Katie Cunningham

SamsTeach Yourself

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

f 9 8 @ @

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672336874
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672336874
https://plusone.google.com/share?url=http://www.informit.com/title/9780672336874
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672336874
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672336874/Free-Sample-Chapter

Katie Cunningham

SamsTeach Yourself

Python

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself Python in 24 Hours

Copyright © 2014 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.
ISBN-13: 978-0-672-33687-4

ISBN-10: 0-672-33687-1

Library of Congress Control Number: 2013944085

Printed in the United States of America

Third Printing: November 2014

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

Editor-in-Chief
Mark Taub

Executive Editor
Debra Williams
Cauley
Development
Editor

Michael Thurston

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Bart Reed

Indexer
Lisa Stumpf

Proofreader
Dan Knott

Technical Editors
Doug Hellmann
Gabriel Nilsson

Publishing
Coordinator

Kim Boedigheimer

Cover Designer
Mark Shirar

Senior Compositor
Gloria Schurick

Contents at a Glance

HOUR 1
HOUR 2
HOUR 3
HOUR 4
HOUR 5
HOUR 6
HOUR 7
HOUR 8
HOUR 9
HOUR 10
HOUR 11
HOUR 12
HOUR 13
HOUR 14
HOUR 15
HOUR 16
HOUR 17
HOUR 18
HOUR 19
HOUR 20
HOUR 21
HOUR 22
HOUR 23
HOUR 24

Preface

Introduction

Installing and Running Python

Putting Numbers to Work in Python
Logic in Programming

Storing Text in Strings

Processing Input and Output

Grouping Items in Lists

Using Loops to Repeat Code

Using Functions to Create Reusable Code
Using Dictionaries to Pair Keys with Values
Making Objects

Making Classes

Expanding Classes to Add Functionality
Using Python’s Modules to Add Functionality
Splitting Up a Program

Providing Documentation for Code
Working with Program Files

Sharing Information with JSON

Storing Information in Databases

Using SQL to Get More out of Databases
Developing for the Web with Flask
Making Games with PyGame

Saving Your Code Properly Through Versioning

Fixing Problem Code
Taking the Next Steps with Python

Index

xiii

17
27
37
49
61
71
81
95
103
113
125
139
149
159
171
183
197
209
223
241
259
273
285
295

Table of Contents

Preface
Who This Book Is For For
How This Book Is Organized

Introduction
Learning to Program
Why Python?
Getting Started
How This Book Works
What to Do If You Get Stuck

HOUR 1 Installing and Running Python
Discovering Your Operating System
Setting Up Python on Windows
Setting Up Python on a Mac
Summary
Q&A
Workshop

HOUR 2 Putting Numbers to Work in Python
Storing Information with Variables
Doing Math in Python
Comparing Numbers
Applying Python Math in the Real World
Summary
Q&A
Workshop

HOUR 3 Logic in Programming
Using a Basic if Statement
Creating Blocks
Adding an else to an if

xiii
xiii

xiii

w W NN R R

15
15
16

17
17
20
23
24
25
26
26

27
27
28
29

Testing Many Things with elif

True and False Variables

Using try/except to Avoid Errors
Applying Logic to Real-World Problems
Summary

Q&A

Workshop

HOUR 4 Storing Text in Strings

Creating Strings

Printing Strings

Getting Information About a String
Math and Comparison

Formatting Strings

Using Strings in the Real World
Summary

Q&A

Workshop

HOUR 5 Processing Input and Output

Getting Information from the Command Line
Getting a Password

Cleaning Up User Input

Formatting Output

Managing Input and Output in the Real World
Summary

Q&A

Workshop

HOUR 6 Grouping Items in Lists

Creating a List

Getting Information About a List
Manipulating Lists

Using Math in Lists

Ordering Lists

Comparing Lists

Contents

30
31
32
34
35
35
36

37
37
38
38
40
42
46
47
47
48

49
49
53
54
55
57
58
58
58

61
61
63
64
65
66
67

vi

Sams Teach Yourself Python in 24 Hours

Using Lists in the Real World
Summary

Q&A

Workshop

HOUR 7 Using Loops to Repeat Code

Repeating a Set Number of Times
Repeating Only When True
Using Loops in the Real World
Summary

Q&A

Workshop

HOUR 8 Using Functions to Create Reusable Code

Creating a Basic Function

Passing Values to Functions

Variables in Functions: Scope

Grouping Functions Within a Function
Sending a Varying Number of Parameters
Using Functions in the Real World
Summary

Q&A

Workshop

HOUR 9 Using Dictionaries to Pair Keys with Values

Creating a Dictionary

Getting Information About a Dictionary
Comparing Dictionaries

Using Dictionaries in the Real World
Summary

Q&A

Workshop

HOUR 10 Making Objects

Object-Oriented Programming

Planning an Object

67
68
68
69

71
71
76
77
79
79
80

81
81
82
86
88
88
89
92
92
93

95
95
97
98
99
101
101
101

103
103
107

Contents vii

Making Objects Out of Objects 108
Using Objects in the Real World 110
Summary 111
Q&A 111
Workshop 111
HOUR 11 Making Classes 113
Making a Basic Class Statement 113
Adding Methods to Classes 114
Setting Up Class Instances 116
Using Classes in the Real World 119
Summary 122
Q&A 122
Workshop 122
HOUR 12 Expanding Classes to Add Functionality 125
Built-in Extras 125
Class Inheritance 130
When to Expand Classes in the Real World 134
Summary 136
Q&A 136
Workshop 137
HOUR 13 Using Python’s Modules to Add Functionality 139
Python Packages 139
Using the random Module 140
Using the datetime Module 143
Finding More Modules 145
Using Modules in the Real World 146
Summary 147
Q&A 147
Workshop 148
HOUR 14 Splitting Up a Program 149
Why Split Up a Program? 149

Deciding How to Break Up Code 150

viii

Sams Teach Yourself Python in 24 Hours

How Python Finds a Program’s Code
Splitting Up Code in the Real World
Summary

Q&A

Workshop

HOUR 15 Providing Documentation for Code

The Need for Good Documentation
Embedding Comments in Code

Explaining Code with Docstrings

Including README and INSTALL

Providing Documentation in the Real World
Summary

Q&A

Workshop

HOUR 16 Working with Program Files

Reading to and Writing from Files
Creating Files

Getting Information About a Directory
Getting Information About a File
Using Files in the Real World
Summary

Q&A

Workshop

HOUR 17 Sharing Information with JSON

The JSON Format

Working with JSON Files
Saving Objects as JSON
Creating Custom Dictionaries
Using JSON in the Real World
Summary

Q&A

Workshop

152
155
157
157
158

159
159
160
162
164
167
168
168
169

171
171
174
175
178
180
181
181
181

183
183
185
188
189
191
194
194
195

Contents

HOUR 18 Storing Information in Databases 197
Why Use Databases? 197
Talking to Databases with SQL 198
Creating a Database 200
Querying the Database 203
Using Databases in the Real World 205
Summary 207
Q&A 207
Workshop 208

