Trade-offs in the deployment pipeline

• The commit stage asserts that the system works at the technical level. It
compiles, passes a suite of (primarily unit-level) automated tests, and runs
code analysis.

• Automated acceptance test stages assert that the system works at the func-
tional and nonfunctional level, that behaviorally it meets the needs of its
users and the specifications of the customer.

• Manual test stages assert that the system is usable and fulfills its require-
ments, detect any defects not caught by automated tests, and verify that it
provides value to its users. These stages might typically include exploratory
testing environments, integration environments, and UAT (user acceptance
testing).

• Release stage delivers the system to users, either as packaged software or
by deploying it into a production or staging environment (a staging envi-
ronment is a testing environment identical to the production environment).

We refer to these stages, and any additional ones that may be required to
model your process for delivering software, as a deployment pipeline. It is also
sometimes referred to as a continuous integration pipeline, a build pipeline, a
deployment production line, or a living build. Whatever it is called, this is, fun-
damentally, an automated software delivery process. This is not intended to imply
that there is no human interaction with the system through this release process;
rather, it ensures that error-prone and complex steps are automated, reliable,
and repeatable in execution. In fact, human interaction is increased: The ability
to deploy the system at all stages of its development by pressing a button
encourages its frequent use by testers, analysts, developers, and (most importantly)
users.

Chapter 5 Anatomy of the Deployment Pipeline110

A Basic Deployment Pipeline

Figure 5.4 shows a typical deployment pipeline and captures the essence of the
approach. Of course, a real pipeline will reflect your project’s actual process for
delivering software.

Artifact repository

Source
code

Commit stage

Compile
Commit tests

Assemble
Code analysis

reports
binaries
metadata

Acceptance stage

Configure environment
Deploy binaries

Smoke test
Acceptance tests

Capacity stage

Configure environment
Deploy binaries

Smoke test
Run capacity tests

UAT

Configure environment
Deploy binaries

Smoke test

Env &
app

config

reports
metadatabinaries

Production

Configure environment
Deploy binaries

Smoke test

Env &
app

config

binaries
reports
metadata

Operations
perform

push-button
releases

Testers
Self-service
deploymentsDevelopers

See code metrics
and test failures

Version control

Figure 5.4 Basic deployment pipeline

The process starts with the developers committing changes into their version
control system. At this point, the continuous integration management system
responds to the commit by triggering a new instance of our pipeline. The first
(commit) stage of the pipeline compiles the code, runs unit tests, performs code
analysis, and creates installers. If the unit tests all pass and the code is up to
scratch, we assemble the executable code into binaries and store them in an artifact
repository. Modern CI servers provide a facility to store artifacts like these and
make them easily accessible both to the users and to the later stages in your
pipeline. Alternatively, there are plenty of tools like Nexus and Artifactory which
help you manage artifacts. There are other tasks that you might also run as part
of the commit stage of your pipeline, such as preparing a test database to use for
your acceptance tests. Modern CI servers will let you execute these jobs in parallel
on a build grid.

111What Is a Deployment Pipeline?

The second stage is typically composed of longer-running automated acceptance
tests. Again, your CI server should let you split these tests into suites which
can be executed in parallel to increase their speed and give you feedback
faster—typically within an hour or two. This stage will be triggered automatically
by the successful completion of the first stage in your pipeline.

At this point, the pipeline branches to enable independent deployment of your
build to various environments—in this case, UAT (user acceptance testing), ca-
pacity testing, and production. Often, you won’t want these stages to be automat-
ically triggered by the successful completion of your acceptance test stage. Instead,
you’ll want your testers or operations team to be able to self-service builds into
their environments manually. To facilitate this, you’ll need an automated script
that performs this deployment. Your testers should be able to see the release
candidates available to them as well as their status—which of the previous two
stages each build has passed, what were the check-in comments, and any other
comments on those builds. They should then be able to press a button to deploy
the selected build by running the deployment script in the relevant environment.

The same principle applies to further stages in the pipeline, except that, typi-
cally, the various environments you want to be able to deploy to will have different
groups of users who “own” these environments and have the ability to self-service
deployments to them. For example, your operations team will likely want to be
the only one who can approve deployments to production.

Figure 5.5 Go showing which changes have passed which stages

Chapter 5 Anatomy of the Deployment Pipeline112

Finally, it’s important to remember that the purpose of all this is to get feedback
as fast as possible. To make the feedback cycle fast, you need to be able to see
which build is deployed into which environment, and which stages in your pipeline
each build has passed. Figure 5.5 is a screenshot from Go showing what this
looks like in practice.

Notice that you can see every check-in down the side of the page, every stage
in the pipeline that each check-in has been through, and whether it passed or
failed that stage. Being able to correlate a particular check-in, and hence build,
to the stages in the pipeline it has passed through is crucial. It means that if you
see a problem in the acceptance tests (for example), you can immediately find
out which changes were checked into version control that resulted in the
acceptance tests failing.

Deployment Pipeline Practices

Shortly, we’ll go into some more detail on the stages in the deployment pipeline.
But before we do so, in order to get the benefits of this approach, there are some
practices you should follow.

Only Build Your Binaries Once

For convenience, we will refer to the collections of executable code as binaries,
although if you don’t need to compile your code these “binaries” may be just
collections of source files. Jars, .NET assemblies, and .so files are all examples
of binaries.

Many build systems use the source code held in the version control system as
the canonical source for many steps. The code will be compiled repeatedly in
different contexts: during the commit process, again at acceptance test time, again
for capacity testing, and often once for each separate deployment target. Every
time you compile the code, you run the risk of introducing some difference. The
version of the compiler installed in the later stages may be different from
the version that you used for your commit tests. You may pick up a different
version of some third-party library that you didn’t intend. Even the configuration
of the compiler may change the behavior of the application. We have seen bugs
from every one of these sources reaching production.

A related antipattern is to promote at the source-code level rather than at the binary
level. For more information on this antipattern, see the “ClearCase and the
Rebuilding-from-Source Antipattern” section on page 403.

113Deployment Pipeline Practices

This antipattern violates two important principles. The first is to keep the de-
ployment pipeline efficient, so the team gets feedback as soon as possible. Recom-
piling violates this principle because it takes time, especially in large systems. The
second principle is to always build upon foundations known to be sound. The
binaries that get deployed into production should be exactly the same as those
that went through the acceptance test process—and indeed in many pipeline im-
plementations, this is checked by storing hashes of the binaries at the time they
are created and verifying that the binary is identical at every subsequent stage in
the process.

If we re-create binaries, we run the risk that some change will be introduced
between the creation of the binaries and their release, such as a change in the
toolchain between compilations, and that the binary we release will be different
from the one we tested. For auditing purposes, it is essential to ensure that no
changes have been introduced, either maliciously or by mistake, between creating
the binaries and performing the release. Some organizations insist that compilation
and assembly, or packaging in the case of interpreted languages, occurs in a
special environment that cannot be accessed by anyone except senior personnel.
Once we have created our binaries, we will reuse them without re-creating them
at the point of use.

So, you should only build your binaries once, during the commit stage of the
build. These binaries should be stored on a filesystem somewhere (not in version
control, since they are derivatives of your baseline, not part of its definition)
where it is easy to retrieve them for later stages in the pipeline. Most CI servers
will handle this for you, and will also perform the crucial task of allowing you
to trace back to the version control check-in which was used to create them. It
isn’t worth spending a lot of time and effort ensuring binaries are backed up—it
should be possible to exactly re-create them by running your automated build
process from the correct revision in version control.

If you take our advice, it will initially feel as though you have more work to do.You
will need to establish some way of propagating your binaries to the later stages in
the deployment pipeline, if your CI tool doesn’t do this for you already. Some of the
simplistic configuration management tools that come with popular development
environments will be doing the wrong thing. A notable example of this is project
templates that directly generate assemblies containing both code and configuration
files, such as ear and war files, as a single step in the build process.

One important corollary of this principle is that it must be possible to deploy
these binaries to every environment. This forces you to separate code, which re-
mains the same between environments, and configuration, which differs between
environments. This, in turn, will lead you to managing your configuration
correctly, applying a gentle pressure towards better-structured build systems.

Chapter 5 Anatomy of the Deployment Pipeline114

Why Binaries Should Not Be Environment-Specific

We consider it a very bad practice to create binary files intended to run in a single
environment. This approach, while common, has several serious drawbacks that
compromise the overall ease of deployment, flexibility, and maintainability of the
system. Some tools even encourage this approach.

When build systems are organized in this way, they usually become very complex
very quickly, spawning lots of special-case hacks to cope with the differences
and the vagaries of various deployment environments. On one project that we
worked on, the build system was so complex that it took a full-time team of five
people to maintain it. Eventually, we relieved them of this unpopular job by reorga-
nizing the build and separating the environment-specific configuration from the
environment-agnostic binaries.

Such build systems make unnecessarily complex what should be trivial tasks,
such as adding a new server to a cluster. This, in turn, forces us into fragile,
expensive release processes. If your build creates binaries that only run on specific
machines, start planning how to restructure them now!

This brings us neatly to the next practice.

Deploy the Same Way to Every Environment

It is essential to use the same process to deploy to every environment—whether
a developer or analyst’s workstation, a testing environment, or production—in
order to ensure that the build and deployment process is tested effectively. Devel-
opers deploy all the time; testers and analysts, less often; and usually, you will
deploy to production fairly infrequently. But this frequency of deployment is the
inverse of the risk associated with each environment. The environment you deploy
to least frequently (production) is the most important. Only after you have tested
the deployment process hundreds of times on many environments can you
eliminate the deployment script as a source of error.

Every environment is different in some way. If nothing else, it will have a
unique IP address, but often there are other differences: operating system and
middleware configuration settings, the location of databases and external services,
and other configuration information that needs to be set at deployment time.
This does not mean you should use a different deployment script for every envi-
ronment. Instead, keep the settings that are unique for each environment separate.
One way to do this is to use properties files to hold configuration information.
You can have a separate properties file for each environment. These files should
be checked in to version control, and the correct one selected either by looking
at the hostname of the local server, or (in a multimachine environment) through
the use of an environment variable supplied to the deployment script. Some
other ways to supply deploy-time configuration include keeping it in a directory

115Deployment Pipeline Practices

service (like LDAP or ActiveDirectory) or storing it in a database and accessing
it through an application like ESCAPE [apvrEr]. There is more on managing
software configuration in the “Managing Software Configuration” section on
page 39.

It’s important to use the same deploy-time configuration mechanism for each of
your applications.This is especially true in a large company, or where many hetero-
geneous technologies are in play. Generally, we’re against handing down edicts
from on high—but we’ve seen too many organizations where it was impossibly ar-
duous to work out, for a given application in a given environment, what configuration
was actually supplied at deployment time.We know places where you have to email
separate teams on separate continents to piece together this information.This be-
comes an enormous barrier to efficiency when you’re trying to work out the root
cause of some bug—and when you add together the delays it introduces into your
value stream, it is incredibly costly.

It should be possible to consult one single source (a version control repository, a
directory service, or a database) to find configuration settings for all your applications
in all of your environments.

If you work in a company where production environments are managed by a
team different from the team responsible for development and testing environ-
ments, both teams will need to work together to make sure the automated deploy-
ment process works effectively across all environments, including development
environments. Using the same script to deploy to production that you use to de-
ploy to development environments is a fantastic way to prevent the “it works on
my machine” syndrome [c29ETR]. It also means that when you come to release,
you will have tested your deployment process hundreds of times by deploying to
all of your other environments. This is one of the best ways we know to mitigate
the risk of releasing software.

We’ve assumed that you have an automated process for deploying your applica-
tion—but, of course, many organizations still deploy manually. If you have a manual
deployment process, you should start by ensuring that the process is the same for
every environment and then begin to automate it bit by bit, with the goal of having
it fully scripted. Ultimately, you should only need to specify the target environment
and the version of the application to initiate a successful deployment. An automated,
standardized deployment process will have a huge positive effect on your ability to
release your application repeatably and reliably, and ensure that the process is
completely documented and audited. We cover automating deployment in detail in
the following chapter.

Chapter 5 Anatomy of the Deployment Pipeline116

This principle is really another application of the rule that you should separate
what changes from what doesn’t. If your deployment script is different for differ-
ent environments, you have no way of knowing that what you’re testing will
actually work when you go live. Instead, if you use the same process to deploy
everywhere, when a deployment doesn’t work to a particular environment you
can narrow it down to one of three causes:

• A setting in your application’s environment-specific configuration file

• A problem with your infrastructure or one of the services on which your
application depends

• The configuration of your environment

Establishing which of these is the underlying cause is the subject of the next
two practices.

Smoke-Test Your Deployments

When you deploy your application, you should have an automated script that
does a smoke test to make sure that it is up and running. This could be as simple
as launching the application and checking to make sure that the main screen
comes up with the expected content. Your smoke test should also check that any
services your application depends on are up and running—such as a database,
messaging bus, or external service.

The smoke test, or deployment test, is probably the most important test to
write once you have a unit test suite up and running—indeed, it’s arguably even
more important. It gives you the confidence that your application actually runs.
If it doesn’t run, your smoke test should be able to give you some basic diagnostics
as to whether your application is down because something it depends on is not
working.

Deploy into a Copy of Production

The other main problem many teams experience going live is that their production
environment is significantly different from their testing and development environ-
ments. To get a good level of confidence that going live will actually work, you
need to do your testing and continuous integration on environments that are as
similar as possible to your production environment.

