
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321826626
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321826626
https://plusone.google.com/share?url=http://www.informit.com/title/9780321826626
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321826626
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321826626

NoSQL Distilled

This page intentionally left blank

NoSQL Distilled

A Brief Guide to the Emerging
World of Polyglot Persistence

Pramod J. Sadalage
Martin Fowler

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382–3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Sadalage, Pramod J.
 NoSQL distilled : a brief guide to the emerging world of polyglot
persistence / Pramod J Sadalage, Martin Fowler.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-82662-6 (pbk. : alk. paper) -- ISBN 0-321-82662-0 (pbk. :
alk. paper) 1. Databases--Technological innovations. 2. Information
storage and retrieval systems. I. Fowler, Martin, 1963- II. Title.
 QA76.9.D32S228 2013
 005.74--dc23

Copyright © 2013 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-321-82662-6
ISBN-10: 0-321-82662-0

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/

For my teachers Gajanan Chinchwadkar,
Dattatraya Mhaskar, and Arvind Parchure. You inspired

me the most, thank you.

—Pramod

For Cindy

—Martin

This page intentionally left blank

xiiiPreface ..

1Part I: Understand ..

3Chapter 1: Why NoSQL? ...
31.1 The Value of Relational Databases ...
31.1.1 Getting at Persistent Data ..
41.1.2 Concurrency ..
41.1.3 Integration ..
41.1.4 A (Mostly) Standard Model ..
51.2 Impedance Mismatch ..
61.3 Application and Integration Databases
81.4 Attack of the Clusters ..
91.5 The Emergence of NoSQL ...

121.6 Key Points ..

13Chapter 2: Aggregate Data Models ..
142.1 Aggregates ...
142.1.1 Example of Relations and Aggregates
192.1.2 Consequences of Aggregate Orientation
202.2 Key-Value and Document Data Models
212.3 Column-Family Stores ...
232.4 Summarizing Aggregate-Oriented Databases
242.5 Further Reading ...
242.6 Key Points ..

25Chapter 3: More Details on Data Models ...
253.1 Relationships ...
263.2 Graph Databases ...

vii

Contents

283.3 Schemaless Databases ..
303.4 Materialized Views ..
313.5 Modeling for Data Access ..
363.6 Key Points ..

37Chapter 4: Distribution Models ...
374.1 Single Server ..
384.2 Sharding ..
404.3 Leader-Follower Replication ..
424.4 Peer-to-Peer Replication ...
434.5 Combining Sharding and Replication
444.6 Key Points ..

47Chapter 5: Consistency ..
475.1 Update Consistency ...
495.2 Read Consistency ...
525.3 Relaxing Consistency ...
535.3.1 The CAP Theorem ..
565.4 Relaxing Durability ...
575.5 Quorums ...
595.6 Further Reading ...
595.7 Key Points ..

61Chapter 6: Version Stamps ...
616.1 Business and System Transactions ..
636.2 Version Stamps on Multiple Nodes ..
656.3 Key Points ..

67Chapter 7: Map-Reduce ...
687.1 Basic Map-Reduce ...
697.2 Partitioning and Combining ...
727.3 Composing Map-Reduce Calculations
737.3.1 A Two Stage Map-Reduce Example ..
767.3.2 Incremental Map-Reduce ...
777.4 Further Reading ...
777.5 Key Points ..

79Part II: Implement ..

81Chapter 8: Key-Value Databases ..
818.1 What Is a Key-Value Store ...
838.2 Key-Value Store Features ...

viii Contents

838.2.1 Consistency ...
848.2.2 Transactions ..
848.2.3 Query Features ..
868.2.4 Structure of Data ...
868.2.5 Scaling ..
878.3 Suitable Use Cases ...
878.3.1 Storing Session Information ...
878.3.2 User Profiles, Preferences ...
878.3.3 Shopping Cart Data ..
878.4 When Not to Use ...
878.4.1 Relationships among Data ...
888.4.2 Multioperation Transactions ..
888.4.3 Query by Data ...
888.4.4 Operations by Sets ..

89Chapter 9: Document Databases ..
909.1 What Is a Document Database? ...
919.2 Features ...
919.2.1 Consistency ...
929.2.2 Transactions ..
939.2.3 Availability ..
949.2.4 Query Features ..
959.2.5 Scaling ..
979.3 Suitable Use Cases ...
979.3.1 Event Logging ...
989.3.2 Content Management Systems, Blogging Platforms
989.3.3 Web Analytics or Real-Time Analytics
989.3.4 E-Commerce Applications ...
989.4 When Not to Use ...
989.4.1 Complex Transactions Spanning Different Operations
989.4.2 Queries against Varying Aggregate Structure

99Chapter 10: Column-Family Stores ..
9910.1 What Is a Column-Family Data Store?

10010.2 Features ...
10310.2.1 Consistency ..
10410.2.2 Transactions ...
10410.2.3 Availability ..

ixContents

10510.2.4 Query Features ...
10710.2.5 Scaling ..
10710.3 Suitable Use Cases ..
10710.3.1 Event Logging ..
10810.3.2 Content Management Systems, Blogging Platforms
10810.3.3 Counters ..
10810.3.4 Expiring Usage ...
10910.4 When Not to Use ...

111Chapter 11: Graph Databases ...
11111.1 What Is a Graph Database? ...
11311.2 Features ...
11411.2.1 Consistency ..
11411.2.2 Transactions ...
11511.2.3 Availability ..
11511.2.4 Query Features ...
11911.2.5 Scaling ..
12011.3 Suitable Use Cases ..
12011.3.1 Connected Data ..
12011.3.2 Routing, Dispatch, and Location-Based Services
12111.3.3 Recommendation Engines ..
12111.4 When Not to Use ...

123Chapter 12: Schema Migrations ...
12312.1 Schema Changes ..
12312.2 Schema Changes in RDBMS ..
12412.2.1 Migrations for Green Field Projects
12612.2.2 Migrations in Legacy Projects ...
12812.3 Schema Changes in a NoSQL Data Store
13012.3.1 Incremental Migration ...
13112.3.2 Migrations in Graph Databases ..
13212.3.3 Changing Aggregate Structure ..
13212.4 Further Reading ...
13212.5 Key Points ..

133Chapter 13: Polyglot Persistence ...
13313.1 Disparate Data Storage Needs ..
13413.2 Polyglot Data Store Usage ..
13613.3 Service Usage over Direct Data Store Usage

x Contents

13613.4 Expanding for Better Functionality
13813.5 Choosing the Right Technology ...
13813.6 Enterprise Concerns with Polyglot Persistence
13913.7 Deployment Complexity ..
14013.8 Key Points ..

141Chapter 14: Beyond NoSQL ..
14114.1 File Systems ..
14214.2 Event Sourcing ...
14414.3 Memory Image ...
14514.4 Version Control ...
14514.5 XML Databases ...
14614.6 Object Databases ...
14614.7 Key Points ..

147Chapter 15: Choosing Your Database ...
14715.1 Programmer Productivity ...
14915.2 Data-Access Performance ...
15015.3 Sticking with the Default ..
15015.4 Hedging Your Bets ...
15115.5 Key Points ..
15215.6 Final Thoughts ...

153Bibliography ...