HOUR 19 Using SQL to Get More out of Databases 209
Filtering with WHERE 210
Sorting with ORDER BY 214
Getting Unique Items with DISTINCT 215
Updating Records with UPDATE 215
Deleting Records with DELETE 216
Using SQL in the Real World 217
Summary 220
Q&A 220
Workshop 221

HOUR 20 Developing for the Web with Flask 223
What Is Flask? 223
Installing Flask 225
Making Your First Flask App 228
Adding Templates 231
Using Frameworks in the Real World 237
Summary 238
Q&A 238
Workshop 239

HOUR 21 Making Games with PyGame 241
What Is PyGame? 241
Installing PyGame 242
Creating Screens 243

Creating Shapes 245

Sams Teach Yourself Python in 24 Hours

Moving Things Around on the Screen
Getting Input from the User

Drawing Text

Using PyGame in the Real World
Summary

Q&A

Workshop

HOUR 22 Saving Your Code Properly Through Versioning
What Is Versioning?
Versioning with Git and GitHub
Managing Code in a Repository
Experimental Changes with Branches
Determining What Not to Push
Summary
Q&A
Workshop

HOUR 23 Fixing Problem Code
When Your Code Has a Bug
Locating Errors with a Traceback
Finding Errors with the pdb Debugger
Searching the Internet for Solutions
Trying a Fix
Finding Outside Support
Summary
Q&A
Workshop

HOUR 24 Taking the Next Steps with Python
Interesting Projects
Attending Conferences
Working with Linux
Contributing to Python
Contributing to Other Projects

248
250
252
253
257
257
258

259
259
261
263
267
270
271
271
271

273
273
274
275
278
279
280
282
282
283

285
285
288
288
290
290

Learning Another Language 290

Looking Forward to Python 3 291
Recommended Reading 292
Recommended Websites 292
Summary 293
Q&A 293
Workshop 293

Index 295

About the Author

Katie Cunningham is a Python developer at Cox Media Group. She’s a fervent advocate
for Python, open source software, and teaching people how to program. She’s a frequent
speaker at open source conferences, such as PyCon and DjangoCon, speaking on beginners’
topics such as someone’s first site in the cloud and making a site that is accessible to every-
one.

She also helps organize PyLadies in the DC area, a program designed to increase diversity in
the Python community. She has taught classes for the organization, bringing novices from
installation to writing their first app in 48 hours.

Katie is an active blogger at her website (http://therealkatie.net), covering issues such as
Python, accessibility, and the trials and tribulations of working from home.

Katie lives in the DC area with her husband and two children.

Dedication

This is dedicated to my family, who helps keep me sane every time
I decide to do this again. Jim, thank you for picking up the slack.
Mom, thank you for taking the kids and offering help every time

I started to look like I was going to fall over.
Kids, thank you for being okay with all the delivery food.

Acknowledgments

This book wouldn’t have happened without the help from quite a few people.

First, my editor, Debra Williams Cauley, has been both patient and enthusiastic. Without
her, I don’t know if I would have ever hit the deadline.

A special thanks goes to my tech editors, Doug Hellmann and Gabriel Nilsson. They were
machines when it came to catching my glaring errors, and their suggestions only made this
book stronger. Also, a thanks goes out to Richard Jones, who took the time to review my
PyGame chapter.

Thanks to Michael Thurston, who made me sound fabulous. I swear, one of these days, I'll
learn to spell “installation” right.

Finally, a thank you goes out to the Python community, who has been on hand every time
I had a question, needed a sanity check, or just needed some inspiration. You guys are my
home.

Preface

Why Python?

I get this question quite a bit. Why should someone learning to program learn Python? Why
not a language that was made for beginners, such as Scratch? Why not learn Java or C++,
which most colleges seem to be using?

Personally, I believe that Python is an ideal language for beginners. It runs on multiple
systems. The syntax (the grammar of the language) isn't fussy. It’s easy to read, and many
people can walk through a simple script and understand what it’s doing without ever hav-
ing written a single line of code.

It’s also ideal because it’s easy for a beginner to move on to more advanced projects. Python
is used in a number of areas, from scientific computing to game development. A new pro-
grammer can almost always find one, if not multiple, projects to fit their tastes.

Who This Book Is For

This book is for those who have never programmed before and for those who have pro-
grammed some but now want to learn Python. This is not a book for those who are already
experienced developers.

It is assumed you have a computer you have admin rights to. You'll need to install Python,
as well as multiple libraries and applications later in the book. The computer does not need
to be terribly powerful.

You should also have an Internet connection in order to access some of the resources.

How This Book Is Organized

This book covers the basics of programming in Python as well as some advanced concepts
such as object-oriented programming.

» The Introduction and Hour 1 cover the background of Python and installation.

» Hours 2-7 cover some basics of programming, such as variables, math, strings, and
getting input.

Hours 8-12 cover advanced topics. Functions, dictionaries, and object-oriented pro-
gramming will be discussed.

Hours 13-15 discuss using libraries and modules, as well as creating your own
module.

Hours 16-19 cover working with data, such as saving to files, using standard formats,
and using databases.

Hours 20 and 21 give a taste of some projects outside of the standard library. In these
hours, you will explore creating dynamic websites and making games. These hours
are not meant to be complete lessons, but serve instead as a starting point for learning
more.

Hours 22 and 23 go over how to save your code properly, and how to find answers
when something has gone wrong.

Hour 24 goes over what projects you can get involved with, what resources can help
you learn more, and how to get more involved in the Python community.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what areas
you'd like to see us publish in, and any other words of wisdom you're willing to pass our
way.

We welcome your comments. You can email or write to let us know what you did or didn't

like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this
book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: consumer@samspublishing.com

Mail: Sams Publishing
ATTN: Reader Feedback
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Introduction

Many people idly contemplate learning how to code. It seems like something that could be of
use, but many are too intimidated to jump in and try. Maybe they believe it’s too late to start
learning a skill like programming, or they believe they don’t have enough time. Maybe they get
lost too quickly, because the book they found is written for someone with previous experience
with coding. It seems like an impossible task. The goal of this book is to break down the con-
cepts behind programming into bite-sized chunks that are easy to digest as well as immediately
useful.

Learning to Program

For many people, learning to program seems like an impossible task. It's painted as a field that
requires a crazy amount of math, years of education and training, and, once you're done with
that, endless hours of constantly banging away at a keyboard.

The truth is, although becoming a full-time developer can take quite a bit of dedication, learn-
ing how to write code can be easy. As more of our life touches computers, learning to write code
to control them can enhance any career, no matter how nontechnical it may seem. An elemen-
tary school teacher might make a website to help students learn their vocabulary. An accoun-
tant could automate calculations that normally have to be done by hand. A parent could create
a home inventory system to help with generating grocery lists. Nearly every profession and
hobby can be enhanced through learning to program.

To put it simply, computers are stupid. Without human input, they don’t know what to do.
Code is a set of instructions that tells the computer not only what to do, but how to do it.
Everything on your computer, from the largest applications (such as Word and video games) to
the smallest (such as a calculator), is based on code.