Ideally, if your production environment is simple or you have a sufficiently
large budget, you can have exact copies of production to run your manual and
automated tests on. Making sure that your environments are the same requires
a certain amount of discipline to apply good configuration management practices.
You need to ensure that:

117Deployment Pipeline Practices

• Your infrastructure, such as network topology and firewall configuration,
is the same.

• Your operating system configuration, including patches, is the same.

• Your application stack is the same.

• Your application’s data is in a known, valid state. Migrating data when
performing upgrades can be a major source of pain in deployments. We
deal more with this topic in Chapter 12, “Managing Data.”

You can use such practices as disk imaging and virtualization, and tools like
Puppet and InstallShield along with a version control repository, to manage your
environments’ configuration. We discuss this in detail in Chapter 11, “Managing
Infrastructure and Environments.”

Each Change Should Propagate through the Pipeline Instantly

Before continuous integration was introduced, many projects ran various parts
of their process off a schedule—for example, builds might run hourly, acceptance
tests nightly, and capacity tests over the weekend. The deployment pipeline takes
a different approach: The first stage should be triggered upon every check-in,
and each stage should trigger the next one immediately upon successful comple-
tion. Of course this is not always possible when developers (especially on large
teams) are checking in very frequently, given that the stages in your process can
take a not insignificant amount of time. The problem is shown in Figure 5.6.

In this example, somebody checks a change into version control, creating ver-
sion 1. This, in turn, triggers the first stage in the pipeline (build and unit tests).
This passes, and triggers the second stage: the automated acceptance tests.
Somebody then checks in another change, creating version 2. This triggers the
build and unit tests again. However, even though these have passed, they cannot
trigger a new instance of the automated acceptance tests, since they are already
running. In the meantime, two more check-ins have occurred in quick succession.
However, the CI system should not attempt to build both of them—if it followed
that rule, and developers continued to check in at the same rate, the builds would
get further and further behind what the developers are currently doing.

Instead, once an instance of the build and unit tests has finished, the CI system
checks to see if new changes are available, and if so, builds off the most recent
set available—in this case, version 4. Suppose this breaks the build and unit tests
stage. The build system doesn’t know which commit, 3 or 4, caused the stage to
break, but it is usually simple for the developers to work this out for themselves.
Some CI systems will let you run specified versions out of order, in which case
the developers could trigger the first stage off revision 3 to see if it passes or fails,
and thus whether it was commit 3 or 4 that broke the build. Either way, the
development team checks in version 5, which fixes the problem.

Chapter 5 Anatomy of the Deployment Pipeline118

Delivery team Version control Build & unit
tests

Automated
acceptance tests

1
P

Check in

1

1
P

Trigger

Check in

2

2
P

Trigger

Trigger

Check in

5 Trigger

Check in

3
Check in

4

4
F

5
P

5

F = fail
P = pass

Figure 5.6 Scheduling stages in a pipeline

When the acceptance tests finally finish, the CI system’s scheduler notices that
new changes are available, and triggers a new run of the acceptance tests against
version 5.

This intelligent scheduling is crucial to implementing a deployment pipeline.
Make sure your CI server supports this kind of scheduling workflow—many
do—and ensure that changes propagate immediately so that you don’t have to
run stages off a fixed schedule.

This only applies to stages that are fully automated, such as those containing
automated tests. The later stages in the pipeline that perform deployments to
manual testing environments need to be activated on demand, which we describe
in a later section in this chapter.

If Any Part of the Pipeline Fails, Stop the Line

As we said in the “Implementing Continuous Integration” section on page 56,
the most important step in achieving the goals of this book—rapid, repeatable,
reliable releases—is for your team to accept that every time they check code into
version control, it will successfully build and pass every test. This applies to the

119Deployment Pipeline Practices

entire deployment pipeline. If a deployment to an environment fails, the whole
team owns that failure. They should stop and fix it before doing anything else.

The Commit Stage

A new instance of your deployment pipeline is created upon every check-in and,
if the first stage passes, results in the creation of a release candidate. The aim of
the first stage in the pipeline is to eliminate builds that are unfit for production
and signal the team that the application is broken as quickly as possible. We
want to expend a minimum of time and effort on a version of the application
that is obviously broken. So, when a developer commits a change to the version
control system, we want to evaluate the latest version of the application quickly.
The developer who checked in then waits for the results before moving on to the
next task.

There are a few things we want to do as part of our commit stage. Typically,
these tasks are run as a set of jobs on a build grid (a facility provided by most
CI servers) so the stage completes in a reasonable length of time. The commit
stage should ideally take less than five minutes to run, and certainly no more
than ten minutes. The commit stage typically includes the following steps:

• Compile the code (if necessary).

• Run a set of commit tests.

• Create binaries for use by later stages.

• Perform analysis of the code to check its health.

• Prepare artifacts, such as test databases, for use by later stages.

The first step is to compile the latest version of the source code and notify the
developers who committed changes since the last successful check-in if there is
an error in compilation. If this step fails, we can fail the commit stage immediately
and eliminate this instance of the pipeline from further consideration.

Next, a suite of tests is run, optimized to execute very quickly. We refer to this
suite of tests as commit stage tests rather than unit tests because, although the
vast majority of them are indeed unit tests, it is useful to include a small selection
of tests of other types at this stage in order to get a higher level of confidence
that the application is really working if the commit stage passes. These are the
same tests that developers run before they check in their code (or, if they have
the facility to do so, through a pretested commit on the build grid).

Begin the design of your commit test suite by running all unit tests. Later, as
you learn more about what types of failure are common in acceptance test runs
and other later stages in the pipeline, you should add specific tests to your commit
test suite to try and find them early on. This is an ongoing process optimization

Chapter 5 Anatomy of the Deployment Pipeline120

that is important if you are to avoid the higher costs of finding and fixing bugs
in later pipeline stages.

Establishing that your code compiles and passes tests is great, but it doesn’t
tell you a lot about the nonfunctional characteristics of your application. Testing
nonfunctional characteristics such as capacity can be hard, but you can run
analysis tools giving you feedback on such characteristics of your code base as
test coverage, maintainability, and security breaches. Failure of your code to meet
preset thresholds for these metrics should fail the commit stage the same way
that a failing test does. Useful metrics include:

• Test coverage (if your commit tests only cover 5% of your codebase, they’re
pretty useless)

• Amount of duplicated code

• Cyclomatic complexity

• Afferent and efferent coupling

• Number of warnings

• Code style

The final step in the commit stage, following successful execution of everything
up to this point, is the creation of a deployable assembly of your code ready for
deployment into any subsequent environment. This, too, must succeed for the
commit stage to be considered a success as a whole. Treating the creation of the
executable code as a success criteria in its own right is a simple way of ensuring
that our build process itself is also under constant evaluation and review by our
continuous integration system.

Commit Stage Best Practices

Most of the practices described in Chapter 3, “Continuous Integration,” apply
to the commit stage. Developers are expected to wait until the commit stage of
the deployment pipeline succeeds. If it fails, they should either quickly fix the
problem, or back their changes out from version control. In the ideal world—a
world of infinite processor power and unlimited network bandwidth—we would
like our developers to wait for all tests to pass, even the manual ones, so that
they could fix any problem immediately. In reality, this is not practical, as the
later stages in the deployment pipeline (automated acceptance testing, capacity
testing, and manual acceptance testing) are lengthy activities. This is the reason
for pipelining your test process—it’s important to get feedback as quickly as
possible, when problems are cheap to fix, but not at the expense of getting more
comprehensive feedback when it becomes available.

121The Commit Stage

The Origin of the Term “Deployment Pipeline”

When we first used this idea, we named it a pipeline not because it was like a
liquid flowing through a pipe; rather, for the hardcore geeks amongst us, it reminded
us of the way processors “pipeline” their instruction execution in order to get a
degree of parallelism. Processor chips can execute instructions in parallel. But
how do you take a stream of machine instructions intended to be executed
serially and divide them up into parallel streams that make sense? The way pro-
cessors do this is very clever and quite complex, but in essence they often come
to points where they effectively “guess” the result of an operation in a separate
execution pipeline and start executing on the assumption of that guess. If the
guess is later found to be wrong, the results of the stream that was based on it
are simply dumped. There has been no gain—but no loss either. However, if the
guess was good, the processor has just done twice as much work in the time it
would take a single stream of execution—so for that spell, it was running twice
as fast.

Our deployment pipeline concept works in the same way. We design our commit
stage so that it will catch the majority of problems, while running very quickly. As
a result, we make a “guess” that all of our subsequent test stages will pass, so
we resume work on new features, preparing for the next commit and the initiation
of the next release candidate. Meanwhile, our pipeline optimistically works on our
assumption of success, in parallel to our development of new features.

Passing the commit stage is an important milestone in the journey of a release
candidate. It is a gate in our process that, once passed, frees developers to move
on to their next task. However, they retain a responsibility to monitor the progress
of the later stages too. Fixing broken builds remains the top priority for the de-
velopment team even when those breakages occur in the later stages of the
pipeline. We are gambling on success—but are ready to pay our technical debts
should our gamble fail.

If you only implement a commit stage in your development process, it usually
represents an enormous step forward in the reliability and quality of the output
of your teams. However, there are several more stages necessary to complete
what we consider to be a minimal deployment pipeline.

The Automated Acceptance Test Gate

A comprehensive commit test suite is an excellent litmus test for many classes of
errors, but there is much that it won’t catch. Unit tests, which comprise the vast
majority of the commit tests, are so coupled to the low-level API that it is often
hard for the developers to avoid the trap of proving that the solution works in
a particular way, rather than asserting that is solves a particular problem.

Chapter 5 Anatomy of the Deployment Pipeline122

Why Unit Tests Aren’t Enough

We once worked on a large project with around 80 developers. The system was
developed using continuous integration at the heart of our development process.
As a team, our build discipline was pretty good; we needed it to be with a team
of this size.

One day we deployed the latest build that had passed our unit tests into a test
environment. This was a lengthy but controlled approach to deployment that
our environment specialists carried out. However, the system didn’t seem to work.
We spent a lot of time trying to find what was wrong with the configuration of the
environment, but we couldn’t find the problem.Then one of our senior developers
tried the application on his development machine. It didn’t work there either.

He stepped back through earlier and earlier versions, until he found that the
system had actually stopped working three weeks earlier. A tiny, obscure bug had
prevented the system from starting correctly.

This project had good unit test coverage, with the average for all modules around
90%. Despite this, 80 developers, who usually only ran the tests rather than the
application itself, did not see the problem for three weeks.

We fixed the bug and introduced a couple of simple, automated smoke tests that
proved that the application ran and could perform its most fundamental function
as part of our continuous integration process.

We learned a lot of lessons from this and many other experiences on this big
complex project. But the most fundamental one was that unit tests only test a
developer’s perspective of the solution to a problem. They have only a limited
ability to prove that the application does what it is supposed to from a users per-
spective. If we want to be sure that the application provides to its users the value
that we hope it will, we will need another form of test. Our developers could have
achieved this by running the application more frequently themselves and interacting
with it. This would have solved the specific problem that we described above, but
it is not a very effective approach for a big complex application.

This story also points to another common failing in the development process that
we were using. Our first assumption was that there was a problem with our
deployment—that we had somehow misconfigured the system when we deployed
it to our test environment. This was a fair assumption, because that sort of failure
was quite common. Deploying the application was a complex, manually intensive
process that was quite prone to error.

So, although we had a sophisticated, well-managed, disciplined continuous in-
tegration process in place, we still could not be confident that we could identify
real functional problems. Nor could we be sure that, when it came time to deploy
the system, further errors would not be introduced. Furthermore, since deployments
took so long, it was often the case that the process for deployment would change
every time the deployment happened.This meant that every attempt at deployment
was a new experiment—a manual, error-prone process. This created a vicious
circle which meant very high-risk releases.

123The Automated Acceptance Test Gate

Commit tests that run against every check-in provide us with timely feedback
on problems with the latest build and on bugs in our application in the small.
But without running acceptance tests in a production-like environment, we know
nothing about whether the application meets the customer’s specifications, nor
whether it can be deployed and survive in the real world. If we want timely
feedback on these topics, we must extend the range of our continuous integration
process to test and rehearse these aspects of our system too.

The relationship of the automated acceptance test stage of our deployment
pipeline to functional acceptance testing is similar to that of the commit stage to
unit testing. The majority of tests running during the acceptance test stage are
functional acceptance tests, but not all.

The goal of the acceptance test stage is to assert that the system delivers the
value the customer is expecting and that it meets the acceptance criteria. The
acceptance test stage also serves as a regression test suite, verifying that no bugs
are introduced into existing behavior by new changes. As we describe in Chap-
ter 8, “Automated Acceptance Testing,” the process of creating and maintaining
automated acceptance tests is not carried out by separate teams but is brought
into the heart of the development process and carried out by cross-functional
delivery teams. Developers, testers, and customers work together to create these
tests alongside the unit tests and the code they write as part of their normal
development process.

Crucially, the development team must respond immediately to acceptance test
breakages that occur as part of the normal development process. They must decide
if the breakage is a result of a regression that has been introduced, an intentional
change in the behavior of the application, or a problem with the test. Then they
must take the appropriate action to get the automated acceptance test suite
passing again.