157Index ..

xiContents

This page intentionally left blank

We’ve spent some twenty years in the world of enterprise computing. We’ve seen
many things change in languages, architectures, platforms, and processes. But
through all this time one thing has stayed constant—relational databases store
the data. There have been challengers, some of which have had success in
some niches, but on the whole the data storage question for architects has been
the question of which relational database to use.

There is a lot of value in the stability of this reign. An organization’s data lasts
much longer than its programs (at least that’s what people tell us—we’ve seen
plenty of very old programs out there). It’s valuable to have a stable data storage
that’s well understood and accessible from many application programming
platforms.

Now, however, there’s a new challenger on the block under the confrontational
tag of NoSQL. It’s born out of a need to handle larger data volumes which forced
a fundamental shift to building large hardware platforms through clusters of
commodity servers. This need has also raised long-running concerns about the
difficulties of making application code play well with the relational data model.

The term “NoSQL” is very ill-defined. It’s generally applied to a number of
recent nonrelational databases such as Cassandra, Mongo, Neo4J, and Riak.
They embrace schemaless data, run on clusters, and have the ability to trade
off traditional consistency for other useful properties. Advocates of NoSQL
databases claim that they can build systems that are more performant, scale much
better, and are easier to program with.

Is this the first rattle of the death knell for relational databases, or yet another
pretender to the throne? Our answer to that is “neither.” Relational databases
are a powerful tool that we expect to be using for many more decades, but
we do see a profound change in that relational databases won’t be the only
databases in use. Our view is that we are entering a world of Polyglot Persistence
where enterprises, and even individual applications, use multiple technologies
for data management. As a result, architects will need to be familiar with these
technologies and be able to evaluate which ones to use for differing needs.

xiii

Preface

Had we not thought that, we wouldn’t have spent the time and effort writing
this book.

This book seeks to give you enough information to answer the question of
whether NoSQL databases are worth serious consideration for your future
projects. Every project is different, and there’s no way we can write a simple de-
cision tree to choose the right data store. Instead, what we are attempting here
is to provide you with enough background on how NoSQL databases work, so
that you can make those judgments yourself without having to trawl the whole
web. We’ve deliberately made this a small book, so you can get this overview
pretty quickly. It won’t answer your questions definitively, but it should
narrow down the range of options you have to consider and help you understand
what questions you need to ask.

Why Are NoSQL Databases Interesting?

We see two primary reasons why people consider using a NoSQL database.

• Application development productivity. A lot of application development
effort is spent on mapping data between in-memory data structures and a
relational database. A NoSQL database may provide a data model that
better fits the application’s needs, thus simplifying that interaction and
resulting in less code to write, debug, and evolve.

• Large-scale data. Organizations are finding it valuable to capture more
data and process it more quickly. They are finding it expensive, if even
possible, to do so with relational databases. The primary reason is that a
relational database is designed to run on a single machine, but it is usually
more economic to run large data and computing loads on clusters of
many smaller and cheaper machines. Many NoSQL databases are designed
explicitly to run on clusters, so they make a better fit for big data scenarios.

What’s in the Book

We’ve broken this book up into two parts. The first part concentrates on core
concepts that we think you need to know in order to judge whether NoSQL
databases are relevant for you and how they differ. In the second part we
concentrate more on implementing systems with NoSQL databases.

xiv Preface

Chapter 1 begins by explaining why NoSQL has had such a rapid rise—the
need to process larger data volumes led to a shift, in large systems, from scaling
vertically to scaling horizontally on clusters. This explains an important feature
of the data model of many NoSQL databases—the explicit storage of a rich
structure of closely related data that is accessed as a unit. In this book we call
this kind of structure an aggregate.

Chapter 2 describes how aggregates manifest themselves in three of the main
data models in NoSQL land: key-value (“Key-Value and Document Data Models,”
p. 20), document (“Key-Value and Document Data Models,” p. 20), and column
family (“Column-Family Stores,” p. 21) databases. Aggregates provide a natural
unit of interaction for many kinds of applications, which both improves running
on a cluster and makes it easier to program the data access. Chapter 3 shifts to
the downside of aggregates—the difficulty of handling relationships
(“Relationships,” p. 25) between entities in different aggregates. This leads us
naturally to graph databases (“Graph Databases,” p. 26), a NoSQL data model
that doesn’t fit into the aggregate-oriented camp. We also look at the common
characteristic of NoSQL databases that operate without a schema (“Schemaless
Databases,” p. 28)—a feature that provides some greater flexibility, but not as
much as you might first think.

Having covered the data-modeling aspect of NoSQL, we move on to distribu-
tion: Chapter 4 describes how databases distribute data to run on clusters.
This breaks down into sharding (“Sharding,” p. 38) and replication, the latter
being either leader-follower (“Leader-Follower Replication,” p. 40) or peer-to-
peer (“Peer-to-Peer Replication,” p. 42) replication. With the distribution models
defined, we can then move on to the issue of consistency. NoSQL databases
provide a more varied range of consistency options than relational
databases—which is a consequence of being friendly to clusters. So Chapter 5
talks about how consistency changes for updates (“Update Consistency,” p. 47)
and reads (“Read Consistency,” p. 49), the role of quorums (“Quorums,” p. 57),
and how even some durability (“Relaxing Durability,” p. 56) can be traded off.
If you’ve heard anything about NoSQL, you’ll almost certainly have heard of
the CAP theorem; the “The CAP Theorem” section on p. 53 explains what it is
and how it fits in.

While these chapters concentrate primarily on the principles of how data gets
distributed and kept consistent, the next two chapters talk about a couple of
important tools that make this work. Chapter 6 describes version stamps, which
are for keeping track of changes and detecting inconsistencies. Chapter 7 outlines
map-reduce, which is a particular way of organizing parallel computation that
fits in well with clusters and thus with NoSQL systems.

Once we’re done with concepts, we move to implementation issues by looking
at some example databases under the four key categories: Chapter 8 uses Riak

xvPreface

as an example of key-value databases, Chapter 9 takes MongoDB as an example
for document databases, Chapter 10 chooses Cassandra to explore column-
family databases, and finally Chapter 11 plucks Neo4J as an example of graph
databases. We must stress that this is not a comprehensive study—there are too
many out there to write about, let alone for us to try. Nor does our choice of
examples imply any recommendations. Our aim here is to give you a feel for
the variety of stores that exist and for how different database technologies
use the concepts we outlined earlier. You’ll see what kind of code you need to
write to program against these systems and get a glimpse of the mindset you’ll
need to use them.

A common statement about NoSQL databases is that since they have no
schema, there is no difficulty in changing the structure of data during the life of
an application. We disagree—a schemaless database still has an implicit schema
that needs change discipline when you implement it, so Chapter 12 explains how
to do data migration both for strong schemas and for schemaless systems.

All of this should make it clear that NoSQL is not a single thing, nor is it
something that will replace relational databases. Chapter 13 looks at this future
world of Polyglot Persistence, where multiple data-storage worlds coexist, even
within the same application. Chapter 14 then expands our horizons beyond this
book, considering other technologies that we haven’t covered that may also be
a part of this polyglot-persistent world.

With all of this information, you are finally at a point where you can make a
choice of what data storage technologies to use, so our final chapter (“Choosing
Your Database,” p. 147) offers some advice on how to think about these choices.
In our view, there are two key factors—finding a productive programming
model where the data storage model is well aligned to your application, and en-
suring that you can get the data access performance and resilience you need.
Since this is early days in the NoSQL life story, we’re afraid that we don’t have
a well-defined procedure to follow, and you’ll need to test your options in
the context of your needs.