Most code on your computer will be compiled already as an .exe or .app file. For the exercises in
this book, we’ll either be running them from a file or using the interpreter (which we’ll get to in
Hour 1, “Installing and Running Python”).

2 Introduction

Why Python?

Python is a language that is lauded for its readability, its lack of fussiness, and how easy it is to
teach. Also, unlike some languages that are created specifically for teaching, it’s used in count-
less places outside of the classroom. People have used Python to write everything from websites
to tools for scientific work, from simple scripts to video games. The following is a non-exhaustive
list of programs written in Python:

» YouTube—A popular site for viewing and sharing videos.

The Onion—A parody news site.

Eve Online—A video game set in space.

The Washington Post—The website runs off of Django, a framework written in Python.
Paint Shop Pro—An image-editing software package.

Google—A significant number of applications at Google use Python.

vV v.v. v v.Y

Civilization IV—A turn-based simulation game.

Python may appear simple, but it’s incredibly powerful.

Getting Started

Before we get started, let’s go over a list of some things you're going to need. You absolutely
must have all these things before you can start learning Python. Here’s what you will need:

» Admin access—Python doesn’t require a very powerful computer to run, but you will need
a computer that you have permission to install things on.

» Internet access—We're going to be downloading installers, and, later on, talking to web
services. It doesn’t need to be a fast connection, because many of the items we'll be down-
loading are rather small.

» A computer—It doesn’t need to be brand new, but the faster your computer is, the faster
your code should run. A computer built in the past five years should be fine.

» Space—A dedicated workspace can greatly enhance your ability to pick up new concepts.
It should be free from distractions, such as TV.

» No distractions—It’s almost impossible to learn something new if you have family mem-
bers interrupting you, phones buzzing, or a TV blaring in the background. A good pair of
noise-canceling headphones can be a wonderful asset—if you can’t get rid of people and
ambient noise.

What to Do If You Get Stuck 3

For most people, the last two items can be the most difficult to get in place, but they're invalu-
able. Not only will you need them while learning, but you'll need them once you're done with
this book and moving on to your own projects. Writing code is a creative endeavor, and requires
time and space to do.

How This Book Works

Each chapter is meant to be completed in one hour or less. That includes reading the text and
doing the exercises. Ideally, the exercises should be done directly after reading a chapter, so
try to set aside time when you not only can focus, but have access to your computer. Not every
chapter will require Internet access (those that do will warn you before you dive in).

It may be tempting to dive in to the next chapter after finishing one, but try to give yourself a
break. Your brain needs time to integrate the new information, and you need to be rested before
diving into more new material.

What to Do If You Get Stuck

There is one thing that applies to every person who writes code: You will get stuck. Sometimes
a new concept doesn’t seem to be clicking. Sometimes an error won’t go away. There are days
when everything you touch seems to break.

The key to getting past days like these is to not give in to frustration. Get up, move away from
the computer, and go for a walk. Make a cup of tea. Talk to a friend about anything but your
misbehaving code. Give yourself a chance to unwind.

When you've given yourself some space from the problem, do a quick self-assessment. Are you
tired? A tired developer is a bad developer, no matter how experienced he or she is. Sometimes a
bit of coffee helps, but most of the time what you need is some sleep.

If you're not tired, try re-reading the chapter. It might be time to break out the highlighters or
take notes. Are some of the terms unfamiliar? Try searching for these terms online.

Is the code not working? Sometimes, you need to delete what you have (or save it in another
file) and try again. Later in the book, we’ll talk about better ways to debug your code, but rest
assured, every developer has had to toss code at some point in his or her life.

This page intentionally left blank

HOUR 4

Storing Text in Strings

What You’ll Learn in This Hour:

» How to create and print strings

» How to get information about stored text
» How to use math with stored text

» How to format strings

» When to use strings in the real world

When Python wants to store text in a variable, it creates a variable called a string. A string’s sole
purpose is to hold text for the program. It can hold anything—from nothing at all (") to enough
to fill up all the memory on your computer.

Creating Strings

Creating a string in Python is very similar to how we stored numbers in the last hour. One dif-
ference, however, is that we need to wrap the text we want to use as our string in quotes. Open
your Python shell and type in the following:

>>> s = "Hello, world"

>>> S
'Hello, world'

The quotes can be either single (') or double ("). Keep in mind, though, that if you start with

a double quote, you need to end with a double quote (and the same goes for single quotes).
Mixing them up only confuses Python, and your program will refuse to run. Look at the follow-
ing code, where the text “Harold” starts with a double quote but ends with a single quote:

>>> name = "Harold'

File "<stdin>", line 1

name = "Harold'
* SyntaxError: EOL while scanning string literal

38 Storing Text in Strings

As you can see, we got an error. We have to make the quote types match:

>>> name = "Harold"
>>> name
'Harold'
>>> name2 = 'Harold'
'Harold'

Printing Strings

In the examples so far, Python prints out strings with the quotes still around them. If you want
to get rid of these quotes, use a print statement:

>>> greeting = "Hello"

>>> print greeting

Hello

A print statement usually prints out the string, then moves to the next line. What if you don't
want to move to the next line? In this case, you can add a comma (,) to the end of the print
statement. This signals Python not to move to a new line yet. This only works in a file, though,
because the shell will always move to the next line.

In this example, we print out an item along with the price on the same line:

print 'Apple: ',
print '$ 1.99 / 1b'

When we run it, we get this:

Apple: $ 1.99 / 1b

We can even do calculations between the two print statements, if we need to. Python will not
move to a new line until we tell it to.

Getting Information About a String

In Hour 2, “Putting Numbers to Work in Python,” variables were compared to cups because they
can hold a number of things. Cups themselves have some basic functions, too, whether they
contain something or not. You can move them around, you can touch their side to see if what's
in them is hot or cold, and you can even look inside them to see if there’s anything in there. The
same goes with strings.

Python comes with a number of built-ins that are useful for getting information about the stored
text and changing how it’s formatted. For example, we can use len () to see how long a string
is.

Getting Information About a String 39

In the following example, we want to see how long a name is:

>>> name = "katie"
>>> len (name)
5

In this case, the length of the string held in name is five.

In Python, variables also come with some extra capabilities that allow us to find out some basic
information about what they happen to be storing. We call these methods. Methods are tacked
on to the end of a variable name and are followed by parentheses. The parentheses hold any
information the method might need. Many times, we leave the parentheses blank because the
method already has all the information it requires.

One set of methods that comes with strings is used to change how the letters are formatted.
Strings can be converted to all caps, all lowercase, initial capped (where the first letter of the
string is capitalized), or title case (where the first letter and every letter after a space is capital-
ized). These methods are detailed in Table 4.1.

TABLE 4.1 String-Formatting Methods

Method Description Example
.upper () Converts all letters to uppercase (a.k.a. all caps). 'HELLO WORLD’
.lower () Converts all letters to lowercase. "hello world’
.capitalize() Converts the first letter in a string to uppercase 'Hello world’

and converts the rest of the letters to lowercase.

.title() Converts the first letter, and every letter after a "Hello World’
space or punctuation, to uppercase. The other let-
ters are converted to lowercase.