The automated acceptance test gate is the second significant milestone in the
lifecycle of a release candidate. The deployment pipeline will only allow the later
stages, such as manually requested deployments, to access builds that have suc-
cessfully overcome the hurdle of automated acceptance testing. While it is possible
to try and subvert the system, this is so time-consuming and expensive that the
effort is much better spent on fixing the problem that the deployment pipeline
has identified and deploying in the controlled and repeatable manner it supports.
The deployment pipeline makes it easier to do the right thing than to do the
wrong thing, so teams do the right thing.

Thus a release candidate that does not meet all of its acceptance criteria will
never get released to users.

Automated Acceptance Test Best Practices

It is important to consider the environments that your application will encounter
in production. If you’re only deploying to a single production environment under
your control, you’re lucky. Simply run your acceptance tests on a copy of this

Chapter 5 Anatomy of the Deployment Pipeline124

environment. If the production environment is complex or expensive, you can
use a scaled-down version of it, perhaps using a couple of middleware servers
while there might be many of them in production. If your application depends
on external services, you can use test doubles for any external infrastructure that
you depend on. We go into more detail on these approaches in Chapter 8,
“Automated Acceptance Testing.”

If you have to target many different environments, for example if you’re devel-
oping software that has to be installed on a user’s computer, you will need to
run acceptance tests on a selection of likely target environments. This is most
easily accomplished with a build grid. Set up a selection of test environments, at
least one for each target test environment, and run acceptance tests in parallel
on all of them.

In many organizations where automated functional testing is done at all, a
common practice is to have a separate team dedicated to the production and
maintenance of the test suite. As described at length in Chapter 4, “Implementing
a Testing Strategy,” this is a bad idea. The most problematic outcome is that the
developers don’t feel as if they own the acceptance tests. As a result, they tend
not to pay attention to the failure of this stage of the deployment pipeline, which
leads to it being broken for long periods of time. Acceptance tests written without
developer involvement also tend to be tightly coupled to the UI and thus brittle
and badly factored, because the testers don’t have any insight into the UI’s under-
lying design and lack the skills to create abstraction layers or run acceptance tests
against a public API.

The reality is that the whole team owns the acceptance tests, in the same way
as the whole team owns every stage of the pipeline. If the acceptance tests fail,
the whole team should stop and fix them immediately.

One important corollary of this practice is that developers must be able to run
automated acceptance tests on their development environments. It should be easy
for a developer who finds an acceptance test failure to fix it easily on their own
machine and verify the fix by running that acceptance test locally. The most
common obstacles to this are insufficient licenses for the testing software being
used and an application architecture that prevents the system from being deployed
on a development environment so that the acceptance tests can be run against
it. If your automated acceptance testing strategy is to succeed in the long term,
these kinds of obstacles need to be removed.

It can be easy for acceptance tests to become too tightly coupled to a particular
solution in the application rather than asserting the business value of the system.
When this happens, more and more time is spent maintaining the acceptance
tests as small changes in the behavior of the system invalidate tests. Acceptance
tests should be expressed in the language of the business (what Eric Evans calls
the “ubiquitous language”3), not in the language of the technology of the appli-
cation. By this we mean that while it is fine to write the acceptance tests in the

3. Evans, 2004.

125The Automated Acceptance Test Gate

same programming language that your team uses for development, the abstraction
should work at the level of business behavior—“place order” rather than “click
order button,” “confirm fund transfer” rather than “check fund_table has results,”
and so on.

While acceptance tests are extremely valuable, they can also be expensive to
create and maintain. It is thus essential to bear in mind that automated acceptance
tests are also regression tests. Don’t follow a naive process of taking your
acceptance criteria and blindly automating every one.

We have worked on several projects that found, as a result of following some
of the bad practices described above, that the automated functional tests were
not delivering enough value. They were costing far too much to maintain, and
so automated functional testing was stopped. This is the right decision if the tests
cost more effort than they save, but changing the way the creation and mainte-
nance of the tests are managed can dramatically reduce the effort expended and
change the cost-benefit equation significantly. Doing acceptance testing right is
the main subject of Chapter 8, “Automated Acceptance Testing.”

Subsequent Test Stages

The acceptance test stage is a significant milestone in the lifecycle of a release
candidate. Once this stage has been completed, a successful release candidate has
moved on from something that is largely the domain of the development team
to something of wider interest and use.

For the simplest deployment pipelines, a build that has passed acceptance
testing is ready for release to users, at least as far as the automated testing of the
system is concerned. If the candidate fails this stage, it by definition is not fit to
be released.

The progression of the release candidate to this point has been automatic, with
successful candidates being automatically promoted to the next stage. If you are
delivering software incrementally, it is possible to have an automated deployment
to production, as described in Timothy Fitz’ blog entry, “Continuous Deploy-
ment” [dbnlG8]. But for many systems, some form of manual testing is desirable
before release, even when you have a comprehensive set of automated tests. Many
projects have environments for testing integration with other systems, environ-
ments for testing capacity, exploratory testing environments, and staging
and production environments. Each of these environments can be more or less
production-like and have their own unique configuration.

The deployment pipeline takes care of deployments to testing environments
too. Release management systems such as AntHill Pro and Go provide the ability
to see what is currently deployed into each environment and to perform a push-
button deployment into that environment. Of course behind the scenes, these
simply run the deployment scripts you have written to perform the deployment.

Chapter 5 Anatomy of the Deployment Pipeline126

It is also possible to build your own system to do this, based on open source tools
such as Hudson or the CruiseControl family, although commercial tools provide
visualizations, reporting, and fine-grained authorization of deployments out of
the box. If you create your own system, the key requirements are to be able to
see a list of release candidates that have passed the acceptance test stage, have a
button to deploy the version of your choice into the environment of your choice,
see which release candidate is currently deployed in each environment and which
version in version control it came from. Figure 5.7 shows a home-brewed system
that performs these functions.

Figure 5.7 Example deployment page

Deployments to these environments may be executed in sequence, each one
depending on the successful outcome of the one before, so that you can only de-
ploy to production once you have deployed to UAT and staging. They could also
occur in parallel, or be offered as optional stages that are manually selected.

Crucially, the deployment pipeline allows testers to deploy any build to their
testing environments on demand. This replaces the concept of the “nightly build.”
In the deployment pipeline, instead of testers being given a build based on an
arbitrary revision (the last change committed before everybody went home),
testers can see which builds passed the automated tests, which changes were
made to the application, and choose the build they want. If the build turns out
to be unsatisfactory in some way—perhaps it does not include the correct change,
or contains some bug which makes it unsuitable for testing—the testers can
redeploy any other build.

127Subsequent Test Stages

Manual Testing

In iterative processes, acceptance testing is always followed by some manual
testing in the form of exploratory testing, usability testing, and showcases. Before
this point, developers may have demonstrated features of the application to ana-
lysts and testers, but neither of these roles will have wasted time on a build that
is not known to have passed automated acceptance testing. A tester’s role in this
process should not be to regression-test the system, but first of all to ensure that
the acceptance tests genuinely validate the behavior of the system by manually
proving that the acceptance criteria are met.

After that, testers focus on the sort of testing that human beings excel at but
automated tests are poor at. They do exploratory testing, perform user testing
of the application’s usability, check the look and feel on various platforms, and
carry out pathological worst-case tests. Automated acceptance testing is what
frees up time for testers so they can concentrate on these high-value activities,
instead of being human test-script execution machines.

Nonfunctional Testing

Every system has many nonfunctional requirements. For example, almost every
system has some kind of requirements on capacity and security, or the service-
level agreements it must conform to. It usually makes sense to run automated
tests to measure how well the system adheres to these requirements. For more
details on how to achieve this, see Chapter 9, “Testing Nonfunctional
Requirements.” For other systems, testing of nonfunctional requirements need
not be done on a continuous basis. Where it is required, in our experience it is
still valuable to create a stage in your pipeline for running these automated tests.

Whether the results of the capacity test stage form a gate or simply inform
human decision-making is one of the criteria that determine the organization of
the deployment pipeline. For very high-performance applications, it makes sense
to run capacity testing as a wholly automated outcome of a release candidate
successfully passing the acceptance test stage. If the candidate fails capacity testing,
it is not usually deemed to be deployable.

For many applications, though, the judgment of what is deemed acceptable is
more subjective than that. It makes more sense to present the results at the con-
clusion of the capacity test stage and allow a human being to decide whether the
release candidate should be promoted or not.

Preparing to Release

There is a business risk associated with every release of a production system. At
best, if there is a serious problem at the point of release, it may delay the intro-
duction of valuable new capabilities. At worst, if there is no sensible back-out

Chapter 5 Anatomy of the Deployment Pipeline128

plan in place, it may leave the business without mission-critical resources because
they had to be decommissioned as part of the release of the new system.

The mitigation of these problems is very simple when we view the release step
as a natural outcome of our deployment pipeline. Fundamentally, we want to

• Have a release plan that is created and maintained by everybody involved
in delivering the software, including developers and testers, as well as
operations, infrastructure, and support personnel

• Minimize the effect of people making mistakes by automating as much of
the process as possible, starting with the most error-prone stages

• Rehearse the procedure often in production-like environments, so you can
debug the process and the technology supporting it

• Have the ability to back out a release if things don’t go according to plan

• Have a strategy for migrating configuration and production data as part
of the upgrade and rollback processes

Our goal is a completely automated release process. Releasing should be as
simple as choosing a version of the application to release and pressing a button.
Backing out should be just as simple. There is a great deal more information on
these topics in Chapter 10, “Deploying and Releasing Applications.”

Automating Deployment and Release

The less control we have over the environment in which our code executes, the
more potential there is for unexpected behaviors. Thus, whenever we release a
software system, we want to be in control of every single bit that is deployed.
There are two factors that may work against this ideal. The first is that for many
applications, you simply don’t have full control of the operational environment
of the software that you create. This is especially true of products and applications
that are installed by users, such as games or office applications. This problem is
generally mitigated by selecting a representative sample of target environments
and running your automated acceptance test suite on each of these sample envi-
ronments in parallel. You can then mine the data produced to work out which
tests fail on which platforms.

The second constraint is that the cost of establishing that degree of control is
usually assumed to outweigh the benefits. However, usually the converse is true:
Most problems with production environments are caused by insufficient control.
As we describe in Chapter 11, production environments should be completely
locked down—changes to them should only be made through automated
processes. That includes not only deployment of your application, but also changes
to their configuration, software stack, network topology, and state. Only in this
way is it possible to reliably audit them, diagnose problems, and repair them in

129Preparing to Release

a predictable time. As the complexity of the system increases, so does the number
of different types of servers, and the higher the level of performance required,
the more vital this level of control becomes.

The process for managing your production environment should be used for
your other testing environments such as staging, integration, and so forth. In this
way you can use your automated change management system to create a perfectly
tuned configuration in your manual testing environments. These can be tuned to
perfection, perhaps using feedback from capacity testing to evaluate the
configuration changes that you make. When you are happy with the result, you
can replicate it to every server that needs that configuration, including production,
in a predictable, reliable way. All aspects of the environment should be managed
in this way, including middleware (databases, web servers, message brokers, and
application servers). Each can be tuned and tweaked, with the optimal settings
added to your configuration baseline.

The costs of automating the provision and maintenance of environments can
be lowered significantly by using automated provisioning and management of
environments, good configuration management practices, and (if appropriate)
virtualization.

Once the environment’s configuration is managed correctly, the application
can be deployed. The details of this vary widely depending on the technologies
employed in the system, but the steps are always very similar. We exploit this
similarity in our approach to the creation of build and deployment scripts, dis-
cussed in Chapter 6, “Build and Deployment Scripting,” and in the way in which
we monitor our process.

With automated deployment and release, the process of delivery becomes de-
mocratized. Developers, testers, and operations teams no longer need to rely on
ticketing systems and email threads to get builds deployed so they can gather
feedback on the production readiness of the system. Testers can decide which
version of the system they want in their test environment without needing to be
technical experts themselves, nor relying on the availability of such expertise to
make the deployment. Since deployment is simple, they can change the build
under test more often, perhaps returning to an earlier version of the system to
compare its behavior with that of the latest version when they find a particularly
interesting bug. Sales people can access the latest version of the application with
the killer feature that will swing the deal with a client. There are more subtle
changes too. In our experience, people begin to relax a little. They perceive the
project as a whole as less risky—mainly because it is less risky.

An important reason for the reduction in risk is the degree to which the process
of release itself is rehearsed, tested, and perfected. Since you use the same
process to deploy your system to each of your environments and to release it,
the deployment process is tested very frequently—perhaps many times a day.
After you have deployed a complex system for the fiftieth or hundredth time
without a hitch, you don’t think about it as a big event any more. Our goal is to
get to that stage as quickly as possible. If we want to be wholly confident in the

Chapter 5 Anatomy of the Deployment Pipeline130

release process and the technology, we must use it and prove it to be good on a
regular basis, just like any other aspect of our system. It should be possible to
deploy a single change to production through the deployment pipeline with the
minimum possible time and ceremony. The release process should be continuously
evaluated and improved, identifying any problems as close to the point at which
they were introduced as possible.

Many businesses require the ability to release new versions of their software
several times a day. Even product companies often need to make new versions
of their software available to users quickly, in case critical defects or security
holes are found. The deployment pipeline and the associated practices in this
book are what makes it possible to do this safely and reliably. Although many
agile development processes thrive on frequent release into production—a process
we recommend very strongly when it is applicable—it doesn’t always make sense
to do so. Sometimes we have to do a lot of work before we are in a position to
release a set of features that makes sense to our users as a whole, particularly in
the realm of product development. However, even if you don’t need to release
your software several times a day, the process of implementing a deployment
pipeline will still make an enormous positive impact on your organization’s
ability to deliver software rapidly and reliably.