This is a brief overview—we’ve been very deliberate in limiting the size of this
book. We’ve selected the information we think is the most important—so that
you don’t have to. If you are going to seriously investigate these technol-
ogies, you’ll need to go further than what we cover here, but we hope this book
provides a good context to start you on your way.

We also need to stress that this is a very volatile field of the computer industry.
Important aspects of these stores are changing every year—new features, new
databases. We’ve made a strong effort to focus on concepts, which we think will
be valuable to understand even as the underlying technology changes. We’re
pretty confident that most of what we say will have this longevity, but absolutely
sure that not all of it will.

xvi Preface

Who Should Read This Book

Our target audience for this book is people who are considering using some form
of a NoSQL database. This may be for a new project, or because they are hitting
barriers that are suggesting a shift on an existing project.

Our aim is to give you enough information to know whether NoSQL technol-
ogy makes sense for your needs, and if so which tool to explore in more depth.
Our primary imagined audience is an architect or technical lead, but we think
this book is also valuable for people involved in software management who want
to get an overview of this new technology. We also think that if you’re a devel-
oper who wants an overview of this technology, this book will be a good starting
point.

We don’t go into the details of programming and deploying specific databases
here—we leave that for specialist books. We’ve also been very firm on a page
limit, to keep this book a brief introduction. This is the kind of book we think
you should be able to read on a plane flight: It won’t answer all your questions
but should give you a good set of questions to ask.

If you’ve already delved into the world of NoSQL, this book probably won’t
commit any new items to your store of knowledge. However, it may still be
useful by helping you explain what you’ve learned to others. Making sense of
the issues around NoSQL is important—particularly if you’re trying to persuade
someone to consider using NoSQL in a project.

What Are the Databases

In this book, we’ve followed a common approach of categorizing NoSQL
databases according to their data model. Here is a table of the four data models
and some of the databases that fit each model. This is not a comprehensive list—it
only mentions the more common databases we’ve come across. At the time of
writing, you can find more comprehensive lists at http://nosql-database.org and
http://nosql.mypopescu.com/kb/nosql. For each category, we mark with italics
the database we use as an example in the relevant chapter.

Our goal is to pick a representative tool from each of the categories of the
databases. While we talk about specific examples, most of the discussion should
apply to the entire category, even though these products are unique and cannot
be generalized as such. We will pick one database for each of the key-value,
document, column family, and graph databases; where appropriate, we will
mention other products that may fulfill a specific feature need.

xviiPreface

http://nosql-database.org
http://nosql.mypopescu.com/kb/nosql

Example DatabasesData Model

BerkeleyDBKey-Value (“Key-Value Databases,” p. 81)

LevelDB

Memcached

Project Voldemort

Redis

Riak

CouchDBDocument (“Document Databases,” p. 89)

MongoDB

OrientDB

RavenDB

Terrastore

Amazon SimpleDBColumn-Family (“Column-Family Stores,” p. 99)

Cassandra

HBase

Hypertable

FlockDBGraph (“Graph Databases,” p. 111)

HyperGraphDB

Infinite Graph

Neo4J

OrientDB

This classification by data model is useful, but crude. The lines between the
different data models, such as the distinction between key-value and document
databases (“Key-Value and Document Data Models,” p. 20), are often blurry.
Many databases don’t fit cleanly into categories; for example, OrientDB calls itself
both a document database and a graph database.

Acknowledgments

Our first thanks go to our colleagues at ThoughtWorks, many of whom have
been applying NoSQL to our delivery projects over the last couple of years. Their
experiences have been a primary source both of our motivation in writing this
book and of practical information on the value of this technology. The positive

xviii Preface

experience we’ve had so far with NoSQL data stores is the basis of our view that
this is an important technology and a significant shift in data storage.

We’d also like to thank various groups who have given public talks, published
articles, and blogs on their use of NoSQL. Much progress in software development
gets hidden when people don’t share with their peers what they’ve learned. Par-
ticular thanks here go to Google and Amazon whose papers on Bigtable and
Dynamo were very influential in getting the NoSQL movement going. We also
thank companies that have sponsored and contributed to the open-source devel-
opment of NoSQL databases. An interesting difference with previous shifts
in data storage is the degree to which the NoSQL movement is rooted in
open-source work.

Particular thanks go to ThoughtWorks for giving us the time to work on this
book. We joined ThoughtWorks at around the same time and have been here
for over a decade. ThoughtWorks continues to be a very hospitable home for us,
a source of knowledge and practice, and a welcome environment of openly
sharing what we learn—so different from the traditional systems delivery
organizations.

Bethany Anders-Beck, Ilias Bartolini, Tim Berglund, Duncan Craig, Paul Duvall,
Oren Eini, Perryn Fowler, Michael Hunger, Eric Kascic, Joshua Kerievsky, Anand
Krishnaswamy, Bobby Norton, Ade Oshineye, Thiyagu Palanisamy, Prasanna
Pendse, Dan Pritchett, David Rice, Mike Roberts, Marko Rodriquez, Andrew
Slocum, Toby Tripp, Steve Vinoski, Dean Wampler, Jim Webber, and Wee
Witthawaskul reviewed early drafts of this book and helped us improve it with
their advice.

Additionally, Pramod would like to thank Schaumburg Library for providing
great service and quiet space for writing; Arhana and Arula, my beautiful
daughters, for their understanding that daddy would go to the library and not
take them along; Rupali, my beloved wife, for her immense support and help in
keeping me focused.

xixPreface

This page intentionally left blank

Part I

Understand

This page intentionally left blank

For almost as long as we’ve been in the software profession, relational databases
have been the default choice for serious data storage, especially in the world of
enterprise applications. If you’re an architect starting a new project, your only
choice is likely to be which relational database to use. (And often not even that,
if your company has a dominant vendor.) There have been times when a database
technology threatened to take a piece of the action, such as object databases in
the 1990’s, but these alternatives never got anywhere.

After such a long period of dominance, the current excitement about
NoSQL databases comes as a surprise. In this chapter we’ll explore why rela-
tional databases became so dominant, and why we think the current rise of
NoSQL databases isn’t a flash in the pan.

1.1 The Value of Relational Databases

Relational databases have become such an embedded part of our computing
culture that it’s easy to take them for granted. It’s therefore useful to revisit the
benefits they provide.

1.1.1 Getting at Persistent Data

Probably the most obvious value of a database is keeping large amounts of per-
sistent data. Most computer architectures have the notion of two areas of mem-
ory: a fast volatile “main memory” and a larger but slower “backing store.”
Main memory is both limited in space and loses all data when you lose power
or something bad happens to the operating system. Therefore, to keep data
around, we write it to a backing store, commonly seen a disk (although these
days that disk can be persistent memory).

The backing store can be organized in all sorts of ways. For many productivity
applications (such as word processors), it’s a file in the file system of the operating

3

Chapter 1

Why NoSQL?

system. For most enterprise applications, however, the backing store is a database.
The database allows more flexibility than a file system in storing large amounts
of data in a way that allows an application program to get at small bits of that
information quickly and easily.