These methods are appended to the end of a string (or variable containing a string):

>>> title = "wind in the willows"
>>> title.upper ()

'WIND IN THE WILLOWS'

>>> title.lower ()

'wind in the willows'

>>> title.capitalize()

'Wind in the willows'

>>> title.title()

'Wind In The Willows'

These methods are nondestructive. They don’t change what's stored in the variable. In the fol-
lowing example, note that the string stored in movie_ title isn’t changed, even though we used
.upper () on it:

40 Storing Text in Strings

>>> movie title = "the mousetrap"
>>> movie_title.upper ()

'THE MOUSETRAP'

>>> movie_title !

the mousetrap'

We can also see if certain things are true about a string. is_alpha() and is_digit () are two
popular methods, especially when checking to see if a user put in the correct type of data for a
string.

In the following string, we check to see that birth year is composed of all digits and that
state is nothing but letters:

>>> birth_year = "1980"

>>> state = "VA"

>>> birth year.isdigit ()

True

>>> state.isalpha()

True

Had birth year contained any letters or symbols (or even spaces), isdigit () would have
returned False. With state, had it contained any numbers or symbols, we would have gotten
False as well.

>>> state = "VA"

>>> state.isdigit ()
False

Math and Comparison

Just as with numbers, you can perform certain kinds of math on strings as well as compare
them. Not every operator works, though, and some of the operators don’t work as you might
expect.

Adding Strings Together

Strings can also be added together to create new strings. Python will simply make a new string
out of the smaller strings, appending one after the next.

In the following example, we take the strings stored in two variables (in this case, someone’s first
name and last name) and print them out together:

>>> first_name = "Jacob"
>>> last_name = "Fulton"
>>> first name + last_name
'JacobFulton'

Math and Comparison 411

Note that Python doesn’t add any space between the two strings. One way to add spaces to
strings is to add them explicitly to the expression.

Let’s add a space between the user’s first and last names:

>>> first name + " " + last_name
'Jacob Fulton'

Multiplication

You can do some funny things with multiplication and strings. When you multiply a string by
an integer, Python returns a new string. This new string is the original string, repeated X number
of times (where X is the value of the integer).

In the following example, we're going to multiply the string ‘hello’ by a few integers. Take note
of the results.

>>> g = 'hello '

>>> 5 * 5

'hello hello hello hello hello'

>>> s * 10

'hello hello hello hello hello hello hello hello hello hello '

>>> s * 0

What happens if we store an integer in a string?

>>> g = '5!
>>> s * 5
55555

Normally, if we multiplied 5 by 5, Python would give us 25. In this case, however, '5' is stored
as a string, so it’s treated as a string and repeated five times.

There’s some limitations to string multiplication, however. Multiplying by a negative number
gives an empty string.

>>> s = "hello"

>>> 8 * -5

Multiplying by a float gives an error:

>>> s * 1.0

Traceback (most recent call last):

File "<stdin>", line 1, in <module> TypeError: can't multiply sequence by
non-int of type 'float'

42 Storing Text in Strings

Comparing Strings

It’s possible to compare strings just as you would numbers. Keep in mind, however, that Python
is picky about strings being equal to each other. If the two strings differ, even slightly, they’re not
considered the same. Consider the following example:

>>> a = "Virginia"
>>> b = "virginia"
>>> a ==

False

Although a and b are very similar, one is capitalized and one isn’t. Because they aren’t exactly
alike, Python returns False when we ask whether they are alike.

Whitespace matters, too. Consider the following code snippet:

>>> greetl = "Hello "
>>> greet2 = "Hello"

>>> greetl == greet2

False

greetl has a space at the end of its string whereas greet2 does not. Python looks at whitespace
when comparing strings, so the two aren’t considered equal.

Operators That Don’t Work with Strings

In Python, the only operators that work with strings are addition and multiplication. You can't
use strings if you're subtracting or dividing. If you try this, Python will throw an error and your
program will stop running.
>>> g = "5"
>>> 8 / 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for /: 'str' and 'int'

If you ever see an error like this one (unsupported operand type), it usually means that the data
type you're trying to use doesn’t know how to use that operator.

Formatting Strings

There are many ways to format strings—from removing extra spaces to forcing new lines. You
can also add in tabs as well as search and replace specified text.

Formatting Strings 43

Controlling Spacing with Escapes

Until now, we’ve been printing strings out on one line. What if we need to print out something
on multiple lines? We can use the special combination of a backslash and “n” (\n). Every time
we insert this into a string, Python will start printing on the next line.

>>> rhyme = "Little Miss Muffett\nSat on a tuffet\nEating her curds and whey."

>>> print rhyme

Little Miss Muffett

Sat on a tuffet

Eating her curds and whey.

The backslash is a special character in strings. It’s called an escape, and it clues Python into the
fact that you have some special formatting in mind. You can also use an escape to put a string
onto several lines in your code so it’s easier to read. The preceding string isn’t so easy to read as
it is, but we can fix that as follows:
>>> rhyme = "Little Miss Muffett\n\

Sat on a Tuffet\n\

Eating her curds and whey."
>>> print rhyme
Little Miss Muffett
Sat on a Tuffet
Eating her curds and whey.

A new line isn’t the only thing you can do with an escape, though. You can also insert tabs with
\t.

Take note of the spacing in the following example. Each \t is replaced with tab when the string
is printed.
>>> header = "Dish\tPrice\tType"

>>> print header
Dish Price Type

The escape is also useful for when you have quotes in a string. If you're creating a string that
has quotes in it, this can cause some confusion for Python. “Escaping” them lets Python know
that you're not done with the string quite yet.

In the following example, the name has a single quote in it. If we don’t escape it, Python gives
us an error. If we do, however, Python has no problem storing the string.

>>> name = 'Harry O'Conner'
File "<stdin>", line 1
name = 'Harry O'Conner'
* SyntaxError: invalid syntax
>>> name = 'Harry O\ 'Conner'
>>> print name
Harry O'Conner

44 Storing Text in Strings

NOTE

Another Way to Deal with Single Quotes

If you don’t want to use an escape, you can use double quotes if your string contains single quotes,
or vice versa. So, Python will have no issues saving “Harry O’Conner” or ‘He said, “Hello” as he
opened the door.’

But what if you need to use a backslash in a string? Simple: Just escape the backslash. In other
words, if you want to display one backslash, you'll need to enter two backslashes.

In the following example, we want to save a path for a Windows machine. These always include
backslashes, so we need to escape the backslash. When we print it, only one backslash appears.
>>> path = "C:\\Applications\\"

>>> print path
C:\Applications\

Removing Whitespace

Sometimes, a user might put extra whitespace when typing in something for your program. This
can be annoying when trying to print out several strings on one line, and it can be downright
disastrous if you're trying to compare strings.

In the following example, extra whitespace makes printing out a name difficult. It looks like
there’s too much space between the first name and middle name. To make matters more diffi-

cult, the extra whitespace means that the comparison first name == "Hannah" fails.
>>> first_name = "Hannah "

>>> middle name = "Marie"

>>> print first _name + " " + middle_name

Hannah Marie
>>> if first_name == "Hannah":
print "Hi, Hannah!"
. else:
print "Who are you?"