Backing Out Changes

There are two reasons why release days are traditionally feared. The first one is
the fear of introducing a problem because somebody might make a hard-to-detect
mistake while going through the manual steps of a software release, or because
there is a mistake in the instructions. The second fear is that, should the release
fail, either because of a problem in the release process or a defect in the new
version of the software, you are committed. In either case, the only hope is that
you will be clever enough to solve the problem very quickly.

The first problem we mitigate by essentially rehearsing the release many times
a day, proving that our automated deployment system works. The second fear
is mitigated by providing a back-out strategy. In the worst case, you can then get
back to where you were before you began the release, which allows you to take
time to evaluate the problem and find a sensible solution.

In general, the best back-out strategy is to keep the previous version of your
application available while the new version is being released—and for some time
afterwards. This is the basis for some of the deployment patterns we discuss in
Chapter 10, “Deploying and Releasing Applications.” In a very simple application,
this can be achieved (ignoring data and configuration migrations) by having each
release in a directory and using a symlink to point to the current version. Usually,
the most complex problem associated with both deploying and rolling back is
migrating the production data. This is discussed at length in Chapter 12,
“Managing Data.”

131Preparing to Release

The next best option is to redeploy the previous good version of your appliation
from scratch. To this end, you should have the ability to click a button to release
any version of your application that has passed all stages of testing, just as you
can with other environments under the control of the deployment pipeline. This
idealistic position is fully achievable for some systems, even for systems with
significant amounts of data associated with them. However, for some systems,
even for individual changes, the cost of providing a full, version-neutral back-
out may be excessive in time, if not money. Nevertheless, the ideal is useful,
because it sets a target which every project should strive to achieve. Even if it
falls somewhat short in some respects, the closer you approach this ideal position
the easier your deployment becomes.

On no account should you have a different process for backing out than you
do for deploying, or perform incremental deployments or rollbacks. These pro-
cesses will be rarely tested and therefore unreliable. They will also not start from
a known-good baseline, and therefore will be brittle. Always roll back either by
keeping an old version of the application deployed or by completely redeploying
a previous known-good version.

Building on Success

By the time a release candidate is available for deployment into production, we
will know with certainty that the following assertions about it are true:

• The code can compile.

• The code does what our developers think it should because it passed its
unit tests.

• The system does what our analysts or users think it should because it passed
all of the acceptance tests.

• Configuration of infrastructure and baseline environments is managed
appropriately, because the application has been tested in an analog of
production.

• The code has all of the right components in place because it was deployable.

• The deployment system works because, at a minimum, it will have been
used on this release candidate at least once in a development environment,
once in the acceptance test stage, and once in a testing environment before
the candidate could have been promoted to this stage.

• The version control system holds everything we need to deploy, without
the need for manual intervention, because we have already deployed the
system several times.

Chapter 5 Anatomy of the Deployment Pipeline132

This “building upon success” approach, allied with our mantra of failing the
process or any part of it as quickly as possible, works at every level.

Implementing a Deployment Pipeline

Whether you’re starting a new project from scratch or trying to create an auto-
mated pipeline for an existing system, you should generally take an incremental
approach to implementing a deployment pipeline. In this section we’ll set out a
strategy for going from nothing to a complete pipeline. In general, the steps look
like this:

1. Model your value stream and create a walking skeleton.

2. Automate the build and deployment process.

3. Automate unit tests and code analysis.

4. Automate acceptance tests.

5. Automate releases.

Modeling Your Value Stream and Creating a Walking Skeleton

As described at the beginning of this chapter, the first step is to map out the part
of your value stream that goes from check-in to release. If your project is already
up and running, you can do this in about half an hour using pencil and paper.
Go and speak to everybody involved in this process, and write down the steps.
Include best guesses for elapsed time and value-added time. If you’re working
on a new project, you will have to come up with an appropriate value stream.
One way to do this is to look at another project within the same organization
that has characteristics similar to yours. Alternatively, you could start with a
bare minimum: a commit stage to build your application and run basic metrics
and unit tests, a stage to run acceptance tests, and a third stage to deploy your
application to a production-like environment so you can demo it.

Once you have a value stream map, you can go ahead and model your process
in your continuous integration and release management tool. If your tool doesn’t
allow you to model your value stream directly, you can simulate it by using de-
pendencies between projects. Each of these projects should do nothing at
first—they are just placeholders that you can trigger in turn. Using our “bare
minimum” example, the commit stage should be run every time somebody checks
in to version control. The stage that runs the acceptance tests should trigger
automatically when the commit stage passes, using the same binary created in
the commit stage. Any stages that deploy the binaries to a production-like envi-
ronment for manual testing or release purposes should require you to press a
button in order to select the version to deploy, and this capability will usually
require authorization.

133Implementing a Deployment Pipeline

You can then make these placeholders actually do something. If your project
is already well under way, that means plugging in your existing build, test, and
deploy scripts. If not, your aim is to create a “walking skeleton” [bEUuac], which
means doing the smallest possible amount of work to get all the key elements in
place. First of all, get the commit stage working. If you don’t have any code or
unit tests yet, just create the simplest possible “Hello world” example or, for a
web application, a single HTML page, and put a single unit test in place that
asserts true. Then you can do the deployment—perhaps setting up a virtual direc-
tory on IIS and putting your web page into it. Finally, you can do the acceptance
test—you need to do this after you’ve done the deployment, since you need your
application deployed in order to run acceptance tests against it. Your acceptance
test can crank up WebDriver or Sahi and verify that the web page contains the
text “Hello world.”

On a new project, all this should be done before work starts on develop-
ment—as part of iteration zero, if you’re using an iterative development process.
Your organization’s system administrators or operations personnel should be
involved in setting up a production-like environment to run demos from and
developing the scripts to deploy your application to it. In the following sections,
there’s more detail on how to create the walking skeleton and develop it as your
project grows.

Automating the Build and Deployment Process

The first step in implementing a pipeline is to automate the build and deployment
process. The build process takes source code as its input and produces binaries
as output. “Binaries” is a deliberately vague word, since what your build process
produces will depend on what technology you’re using. The key characteristic
of binaries is that you should be able to copy them onto a new machine and,
given an appropriately configured environment and the correct configuration for
the application in that environment, start your application—without relying on
any part of your development toolchain being installed on that machine.

The build process should be performed every time someone checks in by your
continuous integration server software. Use one of the many tools listed in the
“Implementing Continuous Integration” section on page 56. Your CI server
should be configured to watch your version control system, check out or update
your source code every time a change is made to it, run the automated build
process, and store the binaries on the filesystem where they are accessible to the
whole team via the CI server’s user interface.

Once you have a continuous build process up and running, the next step is
automating deployment. First of all, you need to get a machine to deploy your
application on. For a new project, this can be the machine your continuous inte-
gration server is on. For a project that is more mature, you may need to find
several machines. Depending on your organization’s conventions, this environment
can be called the staging or user acceptance testing (UAT) environment. Either

Chapter 5 Anatomy of the Deployment Pipeline134

way, this environment should be somewhat production-like, as described in
Chapter 10, “Deploying and Releasing Applications,” and its provisioning and
maintenance should be a fully automated process, as described in Chapter 11,
“Managing Infrastructure and Environments.”

Several common approaches to deployment automation are discussed in
Chapter 6, “Build and Deployment Scripting.” Deployment may involve packaging
your application first, perhaps into several separate packages if different parts of
the application need to be installed on separate machines. Next, the process
of installing and configuring your application should be automated. Finally, you
should write some form of automated deployment test that verifies that the ap-
plication has been successfully deployed. It is important that the deployment
process is reliable, as it is also used as a prerequisite for automated acceptance
testing.

Once your application’s deployment process is automated, the next step is to
be able to perform push-button deployments to your UAT environment. Configure
your CI server so that you can choose any build of your application and click a
button to trigger a process that takes the binaries produced by that build, runs
the script that deploys the build, and runs the deployment test. Make sure that
when developing your build and deployment system you make use of the principles
we describe, such as building your binaries only once and separating configuration
from binaries, so that the same binaries may be used in every environment. This
will ensure that the configuration management for your project is put on a sound
footing.

Except for user-installed software, the release process should be the same
process you use to deploy to a testing environment. The only technical differences
should be in the configuration of the environment.

Automating the Unit Tests and Code Analysis

The next step in developing your deployment pipeline is implementing a full
commit stage. This means running unit tests, code analysis, and ultimately a se-
lection of acceptance and integration tests on every check-in. Running unit tests
should not require any complex setup, because unit tests by definition don’t rely
on your application running. Instead, they can be run by one of the many
xUnit-style frameworks against your binaries.

Since unit tests do not touch the filesystem or database (or they’d be component
tests), they should also be fast to run. This is why you should start running your
unit tests directly after building your application. You can also then run static
analysis tools against your application to report useful diagnostic data such as
coding style, code coverage, cyclomatic complexity, coupling, and so forth.

As your application gets more complex, you will need to write a large number
of unit tests and a set of component tests as well. These should all go into the
commit stage. Once the commit stage gets over five minutes, it makes sense to
split it into suites that run in parallel. In order to do this, you’ll need to get several

135Implementing a Deployment Pipeline

machines (or one machine with plenty of RAM and a few CPUs) and use a CI
server that supports splitting up work and running it in parallel.

Automating Acceptance Tests

The acceptance test phase of your pipeline can reuse the script you use to deploy
to your testing environment. The only difference is that after the smoke tests are
run, the acceptance test framework needs to be started up, and the reports it
generates should be collected at the end of the test run for analysis. It also makes
sense to store the logs created by your application. If your application has a GUI,
you can also use a tool like Vnc2swf to create a screen recording as the acceptance
tests are running to help you debug problems.

Acceptance tests fall into two types: functional and nonfunctional. It is essential
to start testing nonfunctional parameters such as capacity and scaling character-
istics from early on in any project, so that you have some idea of whether your
application will meet its nonfunctional requirements. In terms of setup and de-
ployment, this stage can work exactly the same way as the functional acceptance
testing stage. However, the tests of course will differ (see Chapter 9, “Testing
Nonfunctional Requirements,” for more on creating such tests). When you start
off, it is perfectly possible to run acceptance tests and performance tests back-to-
back as part of a single stage. You can then separate them in order to be able to
distinguish easily which set of tests failed. A good set of automated acceptance
tests will help you track down intermittent and hard-to-reproduce problems such
as race conditions, deadlocks, and resource contention that will be a good deal
harder to discover and debug once your application is released.

The varieties of tests you create as part of the acceptance test and commit test
stages of your pipeline will of course be determined by your testing strategy (see
Chapter 4, “Implementing a Testing Strategy”). However, you should try and
get at least one or two of each type of test you need to run automated early on
in your project’s life, and incorporate them into your deployment pipeline. Thus
you will have a framework that makes it easy to add tests as your project grows.

Evolving Your Pipeline

The steps we describe above are found in pretty much every value stream, and
hence pipeline, that we have seen. They are usually the first targets for automation.
As your project gets more complex, your value stream will evolve. There are two
other common potential extensions to the pipeline: components and branches.
Large applications are best built as a set of components which are assembled
together. In such projects, it may make sense to have a minipipeline for each
component, and then a pipeline that assembles all the components and puts the
entire application through acceptance tests, nonfunctional tests, and then deploy-
ment to testing, staging, and production environments. This topic is dealt with

Chapter 5 Anatomy of the Deployment Pipeline136

at length in Chapter 13, “Managing Components and Dependencies.” Managing
branches is discussed in Chapter 14, “Advanced Version Control.”

The implementation of the pipeline will vary enormously between projects,
but the tasks themselves are consistent for most projects. Using them as a pattern
can speed up the creation of the build and deployment process for any project.
However, ultimately, the point of the pipeline is to model your process for
building, deploying, testing, and releasing your application. The pipeline then
ensures that each change can pass through this process independently in as
automated a fashion as possible.

As you implement the pipeline, you will find that the conversations you have
with the people involved and the gains in efficiency you realize will, in turn,
have an effect on your process. Thus it is important to remember three things.

First of all, the whole pipeline does not need to be implemented at once. It
should be implemented incrementally. If there is a part of your process that is
currently manual, create a placeholder for it in your workflow. Ensure your im-
plementation records when this manual process is started and when it completes.
This allows you to see how much time is spent on each manual process, and thus
estimate to what extent it is a bottleneck.

Second, your pipeline is a rich source of data on the efficiency of your process
for building, deploying, testing, and releasing applications. The deployment
pipeline implementation you create should record every time a process starts and
finishes, and what the exact changes were that went through each stage of your
process. This data, in turn, allows you to measure the cycle time from committing
a change to having it deployed into production, and the time spent on each stage
in the process (some of the commercial tools on the market will do this for you).
Thus it becomes possible to see exactly what your process’ bottlenecks are and
attack them in order of priority.

Finally, your deployment pipeline is a living system. As you work continuously
to improve your delivery process, you should continue to take care of your de-
ployment pipeline, working to improve and refactor it the same way you work
on the applications you are using it to deliver.

Metrics

Feedback is at the heart of any software delivery process. The best way to
improve feedback is to make the feedback cycles short and the results visible.
You should measure continually and broadcast the results of the measurements
in some hard-to-avoid manner, such as on a very visible poster on the wall, or
on a computer display dedicated to showing bold, big results. Such devices are
known as information radiators.