1.1.2 Concurrency

Enterprise applications tend to have many people looking at the same body of
data at once, possibly modifying that data. Most of the time they are working
on different areas of that data, but occasionally they operate on the same bit of
data. As a result, we have to worry about coordinating these interactions to avoid
such things as double booking of hotel rooms.

Concurrency is notoriously difficult to get right, with all sorts of errors that
can trap even the most careful programmers. Since enterprise applications can
have lots of users and other systems all working concurrently, there’s a lot of
room for bad things to happen. Relational databases help handle this by control-
ling all access to their data through transactions. While this isn’t a cure-all (you
still have to handle a transactional error when you try to book a room that’s just
gone), the transactional mechanism has worked well to contain the complexity
of concurrency.

Transactions also play a role in error handling. With transactions, you can
make a change, and if an error occurs during the processing of the change you
can roll back the transaction to clean things up.

1.1.3 Integration

Enterprise applications live in a rich ecosystem that requires multiple applications,
written by different teams, to collaborate in order to get things done. This kind
of inter-application collaboration is awkward because it means pushing the human
organizational boundaries. Applications often need to use the same data and
updates made through one application have to be visible to others.

A common way to do this is shared database integration [Hohpe and Woolf]
where multiple applications store their data in a single database. Using a
single database allows all the applications to use each others’ data easily, while
the database’s concurrency control handles multiple applications in the same
way as it handles multiple users in a single application.

1.1.4 A (Mostly) Standard Model

Relational databases have succeeded because they provide the core benefits we
outlined earlier in a (mostly) standard way. As a result, developers and database
professionals can learn the basic relational model and apply it in many projects.
Although there are differences between different relational databases, the core

4 Chapter 1 Why NoSQL?

mechanisms remain the same: Different vendors’ SQL dialects are similar,
transactions operate in mostly the same way.

1.2 Impedance Mismatch

Relational databases provide many advantages, but they are by no means perfect.
Even from their early days, there have been lots of frustrations with them.

For application developers, the biggest frustration has been what’s commonly
called the impedance mismatch: the difference between the relational model and
the in-memory data structures. The relational data model organizes data into a
structure of tables and rows, or more properly, relations and tuples. In the rela-
tional model, a tuple is a set of name-value pairs and a relation is a set of tuples.
(The relational definition of a tuple is slightly different from that in mathematics
and many programming languages with a tuple data type, where a tuple is a se-
quence of values.) All operations in SQL consume and return relations, which
leads to the mathematically elegant relational algebra.

This foundation on relations provides a certain elegance and simplicity, but it
also introduces limitations. In particular, the values in a relational tuple have to
be simple—they cannot contain any structure, such as a nested record or a list.
This limitation isn’t true for in-memory data structures, which can take on much
richer structures than relations. As a result, if you want to use a richer in-memory
data structure, you have to translate it to a relational representation to store it
on disk. Hence the impedance mismatch—two different representations that
require translation (see Figure 1.1).

The impedance mismatch is a major source of frustration to application devel-
opers, and in the 1990s many people believed that it would lead to relational
databases being replaced with databases that replicate the in-memory data
structures to disk. That decade was marked with the growth of object-oriented
programming languages, and with them came object-oriented databases—both
looking to be the dominant environment for software development in the new
millennium.

However, while object-oriented languages succeeded in becoming the major
force in programming, object-oriented databases faded into obscurity. Relational
databases saw off the challenge by stressing their role as an integration mechanism,
supported by a mostly standard language of data manipulation (SQL) and a
growing professional divide between application developers and database
administrators.

Impedance mismatch has been made much easier to deal with by the wide
availability of object-relational mapping frameworks, such as Hibernate and
iBATIS that implement well-known mapping patterns [Fowler PoEAA], but the
mapping problem is still an issue. Object-relational mapping frameworks remove

51.2 Impedance Mismatch

Figure 1.1 An order, which looks like a single aggregate structure in the UI, is split into
many rows from many tables in a relational database

a lot of grunt work, but can become a problem of their own when people try too
hard to ignore the database and query performance suffers.

Relational databases continued to dominate the enterprise computing world
in the 2000s, but during that decade cracks began to open in their dominance.

1.3 Application and Integration Databases

The exact reasons why relational databases triumphed over OO databases are
still the subject of an occasional pub debate for developers of a certain age. But
in our view, the primary factor was the role of SQL as an integration mechanism
between applications. In this scenario, the database acts as an integration
database—with multiple applications, usually developed by separate teams,
storing their data in a common database. This improves communication because
all the applications are operating on a consistent set of persistent data.

There are downsides to shared database integration. A structure that’s designed
to integrate many applications ends up being more complex—indeed, often dra-
matically more complex—than any single application needs. Furthermore, should
an application want to make changes to its data storage, it needs to coordinate
with all the other applications using the database. Different applications
have different structural and performance needs, so an index required by one

6 Chapter 1 Why NoSQL?

application may cause a problematic hit on inserts for another. The fact that
each application is usually a separate team also means that the database usually
cannot trust applications to update the data in a way that preserves database
integrity and thus needs to take responsibility for that within the database itself.

A different approach is to treat your database as an application
database—which is only directly accessed by a single application codebase that’s
looked after by a single team. With an application database, only the team using
the application needs to know about the database structure, which makes it much
easier to maintain and evolve the schema. Since the application team controls
both the database and the application code, the responsibility for database
integrity can be put in the application code.

Interoperability concerns can now shift to the interfaces of the application,
allowing for better interaction protocols and providing support for changing
them. During the 2000s we saw a distinct shift to web services [Daigneau], where
applications would communicate over HTTP. Web services enabled a new form
of a widely used communication mechanism—a challenger to using the SQL with
shared databases. (Much of this work was done under the banner of “Service-
Oriented Architecture”—a term most notable for its lack of a consistent meaning.)

An interesting aspect of this shift to web services as an integration mechanism
was that it resulted in more flexibility for the structure of the data that was being
exchanged. If you communicate with SQL, the data must be structured as rela-
tions. However, with a service, you are able to use richer data structures with
nested records and lists. These are usually represented as documents in XML or,
more recently, JSON. In general, with remote communication you want to reduce
the number of round trips involved in the interaction, so it’s useful to be able to
put a rich structure of information into a single request or response.

If you are going to use services for integration, most of the time web
services—using text over HTTP—is the way to go. However, if you are dealing
with highly performance-sensitive interactions, you may need a binary protocol.
Only do this if you are sure you have the need, as text protocols are easier to
work with—consider the example of the Internet.

Once you have made the decision to use an application database, you get more
freedom of choosing a database. Since there is a decoupling between your internal
database and the services with which you talk to the outside world, the outside
world doesn’t have to care how you store your data, allowing you to consider
nonrelational options. Furthermore, there are many features of relational
databases, such as security, that are less useful to an application database because
they can be done by the enclosing application instead.

Despite this freedom, however, it wasn’t apparent that application databases
led to a big rush to alternative data stores. Most teams that embraced the appli-
cation database approach stuck with relational databases. After all, using an
application database yields many advantages even ignoring the database flexibil-
ity (which is why we generally recommend it). Relational databases are familiar
and usually work very well or, at least, well enough. Perhaps, given time, we

71.3 Application and Integration Databases

might have seen the shift to application databases to open a real crack in the
relational hegemony—but such cracks came from another source.

1.4 Attack of the Clusters

At the beginning of the new millennium the technology world was hit by the
busting of the 1990s dot-com bubble. While this saw many people questioning
the economic future of the Internet, the 2000s did see several large web properties
dramatically increase in scale.

