

 487

Part 3
Useful Python

Parts one and two gave you a good foundation in the Python language
and a good understanding of software design. You’ve built some substan-
tial applications, and hopefully you’ve built some of your own programs,
too. You also know about the importance of testing and documentation
and have seen the powerful Python tools that can help you with these tasks.

Now it’s time to move on to the really cool stuff. In this third part, you’ll
learn how to make Python programs that have graphical user interfaces,
talk to the Internet, and work over the network. Then, we’ll round things

off with an exploration of game development in Python.

In this part, the balance of the content changes slightly. There will be a bit
less talking and a lot more doing. Expect to see more “Make Something
Happen” sections as we explore how to build useful applications using
popular Python frameworks. We’ll also have more “Make Something
Happen: Development Challenges” where you can take our example

code and “run with it” to create programs of your own.

13
Python and Graphical

User Interfaces

 489

What you will learn
This chapter begins with a description of a new Integrated Development
Environment for Python. The IDLE editor we’ve been using for the previous
twelve chapters is a great place to learn to program, but we’re starting to
find limitations with the way it works, particularly now that we’re creating
applications that span several source files. The Visual Studio Code applica-
tion provides a flexible and fast place to work with Python, so we’ll look at
how we can use it to develop our code.

Once we’ve sorted out our new workplace, we’ll look at the creation of
Python programs that have a Graphical User Interface (GUI). We’ll use the
popular Tkinter module that is supplied with the Python language and al-
lows us to write easy-to-use programs that work on any device that supports
Python. We’ll discover how to create labels, text entry boxes, buttons, and
list boxes. We’ll then find out about events, create a drawing program, and
finish off with a GUI version of the Fashion Shop application.

Visual Studio Code .490

Create a Graphical User Interface with Tkinter .499

What you have learned .546

490 Chapter 13 Python and Graphical User Interfaces

Visual Studio Code
The IDLE program supplied with Visual Studio is a great place to learn how to pro-
gram. However, as we begin to write larger programs, we start to notice that it has
some limitations. If you want to make a program out of several Python source files (as
we’ve begun to do now that we’re using modules), the IDLE experience is not a good
one. You must remember to save all open file windows before you run your program;
otherwise, it might not incorporate all the latest changes to your code.

Visual Studio Code is a free and lightweight program editor from Microsoft. It’s
available for a wide range of operating systems, including Windows, Mac, and Linux.
It’s an open-source project, so you can even take a look inside the Visual Studio Code
program source code and discover exactly how it works. Visual Studio Code is not tied
to working with any specific programming language; it supports plugins that can be
installed within the editor to customize it. We’ll install Visual Studio Code and then use
a very popular Python plugin from open-source contributor Don Jayamanne.

We’ll still use IDLE from time to time, though, as it’s still a great place to use the
Python Command Shell.

Install Visual Studio Code
You can download a copy of Visual Studio Code for your machine from
https://code.visualstudio.com/Download, which you can see in Figure 13-1.

Figure 13-1 Visual Studio Code downloads

https://code.visualstudio.com/Download

491Visual Studio Code

Select the version of the program for your computer by clicking the appropriate but-
ton on the page. Follow the installation instructions to install Visual Studio Code on
your machine.

Install the Python Extension in Visual
Studio Code
Once we have Visual Studio Code installed, we next need to add the Python Extension
that helps us work with Python programs. Open the Visual Studio Code application
and click the Extensions icon indicated by the arrow in Figure 13-2.

Figure 13-2 Extensions selector

Visual Studio Code will now allow you to select extensions, showing you a list of
available extensions. The Python environment we want to use should be near the top
of the list, but if it’s not visible, type Python into the search box at the top as shown
in Figure 13-3. Once you’ve found the correct extension (you want the one by Don
Jayamanne), click the Install button. Now that you have the extension installed, we can
start writing some Python.

492 Chapter 13 Python and Graphical User Interfaces

Figure 13-3 Installing the Python Extension

Create a project folder
Visual Studio Code manages your work in folders. Each folder holds the program files
for a specific project. When you’re working on a project, you have the project’s folder
open in Visual Studio Code. To open the folder explorer view in Visual Studio Code,
click on the folder icon as shown in Figure 13-4.

Figure 13-4 Opening the folder explorer

Visual Studio Code will tell you that you presently have no folders open and invites
you to open one by clicking the Open Folder button shown in Figure 13-5.

493Visual Studio Code

Figure 13-5 The Open Folder button

When you click Open Folder, a dialog appears that you can use to create or select
a folder. Make a new folder called First Project and select it. Note that the precise
dialog you see at this point will depend on which operating system you’re using. Once
you’ve opened the folder, it will appear in the folder explorer in Visual Studio Code,
as shown in Figure 13-6 below.

Figure 13-6 First Project in Visual Studio Code

Create a program file
Currently, the folder is empty. Now, let’s make a Python program. Rest your mouse
cursor over First Project in the Folder Explorer and click the New File icon that appears,
as shown in Figure 13-7.