The important question, though, is: What should you measure? What you
choose to measure will have an enormous influence on the behavior of your team
(this is known as the Hawthorne effect). Measure the lines of code, and developers

137Metrics

will write many short lines of code. Measure the number of defects fixed, and
testers will log bugs that could be fixed by a quick discussion with a developer.

According to the lean philosophy, it is essential to optimize globally, not locally.
If you spend a lot of time removing a bottleneck that is not actually the one
constraining your delivery process, you will make no difference to the delivery
process. So it is important to have a global metric that can be used to determine
if the delivery process as a whole has a problem.

For the software delivery process, the most important global metric is cycle
time. This is the time between deciding that a feature needs to be implemented
and having that feature released to users. As Mary Poppendieck asks, “How long
would it take your organization to deploy a change that involves just one single
line of code? Do you do this on a repeatable, reliable basis?”4 This metric is hard
to measure because it covers many parts of the software delivery process—from
analysis, through development, to release. However, it tells you more about your
process than any other metric.

Many projects, incorrectly, choose other measures as their primary metrics.
Projects concerned with the quality of their software often choose to measure
the number of defects. However, this is a secondary measure. If a team using this
measure discovers a defect, but it takes six months to release a fix for it, knowing
that the defect exists is not very useful. Focusing on the reduction of cycle time
encourages the practices that increase quality, such as the use of a comprehensive
automated suite of tests that is run as a result of every check-in.

A proper implementation of a deployment pipeline should make it simple to
calculate the part of the cycle time corresponding to the part of the value stream
from check-in to release. It should also let you see the lead time from the check-in
to each stage of your process, so you can discover your bottlenecks.

Once you know the cycle time for your application, you can work out how
best to reduce it. You can use the Theory of Constraints to do this by applying
the following process.

1. Identify the limiting constraint on your system. This is the part of your build,
test, deploy, and release process that is the bottleneck. To pick an example
at random, perhaps it’s the manual testing process.

2. Exploit the constraint. This means ensuring that you should maximize the
throughput of that part of the process. In our example (manual testing), you
would make sure that there is always a buffer of stories waiting to be manu-
ally tested, and ensure that the resources involved in manual testing don’t
get used for anything else.

3. Subordinate all other processes to the constraint. This implies that other re-
sources will not work at 100%—for example, if your developers work devel-
oping stories at full capacity, the backlog of stories waiting to be tested would

4. Implementing Lean Software Development, p. 59.

Chapter 5 Anatomy of the Deployment Pipeline138

keep on growing. Instead, have your developers work just hard enough
to keep the backlog constant and spend the rest of their time writing
automated tests to catch bugs so that less time needs to be spent testing
manually.

4. Elevate the constraint. If your cycle time is still too long (in other words,
steps 2 and 3 haven’t helped enough), you need to increase the resources
available—hire more testers, or perhaps invest more effort in automated
testing.

5. Rinse and repeat. Find the next constraint on your system and go back to
step 1.

While cycle time is the most important metric in software delivery, there are
a number of other diagnostics that can warn you of problems. These include

• Automated test coverage

• Properties of the codebase such as the amount of duplication, cyclomatic
complexity, efferent and afferent coupling, style problems, and so on

• Number of defects

• Velocity, the rate at which your team delivers working, tested, ready for
use code

• Number of commits to the version control system per day

• Number of builds per day

• Number of build failures per day

• Duration of build, including automated tests

It is worth considering how these metrics are presented. The reports described
above produce a huge amount of data, and interpreting this data is an art. Pro-
gram managers, for example, might expect to see this data analyzed and aggre-
gated into a single “health” metric that is represented in the form of a traffic light
that shows red, amber, or green. A team’s technical lead will want much more
detail, but even they will not want to wade through pages and pages of reports.
Our colleague, Julias Shaw, created a project called Panopticode that runs a series
of these reports against Java code and produces rich, dense visualizations (such
as Figure 5.8) that let you see at a glance whether there is a problem with your
codebase and where it lies. The key is to create visualizations that aggregate the
data and present them in such a form that the human brain can use its unparalleled
pattern-matching skills most effectively to identify problems with your process
or codebase.

139Metrics

Figure 5.8 A tree map generated by Panopticode showing cyclomatic
complexity for a Java codebase

Each team’s continuous integration server should generate these reports and
visualizations on each check-in, and store the reports in your artifact repository.
You should then collate the results in a database, and track them across every
team. These results should be published on an internal website—have a page for
each project. Finally, aggregate them together so that they can be monitored
across all of the projects in your development program, or even your whole
organization.

Summary

The purpose of the deployment pipeline is to give everyone involved in delivering
software visibility into the progress of builds from check-in to release. It should
be possible to see which changes have broken the application and which resulted
in release candidates suitable for manual testing or release. Your implementation
should make it possible to perform push-button deployments into manual testing
environments, and to see which release candidates are in those environments.
Choosing to release a particular version of your application should also be a
push-button task that can be performed with full knowledge that the release

Chapter 5 Anatomy of the Deployment Pipeline140

candidate being deployed has passed the entire pipeline successfully, and
hence has had a battery of automated and manual tests performed on it in a
production-like environment.

Once you have a deployment pipeline implemented, inefficiencies in your release
process will become obvious. All kinds of useful information can be derived from
a working deployment pipeline, such as how long it takes a release candidate to
get through the various manual testing stages, the average cycle time from check-
in to release, and how many defects are discovered at which stages in your process.
Once you have this information, you can work to optimize your process for
building and releasing software.

There is no one-size-fits-all solution to the complex problem of implementing
a deployment pipeline. The crucial point is to create a system of record that
manages each change from check-in to release, providing the information you
need to discover problems as early as possible in the process. Having an imple-
mentation of the deployment pipeline can then be used to drive out inefficiencies
in your process so you can make your feedback cycle faster and more powerful,
perhaps by adding more automated acceptance tests and parallelizing them more
aggressively, or by making your testing environments more production-like, or
by implementing better configuration management processes.

A deployment pipeline, in turn, depends on having some foundations in place:
good configuration management, automated scripts for building and deploying
your application, and automated tests to prove that your application will deliver
value to its users. It also requires discipline, such as ensuring that only changes
that have passed through the automated build, test, and deployment system
get released. We discuss these prerequisites and the necessary disciplines in
Chapter 15, “Managing Continuous Delivery,” which includes a maturity model
for continuous integration, testing, data management, and so forth.

The following chapters of the book dive into considerably more detail on
implementing deployment pipelines, exploring some of the common issues that
may arise and discussing techniques that can be adopted within the context of
the full lifecycle deployment pipelines described here.

141Summary

A
A/B testing, 264
Aardvarks, 218
Absolute paths in build scripts, 164
Abstraction layer

for acceptance tests, 198–204
for database access, 335
for testing against UI, 88, 201
in branch by abstraction, 349

Acceptance criteria
and nonfunctional requirements, 227–228
and test data, 336
as executable specifications, 195–198
for acceptance tests, 85, 89
for automated tests, 93
for change management, 441
for organizational change, 420
managing, 197
round-tripping, 200

Acceptance test stage
and test data, 339–341
as part of deployment pipeline, 110
workflow of, 187

Acceptance tests
against UI, 88
and analysis, 190
and asynchronicity, 200, 207–210
and cloud computing, 220–222, 313
and external systems, 210
and team size, 214
and test doubles, 210–212
and the delivery process, 99–101
and the deployment pipeline, 213–218
and timeouts, 207–210
and virtualization, 310
application driver layer, 198–204
as part of:

CI, 61
commit stage, 120
integration pipeline, 362

automating, 86–88, 136
back doors in, 206

definition of, 85
deployment pipeline gate of, 122–126
encapsulating, 206–207
failing, 124
fragility of, 88, 125, 200, 205
functional, 124
isolation in, 205, 220
layering, 191
maintainability of, 190–192
manual, 86, 189
parallel executing, 199, 220, 336
performance of, 218–222
record-and-playback for, 191, 197
reliability of, 200, 219
running on development machines, 62,

190
screen recording for, 136, 213–214
shared resources for, 219–220
test data managing in, 336, 339–341
testing against UI, 192–193
turning into capacity tests, 238
UI coupling, 125, 192, 201
use cases for, 86
validating, 192
value proposition for, 188–193, 351
vs. unit tests, 188
who owns them, 125, 215
window driver pattern of, 201–204

Access control, 284, 438–439
for infrastructure, 285–286

AccuRev, 385, 399, 403
ActiveDirectory, 290
ActiveRecord migrations, 328
Actor model, 359
Adapting agile processes, 427
Adaptive tests, 336, 338
Agile development, 427

frequent releases in, 131
refactorings in, 330
showcases during, 90

AgileDox, 201
Albacore, 151

Index

445

Alerts, 281–282
Algorithms and application performance,

230
Alternate path, 86
Amazon, 316
Amazon EC2, 221, 261, 312
Amazon Web Services (AWS), 261, 312–315
Analysis, 193–195

and acceptance tests, 190
and incremental development, 349
and nonfunctional requirements, 226–228

Analysts, 193
Ant, 147–148
AntHill Pro, 58, 126, 255, 373
Antipatterns

deploying after development, 7–9
deploying software manually, 5–7
long-lived branches, 411
manual configuration management, 9–10
of nonfunctional requirements, 230
solved by the deployment pipeline, 105

Apache, 320
API (Application Programming Interface),

340, 357, 367, 369
Application configuration

and testing, 46
management of, 39

Application driver, 191
Application driver pattern, 198–204
Application lifecycle

and the release strategy, 250
phases of, 421–429

Application servers, 296
Approval process, 112, 250, 254, 267, 285,

437
APT repository, 294
Aptitude, 294
Arch, 396
Architecture

and components, 346
and Conway’s Law, 360
and nonfunctional requirements, 105,

226–228
as part of inception, 423

Archiving
as a requirement of operations, 282
as part of the release strategy, 251

Artifact repository
and deployment, 256
and pipelining dependencies, 366

and the deployment pipeline, 175–177,
374–375

auditing, 373
implementing in a shared filesystem, 375
managing, 373–375
organization-specific, 355
purging, 175
vs. version control, 166

Artifactory, 111, 355, 361, 373, 375
Artifacts, 111
Assemblies

and dependency management, 353
and labels, 374
and traceability, 166

Asynchrony
and acceptance testing, 200, 207–210
and capacity testing, 239
and unit testing, 180

ATAM (Architectural Tradeoff Analysis
Method), 227

Atomic commits, 383–384
Atomic tests, 205, 337
Auditing

and acceptance criteria, 198
and data archiving, 282
and deployment, 273
and distributed version control, 396
and environment management, 129
and locking down infrastructure, 286
and poor tools, 300
and rebuilding binaries, 114
and the deployment pipeline, 418
as a nonfunctional requirement, 227
as a requirement of IT operations,

280–281
as part of:

delivery, 429
release strategy, 251

management of, 436–441
of artifact repositories, 373
of infrastructure changes, 287
of manual processes, 6

Automated tests
and continuous deployment, 266
and runtime configuration, 348
and stream-based version control, 403
as part of project initiation, 430
as prerequisite for:

CI, 59–60
merging, 390
quality, 434

Index446

failing, commenting out, 70
for infrastructure, 323
See also Acceptance tests, Capacity tests,

Unit tests
Automation

as a principle of continuous delivery, 25
benefits of, 5–7
effect on feedback, 14
for risk reducing, 418
importance of, 12
of database initialization, 326–327
of database migration, 327–331, 340
of deployment, 152–153
vs. documentation, 287, 437–438

Autonomic infrastructure, 278, 292, 301
Availability, 91, 314, 423
Azure, 313, 317

B
Back doors in acceptance tests, 206
Backing out

planning, 129, 251, 441
ways of, 131–132

Backlogs
defect, 99–101
requirement, 425
as part of:

release plan, 251
service continuity planning, 282

network, 302
Backwards compatibility, 371
Ball of mud, 351, 359
Baseline

and version control, 166
and virtualization, 305
environments, 51, 155

Bash, 282
Batch processing, 167
Bazaar, 396
Bcfg2, 291
Behavior-driven development, 195, 204, 323
Behavior-driven monitoring, 322–323
Bench, 243
Beta testing, 90
Big, visible displays. See Dashboards
BigTable, 315
Binaries

and packaging, 154
and pessimistic locking, 387
and version control, 35, 373

building, 438
only once, 113–115

definition of, 134
environment-specific, 115
in CVS, 383
managing, 373–375
re-creatability from version control, 33,

175, 354, 363, 373
separating out configuration from, 50
shared filesystem for, 166

Binary file formats, 300
BitBucket, 394
BitKeeper, 386, 395
BizTalk, 311
BladeLogic, 161, 287, 289, 291, 296
Blue-green deployments, 261–262, 301,

332–333
BMC, 156, 161, 289, 291, 318
Bootstrapping problem, 372
Bottlenecks, 106, 138
Boundary value analysis, 86
Branch by abstraction, 334–335, 349–351,

360, 415
Branches

integrating, 389
maintenance, 389
release, 389

Branching
and CI, 59, 390–393
branch by feature, 36, 81, 349, 405,

410–412
branch by team, 412–415
branch for release, 346, 367
deferred, 390
definition of, 388–393
early, 390
environmental, 388
functional, 388
in CVS, 383
in Subversion, 384
organizational, 388
physical, 388
policies of, 389
procedural, 388
reasons of, 381