This increase in scale was happening along many dimensions. Websites started
tracking activity and structure in a very detailed way. Large sets of data appeared:
links, social networks, activity in logs, mapping data. With this growth in data
came a growth in users—as the biggest websites grew to be vast estates regularly
serving huge numbers of visitors.

Coping with the increase in data and traffic required more computing resources.
To handle this kind of increase, you have two choices: up or out. Scaling up im-
plies bigger machines, more processors, disk storage, and memory. But bigger
machines get more and more expensive, not to mention that there are real limits
as your size increases. The alternative is to use lots of small machines in a cluster.
A cluster of small machines can use commodity hardware and ends up being
cheaper at these kinds of scales. It can also be more resilient—while individual
machine failures are common, the overall cluster can be built to keep going despite
such failures, providing high reliability.

As large properties moved towards clusters, that revealed a new problem—re-
lational databases are not designed to be run on clusters. Clustered relational
databases, such as the Oracle RAC Server, work on the concept of a shared disk
subsystem. They use a cluster-aware file system that writes to a highly available
disk subsystem—but this means the cluster still has the disk subsystem as a single
point of failure. Relational databases could also be run as separate servers for
different sets of data, effectively sharding (“Sharding,” p. 38) the database. While
this separates the load, all the sharding has to be controlled by the application
which has to keep track of which database server to talk to for each bit of data.
Also, we lose any querying, referential integrity, transactions, or consistency
controls that cross shards. A phrase we often hear in this context from people
who’ve done this is “unnatural acts.”

These technical issues are exacerbated by licensing costs. Commercial relational
databases are usually priced on a single-server assumption, so running on a cluster
raised prices and led to frustrating negotiations with purchasing departments.

This mismatch between relational databases and clusters led some organiza-
tion to consider an alternative route to data storage. Two companies in
particular—Google and Amazon—have been very influential. Both were on the
forefront of running large clusters of this kind; furthermore, they were capturing

8 Chapter 1 Why NoSQL?

huge amounts of data. These things gave them the motive. Both were successful
and growing companies with strong technical components, which gave them the
means and opportunity. It was no wonder they had murder in mind for their re-
lational databases. As the 2000s drew on, both companies produced brief but
highly influential papers about their efforts: BigTable from Google and Dynamo
from Amazon.

It’s often said that Amazon and Google operate at scales far removed from
most organizations, so the solutions they needed may not be relevant to an average
organization. While it’s true that most software projects don’t need that level of
scale, it’s also true that more and more organizations are beginning to explore
what they can do by capturing and processing more data—and to run into the
same problems. So, as more information leaked out about what Google and
Amazon had done, people began to explore making databases along similar
lines—explicitly designed to live in a world of clusters. While the earlier menaces
to relational dominance turned out to be phantoms, the threat from clusters was
serious.

1.5 The Emergence of NoSQL

It’s a wonderful irony that the term “NoSQL” first made its appearance in the
late 90s as the name of an open-source relational database [Strozzi NoSQL]. Led
by Carlo Strozzi, this database stores its tables as ASCII files, each tuple repre-
sented by a line with fields separated by tabs. The name comes from the fact that
the database doesn’t use SQL as a query language. Instead, the database is ma-
nipulated through shell scripts that can be combined into the usual UNIX
pipelines. Other than the terminological coincidence, Strozzi’s NoSQL had no
influence on the databases we describe in this book.

The usage of “NoSQL” that we recognize today traces back to a meetup on
June 11, 2009 in San Francisco organized by Johan Oskarsson, a software devel-
oper based in London. The example of BigTable and Dynamo had inspired a
bunch of projects experimenting with alternative data storage, and discussions
of these had become a feature of the better software conferences around that
time. Johan was interested in finding out more about some of these new
databases while he was in San Francisco for a Hadoop summit. Since he had little
time there, he felt that it wouldn’t be feasible to visit them all, so he decided to
host a meetup where they could all come together and present their work
to whoever was interested.

Johan wanted a name for the meetup—something that would make a good
Twitter hashtag: short, memorable, and without too many Google hits so that a
search on the name would quickly find the meetup. He asked for suggestions on
the #cassandra IRC channel and got a few, selecting the suggestion of “NoSQL”
from Eric Evans (a developer at Rackspace, no connection to the DDD Eric

91.5 The Emergence of NoSQL

Evans). While it had the disadvantage of being negative and not really describing
these systems, it did fit the hashtag criteria. At the time they were thinking of
only naming a single meeting and were not expecting it to catch on to name this
entire technology trend [Oskarsson].

The term “NoSQL” caught on like wildfire, but it’s never been a term
that’s had much in the way of a strong definition. The original call
[NoSQL Meetup] for the meetup asked for “open-source, distributed, nonrela-
tional databases.” The talks there [NoSQL Debrief] were from Voldemort, Cas-
sandra, Dynomite, HBase, Hypertable, CouchDB, and MongoDB—but the term
has never been confined to that original septet. There’s no generally accepted
definition, nor an authority to provide one, so all we can do is discuss some
common characteristics of the databases that tend to be called “NoSQL.”

To begin with, there is the obvious point that NoSQL databases don’t use
SQL. Some of them do have query languages, and it makes sense for them to
be similar to SQL in order to make them easier to learn. Cassandra’s CQL is like
this—“exactly like SQL (except where it’s not)” [CQL]. But so far none have
implemented anything that would fit even the rather flexible notion of standard
SQL. It will be interesting to see what happens if an established NoSQL database
decides to implement a reasonably standard SQL; the only predictable outcome
for such an eventuality is plenty of argument.

Another important characteristic of these databases is that they are generally
open-source projects. Although the term NoSQL is frequently applied to closed-
source systems, there’s a notion that NoSQL is an open-source phenomenon.

Most NoSQL databases are driven by the need to run on clusters, and this is
certainly true of those that were talked about during the initial meetup. This has
an effect on their data model as well as their approach to consistency. Relational
databases use ACID transactions (p. 19) to handle consistency across the
whole database. This inherently clashes with a cluster environment, so NoSQL
databases offer a range of options for consistency and distribution.

However, not all NoSQL databases are strongly oriented towards running on
clusters. Graph databases are one style of NoSQL databases that uses a distribu-
tion model similar to relational databases but offers a different data model that
makes it better at handling data with complex relationships.

NoSQL databases are generally based on the needs of the early 21st century
web estates, so usually only systems developed during that time frame are called
NoSQL—thus ruling out hoards of databases created before the new millennium,
let alone BC (Before Codd).

NoSQL databases operate without a schema, allowing you to freely add fields
to database records without having to define any changes in structure first.
This is particularly useful when dealing with nonuniform data and custom fields
which forced relational databases to use names like customField6 or custom
field tables that are awkward to process and understand.

All of the above are common characteristics of things that we see described as
NoSQL databases. None of these are definitional, and indeed it’s likely that there

10 Chapter 1 Why NoSQL?

will never be a coherent definition of “NoSQL” (sigh). However, this crude set
of characteristics has been our guide in writing this book. Our chief enthusiasm
with this subject is that the rise of NoSQL has opened up the range of options
for data storage. Consequently, this opening up shouldn’t be confined to what’s
usually classed as a NoSQL store. We hope that other data storage options will
become more acceptable, including many that predate the NoSQL movement.
There is a limit, however, to what we can usefully discuss in this book, so we’ve
decided to concentrate on this noDefinition.

