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Preface

Why Python?

I get this question quite a bit. Why should someone learning to program learn Python? Why
not a language that was made for beginners, such as Scratch? Why not learn Java or C++,
which most colleges seem to be using?

Personally, I believe that Python is an ideal language for beginners. It runs on multiple
systems. The syntax (the grammar of the language) isn't fussy. It’s easy to read, and many
people can walk through a simple script and understand what it’s doing without ever hav-
ing written a single line of code.

It’s also ideal because it’s easy for a beginner to move on to more advanced projects. Python
is used in a number of areas, from scientific computing to game development. A new pro-
grammer can almost always find one, if not multiple, projects to fit their tastes.

Who This Book Is For

This book is for those who have never programmed before and for those who have pro-
grammed some but now want to learn Python. This is not a book for those who are already
experienced developers.

It is assumed you have a computer you have admin rights to. You'll need to install Python,
as well as multiple libraries and applications later in the book. The computer does not need
to be terribly powerful.

You should also have an Internet connection in order to access some of the resources.

How This Book Is Organized

This book covers the basics of programming in Python as well as some advanced concepts
such as object-oriented programming.

» The Introduction and Hour 1 cover the background of Python and installation.

» Hours 2-7 cover some basics of programming, such as variables, math, strings, and
getting input.



Hours 8-12 cover advanced topics. Functions, dictionaries, and object-oriented pro-
gramming will be discussed.

Hours 13-15 discuss using libraries and modules, as well as creating your own
module.

Hours 16-19 cover working with data, such as saving to files, using standard formats,
and using databases.

Hours 20 and 21 give a taste of some projects outside of the standard library. In these
hours, you will explore creating dynamic websites and making games. These hours
are not meant to be complete lessons, but serve instead as a starting point for learning
more.

Hours 22 and 23 go over how to save your code properly, and how to find answers
when something has gone wrong.

Hour 24 goes over what projects you can get involved with, what resources can help
you learn more, and how to get more involved in the Python community.
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Introduction

Many people idly contemplate learning how to code. It seems like something that could be of
use, but many are too intimidated to jump in and try. Maybe they believe it’s too late to start
learning a skill like programming, or they believe they don’t have enough time. Maybe they get
lost too quickly, because the book they found is written for someone with previous experience
with coding. It seems like an impossible task. The goal of this book is to break down the con-
cepts behind programming into bite-sized chunks that are easy to digest as well as immediately
useful.

Learning to Program

For many people, learning to program seems like an impossible task. It's painted as a field that
requires a crazy amount of math, years of education and training, and, once you're done with
that, endless hours of constantly banging away at a keyboard.

The truth is, although becoming a full-time developer can take quite a bit of dedication, learn-
ing how to write code can be easy. As more of our life touches computers, learning to write code
to control them can enhance any career, no matter how nontechnical it may seem. An elemen-
tary school teacher might make a website to help students learn their vocabulary. An accoun-
tant could automate calculations that normally have to be done by hand. A parent could create
a home inventory system to help with generating grocery lists. Nearly every profession and
hobby can be enhanced through learning to program.

To put it simply, computers are stupid. Without human input, they don’t know what to do.
Code is a set of instructions that tells the computer not only what to do, but how to do it.
Everything on your computer, from the largest applications (such as Word and video games) to
the smallest (such as a calculator), is based on code.

Most code on your computer will be compiled already as an .exe or .app file. For the exercises in
this book, we’ll either be running them from a file or using the interpreter (which we’ll get to in
Hour 1, “Installing and Running Python”).
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Why Python?

Python is a language that is lauded for its readability, its lack of fussiness, and how easy it is to
teach. Also, unlike some languages that are created specifically for teaching, it’s used in count-
less places outside of the classroom. People have used Python to write everything from websites
to tools for scientific work, from simple scripts to video games. The following is a non-exhaustive
list of programs written in Python:

» YouTube—A popular site for viewing and sharing videos.

The Onion—A parody news site.

Eve Online—A video game set in space.

The Washington Post—The website runs off of Django, a framework written in Python.
Paint Shop Pro—An image-editing software package.

Google—A significant number of applications at Google use Python.

vV v.v. v v.Y

Civilization IV—A turn-based simulation game.

Python may appear simple, but it’s incredibly powerful.