Who are you?

Strings come with a method, strip (), that allows you to strip out all the whitespace at the
beginning and end of a string. In the following code snippet, the name Hannah has an extra
space tacked onto the end. Using strip () removes that space.

>>> first_name = "Hannah "

>>> first name.strip()
'Hannah'

Formatting Strings 45

strip () not only removes all whitespace from around a string, it can remove other characters
you specify. This time, Hannah is surrounded by a number of asterisks. Passing an asterisk to
strip () removes all the asterisks in the string:

>>> bad_input = "****Hannah****"

>>> bad_input.strip('*'")
'Hannah'

If you only want to strip the beginning or end of a string, you can use rstrip() or lstrip(),
respectively. Here, the name Hannah has asterisks before and after it. If we pass an aster-

isk to rstrip (), only asterisks at the end of the string are removed. If we pass an asterisk to
lstrip (), only asterisks at the beginning of the string are removed.

>>> bad_input = "****Hannah****"

>>> bad_input.rstrip('*')

' ****Hannah'

>>> bad input.lstrip('*')
'Hannah#****!

Searching and Replacing Text

Sometimes, you need to find a piece of text that is located in a string. Strings come with a num-
ber of methods that let you search for text. These methods can tell you how many times the text
occurs, and let you replace one substring with another.

count () returns how many times one string appears in another string. In this example, we're
using a rather lengthy bit of text stored in a variable called 1ong_text. Let’s find how many
times the word “the” appears:

>>> long_text.count ('the')
5

Apparently, “the” appears five times.

What if we want to find out where the first instance of “ugly” appears? We can use £ind (). In
this example, we want to find where the first instance of the word “ugly” appears in long text.

>>> long_text.find('ugly')
25

In this example, “ugly” appears starting at the 25th character. A character is one letter, number,
space, or symbol.

NOTE

When find () Finds Nothing
If £ind () doesn’t find anything, it returns -1.

46 Storing Text in Strings

Strings in Python also come with the ability to replace substrings in strings. You can pass two
strings to replace (), and Python will find all instances of the first string and replace it with the
second string.

For example, if we don't like the term “ugly,” we can replace it with “meh” by using replace ()
and giving it 'ugly' and 'meh' as parameters.

>>> long_ text.replace('ugly', 'meh')
"Beautiful is better than meh.\n Explicit is better ... [snipl"
NOTE

Zen of Python

Want to see what text | used for this section? In your interpreter, type import this. The Zen of
Python will print out! This is the main philosophy behind Python, and is one of the Easter eggs in the
Python library.

Using Strings in the Real World

In previous hours, we've gone over how Python might help the waiter in our imaginary restau-
rant. What about the chef? How can strings benefit her?

Most obviously, she can store the specials of the day in a script that can be run later by the
waiter. That way, he can run it and see what the specials are without bothering her.

In the following script, the chef has saved a number of specials. She then prints them out in a
formatted list of the specials of the day.

breakfast_special = "Texas Omelet"

breakfast notes = "Contains brisket, horseradish cheddar"

lunch special = "Greek patty melt"

lunch _notes = "Like the regular one, but with tzatziki sauce"

dinner special = "Buffalo steak"

dinner notes = "Top loin with hot sauce and blue cheese. NOT BUFFALO MEAT."

print "Today's specials"
print "*"*20

print "Breakfast: ",
print breakfast_ special
print breakfast notes
print

print "Lunch: ",

print lunch_ special
print lunch notes

print

Q&A

print "Dinner: ",
print dinner special

print dinner notes

When the waiter runs it, the following is printed out:

Today's specials

kkhkkhkkkkhkkkkhkkkkhkhkkkhkhkkkk*x

Breakfast: Texas Omelet

Contains brisket, horseradish cheddar

Lunch: Greek patty melt

Like the regular one, but with tzatziki sauce

Dinner: Buffalo steak

Top loin with hot sauce and blue cheese. NOT BUFFALO MEAT.

If the cook wants to change the specials later, she can edit the first few lines in the file.

Summary

47

During this hour, you learned that text is stored in something called a string. Python allows you

to do certain kinds of math operations on strings, and offers some extra methods for strings,
such as removing whitespace.

Q&A

Q. Is there any way to see all of the things | can do with a string without looking it up online?

A. If you want to see everything you can do with strings, type this into your Python shell:

>>> s = ""

>>> help(type(s))

A list of everything you can do with strings will pop up. Pressing Enter will move you down

one line, your up arrow will move you up one line, spacebar will move you down one page,

“pn

and “q” will close the help menu. Note that this behavior is slightly different in IDLE, where

all the text is printed at once.

Incidentally, you can get this screen with any kind of Python data type. If you wanted to find

out all the methods that come with the integer type, you could do something like this:

>>> 5 =1

>>> help (type(s))

48

Storing Text in Strings

Why are the methods to remove whitespace from the beginning and end of a string called
“right strip” and “left strip”? Why not “beginning” and “end”?

In quite a few languages, text isn’t printed from left to right. Arabic and Hebrew are both
written from right to left, whereas many Eastern scripts are written from top to bottom.
“Right” and “left” are more universal than “beginning” and “end”.

How big can a string be?

That depends on how much memory and hard drive space your computer has. Some lan-
guages limit the size of a string, but Python has no hard limit. In theory, one string in your
program could fill up your whole hard drive!

Workshop

The Workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered. Try to answer all questions before looking at the answers that follow.

Quiz

1.
2.
3.

What characters can be stored in strings?
What math operators work with strings?

What is the backslash character (\) called? What is it used for?

Answers

1.

Alphabetic characters, numbers, and symbols can all be stored in strings, as well as
whitespace characters such as spaces and tabs.

Addition and multiplication operators work with strings.

The backslash is called an “escape” and indicates that you want to include some special
formatting, such as a tab, new line, a single or double quote, or a backslash.

Exercise

In your program, you're given a string that contains the body of an email. If the email contains

the word “emergency,” print out “Do you want to make this email urgent?” If it contains the

word “joke,” print out “Do you want to set this email as non-urgent?”