Brittle tests, 125, 191
BSD (Berkeley Software Distribution), 355
BSD ports, 294
Bug queue. See Backlogs, defect

447Index

Build
and components, 360
and test targets, 166–167
automating as prerequisite for CI, 57
broken:

and checking in, 66
going home when, 68–69
responsibility for fixing, 70–71, 174
reverting, 69

continuous, 65
failing for slow tests, 73
optimizing, 361
promoting, 108
scheduling, 65, 118–119, 127
tools for, 145
triggering, 369–370

Build grid, 111, 185
Build ladder, 372
Build lights, 63
Build master, 174
Build pipeline, 110
Build quality in, 26–27, 83
BuildForge, 58
Buildr, 151
Bulkhead pattern, 98
Business analysts. See Analysts
Business case, 422
Business governance. See Governance
Business intelligence, 317
Business sponsor, 422
Business value

and analysis, 193
and nonfunctional requirements, 226
protecting by acceptance tests, 189

C
C/C++

building with Make and SCons, 147
compiling, 146

C#, 282
CA, 318
CAB (Change Advisory Board), 280, 440
Canary releasing, 235, 262–265

and continuous deployment, 267
and database migration, 333

Capacity
and cloud computing, 314
as a cause of project failure, 431
definition of, 225
designing for, 230
measuring, 232–234

planning, 251, 317, 423
Capacity testing

and canary releasing, 264
and cloud computing, 313
and virtualization, 310
as part of a testing strategy, 91
automating, 238–244
environment for, 234–237
extrapolating, 234
in the deployment pipeline, 112, 244–246
interaction templates in, 241–244
measurements for, 232–234
of distributed systems, 240
performance of, 238
scenarios in, 238
simulations for, 239
test data managing in, 341–342
thresholds in, 238
through a service layer, 239
through the API, 239
through the UI, 240–241
warm-up periods in, 245

Capistrano, 162
Cautious optimism, 370–371
CCTV (Closed-circuit television), 273
CfEngine, 51, 53, 155, 161, 284, 287, 291
Change management, 9, 53–54, 280, 287,

421, 429, 436–437, 440–441
Change request, 440
Changeset. See Revision
Check point, 394
Checking in

and duration of commit tests, 185
frequency, 435
on a broken build, 66

CheckStyle, 74, 158
Chef, 291
Cherry picking, 394, 409, 414
Chicken-counting, 254
CIM (Common Information Model), 319
CIMA (Chartered Institute of Management

Accountants), 417
Circuit Breaker pattern, 98, 211
Circular dependencies, 371–373
Classloader, 354
ClearCase, 385–386, 399, 404, 409
Cloud computing

and architecture, 313, 315
and compliance, 314
and nonfunctional requirements, 314
and performance, 314

Index448

and security, 313
and service-level agreements, 314
and vendor lock-in, 315
criticisms of, 316–317
definition of, 312
for acceptance tests, 220–222
infrastructure in the Cloud, 313–314
platforms in the Cloud, 314–315

CMS (configuration management system),
290

Cobbler, 289
Code analysis, 120, 135
Code coverage, 135, 172
Code duplication, 121
Code freeze, 408
Code style, 121
Collaboration

ad-hoc, 8
and acceptance tests, 99, 190
and distributed version control, 395
and the deployment pipeline, 107
as a goal of:

components, 346
version control, 32, 381

between teams involved in delivery, 18,
434, 434, 436

in siloed organizations, 439
COM (Component Object Model), 353
Commercial, off-the-shelf software. See

COTS
Commit messages, 37–38
Commit stage

and incremental development, 347
and test data, 338–339
as part of:

CI, 61
deployment pipeline, 110, 120–122

scripting, 152
workflow, 169

Commit tests
characteristics of, 14
failing, 73, 171
principles and practices of, 177–185
running before checking in, 66–67
speed of, 60–62, 73, 435
test data managing in, 338–339
See also Unit tests

Compatibility testing, 342
Compilation

as part of commit stage, 120
incremental, 146

optimizing, 146
static, 353
warnings, 74

Compliance
and cloud computing, 314
and continuous delivery, 267
and library management, 160
and organizational maturity, 420
as a goal of version control, 31
managing, 436–441

Component tests, 89
and CI, 60

Components
and deployment, 156
and project structure, 160
and the deployment pipeline, 360–361
configuration management of, 39,

356–360, 363
creating, 356–360
definition of, 345
dependency management of, 39, 375
for branch by release, 409
vs. libraries, 352

Concordion, 85, 191, 196
Configuration management

and deployment, 154
and deployment scripting, 155
and emergency fixes, 266
and infrastructure, 283–287, 290–295
and service asset, 421
as part of release strategy, 250
bad, 435–436
definition of, 31
for deployment time, 42
importance of, 18–20
manual configuration management

antipattern, 9–10
maturity model of, 419–421
migrating, 129
of binaries, 373
of databases, 328–329
of environments, 277, 288, 308
of middleware, 295–300
of servers, 288–295
of software, 39
of virtual environments, 305–307
promoting, 257
runtime, 42, 348, 351
version control practices for. See Version

control practices
Configuration management system. See CMS

449Index

Conformance, 417
Consistency, 290
Console output, 171
Consolidation

providing CI as a central service, 76
through virtualization, 304

Contextual enquiry, 90
Continuous deployment, 126, 266–270, 279,

440
Continuous improvement, 15, 28–29, 441
Continuous integation pipeline, 110
Continuous integration (CI)

and branching, 36, 390–393, 410, 414
and database scripting, 326–327
and mainline development, 405
and test data management, 339
as a centralized service, 75–76
as part of project initiation, 424, 430
as prerequisite for quality, 427
bad, 435
basic practices of, 57–59
definition of, 55
essential practices of, 66–71
feedback mechanisms in, 63–65
managing environments in, 289
with stream-based version control,

403–404
ControlTier, 161
Conway’s Law, 359
Coordinates in Maven, 375
Corporate governance. See Governance
Cost-benefit analysis, 420
COTS (Commercial, off-the-shelf software),

284, 295, 307
Coupling

analysis of, 121, 135, 139, 174
and loosely coupled architecture, 315
and mainline development, 392
database migrations to application

changes, 329, 333–334
external systems to acceptance tests, 211
in capacity tests, 242
tests to data, 336
UI to acceptance tests, 125, 192, 201
within the release process, 261, 325

CPAN (Comprehensive Perl Archive
Network), 155

Crash reports, 267–270
Crontab, 294
Crosscutting concerns, 227
Cross-functional requirements, 226

Cross-functional teams, 105, 358
Cross-functional tests. See Nonfunctional

tests
CruiseControl family, 58, 127
Cucumber, 85–86, 191, 196, 200, 323
Cucumber-Nagios, 323
Customer, 422
CVS (Concurrent Versions System), 32,

382–383, 409
Cycle time

and canary releasing, 263
and compliance, 437
and emergency fixes, 266
and organizational maturity, 419
for changes to infrastructure, 287, 441
importance of, 11, 138
measuring, 137

Cyclomatic complexity, 121, 135, 139, 174

D
DAG (directed acyclic graph), 363, 400
Darcs (Darcs Advanced Revision Control

System), 396
Darwin Ports, 294
Dashboards

and CI, 82
for operations, 320–322
for tracking delivery status, 429, 440
importance of, 16

Data
and rollback, 259
archiving in production, 282, 343
in acceptance tests, 204
lifecycle of, 325

Data center automation tools, 284
Data center management, 290–295
Data migration, 118, 129, 262, 264

as part of testing, 257
as part of the release plan, 252

Data structures
and application performance, 230
and tests, 184

Database administrators, 326, 329
Databases

and orchestration, 329–331, 333
and test atomicity, 205
and unit testing, 179–180, 335–336
for middleware configuration, 299
forward and backward compatibility of,

334
incremental changing, 327–331

Index450

initializing, 326–327
in-memory, 154
migrating, 327–334
monitoring, 318
normalization and denormalization, 331
primary keys in, 329
refactoring, 334, 341
referential constraints, 329
rolling back, 328, 331–334
rolling forward, 328
schemas in, 327
temporary tables in, 329, 332
transaction record-and-playback in, 332
upgrading, 261
versioning, 328–329

DbDeploy, 328, 331, 344
DbDeploy.NET, 328
DbDiff, 328
Dbmigrate, 328
Deadlock, 136
Debian, 154, 283–284, 353
Declarative deployment tools, 161
Declarative infrastructure management, 290
Declarative programming, 147–148

See also Ant, Make
Defects

and the release strategy, 251
as a symptom of poor CI, 435
critical, 131, 265–266, 409
in backlogs, 99–101
measuring, 138
reproducing, 247
zero, 100

Deming cycle, 28, 420, 440
Deming, W. Edwards, 27, 83
Dependencies

analyzing with Maven, 378
and integration, 370
and traceability, 363
between branches, 391
build time, 352
circular, 371–373
downstream, 364
fluid, 370
guarded, 370
in build tools, 146
in software, 351–356
in the project plan, 348
managing with Maven, 375–378
refactoring, 377
runtime, 352

static, 370
transitive, 355
upstream, 364

Dependency graphs
keeping shallow, 371
managing, 355, 363–373
modeling with the deployment pipeline,

365–369
Dependency hell, 352–354, 365
Dependency injection

and branch by abstraction, 351
and faking time, 184
and Maven, 149
and unit testing, 179–180

Dependency management, 38–39, 149, 353
and trust, 369
between applications and infrastructure,

285
Dependency networks and build tools, 144
Deployment

and components, 357
and idempotence, 155–156
automating, 152–153
blue-green. See Blue-green deployment
definition of, 25
deploy everything from scratch, 156
deploy everything together, 156
fail fast, 272–273
failures of, 117
incremental implementation of, 156–157
late deployment antipattern, 7–9
logging, 270–271
managing, 421
manual, 5–7, 116, 165
orchestrating, 161
planning and implementing, 253–254
scripting, 160–164
scripting upgrades, 153
smoke-testing, 117, 163
testing through automation, 130, 153
to remote machines, 161
use the same process for every

environment, 22, 115–117, 153–154,
253, 279, 283, 286, 308, 438

validating environments, 155
Deployment pipeline

acceptance test stage, 213–218
and artifact repositories, 374–375
and branch for release, 409
and capacity tests, 244–246
and compliance, 437

451Index

Deployment pipeline (continued)
and components, 360–361, 361–363
and continuous deployment, 267
and databases, 326
and dependency graphs, 365–369
and emergency fixes, 266
and governance, 418, 442
and integration tests, 212
and mainline development, 405
and test data, 338–343
and version control, 404, 416
and virtualization, 304, 307–310
and VM templates, 309
as part of project initiation, 430
definition of, 106–113
evolution of, 136–137
failing, 119–120
implementing, 133–137
in siloed organizations, 439
origin of term, 122
scripting, 152

Deployment production line, 110
Deployment tests, 89, 216–218, 285
Develop and release, 425–428
Development environments

and acceptance tests, 125
and deployment scripts, 154
and test data, 343
configuration management of, 33, 50, 289
managing as part of development, 62

Device drivers for GUI testing, 202
DevOps, 28

and agile infrastructure, 279
creating the deployment process, 270
ownership of the build system, 174
See also Operations

DHCP (Dynamic Host Configuration
Protocol), 285, 289

Diagnostics, 139
Diamond dependencies, 354, 365
Directed acyclic graph. See DAG
Directory services, 300
Disaster recovery, 250, 282
Discipline

and acceptance tests, 214
and CI, 57
and incremental development, 349, 392,

426, 434
Disk images, 305
Displays. See Dashboards
Distributed development

and CI, 75–78
and pipelining components, 360
and version control, 78
communication in, 75

Distributed teams, 143
Distributed version control, 79–81, 393–399,

411, 414
DLL (Dynamic-Link Library), 352, 356
DLL hell, 352
DNS, 300
DNS zone files, 285
Documentation

and self-documenting infrastructure, 292
as a requirement of IT operations,

280–281
as part of:

compliance and auditing, 437
release plan, 252

generating from acceptance tests, 86
vs. automation, 287, 437–438

Domain language, 198
Domain-driven design, 152
Domain-specific languages (DSLs)

build tools for, 144–151
definition of, 198
in acceptance testing, 198–204
See also Puppet

Don’t repeat yourself, 358
Done

and acceptance tests, 85
and testing, 101
definition of, 27–28
signoff as part of project lifecycle, 426,

434
Downtime, 260, 436
Dpkg, 294
Dummy objects, 92

See also Test doubles
Duplication, 139
Dynamic linking, 357
Dynamic views, 403

E
EARs, 159
EasyMock, 181
EC2, 221
Eclipse, 350
Efficiency, 419
Eggs, 155
ElectricCommander, 58
Ellison, Larry, 316

Index452

Embedded software, 256, 277
Emergency fixes, 265–266
Encapsulation

and components, 358
and mainline development, 392
and monolithic systems, 345
and unit testing, 180
in acceptance tests, 206–207

End-to-end testing
acceptance tests, 205
capacity tests, 241

Enterprise governance. See Governance
Environments

as part of release strategy, 250
baselines, 51, 155
capacity testing, 234–237, 258
definition of, 277
managing, 49–54, 130, 277, 288–295, 308
production-like, 107, 117, 129, 254, 308
provisioning, 288–290
re-creatability from version control, 33
shared, 258
staging, 258–259, 330
systems integration testing (SIT), 330