Getting Started

Before we get started, let’s go over a list of some things you're going to need. You absolutely
must have all these things before you can start learning Python. Here’s what you will need:

» Admin access—Python doesn’t require a very powerful computer to run, but you will need
a computer that you have permission to install things on.

» Internet access—We're going to be downloading installers, and, later on, talking to web
services. It doesn’t need to be a fast connection, because many of the items we'll be down-
loading are rather small.

» A computer—It doesn’t need to be brand new, but the faster your computer is, the faster
your code should run. A computer built in the past five years should be fine.

» Space—A dedicated workspace can greatly enhance your ability to pick up new concepts.
It should be free from distractions, such as TV.

» No distractions—It’s almost impossible to learn something new if you have family mem-
bers interrupting you, phones buzzing, or a TV blaring in the background. A good pair of
noise-canceling headphones can be a wonderful asset—if you can’t get rid of people and
ambient noise.
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For most people, the last two items can be the most difficult to get in place, but they're invalu-
able. Not only will you need them while learning, but you'll need them once you're done with
this book and moving on to your own projects. Writing code is a creative endeavor, and requires
time and space to do.

How This Book Works

Each chapter is meant to be completed in one hour or less. That includes reading the text and
doing the exercises. Ideally, the exercises should be done directly after reading a chapter, so
try to set aside time when you not only can focus, but have access to your computer. Not every
chapter will require Internet access (those that do will warn you before you dive in).

It may be tempting to dive in to the next chapter after finishing one, but try to give yourself a
break. Your brain needs time to integrate the new information, and you need to be rested before
diving into more new material.

What to Do If You Get Stuck

There is one thing that applies to every person who writes code: You will get stuck. Sometimes
a new concept doesn’t seem to be clicking. Sometimes an error won’t go away. There are days
when everything you touch seems to break.

The key to getting past days like these is to not give in to frustration. Get up, move away from
the computer, and go for a walk. Make a cup of tea. Talk to a friend about anything but your
misbehaving code. Give yourself a chance to unwind.

When you've given yourself some space from the problem, do a quick self-assessment. Are you
tired? A tired developer is a bad developer, no matter how experienced he or she is. Sometimes a
bit of coffee helps, but most of the time what you need is some sleep.

If you're not tired, try re-reading the chapter. It might be time to break out the highlighters or
take notes. Are some of the terms unfamiliar? Try searching for these terms online.

Is the code not working? Sometimes, you need to delete what you have (or save it in another
file) and try again. Later in the book, we’ll talk about better ways to debug your code, but rest
assured, every developer has had to toss code at some point in his or her life.
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HOUR 4

Storing Text in Strings

What You’ll Learn in This Hour:

» How to create and print strings

» How to get information about stored text
» How to use math with stored text

» How to format strings

» When to use strings in the real world

When Python wants to store text in a variable, it creates a variable called a string. A string’s sole
purpose is to hold text for the program. It can hold anything—from nothing at all (") to enough
to fill up all the memory on your computer.

Creating Strings

Creating a string in Python is very similar to how we stored numbers in the last hour. One dif-
ference, however, is that we need to wrap the text we want to use as our string in quotes. Open
your Python shell and type in the following:

>>> s = "Hello, world"

>>> S
'Hello, world'

The quotes can be either single (') or double ("). Keep in mind, though, that if you start with

a double quote, you need to end with a double quote (and the same goes for single quotes).
Mixing them up only confuses Python, and your program will refuse to run. Look at the follow-
ing code, where the text “Harold” starts with a double quote but ends with a single quote:

>>> name = "Harold'

File "<stdin>", line 1

name = "Harold'
* SyntaxError: EOL while scanning string literal
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As you can see, we got an error. We have to make the quote types match:

>>> name = "Harold"
>>> name
'Harold'
>>> name2 = 'Harold'
'Harold'

Printing Strings

In the examples so far, Python prints out strings with the quotes still around them. If you want
to get rid of these quotes, use a print statement:

>>> greeting = "Hello"

>>> print greeting

Hello

A print statement usually prints out the string, then moves to the next line. What if you don't
want to move to the next line? In this case, you can add a comma (,) to the end of the print
statement. This signals Python not to move to a new line yet. This only works in a file, though,
because the shell will always move to the next line.