Symbols

/ (backslash), 43

{} (curly brackets), 55

- (dash), 154

== (double equals), 23-24
= (equals), 23-24

% (percent sign), 58

[1 (square brackets), 61
= (unequal operator), 67
**kwargs, 88, 92

*args, 92

A

absolute value, 21
adding

colors, to shapes (PyGame),
246

data, to databases, 202-203
else, to if statements, 29-30
items

to the end of lists, 64

to repositories, 264-265

logic, to Flask templates,
235-236

methods, to classes, 114-115
strings, together, 40-41
templates (Flask), 231

HTML, 231-232

Index

variables (Flask), 231
views (Flask), 230
addition, 21

Android applications, creating,
287

appending data to files, 174
applications, 286

apps, Flask, 228-230
arrays, 17

Ascher, David, 292
attending conferences, 288

attributes, OOP (object-oriented
programming), 106

avoiding errors, try/except, 32-33

backslash (/), 43
Batteries Included, 139
Beazley, David, 292
binary files, 181
blits, 252
blocks
creating, 28-29
shells, 29
branches, 267
creating, 267-269
merging, 269
breaking out of loops, 74-75
bugs, 273-274
trying fixes, 279

296 calling functions

C

calling functions, 82, 92
choice, 143

circles, drawing (PyGame),
247-248

class inheritance, 130
classes, 133-134

saving classes in files,
130-132

subclasses, 132-133
classes

adding methods to, 114-115

class inheritance, 133-134

comparing values, equality,
126-127

creating basic class state-
ments, 113-114

data types, 125-126
files, 157

greater than, 127-128
instances, 116

__init__() function,
116-118

moving and storing,
118119
less than, 127-128
OOP (object-oriented program-
ming), 106

overriding default methods,
136

print, 128-130

real world uses, 119-121,
134-136

saving in files, 130-132
cleaning up user input, 54-55
clients, IRC (Internet Relay

Chat), 280
code

embedding comments in,
160-162

explaining with docstrings,
162-164

colors, adding, to shapes
(PyGame), 246

combining types, 22-23
comma separated values
(CSV), 194

command line
converting input(), 51-53
getting information, 49-51
prompts, 51

commands
dir command, 10
mkdir command, 11
pdb debugger, 277

comments, embedding, in code,
160-162

comparing

dictionaries, 98-99

lists, 67

numbers, 23

strings, 42

values, equality, 126-127
comparison operators, 24
conferences, attending, 288
contributing to other projects, 290
contributing to Python, 290

converting input(), command line,
51-53

count(), 63
CSS (cascading style sheets), 291

CSV (comma separated
values), 194

curly brackets ({}), 55
cursors, databases, 201

custom dictionaries, creating
(JSON), 189-191

dash (-), 154
data
adding to databases, 202-203
appending to files, 174
reading from files, 171-172
writing to files, 173-174
data types
classes, 125-126
SQLite, 200
databases, 197
cursors, 201
data, adding, 202-203

deciding when to use,
207-208

deleting, records with DELETE,
216-217

filtering with where, 210

checking for equality,
210-211

checking for inequality,
211

finding non-similar items
with NOT LIKE, 212-213

finding similar items with
LIKE, 211

querying with greater than
and less than, 213

querying, 203-205

real world uses, 205-207
reasons for using, 197-198
sorting, with ORDER BY, 214

SQL (Structured Query
Language), 198

real world uses, 217-220
tables, creating, 200-202
unique items, DISTINCT, 215

updating records with
UPDATE, 215-216

datetime, 140, 143, 145
time, 144-145
debuggers, pdb, 275-276

default values, setting for func-
tions, 84

DELETE, 216-217

deleting records with DELETE,
216-217

descending ranges, 79

desktop applications, creating
(resources), 286-287

dictionaries, 89, 95
comparing, 98-99
creating, 95-97

creating custom, JSON,
189-191

getting information, 97-98
real world uses, 99-101
dictionary, 17
dir command, 10
directories
creating, 177-178
getting information, 175
lists of files, 175-176
moving around, 176-177

DISTINCT, 215

dividing by zero, 23

division, 21

Django, 286

docstrings, explaining code,
162-164

documentation, 159

docstrings, 162-164

embedding comments in
code, 160-162

INSTALL, 165

writing instructions, 166
README, 164-165

writing, 166
real world uses, 167-168

reasons for good documenta-
tion, 159-160

does not equal, 24
double equals (==), 23
double quotes ("), 37
drawing (PyGame)
circles, 247-248
text, 252-253
dump(), 186

dynamic content, adding with
Jinja, to Flask apps, 234-235

elif statements, 30-31

else statements, adding to if
statements, 29-30

embedding comments in code,
160-162

eq(), 126
equality
comparing values, classes,
126-127
filtering with where, 210-211
equals (=), 23-24
errors
avoiding, try/except, 32-33
finding,with pdb debugger,
275276

locating with traceback,
274-275

escapes, controlling spacing
(strings), 43-44
except, 35
avoiding errors, 32-33
exponents, 21
extend(), 64

F

False, 23
false, variables, 31-32

file directories, including modules
from, 152-154

file size, 178-179
file systems, navigating
Mac, 14-15
Windows, 10-11
files
appending data to, 174
binary files, 181
creating, 174-175
getting information, 178
file size, 178179
time accessed, 179

JSON (JavaScript Object
Notation), 185-186

saving to, 186-187
opening in write mode, 173
reading data from, 171-172
real world uses, 180
saving classes in, 130-132
writing data to, 173-174

filtering databases with where,
210-213

finding
errors with pdb debugger,
275276
modules, 145-146

non-similar items with NOT
LIKE, 212-213

similar items with LIKE, 211
support

IRC (Internet Relay Chat),
280-281

local user groups, 282
mailing lists, 282

functions 297

fixes for bugs, trying fixes, 279
Flask, 223-225
adding views, 230
creating apps, 228-230

frameworks, real world uses,
237-238

installing
on Macs, 227-228
in Windows, 225-226
templates
adding dynamic content
with Jinja, 234-235
adding logic, 235-236
creating, 233-234
templates, adding, 231
HTML, 231-232
variables, adding, 231
float, 17
floor division, 21
formatting

JSON (JavaScript Object
Notation), 183-185

output, 55-56
strings, 39
controlling spacing with
escapes, 43-44

removing whitespace,
44-45

searching and replacing
text, 45-46

frameworks, 286
versus libraries, 223
real world uses, 237-238
Freenode, 281
functions
calling, 82, 92
count(), 63
creating basic, 81-82
dump(), 186
eq(), 126
extend(), 64
get_receipts(), 193
getpass() function, 53,
58, 140
grouping within functions, 88
has_key(), 97

How can we make this index more useful? Email us at indexes@samspublishing.com

298 functions

help(), 163
returning values, 85-86
setting default values, 84
index(), 63
__init__(), 122
input(), 49-53
insert(), 65
is_alpha(), 40
is_digit(), 40
__hne__(), 127
open(), 172
os.getewd(), 175
os.listdir(), 175-176
os.makedir(), 177
os.makedirs(), 177
os.stat(), 178, 179
os.walk(), 176
passing values to, 82-83
pop(), 96, 101
randint, 141-142
range(), 72
raw_input(), 51
readlines(), 172
real world uses, 89-91
remove(), 65
render(), 252
save_receipts(), 193
scope, 86
creating variables, 86-87
parameters, 87-88
sending parameters, 88-89
__str_ (), 128130
strip(), 45
walk(), 176-177
write(), 173
writelines(), 173

game creation competitions, 287
games, PyGame. See PyGame
get_receipts(), 193

getpass() function, 53, 58, 140

Git, 261
GitHib, 262
installing, 262

joining GitHib, 261-262
remote repositories, 265-266
repositories
adding items to, 264-265
checking out, 263-264
updating, 266-267
git merge command, 269
GitHib, 262
joining, 261-262
repositories, creating, 263
greater than, 24
classes, 127-128
querying, 213
greater than or equals, 24

grouping, functions, within func-
tions, 88

has_key(), 97
Hellmann, Doug, 146, 292
help(), 163
Help Screen, navigating, 163
HTML, 239, 291

templates (Flask), 231-232
HTML tags, 232

if statements, 27-28
adding else, 29-30
importing, modules, 154
in, 64
including, modules, from file
directories, 152-154

index(), 63

inequality, filtering with where,
211

infinite loops, 76-77

information, storing with vari-
ables, 17

__init__() function, 122

classes, instances, 116-118
inline comments, in files, 160
input(), 49-50, 58

converting, command line,
51-53

real world uses, 57
insert(), 65
INSTALL, 165
writing instructions, 166
installations, testing, 15
installing
Flask
on Macs, 227-228
in Windows, 225-226
Git, 262
pip
Macs, 228
Windows, 226
PyGame
Macs, 242-243
Windows, 242
Python
on a Mac, 11
on Windows, 7-8
setuptools
Macs, 227
Windows, 225
SQLite, on Windows, 199-200
text editors
on a Mac, 13-14
on Windows, 9
instances
classes, 116