When you first hear “NoSQL,” an immediate question is what does it stand
for—a “no” to SQL? Most people who talk about NoSQL say that it really means
“Not Only SQL,” but this interpretation has a couple of problems. Most people
write “NoSQL” whereas “Not Only SQL” would be written “NOSQL.” Also,
there wouldn’t be much point in calling something a NoSQL database under the
“not only” meaning—because then, Oracle or Postgres would fit that definition,
we would prove that black equals white and would all get run over on crosswalks.

To resolve this, we suggest that you don’t worry about what the term stands
for, but rather about what it means (which is recommended with most acronyms).
Thus, when “NoSQL” is applied to a database, it refers to an ill-defined set of
mostly open-source databases, mostly developed in the early 21st century,
and mostly not using SQL.

The “not-only” interpretation does have its value, as it describes the ecosystem
that many people think is the future of databases. This is in fact what we consider
to be the most important contribution of this way of thinking—it’s better to
think of NoSQL as a movement rather than a technology. We don’t think that
relational databases are going away—they are still going to be the most common
form of database in use. Even though we’ve written this book, we still recommend
relational databases. Their familiarity, stability, feature set, and available support
are compelling arguments for most projects.

The change is that now we see relational databases as one option for data
storage. This point of view is often referred to as polyglot persistence—using
different data stores in different circumstances. Instead of just picking a relational
database because everyone does, we need to understand the nature of the data
we’re storing and how we want to manipulate it. The result is that most organi-
zations will have a mix of data storage technologies for different circumstances.

In order to make this polyglot world work, our view is that organizations also
need to shift from integration databases to application databases. Indeed, we
assume in this book that you’ll be using a NoSQL database as an application
database; we don’t generally consider NoSQL databases a good choice for inte-
gration databases. We don’t see this as a disadvantage as we think that even if
you don’t use NoSQL, shifting to encapsulating data in services is a good direction
to take.

In our account of the history of NoSQL development, we’ve concentrated on
big data running on clusters. While we think this is the key thing that drove the
opening up of the database world, it isn’t the only reason we see project teams

111.5 The Emergence of NoSQL

considering NoSQL databases. An equally important reason is the old frustration
with the impedance mismatch problem. The big data concerns have created an
opportunity for people to think freshly about their data storage needs, and some
development teams see that using a NoSQL database can help their productivity
by simplifying their database access even if they have no need to scale beyond a
single machine.

So, as you read the rest of this book, remember there are two primary reasons
for considering NoSQL. One is to handle data access with sizes and performance
that demand a cluster; the other is to improve the productivity of application
development by using a more convenient data interaction style.

1.6 Key Points

• Relational databases have been a successful technology for twenty years,
providing persistence, concurrency control, and an integration mechanism.

• Application developers have been frustrated with the impedance mismatch
between the relational model and the in-memory data structures.

• There is a movement away from using databases as integration points to-
wards encapsulating databases within applications and integrating through
services.

• The vital factor for a change in data storage was the need to support large
volumes of data by running on clusters. Relational databases are not
designed to run efficiently on clusters.

• NoSQL is an accidental neologism. There is no prescriptive definition—all
you can make is an observation of common characteristics.

• The common characteristics of NoSQL databases are

• Not using the relational model

• Running well on clusters

• Open-source

• Built for the 21st century web estates

• Schemaless

• The most important result of the rise of NoSQL is Polyglot Persistence.

12 Chapter 1 Why NoSQL?

A
ACID (Atomic, Consistent, Isolated, and

Durable) transactions, 19
in column-family databases, 109
in graph databases, 28, 50, 114–115
in relational databases, 10, 26
vs. BASE, 56

ad banners, 108–109
aggregate-oriented databases, 14, 19–23,

147
atomic updates in, 50, 61
disadvantages of, 30
no ACID transactions in, 50
performance of, 149
vs. graph databases, 28

aggregates, 14–23
changing structure of, 98, 132
modeling, 31
real-time analytics with, 33
updating, 26

agile methods, 123
Amazon, 9

See also DynamoDB, SimpleDB
analytics

counting website visitors for, 108
of historic information, 144
real-time, 33, 98

Apache Pig language, 76
Apache ZooKeeper library, 104, 115
application databases, 7, 146

updating materialized views in, 31
arcs (graph databases). See edges
atomic cross-document operations, 98
atomic rebalancing, 58
atomic transactions, 92, 104

atomic updates, 50, 61
automated failovers, 94
automated merges, 48
automated rollbacks, 145
auto-sharding, 39
availability, 53

in column-family databases, 104–105
in document databases, 93
in graph datTTabases, 115
vs. consistency, 54
See also CAP theorem

averages, calculating, 72

B
backward compatibility, 126, 131
BASE (Basically Available, Soft state,

Eventual consistency), 56
Berkeley DB, 81
BigTable DB, 9, 21–22
bit-mapped indexes, 106
blogging, 108
Blueprints property graph, 115
Brewer, Eric, 53
Brewer’s Conjecture. See CAP theorem
buckets (Riak), 82

default values for consistency for, 84
domain, 83
storing all data together in, 82

business transactions, 61

C
caching

performance of, 39, 137
stale data in, 50

Cages library, 104

157

Index

CAP (Consistency, Availability, and Partition
tolerance) theorem, 53–56

for document databases, 93
for Riak, 86

CAS (compare-and-set) operations, 62
Cassandra DB, 10, 21–22, 99–109

availability in, 104–105
column families in:

commands for, 105–106
standard, 101
super, 101–102

columns in, 100
expiring, 108–109
indexing, 106–107
reading, 107
super, 101

compaction in, 103
consistency in, 103–104
ETL tools for, 139
hinted handoff in, 104
keyspaces in, 102–104
memtables in, 103
queries in, 105–107
repairs in, 103–104
replication factor in, 103
scaling in, 107
SSTables in, 103
timestamps in, 100
transactions in, 104
wide/skinny rows in, 23

clients, processing on, 67
Clojure language, 145
cloud computing, 149
clumping, 39
clusters, 8–10, 67–72, 76, 149

in file systems, 8
in Riak, 87
resiliency of, 8

column-family databases, 21–23, 99–109
ACID transactions in, 109
columns for materialized views in, 31
combining peer-to-peer replication and

sharding in, 43–44
consistency in, 103–104
modeling for, 34
performance in, 103
schemalessness of, 28
vs. key-value databases, 21
wide/skinny rows in, 23

combinable reducers, 70–71

compaction (Cassandra), 103
compatibility, backward, 126, 131
concurrency, 145

in file systems, 141
in relational databases, 4
offline, 62

conditional updates, 48, 62–63
conflicts

key, 82
read-write, 49–50
resolving, 64
write-write, 47–48, 64

consistency, 47–59
eventual, 50, 84
in column-family databases, 103–104
in graph databases, 114
in leader-follower replication, 52
in MongoDB, 91
logical, 50
optimistic/pessimistic, 48
read, 49–52, 56
read-your-writes, 52
relaxing, 52–56
replication, 50
session, 52, 63
trading off, 57
update, 47, 56, 61
vs. availability, 54
write, 92
See also CAP theorem

content hashes, 62–63
content management systems, 98, 108
CouchDB, 10, 91

conditional updates in, 63
replica sets in, 94

counters, for version stamps, 62–63
CQL (Cassandra Query Language), 10, 106
CQRS (Command Query Responsibility