In this example, we print out an item along with the price on the same line:

print 'Apple: ',
print '$ 1.99 / 1b'

When we run it, we get this:

Apple: $ 1.99 / 1b

We can even do calculations between the two print statements, if we need to. Python will not
move to a new line until we tell it to.

Getting Information About a String

In Hour 2, “Putting Numbers to Work in Python,” variables were compared to cups because they
can hold a number of things. Cups themselves have some basic functions, too, whether they
contain something or not. You can move them around, you can touch their side to see if what's
in them is hot or cold, and you can even look inside them to see if there’s anything in there. The
same goes with strings.

Python comes with a number of built-ins that are useful for getting information about the stored
text and changing how it’s formatted. For example, we can use len () to see how long a string
is.
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In the following example, we want to see how long a name is:

>>> name = "katie"
>>> len (name)
5

In this case, the length of the string held in name is five.

In Python, variables also come with some extra capabilities that allow us to find out some basic
information about what they happen to be storing. We call these methods. Methods are tacked
on to the end of a variable name and are followed by parentheses. The parentheses hold any
information the method might need. Many times, we leave the parentheses blank because the
method already has all the information it requires.

One set of methods that comes with strings is used to change how the letters are formatted.
Strings can be converted to all caps, all lowercase, initial capped (where the first letter of the
string is capitalized), or title case (where the first letter and every letter after a space is capital-
ized). These methods are detailed in Table 4.1.

TABLE 4.1 String-Formatting Methods

Method Description Example
.upper () Converts all letters to uppercase (a.k.a. all caps). 'HELLO WORLD’
.lower () Converts all letters to lowercase. "hello world’
.capitalize() Converts the first letter in a string to uppercase  'Hello world’

and converts the rest of the letters to lowercase.

.title() Converts the first letter, and every letter after a "Hello World’
space or punctuation, to uppercase. The other let-
ters are converted to lowercase.

These methods are appended to the end of a string (or variable containing a string):

>>> title = "wind in the willows"
>>> title.upper ()

'WIND IN THE WILLOWS'

>>> title.lower ()

'wind in the willows'

>>> title.capitalize()

'Wind in the willows'

>>> title.title()

'Wind In The Willows'

These methods are nondestructive. They don’t change what's stored in the variable. In the fol-
lowing example, note that the string stored in movie_ title isn’t changed, even though we used
.upper () on it:
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>>> movie title = "the mousetrap"
>>> movie_title.upper ()

'THE MOUSETRAP'

>>> movie_title !

the mousetrap'

We can also see if certain things are true about a string. is_alpha() and is_digit () are two
popular methods, especially when checking to see if a user put in the correct type of data for a
string.

In the following string, we check to see that birth year is composed of all digits and that
state is nothing but letters:

>>> birth_year = "1980"

>>> state = "VA"

>>> birth year.isdigit ()

True

>>> state.isalpha()

True

Had birth year contained any letters or symbols (or even spaces), isdigit () would have
returned False. With state, had it contained any numbers or symbols, we would have gotten
False as well.

>>> state = "VA"

>>> state.isdigit ()
False

Math and Comparison

Just as with numbers, you can perform certain kinds of math on strings as well as compare
them. Not every operator works, though, and some of the operators don’t work as you might
expect.

Adding Strings Together

Strings can also be added together to create new strings. Python will simply make a new string
out of the smaller strings, appending one after the next.

In the following example, we take the strings stored in two variables (in this case, someone’s first
name and last name) and print them out together:

>>> first_name = "Jacob"
>>> last_name = "Fulton"
>>> first name + last_name
'JacobFulton'
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Note that Python doesn’t add any space between the two strings. One way to add spaces to
strings is to add them explicitly to the expression.

Let’s add a space between the user’s first and last names:

>>> first name + " " + last_name
'Jacob Fulton'

Multiplication

You can do some funny things with multiplication and strings. When you multiply a string by
an integer, Python returns a new string. This new string is the original string, repeated X number
of times (where X is the value of the integer).

In the following example, we're going to multiply the string ‘hello’ by a few integers. Take note
of the results.

>>> g = 'hello '

>>> 5 * 5

'hello hello hello hello hello'

>>> s * 10

'hello hello hello hello hello hello hello hello hello hello '

>>> s * 0

What happens if we store an integer in a string?