__init__() function,
116-118

moving and storing,
118-119

OOP (object-oriented program-
ming), 106

integer, 17
Interactive Text Competition, 287
interfaces, 49-50

internet, searching for solutions,
278-279

Internet Relay Chat (IRC),
280-281

Invent Your Own Computer Games
with Python, 292

iOS applications, creating, 287
IP addresses, 225

IRC (Internet Relay Chat),
280-281

clients, 280
is_alpha(), 40
is_digit(), 40
items, adding
to the end of lists, 64
to repositories, 264-265
iterating loops, through lists, 73

J

JavaScript, 291

Jinja, adding dynamic content to
Flask apps, 234-235

joining GitHib, 261-262

Jones, Brian K., 292

jQuery, 291

json, 140

JSON (JavaScript Object Notation)

custom dictionaries, creating,
189-191

files, 185-186

formatting, 183-185

printing to screen, 187

real world uses, 191-194

saving objects as, 188-189

saving to files, 186-187
Julython, 288

K

keys, 96
Kivy, 287

L

languages, learning, 290-291
Learn Python, 292
Learn Python the Hard Way, 292
less than, 24

classes, 127-128

querying, 213
less than or equals, 24
libraries, versus frameworks, 223
LIKE, finding similar items, 211
LIKE statements, 211
Linux, 16, 288-290
list, 17
list items, skipping to the next list

item, loops, 74

lists

adding items to the end
of, 64

comparing, 67

creating, 61-63

getting information, 63-64

manipulating, 64-65

math, 65-66

ordering, 66

real world uses, 67-68
lists in lists, 91
lists integrating loops, 73
lists of files, directories, 175-176
local user groups, 282
localhost, 224

locating errors with traceback,
274-275

logic
adding to Flask templates,
235-236

applying to real world prob-
lems, 34

long, 17
loops, 71
infinite loops, 76-77
iterating through lists, 73
real world uses, 77-78
repeating, naming loop vari-
ables, 73

repeating a set number of
times, 71

range of numbers, 72

mkdir command 299

repeating only when true, 76
infinite loops, 76-77
while loops, 76

skipping to the next list
item, 74

variables, 75
while loops, 76

Macs

file systems, navigating,
14-15
installing,
Flask, 227-228
PyGame, 242-243
Python, 11
operating systems, determin-
ing, 5
running, Python, 12-13
SQLite, 198
text editors, installing, 13-14
mailing lists, 282
main program loops, PyGame,
244-245
managed service providers, 286
manipulating lists, 64-65
Martelli, Alex, 292
math, 20-21

applying to the real world,
23-25

combining types, 22-23
dividing by zero, 23
lists, 65-66
operators, 21
order of operations, 22
Matplotlib, 287
.md, 271
Meetup, 282
merging branches, 269
methods
adding to classes, 114-115

OOP (object-oriented program-
ming), 106

mkdir command, 11

How can we make this index more useful? Email us at indexes@samspublishing.com

300 modules

modules, 21, 139
choice, 143
creation of, 147
datetime, 143, 145

time, 144-145
finding, 145-146
importing, 154

including, from file directories,

152-154

random, 140, 142

randint function, 141-142
real world uses, 146-147
uniform, 142-143

moving

around directories, 176-177
instances, 118-119

things around the screen,
PyGame, 248-250

to the web, 236
multiplication, 21
strings, 41
music library programs, splitting
up, 150-152

named parameters, 203
naming
loop variables, 73
variables, 19-20
navigating
file systems
Mac, 14-15
Windows, 10-11
Help Screen, 163
__ne__() function, 127
negation, 21
negative numbers, 68

nicknames, registering, IRC
(Internet Relay Chat), 281

NOT LIKE, finding non-similar
items, 212-213

Notepad++, 35
numbering, starting at zero, 62

numbers
comparing, 23
length of, 26

storing, in variables, 18-19
NumPy, 287

)

object-oriented programming.
See OOP (object-oriented
programming)

objects

creating objects out of
objects, 108-109

defined, 103

planning, 107

real world uses, 110
saving as JSON, 188-189

OOP (object-oriented program-
ming), 103-106, 111

attributes, 106
classes, 106
instances, 106
methods, 106
objects, 104-106
subclasses, 106
vocabulary, 106
open(), 172
opening files, in write mode, 173
operating systems, determining
which one you have, 5-7

operators, 21
comparison operators, 24
strings, 42
ORDER BY, sorting, 214
order of operations, math, 22
ordering lists, 66
os, 140
os.getcwd(), 175
os.listdir(), 175-176
os.makedir(), 177
os.makedirs(), 177
os.stat(), 178-179
os.walk(), 176

output
formatting, 55-56
real world uses, 57

P

packages, 139-140
datetime, 140
getpass, 140
json, 140
os, 140
pprint, 140
random, 140
sqlite3, 140
this, 140
packaging, 258
pandas, 287
parameters
named parameters, 203
scope and, 87-88
sending, in functions, 88-89
passing values to functions, 82-83
returning values, 85-86
setting default values, 84
passwords, getting information,
53-54
paths, updating, 225-226
pdb debugger
commands, 277

finding errors with pdb debug-
ger, 275-276

PEP (Python Enhancement
Proposal), 26

percent sign (%), 58

pip, 225
installing
Macs, 228
Windows, 226
Planet Python, 292
planning

how to break up
programs, 150

objects, 107
Plone, 286

polymorphism. See class
inheritance

pop(), 96, 101
print, 140
preparations for getting started
with Python, 2-3
print, classes, 128-130
print statements, printing,
strings, 38
printing
JSON (JavaScript Object
Notation), to screen, 187
strings, 38
problems, what to do when you
get stuck, 3
programs, splitting
music library programs,
150-152

planning how to break up pro-

grams, 150
real world uses, 155-157
reasons for, 149
programs written in Python, 2
prompts, command line, 51
PyGame, 241
drawing, text, 252-253
installing
Macs, 242-243
Windows, 242

moving things around the
screen, 248-250

real world uses, 253-257
resources, 253
screens, 243-244
main program loops,
244-245
user input, 245
shapes
adding colors, 246
drawing circles, 247-248
user input, 250-251
Pyglet, 257
PyGUI, 287
Pyjs, 286
Python
installing
on a Mac, 11
on Windows, 7-8

running
on a Mac, 12-13
on Windows, 8-9
Python 2.7, 15
Python 3, 16, 291
Python Anywhere, 286
Python Cookbook, 292