Equivalence partitioning, 86
Escape, 44, 47, 257
Estimates, 428
Eucalyptus, 312, 316
Event-driven systems

and components, 359
capacity testing, 241

Executable specifications, 195–198, 246,
339, 342

Exploratory testing, 87, 90, 128, 255, 343
External systems

and acceptance tests, 125, 210
and integration testing, 96–98
and logging, 320
and the release strategy, 250
configuration of, 50
upgrading, 261

Externals (SVN), 384
Extrapolation in capacity testing, 234
Extreme programming, 26, 266

and CI, 55, 71

F
Fabric, 162
Façade pattern, 351
Facter, 291

Fail fast
commit stage, 171
deployments, 272–273

Failover, as part of the release strategy, 251
Fake objects, 92
Feature branches. See Version control

practices
Feature crews, 411
Feedback

and automated acceptance tests, 86
and canary releasing, 263
and dependency management, 369–370
and metrics, 137–140
and monitoring, 317
and the integration pipeline, 362
as part of project lifecycle, 426
created by deployment pipeline, 106
importance of, 12–16

during commit stage, 120
improving through virtualization, 310
when modeling dependencies, 365
when pipelining components, 360

Filesystem Hierarchy Standard, 165
Filesystem, shared for storing binaries, 166
FindBugs, 74, 158
Firefighting, 286
Firewalls

and cloud computing, 313
and integration testing, 96
configuration of, 118, 284, 300

Fit, 201
Fit for purpose, 421, 426, 442
Fit for use, 421, 427
FitNesse, 191, 196, 201
Flapjack, 318
Flex, 192
Force.com, 314
Forensic tools, 301
Forking. See Version control practices
Forward compatibility, 334
Fragility. See Acceptance tests
Func, 162
Functional tests. See Acceptance tests
FxCop, 74

G
Gantt, 151
Gantt charts, 280
Garbage collection, 247
Gate. See Approval process

453Index

GAV, 375
Gems, 155
Gentoo, 353
Git, 32, 79–81, 374, 393, 396, 403
GitHub, 79, 394, 411
Given, when, then, 86, 195, 336
Global assembly cache, 353
Global optimization, 138
Gmail, 313
Go, 58, 113, 126, 255, 373
Go/no-go, 423
Google App Engine, 314–315, 317
Google Code, 394
Governance

business, 417
corporate, 417
enterprise, 417
good, 442

GPG (GNU Privacy Guard), 294
GPL (General Public License), 355
Gradle, 151
Greenfield projects, 92–94
Guard tests, 245
GUI (Graphical user interface)

and acceptance tests, 192–193
for deployment, 165
layering, 192
See also UI

Gump, 371

H
H2, 336
Handle, 301
Happy path, 85, 87–88, 94
Hardening, 284
Hardware

and capacity testing, 236
virtualization for standardization, 304

Hashing, 114, 166, 175, 373, 438
Hawthorne effect, 137
Hibernate, 159
Hiding functionality, 347–349
High availability

and business continuity planning, 282
and multihomed servers, 302
as part of the release strategy, 251

HIPAA, 314, 436
Hot deployment. See Zero-downtime releases
HP (Hewlett-Packard), 156, 291, 318
HP Operations Center, 287, 296
Hudson, 58, 63, 127, 289

Hyperactive builds, 370
Hyper-V, 290

I
IANA (Internet Assigned Numbers

Authority), 320
IBM, 156, 291, 303, 316, 318
IDE (Integrated Development Environment),

57, 143, 160
Idempotence

and deployment tools, 161
and infrastructure management, 290–291,

295
of application deployment, 155–156

Identification, 422
IIS (Internet Information Services), 299
Impact, 430
Inception, 283, 422–424
Incremental compilation, 146
Incremental delivery, 331, 346–351, 418,

420, 442
Incremental development, 36, 326, 346–351,

367, 405–406, 425, 434
Informed pessimism, 371
Infrastructure

as part of project initiation, 424
auditability of, 287
definition of, 277
evolution of, 317
managing, 283–287
testing changes in, 287

Infrastructure in the Cloud, 313–314
Initiation, 424–425
In-memory database, 154, 180, 336
Installers, 51
InstallShield, 118
Instant messenger, 75
Integrated Development Environment. See

IDE
Integration

and acceptance tests, 210
and databases, 329
and dependencies, 369–370
and infrastructure management, 301

Integration phase, 55, 348, 405, 426, 435
Integration pipeline, 361–363
Integration team, 358
Integration tests, 96–98
Intentional programming, 198
Interaction templates, 241–244, 342

Index454

Intermittent failures
in acceptance tests, 200, 207
in capacity tests, 233, 245

Interoperability, 316
Inventory, 391, 418
Inversion of control. See Dependency

injection
INVEST principles, 93, 190
IPMI (Intelligent Platform Management

Interface), 288, 318
ISO 9001, 437
Isolation in acceptance tests, 205, 220
Issue, 431
Iteration one, 253
Iteration zero, 134
Iterative delivery, 442

and analysis, 193–195
Iterative development, 425
ITIL (Information Technology Infrastructure

Library), 421–422
Ivy, 150, 154, 160, 166, 355, 375

J
J2EE (Java 2 Platform, Enterprise Edition),

359
JARs, 159, 356, 374
Java

building with Ant, 147
classloader in, 354
components in, 345
database migration in, 328
naming conventions in, 158
project structure in, 157–160
runtime dependencies in, 354

Javac, 146
JavaDB, 336
Javadoc, 149
JBehave, 85, 191, 196
JDepend, 74
Jikes, 146
JMeter, 243
JMock, 181
JMX, 319
JRuby, 151
Jumpstart, 284, 289
Just-in-time compiler, 146

K
Kaizen. See Continuous improvement
Kanban, 411
Kick-off meetings, 194

Kickstart, 284, 289
Knuth, Donald, 228

L
Label, 374
Large teams

and mainline development, 392, 405
branch by team, 412
branch for release, 409
collaboration through components in, 346
See also Team size

Law of Demeter, 345, 358, 406
Layers

in acceptance tests, 190
in software, 359

LCFG, 291
LDAP (Lightweight Directory Access

Protocol), 44, 291
Lean

and project management, 427
as a principle of continuous delivery, 27
influence on this book, 16
the cost of not delivering continuously,

418
Legacy systems, 95–96, 306
Libraries

configuration management of, 38–39,
354–356, 363

definition of, 352
dependency management of, 375
managing as part of development, 62

Licensing
as part of the release plan, 252
of middleware, 300

Lifecycle, 421–429
Likelihood, 430
Lines of code, 137
Linux, 154, 310, 395
Live-live releases. See Blue-green

deployments
Living build, 110
Load testing, 231
Locking. See Version control practices
Logging

and infrastructure management, 301
and the release strategy, 250
as a requirement of operations team, 281
importance of, 436
of deployment, 270–271
of infrastructure changes, 287

LOM (Lights Out Management), 288, 318

455Index

Longevity tests, 231, 238
Lsof, 301

M
Mac OS, 310
Mainline development, 35–37, 59, 346–351,

392, 405–408
Maintainability

and mainline development, 406
and quality, 434
of acceptance tests, 190–192
of capacity tests, 240

Maintenance
as part of release strategy, 250, 409
of the build system, 174

Make, 144, 146–147
Makefile, 146
Managed devices, 319
Management information base, 320
Manifests

and traceability, 166
of hardware, 271

Manual testing, 110, 126, 189, 223, 343
Marathon, 243
Marick, Brian, 84
Marimba, 155
Marionette Collective, 161, 291
Marketing, 252
Maturity model, 419–421
Maven, 38, 148–150, 154, 157, 160, 166,

355, 375–378
analyzing dependencies with, 378
compared to Buildr, 151
coordinates in, 375
repository of, 375
snapshots in, 377
subprojects in, 158

Maven Standard Directory Layout, 157
McCarthy, John, 312
Mean time between failures. See MTBF
Mean time to repair. See MTTR
Measurement, 264, 420
Memory leaks, 247
Mercurial, 32, 79–81, 374, 393, 396, 398,

403
Merge conflicts, 386, 390, 415
Merge team, 407
Merging

definition of, 389–390
in branch by feature, 349, 410
in branch by team, 413

in ClearCase, 404
in stream-based systems, 402
in the integration phase, 406
tracking, 385
with distributed version control, 399
with optimistic locking, 386

Message queues
as an API, 357
capacity testing, 241
configuration management of, 296

Metabase, 299
Metrics, 106, 172, 287, 441

as part of deployment pipeline, 137–140
Microsoft, 316, 359
Middleware

and application deployment, 155
configuration management of, 295–300
managing, 130, 284
monitoring, 318

Mitigation, 430
Mocha, 181
Mockito, 181
Mocks, 92, 178

See also Test doubles
Monitoring

and business intelligence, 317
applications, 318
as part of the release strategy, 250
importance of, 436
infrastructure and environments, 317–323
middleware, 318
network for, 302
operating systems, 318
requirements for, 281–282
user behavior, 318

Monolithic architecture, 345, 357
Monotone, 396
MSBuild, 148
MTBF (mean time between failures), 280,

286, 440
MTTR (mean time to repair), 278, 280, 286,

440
Multihomed systems, 301–303
Mythical hero, 108

N
Nabaztag, 63
Nagios, 257, 281, 301, 318, 321
Nant, 148
NDepend, 74

Index456

.NET
acceptance tests in, 197
and dependency hell, 353
database migration in, 328
project structure in, 157–160
tips and tricks for, 167

Network boot, 289
Network management system, 319
Networks

administration of, 302
and nonfunctional requirements, 229
configuration management of, 300
topology of, 118
virtual, 311

Nexus, 111, 166, 175, 355, 361, 373, 375
NICs (Network Interface Cards), 302
Nightly build, 65, 127
NMock, 181
Nonfunctional requirements

analysis of, 226–228
and acceptance criteria, 227–228
and cloud computing, 314
and the deployment pipeline, 136
logging, 320
managing, 226–228, 436
release strategy as a source of, 251
trade-offs for, 227
virtualization for testing, 305

Nonfunctional tests
definition of, 91
in the deployment pipeline, 128

NoSQL, 326
Notification

and CI, 63–65
as part of monitoring, 317

N-tier architecture
and components, 359
and deployment, 155
smoke-testing, 164

O
Object-oriented design, 350
Open source, 143

and distributed version control, 81
and Maven, 375

OpenNMS, 281, 301, 318
Operating systems

configuration of, 118
monitoring, 318

Operations, 105, 279–283, 428–429
See also DevOps

Operations Center, 291
Operations Manager, 281, 301, 318
Opportunity cost, 300
Optimistic locking, 386–387
Oracle, 154, 320
Orchestration, 257–258, 329–331, 333
Organizational change, 419
OSGi, 350, 354–356
Out-of-band management, 288, 318
Overdesign, 228

P
Packaging, 296

and configuration, 41
as part of:

deployment pipeline, 135, 283
integration, 361

tools for, 154–155
Panopticode, 139
Passwords. See Security
Patches, 251
Patterns and nonfunctional requirements,

230
PCI DSS, 314, 436
Peak demand, 244
Perforce, 385
Performance

and governance, 417
definition of, 225
of acceptance tests, 218–222
tuning, 247

Perl, 155, 283, 356
Pessimistic locking, 386–387
Pilot projects, 428
Plan, do, check, act. See Deming cycle
Platforms in the Cloud, 314–315
POM, 375
Postfix, 293
Potemkin village, 351
PowerBuilder, 271
PowerShell, 162, 282, 299
Preconditions in acceptance tests, 206
Predictability, 419
Premature optimization, 228
Preseed, 284, 289
Pretested commit, 37, 67, 120, 171
Pricing, 252
Primary keys, 329
Prioritization

as part of project lifecycle, 427
of defects, 101

457Index

Prioritization (continued)
of nonfunctional requirements, 226
of requirements, 422

Process boundaries
and acceptance tests, 206
and nonfunctional requirements, 229

Process modeling, 133
Procurement, 283
Product owner, 422
Production environments

and uncontrolled changes, 273
logging in to, 160

Production readiness, 346–351, 426
Production sizing, 251
Production-like environments, 107, 117,

129, 308
characteristics of, 254

Productivity, 50, 82, 173
Product-oriented build tools, 145
Profiling tools, 231
Profitability, 419
Project horizon, 423
Project managers, 428
Project structure for JVM and .NET projects,

157–160
Promiscuous integration, 81
Promotion, 46, 254–257, 402, 406
Proof of concept, 420
Provisioning, 288, 290–295, 303
Psake, 151
PsExec, 162
Pull system, 17, 106, 255
Pulse, 58
Puppet, 51, 53, 118, 155–156, 161, 284,

287–288, 290–296, 300, 306, 323
Push-button deployment, 17, 112, 126, 135,

157, 255, 315
PVCS (Polytron Version Control System),

386
PXE (Preboot eXecution Environment),

288–290
Python, 147, 155, 283

Q
Quality, 12, 62, 418, 422, 434–435

attributes of, 227
Quality analysts. See Testers
Quantifiers, 376

R
Race condition, 136
RAID, 374
Rake, 150, 150–151
rBuilder, 305
RCS (Revision Control System), 32, 382
RDBMS (Relational Database Management

System), 314, 326
Rebasing, 394, 414
Record-and-playback

for acceptance testing, 191, 197
for capacity testing, 239, 241
of database transactions, 332

Recovery point objective, 282
Recovery time objective, 282
Redeployment as a way of backing out, 132,