>>> g = '5!
>>> s * 5
55555

Normally, if we multiplied 5 by 5, Python would give us 25. In this case, however, '5' is stored
as a string, so it’s treated as a string and repeated five times.

There’s some limitations to string multiplication, however. Multiplying by a negative number
gives an empty string.

>>> s = "hello"

>>> 8 * -5

Multiplying by a float gives an error:

>>> s * 1.0

Traceback (most recent call last):

File "<stdin>", line 1, in <module> TypeError: can't multiply sequence by
non-int of type 'float'
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Comparing Strings

It’s possible to compare strings just as you would numbers. Keep in mind, however, that Python
is picky about strings being equal to each other. If the two strings differ, even slightly, they’re not
considered the same. Consider the following example:

>>> a = "Virginia"
>>> b = "virginia"
>>> a ==

False

Although a and b are very similar, one is capitalized and one isn’t. Because they aren’t exactly
alike, Python returns False when we ask whether they are alike.

Whitespace matters, too. Consider the following code snippet:

>>> greetl = "Hello "
>>> greet2 = "Hello"

>>> greetl == greet2

False

greetl has a space at the end of its string whereas greet2 does not. Python looks at whitespace
when comparing strings, so the two aren’t considered equal.

Operators That Don’t Work with Strings

In Python, the only operators that work with strings are addition and multiplication. You can't
use strings if you're subtracting or dividing. If you try this, Python will throw an error and your
program will stop running.
>>> g = "5"
>>> 8 / 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for /: 'str' and 'int'

If you ever see an error like this one (unsupported operand type), it usually means that the data
type you're trying to use doesn’t know how to use that operator.

Formatting Strings

There are many ways to format strings—from removing extra spaces to forcing new lines. You
can also add in tabs as well as search and replace specified text.
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Controlling Spacing with Escapes

Until now, we’ve been printing strings out on one line. What if we need to print out something
on multiple lines? We can use the special combination of a backslash and “n” (\n). Every time
we insert this into a string, Python will start printing on the next line.

>>> rhyme = "Little Miss Muffett\nSat on a tuffet\nEating her curds and whey."

>>> print rhyme

Little Miss Muffett

Sat on a tuffet

Eating her curds and whey.

The backslash is a special character in strings. It’s called an escape, and it clues Python into the
fact that you have some special formatting in mind. You can also use an escape to put a string
onto several lines in your code so it’s easier to read. The preceding string isn’t so easy to read as
it is, but we can fix that as follows:
>>> rhyme = "Little Miss Muffett\n\

Sat on a Tuffet\n\

Eating her curds and whey."
>>> print rhyme
Little Miss Muffett
Sat on a Tuffet
Eating her curds and whey.

A new line isn’t the only thing you can do with an escape, though. You can also insert tabs with
\t.

Take note of the spacing in the following example. Each \t is replaced with tab when the string
is printed.
>>> header = "Dish\tPrice\tType"

>>> print header
Dish Price Type

The escape is also useful for when you have quotes in a string. If you're creating a string that
has quotes in it, this can cause some confusion for Python. “Escaping” them lets Python know
that you're not done with the string quite yet.

In the following example, the name has a single quote in it. If we don’t escape it, Python gives
us an error. If we do, however, Python has no problem storing the string.

>>> name = 'Harry O'Conner'
File "<stdin>", line 1
name = 'Harry O'Conner'
* SyntaxError: invalid syntax
>>> name = 'Harry O\ 'Conner'
>>> print name
Harry O'Conner
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NOTE

Another Way to Deal with Single Quotes

If you don’t want to use an escape, you can use double quotes if your string contains single quotes,
or vice versa. So, Python will have no issues saving “Harry O’Conner” or ‘He said, “Hello” as he
opened the door.’

But what if you need to use a backslash in a string? Simple: Just escape the backslash. In other
words, if you want to display one backslash, you'll need to enter two backslashes.

In the following example, we want to save a path for a Windows machine. These always include
backslashes, so we need to escape the backslash. When we print it, only one backslash appears.
>>> path = "C:\\Applications\\"

>>> print path
C:\Applications\

Removing Whitespace

Sometimes, a user might put extra whitespace when typing in something for your program. This
can be annoying when trying to print out several strings on one line, and it can be downright
disastrous if you're trying to compare strings.