Segregation), 143
cross-document operations, 98
C-Store DB, 21
Cypher language, 115–119

D
Data Mapper and Repository pattern, 151
data models, 13, 25

aggregate-oriented, 14–23, 30
document, 20
key-value, 20
relational, 13–14

Index158

data redundancy, 94
databases

choosing, 7, 147–152
deploying, 139
encapsulating in explicit layer, 151
NoSQL, definition of, 10–11
shared integration of, 4, 6

Datastax Ops Center, 139
DBDeploy framework, 125
DBMaintain tool, 126
deadlocks, 48
demo access, 108
Dependency Network pattern, 77
deployment complexity, 139
Dijkstra’s algorithm, 118
disaster recovery, 94
distributed file systems, 76, 141
distributed version control systems, 48

version stamps in, 64
distribution models, 37–43

See also replications, sharding, single
server approach

document databases, 20, 23, 89–98
availability in, 93
embedding child documents into, 90
indexes in, 25
leader-follower replication in, 93
performance in, 91
queries in, 25, 94–95
replica sets in, 94
scaling in, 95
schemalessness of, 28, 98
XML support in, 146

domain buckets (Riak), 83
Domain-Driven Design, 14
DTDs (Document Type Definitions), 146
durability, 56–57
DynamoDB, 9, 81, 100

shopping carts in, 55
Dynomite DB, 10

E
early prototypes, 109
e-commerce

data modeling for, 14
flexible schemas for, 98
polyglot persistence of, 133–138
shopping carts in, 55, 85, 87

edges (graph databases), 26, 111
eligibility rules, 26

enterprises
commercial support of NoSQL for,

138–139
concurrency in, 4
DB as backing store for, 4
event logging in, 97
integration in, 4
polyglot persistence in, 138–139
security of data in, 139

error handling, 4, 145
etags, 62
ETL tools, 139
Evans, Eric, 10
event logging, 97, 107–108
event sourcing, 138, 142, 144
eventual consistency, 50

in Riak, 84
expiring usage, 108–109

F
failovers, automated, 94
file systems, 141

as backing store for RDBMS, 3
cluster-aware, 8
concurrency in, 141
distributed, 76, 141
performance of, 141
queries in, 141

FlockDB, 113
data model of, 27
node distribution in, 115

G
Gilbert, Seth, 53
Google, 9

Google BigTable. See BigTable
Google File System, 141

graph databases, 26–28, 111–121, 148
ACID transactions in, 28, 50, 114–115
aggregate-ignorance of, 19
availability in, 115
consistency in, 114
creating, 113
edges (arcs) in, 26, 111
held entirely in memory, 119
leader-follower replication in, 115
migrations in, 131
modeling for, 35
nodes in, 26, 111–117
performance of, 149

159Index

graph databases (continued)
properties in, 111
queries in, 115–119
relationships in, 111–121
scaling in, 119
schemalessness of, 28
single server configuration of, 38
traversing, 111–117
vs. aggregate databases, 28
vs. relational databases, 27, 112
wrapping into service, 136

Gremlin language, 115
GUID (Globally Unique Identifier), 62

H
Hadoop project, 67, 76, 141
HamsterDB, 81
hash tables, 62–63, 81
HBase DB, 10, 21–22, 99–100
Hector client, 105
Hibernate framework, 5, 147
hinted handoff, 104
hive DB, 76
hot backup, 40, 42
hotel booking, 4, 55
HTTP (Hypertext Transfer Protocol), 7

interfaces based on, 85
updating with, 62

Hypertable DB, 10, 99–100

I
iBATIS, 5, 147
impedance mismatch, 5, 12
inconsistency

in shopping carts, 55
of reads, 49
of updates, 56
window of, 50–51, 56

indexes
bit-mapped, 106
in document databases, 25
stale data in, 138
updating, 138

Infinite Graph DB, 113
data model of, 27
node distribution in, 114–115

initial tech spikes, 109
integration databases, 6, 11
interoperability, 7

J
JSON (JavaScript Object Notation), 7,

94–95, 146

K
keys (key-value databases)

composite, 74
conflicts of, 82
designing, 85
expiring, 85
grouping into partitions, 70

keyspaces (Cassandra), 102–104
key-value databases, 20, 23, 81–88

consistency of, 83–84
modeling for, 31–33
no multiple key operations in, 88
schemalessness of, 28
sharding in, 86
structure of values in, 86
transactions in, 84, 88
vs. column-family databases, 21
XML support in, 146

L
leader-follower replication, 40–42

appointing leaders in, 41, 57
combining with sharding, 43
consistency of, 52
in document databases, 93
in graph databases, 115
version stamps in, 63

Liquibase tool, 126
location-based services, 120
locks

dead, 48
offline, 52

lost updates, 47
Lotus DB, 91
Lucene library, 85, 88, 116
Lynch, Nancy, 53

M
MapReduce framework, 67
map-reduce pattern, 67–77

calculations with, 72
incremental, 31, 76–77
maps in, 68
materialized views in, 76
partitions in, 70

Index160

reusing intermediate outputs in, 76
stages for, 73–76

materialized views, 30
in map-reduce, 76
updating, 31

Memcached DB, 81, 87
memory images, 144–145
memtables (Cassandra), 103
merges, automated, 48
migrations, 123–132

during development, 124, 126
in graph databases, 131
in legacy projects, 126–128
in object-oriented databases, 146
in schemaless databases, 128–132
incremental, 130
transition phase of, 126–128

mobile apps, 131
MongoDB, 10, 91–97

collections in, 91
consistency in, 91
databases in, 91
ETL tools for, 139
queries in, 94–95
readPreference parameter in, 91–92, 96
replica sets in, 91, 93, 96
schema migrations in, 128–131
sharding in, 96
terminology in, 89
WriteConcern parameter in, 92

MongoDB Monitoring Service, 139
MyBatis Migrator tool, 126
MySQL DB, 53, 119

N
Neo4J DB, 113–118

ACID transactions in, 114–115
availability in, 115
creating graphs in, 113
data model of, 27
replicated followers in, 115
service wrapping in, 136

nodes (graph databases), 26, 111
distributed storage for, 114
finding paths between, 117
indexing properties of, 115–116

nonuniform data, 10, 28, 30
NoSQL databases

advantages of, 12
definition of, 10–11

lack of support for transactions in,
10, 61

running of clusters, 10
schemalessness of, 10

O
object-oriented databases, 5, 146

migrations in, 146
vs. relational databases, 6

offline concurrency, 62
offline locks, 52
Optimistic Offline Lock, 62
Oracle DB

redo log in, 104
terminology in, 81, 89

Oracle RAC Server, 8
OrientDB, 91, 113
ORM (Object-Relational Mapping)

frameworks, 5–6, 147
Oskarsson, Johan, 9

P
partition tolerance, 53–54

See also CAP theorem
partitioning, 69–70
peer-to-peer replication, 42–43

durability of, 58
inconsistency of, 43
version stamps in, 63–64

Pentaho tool, 139
performance

and sharding, 39
and transactions, 53
binary protocols for, 7
caching for, 39, 137
data-access, 149–150
in aggregate-oriented databases, 149
in column-family databases, 103
in document databases, 91
in graph databases, 149
responsiveness of, 48
tests for, 149

pipes-and-filters approach, 73
polyglot persistence, 11, 133–139, 148

and deployment complexity, 139
in enterprises, 138–139

polyglot programming, 133–134
processing, on clients/servers, 67
programmer productivity, 147–149
purchase orders, 25