Python Enhancement Proposal
(PEP), 26

Python Standard Library by
Example, 292

Python Tutor mailing lists, 282
Python.org, 292

PyVideo, 292

PyWeek, 287

Q

querying
databases, 203-205

with greater than and less
than, 213

quotes, 37

randint function, 141-142
random, 140, 142
choice, 143
randint function, 141-142
uniform, 142-143
range(), 72
range of numbers
descending ranges, 79
loops, 72
Ravenscroft, Anna, 292
raw_input(), 51

reading, data, from files, 171-172

readlines(), 172
README, 164-165
writing, 166

running Python 301

records

deleting with DELETE,
216-217

updating with UPDATE,
215-216

recursion, 93

registering nicknames, IRC
(Internet Relay Chat), 281

remote repositories, 265-266
remove(), 65

removing whitespace from strings,
44-45

render(), 252
repeating loops
naming loop variables, 73
range of numbers, 72
set number of times, 71
replacing text, 45-46
repositories
adding items to, 264-265
checking out, 263-264
creating, 263

determining what not to push
to the repository, 270-271

remote repositories, 265-266

updating, 266-267
resources

books, 292

Django, 286

Kivy, 287

Plone, 286

PyGUI, 287

Pyjs, 286

Python Anywhere, 286

SciPy, 287

Web2py, 286

websites, 292-293

wxPython, 287
returning values, 85-86
running Python

on a Mac, 12-13

on Windows, 8-9

How can we make this index more useful? Email us at indexes@samspublishing.com

302 sandboxes

S

sandboxes, 288
save_receipts(), 193
saving

classes in files, 130-132

JSON (JavaScript Object
Notation) to files, 186-187

objects as JSON, 188-189
SciPy, 287
SciPy Library, 287
scope, functions, 86
creating variables, 86-87
parameters, 87-88
screens
printing JSON to, 187
PyGame, 243-244
main program loops,
244-245
user input, 245
searching and replacing text,
45-46

searching internet for solutions,
278-279

sending parameters, functions,
88-89

serve, defined, 224
servers, 224
setuptools, 225
installing
Macs, 227
Windows, 225
shapes, PyGame
adding colors, 246
drawing circles, 247-248
Shaw, Zed, 292
shells, blocks, 29
Shotts, Jr., William E., 290
single quote ('), 37
size, testing, functions, 127
skipping to the next list item,
loops, 74
sorting, 69

databases with ORDER BY,
214

spaces, 29

spacing, controlling with escapes
(strings), 43-44

splitting programs
music library programs,
150-152

planning how to break up pro-
grams, 150

real world uses, 155-157
reasons for, 149
SQL (Structured Query
Language), 198
real world uses, 217-220
sql statements, 203, 209
SQLAIchemy, 220
SQLite
data types, 200

installing on Windows,
199-200

Macs, 198
testing, 200
users of, 207
sqlite3, 140
square brackets ([]), 61
stack trace, 274
steps, defined, 72
storing
information with variables, 17
instances, 118-119
numbers, in variables, 18-19
__str__() function, 128-130
strings, 17
adding together, 40-41
comparing, 42
creating, 37-38
formatting, 39

controlling spacing with
escapes, 43-44

removing whitespace,
44-45

searching and replacing
text, 45-46

getting information about,
38-40

multiplication, 41
operators, 42
printing, 38
real world uses, 46-47
strip(), 45
subclasses
class inheritance, 132-133

OOP (object-oriented program-
ming), 106

subtraction, 21
Sweigart, Al, 292
SymPy, 287

T

tables, creating in databases,
200-202

tabs, 29
templates
adding in Flask, 231
HTML, 231-232
creating in Flask, 233-234
Flask
adding dynamic content
with Jinja, 234-235
adding logic, 235-236
testing
installations, 15
size, functions for, 127
SQLite, 200
text
drawing, PyGame, 252-253

searching and replacing,
45-46

text editors, installing
on a Mac, 13-14
on Windows, 9

The Hitchhiker's Guide to
Python, 293

this, 140

time, 144-145

time accessed, files, 179
timedelta, 145

traceback, locating errors,
274-275

troubleshooting
bugs, 273-274

finding errors with pdb debug-
ger, 275-276

finding support
IRC (Internet Relay Chat),
280-281

local user groups, 282
mailing lists, 282

locating errors with traceback,
274275

searching the internet for
solutions, 278-279

trying fixes, 279
True, 23
true, variables, 31-32
try, avoiding, errors, 32-33
tuples, 17
types of, variables, 17-18

Ubuntu, 289-290
unequal operator (=), 67
uniform, 142-143
unique items, DISTINCT, 215
UPDATE, 215-216
updating

paths, 225-226

records with UPDATE,
215216

repositories, 266-267
user input

cleaning up, 54-55

PyGame, 245, 250-251

Vv

values
comparing, equality, 126-127
passing to functions, 82-83
returning values, 85-86
setting default values, 84
returning values, 85-86
variables
adding, in Flask, 231

creating within functions,
scope, 86-87

loops, 75
naming, 73
naming, 19-20
storing information, 17
storing numbers, 18-19
true and false, 31-32
types of, 17-18
versioning
branches
creating, 267-269
merging, 269
defined, 259

determining what not to push
to the repository, 270-271

Git, 261

GitHib, 262

installing, 262

joining GitHib, 261-262
how it works, 260-261
importance of, 259-260
repositories

adding items to, 264-265

checking out, 263-264

creating, 263

remote repositories,
265-266

updating, 266-267
views, adding in Flask, 230
Virtualbox, 289
virtualenv, 288
virtualenvwrapper, 288

W-X-Y-Z

w+, 175

walk(), 177

Web, moving to, 236
Web Fundamentals, 291
web servers, 224
Web2py, 286

wxPython 303

websites, 292-293

creating resources for,
285-286

where, filtering, 210
checking for equality, 210-211
while loops, 76
whitespace, removing, from
strings, 44-45
Windows
Flask, installing, 226
installing
PyGame, 242
Python, 7-8
running, Python, 89
SQLite, installing, 199-200
text editors, installing, 9
Windows Installer, 7-8

Windows machines, operating sys-
tems, determining, 6

write(), 173

write mode, opening files in, 173

writelines(), 173

writing
data to files, 173-174
INSTALL instructions, 166
README, 166

wxPython, 287

How can we make this index more useful? Email us at indexes@samspublishing.com

	Table of Contents
	Preface
	Who This Book Is For For
	How This Book Is Organized

	Introduction
	Learning to Program
	Why Python?
	Getting Started
	How This Book Works
	What to Do If You Get Stuck

	HOUR 4 Storing Text in Strings
	Creating Strings
	Printing Strings
	Getting Information About a String
	Math and Comparison
	Formatting Strings
	Using Strings in the Real World
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y-Z