In the following example, extra whitespace makes printing out a name difficult. It looks like
there’s too much space between the first name and middle name. To make matters more diffi-

cult, the extra whitespace means that the comparison first name == "Hannah" fails.
>>> first_name = "Hannah "

>>> middle name = "Marie"

>>> print first _name + " " + middle_name

Hannah Marie
>>> if first_name == "Hannah":
print "Hi, Hannah!"
. else:
print "Who are you?"

Who are you?

Strings come with a method, strip (), that allows you to strip out all the whitespace at the
beginning and end of a string. In the following code snippet, the name Hannah has an extra
space tacked onto the end. Using strip () removes that space.

>>> first_name = "Hannah "

>>> first name.strip()
'Hannah'
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strip () not only removes all whitespace from around a string, it can remove other characters
you specify. This time, Hannah is surrounded by a number of asterisks. Passing an asterisk to
strip () removes all the asterisks in the string:

>>> bad_input = "****Hannah****"

>>> bad_input.strip('*'")
'Hannah'

If you only want to strip the beginning or end of a string, you can use rstrip() or lstrip(),
respectively. Here, the name Hannah has asterisks before and after it. If we pass an aster-

isk to rstrip (), only asterisks at the end of the string are removed. If we pass an asterisk to
lstrip (), only asterisks at the beginning of the string are removed.

>>> bad_input = "****Hannah****"

>>> bad_input.rstrip('*')

' ****Hannah'

>>> bad input.lstrip('*')
'Hannah#****!

Searching and Replacing Text

Sometimes, you need to find a piece of text that is located in a string. Strings come with a num-
ber of methods that let you search for text. These methods can tell you how many times the text
occurs, and let you replace one substring with another.

count () returns how many times one string appears in another string. In this example, we're
using a rather lengthy bit of text stored in a variable called 1ong_text. Let’s find how many
times the word “the” appears:

>>> long_text.count ('the')
5

Apparently, “the” appears five times.

What if we want to find out where the first instance of “ugly” appears? We can use £ind (). In
this example, we want to find where the first instance of the word “ugly” appears in long text.

>>> long_text.find('ugly')
25

In this example, “ugly” appears starting at the 25th character. A character is one letter, number,
space, or symbol.

NOTE

When find () Finds Nothing
If £ind () doesn’t find anything, it returns -1.
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Strings in Python also come with the ability to replace substrings in strings. You can pass two
strings to replace (), and Python will find all instances of the first string and replace it with the
second string.

For example, if we don't like the term “ugly,” we can replace it with “meh” by using replace ()
and giving it 'ugly' and 'meh' as parameters.

>>> long_ text.replace('ugly', 'meh')
"Beautiful is better than meh.\n Explicit is better ... [snipl"
NOTE

Zen of Python

Want to see what text | used for this section? In your interpreter, type import this. The Zen of
Python will print out! This is the main philosophy behind Python, and is one of the Easter eggs in the
Python library.

Using Strings in the Real World

In previous hours, we've gone over how Python might help the waiter in our imaginary restau-
rant. What about the chef? How can strings benefit her?

Most obviously, she can store the specials of the day in a script that can be run later by the
waiter. That way, he can run it and see what the specials are without bothering her.

In the following script, the chef has saved a number of specials. She then prints them out in a
formatted list of the specials of the day.

breakfast_special = "Texas Omelet"

breakfast notes = "Contains brisket, horseradish cheddar"

lunch special = "Greek patty melt"

lunch _notes = "Like the regular one, but with tzatziki sauce"

dinner special = "Buffalo steak"

dinner notes = "Top loin with hot sauce and blue cheese. NOT BUFFALO MEAT."

print "Today's specials"
print "*"*20

print "Breakfast: ",
print breakfast_ special
print breakfast notes
print

print "Lunch: ",

print lunch_ special
print lunch notes

print
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print "Dinner: ",
print dinner special

print dinner notes

When the waiter runs it, the following is printed out:

Today's specials

kkhkkhkkkkhkkkkhkkkkhkhkkkhkhkkkk*x

Breakfast: Texas Omelet

Contains brisket, horseradish cheddar

Lunch: Greek patty melt

Like the regular one, but with tzatziki sauce

Dinner: Buffalo steak

Top loin with hot sauce and blue cheese. NOT BUFFALO MEAT.