259–260
RedHat Linux, 154, 284
Refactoring

acceptance tests, 192, 218–219
and branch by abstraction, 350
and branch by team, 415
and CI, 72
and mainline development, 406
and version control, 36
as part of project lifecycle, 426
as prerequisite for quality, 427
enabled by regression tests, 87

Referential constraints, 329
Regression bugs

and continuous delivery, 349
as a symptom of poor application quality,

434
caused by uncontrolled changes, 265
on legacy systems, 96

Regression tests, 87, 124, 128, 189
Relative paths in build scripts, 164
Release

as part of deployment pipeline, 110
automating, 129
maintenance of, 409
managing, 107, 419–421
modeling the process of, 254–257
zero-downtime, 260–261

Release branches. See Version control
practices

Release candidate
and acceptance test gate, 124
and manual test stages, 127
definition of, 22–24
lifecycle of, 132

Index458

Release plan, 129, 251–252, 281, 283, 423
Release strategy, 250–252, 423, 430
Remediation, 441
Remote installation, 288
Repeatability, 354
Reporting status, 429
Repository pattern, 335
Reproduceability, 373
Requirements

of the operations team, 279–283
release strategy as a source of, 251

Resilience, 316
Resources condition, 136
Responsibility

for deployment, 271
for fixing the build, 70–71, 174
of developers to understand operations,

281
Rest, 197
Retrospectives, 16

as part of:
continuous improvement, 28, 420, 441
risk management, 431

to enable collaboration, 440
Revenue, 264, 316–317
Reverse proxy, 271
Reverse-engineering, 299
Reverting, 435

when the build is broken, 69
Revision control. See Version control
Revision, of binaries, 166
Rhino, 181
Risk

and canary releasing, 263
and issue log, 423
and nonfunctional requirements, 225
and organizational maturity, 420
management of, 417, 429–432, 442
of deployment, 278
of development, 430–431
of releases, 4–11, 279
reducing:

through continuous delivery, 279
through continuous deployment, 267
through retrospectives, 431
through virtualization, 303

Roles, 424
Roll back

and artifacts, 373
and legacy systems, 252
automating, 10

frequent, and poor configuration
management, 436

of databases, 328, 331–334
reducing risk of releasing with, 109
strategies of, 132, 259–265
vs. emergency fixes, 266

Roll forward of databases, 328
Rolling builds, 65
Root cause analysis, 433
Routers, 263

and blue-green deployments, 261
configuration management of, 300

rPath, 305
RPM, 294, 299
RSA, 273
Rsync, 156, 162
Ruby, 155, 283
Ruby Gems, 355
Ruby on Rails, 328, 354
RubyGems, 38, 151, 294
Runtime optimisation, 245

S
Sad path, 88
Sahi, 134, 197
SalesForce, 313
SAN, 374
Sarbanes-Oxley. See SOX
Scalability testing, 231
Scaling

for capacity testing, 236
through cloud computing, 313

SCCS (Source Code Control System), 32,
382

Scenarios, in capacity testing, 238
SCons, 147
Scp, 162
Screen recording, 136, 213–214
Scripting and the deployment pipeline, 152
Scrum, 422, 427
Seams, 350
Security

and cloud computing, 313
and configuration management, 43
and monitoring, 322
and network routing, 303
as a nonfunctional requirement, 423
as part of a testing strategy, 91
holes in, 131
of infrastructure, 285–286

Selenium, 197

459Index

Selenium Grid, 221, 310
Selenium Remoting, 221
Self-service deployments, 112, 255
Senior responsible owner, 422
Service asset and configuration management,

421
Service continuity planning, 282
Service design, 421
Service disruptions, 286
Service operation, 421
Service packs, 290
Service testing and validation, 421
Service transition, 421
Service-level agreements. See SLA
Service-oriented architectures

and databases, 329
and deployment, 156, 258
and environments, 278
capacity testing, 239, 241
promoting, 257

SETI@Home, 313
Severity, 430
Sevice continuity planning, 423
Shadow domains. See Blue-green

deployments
Shared filesystems as artifact repositories,

375
Shared library, 352
Shared resources, 261
Shared understanding, 423
Shared-nothing architectures, 264, 313
Showcases, 128, 426

as a form of manual testing, 90
as a risk mitigation strategy, 433

Shuttleworth, Mark, 394
Side-by-side deployment, 262
Silos

and components, 358
and deployment, 8
development and operations, 279
managing delivery, 439–440

Simian, 74
Simplicity and nonfunctional requirements,

229
Simulation for capacity testing, 239
Skype, 75
SLA (service-level agreements), 128, 251,

280, 314, 331
Slow tests

failing the build, 73
unit tests and test doubles, 89

Smoke tests
and behavior-driven monitoring, 323
and infrastructure management, 301
and legacy systems, 95
and orchestration, 258
as part of:

acceptance test suite, 217
integration pipeline, 361
release plan, 251

for blue-green deployments, 261
for deployment, 273
for deployment scripts, 167, 255

SMTP (Simple Mail Transfer Protocol), 285,
300

Snapshots
in Maven, 377
of virtual machines, 305

SNMP (Simple Network Management
Protocol), 302, 319

Software Engineering Institute, 227
Solaris, 284
Source control. See Version control
SOX (Sarbanes-Oxley), 280, 436
Specifications. See Acceptance criteria
Spies, 92

See also Test doubles
Spikes, 382, 425
Splunk, 318
SqlLite, 336
Ssh, 162, 302
Stability, 230, 369
Stabilization phase, 347
Stabilizing the patient, 129, 286
Staging environment, 258–259, 290
Stakeholders, 422
Stallman, Richard, 316
StarTeam, 386, 409
State

in acceptance tests, 204–206
in middleware, 298–299
in unit tests, 179, 183

Static analysis, 331
Static compilation, 353
Static linking, 357
Static views, 403
Stop the line, 119–120
Stored procedures, 334
Stories

and acceptance criteria, 195
and acceptance tests, 85, 99, 188, 193
and components, 358

Index460

and defects, 101
and legacy systems, 95
and nonfunctional requirements, 227–228
and throughput, 138
INVEST, 93

Strategy pattern, 351
Streaming video, 315
Stubs, 92, 178

for developing capacity tests, 244
See also Test doubles

Subversion, 32, 383–385, 397
Sun, 294, 359
Sunk cost, 300, 349
Support

and data archiving, 282
as part of:

release plan, 252
release strategy, 251

reducing cost, 419
SuSE Linux, 154
Sweeping it under the rug, 351
Symbolic links, 260, 269, 271, 294
Sysinternals, 301
System Center Configuration Manager, 291,

296
System characteristics, 226
System of record, 381, 418

T
Tagging

and releases, 409
in ClearCase, 404
in CVS, 383
in Subversion, 384
See also Version control practices

Tarantino, 328
Task-oriented build tools, 145
TC3, 314
TCP/IP, 300
Tcpdump, 301
TCPView, 301
Team Foundation Server, 386
Team size

and acceptance testing, 214
and components, 357
does continuous delivery scale?, 16
using a build master, 174
See also Large teams

TeamCity, 58
Technical debt, 330, 406
Templates, 305, 309–310

Temporary tables, 329, 332
Test automation pyramid, 178
Test coverage, 87, 121, 174, 435
Test data

and database dumps, 340, 343
application reference data, 340, 343
decoupling from tests, 336
functional partitioning, 337
in acceptance tests, 339–341
in capacity tests, 243, 341–342
in commit tests, 338–339
managing, 334–338
test reference, 340, 343
test-specific, 340

Test doubles, 89, 91, 178
and acceptance tests, 210–212
and unit tests, 180–183, 335
speed of, 89

Test performance
and databases, 335–336
faking time for, 184
increasing through virtualization, 305, 310

Test sequencing, 336
Test-driven development, 71, 178, 427

See also Behavior-driven development
Testers, 193
Testing quadrant diagram, 84, 178
Testing strategies

as part of inception, 423
greenfield projects, 92–94
importance of, 434
legacy systems, 95–96
midproject, 94–95

Tests, 105
adaptive, 336, 338
failing, 308
isolation of, 336–337
manual, 126, 128, 138, 189, 223, 343
sequencing, 336
setup and tear down, 337, 340
types of, 84
See also Automated tests, Manual testing

TFTP (Trivial File Transfer Protocol), 289
Theory of Constraints, 138
Thread pools, 318
Threading

and application performance, 230
catching problems with acceptance tests,

189
Thresholds in capacity tests, 238
Throughput, 225, 231

461Index

Time in unit tests, 184
Time-boxed iterations, 428
Timeouts and acceptance testing, 207–210
Tivoli, 287, 291, 318
TODOs, 74
Toolchain

and testing environments, 254
and the deployment pipeline, 114
version controlling, 34, 355

Torvalds, Linus, 385, 395
Touch screen, 204
Traceability

and artifact repository, 373
and dependencies, 363
and the deployment pipeline, 114
and the integration pipeline, 362
from binaries to version control, 165–166,

418
managing and enforcing, 438–439
when pipelining components, 360, 366

Trade-offs for nonfunctional requirements,
227

Traffic lights, 172, 322
Transactions for managing test state, 337
Trunk. See Mainline development
Trust and dependency management, 369
Tuple, 43
Turing completeness, 198
Twist, 85–86, 191, 196
Two-phase authentication, 273

U
Ubiquitous language, 125
Ubuntu, 154, 353, 394
UI (User Interface)

and capacity testing, 240–241
and unit testing, 178–179
See also GUI

Uncontrolled changes, 20, 265, 273, 288,
290, 306

Undeployable software, 105, 391
Union filesystem, 400
Unit tests, 89

and asynchrony, 180
and CI, 60
and databases, 179–180, 335–336
and dependency injection, 179
and state, 183
and test doubles, 180–183
and UI, 178–179
as part of commit stage, 120

automating, 135
faking time for, 184
principles and practices of, 177–185
speed of, 89, 177
vs. acceptance tests, 188
See also Commit tests

Upgrading, 261
and deployment scripting, 153
and user-installed software, 267–270
as part of:

release plan, 252
release strategy, 251

Usability
and nonfunctional requirements, 228
testing, 87, 90, 128, 255

Use cases and acceptance tests, 86
User acceptance testing, 86, 135

and test data, 343
in the deployment pipeline, 112

User-installed software
and acceptance testing, 125
and canary releasing, 264
and continuous delivery, 267–270
and deployment automation, 129
crash reports, 267–270
testing using virtualization, 310
upgrading, 267–270

Utility, 421
Utility computing, 312, 316

V
Value creation, 417, 419, 442
Value stream, 106–113, 133, 254, 420
Velocity, 139, 431, 433
Vendor lock-in, 315, 317
Version control

and middleware configuration, 296, 298,
301

as a principle of continuous delivery,
25–26

as part of project initiation, 424
as prerequisite for CI, 56–57
definition of, 32
distributed. See Distributed version control
for database scripts, 327
for libraries, 38, 354
stream-based, 388, 399–404

Version control practices
branching. See Branching
control everything, 33–35
forking, 81

Index462

importance of regular check-ins for, 36,
59, 405

locking, 383
mainline. See Mainline development
merging. See Merging
stream-based development, 405

Views, 334, 403
Virtualization

and blue-green deployments, 262
and deployment scripting, 155
and orchestration, 258
and provisioning servers, 303
and the deployment pipeline, 304,

307–310
baselines, 53, 305
definition of, 303
for acceptance tests, 217, 220
for creating testing environments, 254
for environment management, 118
for infrastructure consolidation, 304
for managing legacy systems, 306
for speeding up tests, 305, 310
for testing nonfunctional requirements,

305
for testing user-installed software, 310
managing virtual environments, 305–307
of networks, 311
reducing risk of delivery through, 303
Snapshot, 305
templates for, 305

Visibility, 4, 113, 362
Visual Basic, 271, 345
Visual SourceSafe, 386
Visualizations, 140, 366
Vnc2swf, 136, 213

W
Walking skeleton, 134
Warm-up period, 245, 259, 261, 272
Warranty, 421
WARs, 159
Waste, 105, 391
Web servers, 296
Web services

as an API, 357
capacity testing, 241

WebDriver, 134, 197
WebLogic, 320
WebSphere, 153
White, 197
Whole team, 124

and acceptance tests, 125
and delivery, 28
and deployment, 271
and the commit stage, 172

Wikipedia, 313
Window driver pattern, 201–204
Windows, 154, 310, 352
Windows Deployment Services, 288–290
Windows Preinstallation Environment, 290
Wireshark, 301
WiX, 283
WordPress, 313
Workflow

and distributed version control, 396
and the deployment pipeline, 111
of acceptance testing stage, 187

Working software, 56, 425
Works of art, 49, 288–289, 306
Works on my machine syndrome, 116
Workspace management, 62
WPKG, 291
Wsadmin, 153

X
Xcopy deployment, 353
XDoclet, 158
XML (Extensible Markup Language), 43,

147, 297
XUnit, 135, 191, 200

Y
YAGNI (You ain’t gonna need it!), 245
YAML, 43
Yum, 294

Z
Zenoss, 318
Zero defects, 100
Zero-downtime releases, 260–261, 331–334
zone files, 300

463Index

	Contents
	Foreword
	Preface
	Chapter 5: Anatomy of the Deployment Pipeline
	Introduction
	What Is a Deployment Pipeline?
	Deployment Pipeline Practices
	The Commit Stage
	The Automated Acceptance Test Gate
	Subsequent Test Stages
	Preparing to Release
	Implementing a Deployment Pipeline
	Metrics
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