161Index

Q
queries

against varying aggregate structure, 98
by data, 88, 94
by key, 84–86
for files, 141
in column-family databases, 105–107
in document databases, 25, 94–95
in graph databases, 115–119
precomputed and cached, 31
via views, 94

quorums, 57, 59
read, 58
write, 58, 84

R
Rails Active Record framework, 147
RavenDB, 91

atomic cross-document operations in, 98
replica sets in, 94
transactions in, 92

RDBMS. See relational databases
reads

consistency of, 49–52, 56, 58
horizontal scaling for, 94, 96
inconsistent, 49
multiple nodes for, 143
performance of, 52
quorums of, 58
repairs of, 103
resilience of, 40–41
separating from writes, 41
stale, 56

read-write conflicts, 49–50
read-your-writes consistency, 52
Real Time Analytics, 33
Real Time BI, 33
rebalancing, atomic, 58
recommendation engines, 26, 35, 121, 138
Redis DB, 81–83
redo log, 104
reduce functions, 69

combinable, 70–71
regions. See map-reduce pattern, partitions

in
Rekon browser for Riak, 139
relational databases (RDBMS), 13, 17

advantages of, 3–5, 7–8, 150
aggregate-ignorance of, 19
backing store in, 3
clustered, 8

columns in, 13, 90
concurrency in, 4
defining schemas for, 28
impedance mismatch in, 5, 12
licensing costs of, 8
main memory in, 3
modifying multiple records at once in, 26
partitions in, 96
persistence in, 3
relations (tables) in, 5, 13
schemas for, 29–30, 123–128
security in, 7
sharding in, 8
simplicity of relationships in, 112
strong consistency of, 47
terminology in, 81, 89
transactions in, 4, 26, 92
tuples (rows) in, 5, 13–14
views in, 30
vs. graph databases, 27, 112
vs. object-oriented databases, 6
XML support in, 146

relationships, 25, 111–121
dangling, 114
direction of, 113, 116, 118
in RDBMS, 112
properties of, 113–115
traversing, 111–117

RelaxNG, 146
replica sets, 91, 93, 96
replication factor, 58

in column-family databases, 103
in Riak, 84

replications, 37
combining with sharding, 43
consistency of, 42, 50
durability of, 57
over clusters, 149
performance of, 39
version stamps in, 63–64
See also leader-follower replication,

peer-to-peer replication
resilience

and sharding, 39
read, 40–41

responsiveness, 48
Riak DB, 81–83

clusters in, 87
controlling CAP in, 86
eventual consistency in, 84
HTTP-based interface of, 85

Index162

link-walking in, 25
partial retrieval in, 25
replication factor in, 84
service wrapping in, 136
terminology in, 81
transactions in, 84
write tolerance of, 84

Riak Search, 85, 88
rich domain model, 113
rollbacks, automated, 145
routing, 120
rows (RDBMS). See tuples

S
scaffolding code, 126
scaling, 95

horizontal, 149
for reads, 94, 96
for writes, 96

in column-family databases, 107
in document databases, 95
in graph databases, 119
vertical, 8

Scatter-Gather pattern, 67
schemaless databases, 28–30, 148

implicit schema of, 29
schema changes in, 128–132

schemas
backward compatibility of, 126, 131
changing, 128–132
during development, 124, 126
implicit, 29
migrations of, 123–132

search engines, 138
security, 139
servers

maintenance of, 94
processing on, 67

service-oriented architecture, 7
services, 136

and security, 139
decomposing database layer into, 151
decoupling between databases and, 7
over HTTP, 7

sessions
affinity, 52
consistency of, 52, 63
expire keys for, 85
management of, 133
sticky, 52
storing, 57, 87

sharding, 37–38, 40, 149
and performance, 39
and resilience, 39
auto, 39
by customer location, 97
combining with replication, 43
in key-value databases, 86
in MongoDB, 96
in relational databases, 8

shared database integration, 4, 6
shopping carts

expire keys for, 85
inconsistency in, 55
persistence of, 133
storing, 87

shuffling, 70
SimpleDB, 99

inconsistency window of, 50
single server approach, 37–38

consistency of, 53
no partition tolerance in, 54
transactions in, 53
version stamps in, 63

single-threaded event processors, 145
snapshots, 142–143
social networks, 26, 120

relationships between nodes in, 117
Solr indexing engine, 88, 137, 141
split brain situation, 53
SQL (Structured Query Language), 5
SSTables (Cassandra), 103
stale data

in cache, 50
in indexes/search engines, 138
reading, 56

standard column families (Cassandra), 101
sticky sessions, 52
storage models, 13
Strozzi, Carlo, 9
super column families (Cassandra), 101–102
super columns (Cassandra), 101
system transactions, 61

T
tables. See relational databases, relations in
telemetric data from physical devices, 57
Terrastore DB, 91, 94
timestamps

consistent notion of time for, 64
in column-family databases, 100
of last update, 63

163Index

transactional memory systems, 145
transactions, 50

ACID, 10, 19, 26, 28, 50, 56, 109,
114–115

across multiple operations, 92
and performance, 53
atomic, 92, 104
business, 61
in graph databases, 28, 114–115
in key-value databases, 84, 88
in RDBMS, 4, 26, 92
in single server systems, 53
lack of support in NoSQL for, 10, 61
multioperation, 88
open during user interaction, 52
rolling back, 4
system, 61

tree structures, 117
triggers, 126
TTL (Time To Live), 108–109
tuples (RDBMS), 5, 13–14

U
updates

atomic, 50, 61
conditional, 48, 62–63
consistency of, 47, 56, 61
lost, 47
merging, 48
timestamps of, 63–64

user comments, 98
user preferences, 87
user profiles, 87, 98
user registrations, 98
user sessions, 57

V
vector clock, 64
version control systems, 126, 145

distributed, 48, 64

version stamps, 52, 61–64
version vector, 64
views, 126
virtual columns, 126
Voldemort DB, 10, 82

W
web services, 7
websites

distributing pages for, 39
on large clusters, 149
publishing, 98
visitor counters for, 108

word processors, 3
write tolerance, 84
writes, 64

atomic, 104
conflicts of, 47–48
consistency of, 92
horizontal scaling for, 96
performance of, 91
quorums of, 58
separating from reads, 41
serializing, 47

X
XML (Extensible Markup Language), 7, 146
XML databases, 145–146
XML Schema language, 146
XPath language, 146
XQuery language, 146
XSLT (Extensible Stylesheet Language

Transformations), 146

Z
ZooKeeper. See Apache ZooKeeper

Index164

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Part I: Understand
	Chapter 1: Why NoSQL?
	1.1 The Value of Relational Databases
	1.1.1 Getting at Persistent Data
	1.1.2 Concurrency
	1.1.3 Integration
	1.1.4 A (Mostly) Standard Model

	1.2 Impedance Mismatch
	1.3 Application and Integration Databases
	1.4 Attack of the Clusters
	1.5 The Emergence of NoSQL
	1.6 Key Points

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