If the cook wants to change the specials later, she can edit the first few lines in the file.

Summary

47

During this hour, you learned that text is stored in something called a string. Python allows you

to do certain kinds of math operations on strings, and offers some extra methods for strings,
such as removing whitespace.

Q&A

Q. Is there any way to see all of the things | can do with a string without looking it up online?

A. If you want to see everything you can do with strings, type this into your Python shell:

>>> s = ""

>>> help(type(s))

A list of everything you can do with strings will pop up. Pressing Enter will move you down

one line, your up arrow will move you up one line, spacebar will move you down one page,

“pn

and “q” will close the help menu. Note that this behavior is slightly different in IDLE, where

all the text is printed at once.

Incidentally, you can get this screen with any kind of Python data type. If you wanted to find

out all the methods that come with the integer type, you could do something like this:

>>> 5 =1

>>> help (type(s))
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Why are the methods to remove whitespace from the beginning and end of a string called
“right strip” and “left strip”? Why not “beginning” and “end”?

In quite a few languages, text isn’t printed from left to right. Arabic and Hebrew are both
written from right to left, whereas many Eastern scripts are written from top to bottom.
“Right” and “left” are more universal than “beginning” and “end”.

How big can a string be?

That depends on how much memory and hard drive space your computer has. Some lan-
guages limit the size of a string, but Python has no hard limit. In theory, one string in your
program could fill up your whole hard drive!

Workshop

The Workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered. Try to answer all questions before looking at the answers that follow.

Quiz

1.
2.
3.

What characters can be stored in strings?
What math operators work with strings?

What is the backslash character (\) called? What is it used for?

Answers

1.

Alphabetic characters, numbers, and symbols can all be stored in strings, as well as
whitespace characters such as spaces and tabs.

Addition and multiplication operators work with strings.

The backslash is called an “escape” and indicates that you want to include some special
formatting, such as a tab, new line, a single or double quote, or a backslash.

Exercise

In your program, you're given a string that contains the body of an email. If the email contains

the word “emergency,” print out “Do you want to make this email urgent?” If it contains the

word “joke,” print out “Do you want to set this email as non-urgent?”
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infinite loops, 76-77
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variables, 75
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Python, 11
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Python Standard Library by
Example, 292

Python Tutor mailing lists, 282
Python.org, 292

PyVideo, 292

PyWeek, 287

Q

querying
databases, 203-205

with greater than and less
than, 213

quotes, 37

randint function, 141-142
random, 140, 142
choice, 143
randint function, 141-142
uniform, 142-143
range(), 72
range of numbers
descending ranges, 79
loops, 72
Ravenscroft, Anna, 292
raw_input(), 51

reading, data, from files, 171-172

readlines(), 172
README, 164-165
writing, 166

running Python 301

records

deleting with DELETE,
216-217

updating with UPDATE,
215-216

recursion, 93

registering nicknames, IRC
(Internet Relay Chat), 281

remote repositories, 265-266
remove(), 65

removing whitespace from strings,
44-45

render(), 252
repeating loops
naming loop variables, 73
range of numbers, 72
set number of times, 71
replacing text, 45-46
repositories
adding items to, 264-265
checking out, 263-264
creating, 263

determining what not to push
to the repository, 270-271

remote repositories, 265-266

updating, 266-267
resources

books, 292

Django, 286

Kivy, 287

Plone, 286

PyGUI, 287

Pyjs, 286

Python Anywhere, 286

SciPy, 287

Web2py, 286

websites, 292-293

wxPython, 287
returning values, 85-86
running Python

on a Mac, 12-13

on Windows, 8-9
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S

sandboxes, 288
save_receipts(), 193
saving

classes in files, 130-132

JSON (JavaScript Object
Notation) to files, 186-187

objects as JSON, 188-189
SciPy, 287
SciPy Library, 287
scope, functions, 86
creating variables, 86-87
parameters, 87-88
screens
printing JSON to, 187
PyGame, 243-244
main program loops,
244-245
user input, 245
searching and replacing text,
45-46

searching internet for solutions,
278-279

sending parameters, functions,
88-89

serve, defined, 224
servers, 224
setuptools, 225
installing
Macs, 227
Windows, 225
shapes, PyGame
adding colors, 246
drawing circles, 247-248
Shaw, Zed, 292
shells, blocks, 29
Shotts, Jr., William E., 290
single quote ('), 37
size, testing, functions, 127
skipping to the next list item,
loops, 74
sorting, 69

databases with ORDER BY,
214

spaces, 29

spacing, controlling with escapes
(strings), 43-44

splitting programs
music library programs,
150-152

planning how to break up pro-
grams, 150

real world uses, 155-157
reasons for, 149
SQL (Structured Query
Language), 198
real world uses, 217-220
sql statements, 203, 209
SQLAIchemy, 220
SQLite
data types, 200

installing on Windows,
199-200

Macs, 198
testing, 200
users of, 207
sqlite3, 140
square brackets ([]), 61
stack trace, 274
steps, defined, 72
storing
information with variables, 17
instances, 118-119
numbers, in variables, 18-19
__str__() function, 128-130
strings, 17
adding together, 40-41
comparing, 42
creating, 37-38
formatting, 39

controlling spacing with
escapes, 43-44

removing whitespace,
44-45

searching and replacing
text, 45-46

getting information about,
38-40

multiplication, 41
operators, 42
printing, 38
real world uses, 46-47
strip(), 45
subclasses
class inheritance, 132-133

OOP (object-oriented program-
ming), 106

subtraction, 21
Sweigart, Al, 292
SymPy, 287

T

tables, creating in databases,
200-202

tabs, 29
templates
adding in Flask, 231
HTML, 231-232
creating in Flask, 233-234
Flask
adding dynamic content
with Jinja, 234-235
adding logic, 235-236
testing
installations, 15
size, functions for, 127
SQLite, 200
text
drawing, PyGame, 252-253

searching and replacing,
45-46

text editors, installing
on a Mac, 13-14
on Windows, 9

The Hitchhiker's Guide to
Python, 293

this, 140

time, 144-145

time accessed, files, 179
timedelta, 145

traceback, locating errors,
274-275

troubleshooting
bugs, 273-274

finding errors with pdb debug-
ger, 275-276

finding support
IRC (Internet Relay Chat),
280-281

local user groups, 282
mailing lists, 282



locating errors with traceback,
274275

searching the internet for
solutions, 278-279

trying fixes, 279
True, 23
true, variables, 31-32
try, avoiding, errors, 32-33
tuples, 17
types of, variables, 17-18

Ubuntu, 289-290
unequal operator (=), 67
uniform, 142-143
unique items, DISTINCT, 215
UPDATE, 215-216
updating

paths, 225-226

records with UPDATE,
215216

repositories, 266-267
user input

cleaning up, 54-55

PyGame, 245, 250-251

Vv

values
comparing, equality, 126-127
passing to functions, 82-83
returning values, 85-86
setting default values, 84
returning values, 85-86
variables
adding, in Flask, 231

creating within functions,
scope, 86-87

loops, 75
naming, 73
naming, 19-20
storing information, 17
storing numbers, 18-19
true and false, 31-32
types of, 17-18
versioning
branches
creating, 267-269
merging, 269
defined, 259

determining what not to push
to the repository, 270-271

Git, 261

GitHib, 262

installing, 262

joining GitHib, 261-262
how it works, 260-261
importance of, 259-260
repositories

adding items to, 264-265

checking out, 263-264

creating, 263

remote repositories,
265-266

updating, 266-267
views, adding in Flask, 230
Virtualbox, 289
virtualenv, 288
virtualenvwrapper, 288

W-X-Y-Z

w+, 175

walk(), 177

Web, moving to, 236
Web Fundamentals, 291
web servers, 224
Web2py, 286

wxPython 303

websites, 292-293

creating resources for,
285-286

where, filtering, 210
checking for equality, 210-211
while loops, 76
whitespace, removing, from
strings, 44-45
Windows
Flask, installing, 226
installing
PyGame, 242
Python, 7-8
running, Python, 89
SQLite, installing, 199-200
text editors, installing, 9
Windows Installer, 7-8

Windows machines, operating sys-
tems, determining, 6

write(), 173

write mode, opening files in, 173

writelines(), 173

writing
data to files, 173-174
INSTALL instructions, 166
README, 166

wxPython, 287
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