Figure 13-7 New File in Visual Studio Code

494 Chapter 13 Python and Graphical User Interfaces

Give the new program file the name myprog.py and press Enter. The file will be cre-
ated in the folder and opened for editing, as shown in Figure 13-8.

Figure 13-8 File Editing in Visual Studio Code

Now, type in the following tiny Python program:

name = input('Enter your name please: ')

print('Hello ', name, ' from Visual Studio Code')

As you type the program into Visual Studio Code, you’ll notice some differences in the
way it works compared with the IDLE editor. The editor will suggest Python elements
as you type their names. Simply press Enter to accept the selected suggestion, or use
the arrow keys to scroll down the suggested items to the word you want to select. You
will also find help suggestions on functions that you call. If you move the cursor over
particular words in the text, you’ll find the same words highlighted on the page (which
is very useful for seeing where you’ve used a variable). As you type, you’ll also see a
tiny map of your program appear in the top right corner of the screen. You can use
this map to move rapidly through large files.

Debug a program
Once you’ve typed your program, you’ll want to run it. Press the Debug button on the
left-hand menu, as shown in Figure 13-9 below.

Figure 13-9 Starting Debug in Visual Studio Code

495Visual Studio Code

The screen will now change to Debug mode. The Folder Explorer view changes to
one that will let us see the contents of variables in the program as we run it. Now we
must do some configuration. Visual Studio Code stores some configuration data in
each folder with which you work. This data tells the editor the type of program you’re
working with, and how the editor should behave when working with this project. Cur-
rently, we don’t have any configuration data set for this folder, so we need to create
some. Click on the gears as indicated by the arrow in Figure 13-10 below to open the
configuration file for this folder.

Figure 13-10 Set up Visual Studio Code options

The configuration options are data files in the JSON format. We need to select a spe-
cific set of configuration options for this folder. Open the pull-down menu you see in
Figure 13-11 and select Integrated Terminal/Console from the options that appear.

Figure 13-11 Configure Visual Studio Code options

496 Chapter 13 Python and Graphical User Interfaces

Once you’ve selected your options, close the configuration file by clicking the X near
the file name in the editor, as shown in Figure 13-12 below.

Figure 13-12 Close the configuration file

Now we can debug our program. Click the green arrow you see next to Debug in Fig-
ure 13-11 to start the Debug program. The program window now shows the statement
about to be performed, as you can see in Figure 13-13.

Figure 13-13 Visual Studio Code debugging

At the left, you see all the local variables. Currently, these are the variables set by
Python for a program. The debugger allows you to watch the contents of variables,
which are also shown on the left side. There is also a panel called the Call Stack that
shows you the functions and methods that have been called. At the top of the screen
are controls that let you debug the program, statement by statement, as shown in
Figure 13-14.

Figure 13-14 Run controls

497Visual Studio Code

From left to right, the controls are:

 ● Move Panel (six dots): Click and drag this to move the panel around.

 ● Run/Continue (green triangle): Run the program or continue from a breakpoint.

 ● Step over (Curved arrow over dot): Execute the present statement. If the state-
ment is a method or function call, don’t go into the method or function, just obey
it. This is called “stepping over” a method or function.

 ● Step into (Arrow pointing down): Execute the present statement. If the statement
is a method or function call, enter (or “step into”) the method or function and start
to step through it.

 ● Step out (Arrow pointing up): Complete the present method or function and
“step out” of it.

 ● Restart (Counterclockwise arrow): Restart the program from the beginning.

 ● Stop (Square): Stop the program.

Press the Step Over control (the curved arrow over a dot), which will cause Visual
Studio to perform the statement that calls the input function to read our name. The
program uses the Terminal window at the bottom of the screen, so click that to open
it, allowing you to enter your name, as shown in Figure 13-15 below.

Figure 13-15 Entering your name

Selecting the right Python interpreter
Obviously, you must have Python installed before you try using the Python extension in
Visual Studio Code. However, you might have a problem if your system has multiple versions
of Python installed. You might have installed Python version 3.6 to work through the exam-
ples in this book, but your computer might also have Python 2.7 installed. When the Python
extension for Visual Studio Code is installed, it might pick the wrong version of the program.

You can use the Command Palette in Visual Studio Code to select the command you need to
fix this. Open the Command Palette from the View menu. Then type in:

Python:Select Workspace Interpreter

You won’t need to type all the text, as the palette will find matching commands from which
you can choose. Select the command “Python: Select Workspace Interpreter” and then pick
the Python interpreter with version 3.6.

You can also use this command to select the interpreter to use if you installed Visual Studio
Code before you installed Python on your machine.

WHAT COULD GO WRONG

498 Chapter 13 Python and Graphical User Interfaces

After you’ve entered your name, you are returned to the debugger. If you look at the
Variables display on the left side of the screen, you’ll find that a new variable, name,
has been added to the list. If you press the Run button in the control panel, you’ll see
the program run, and Visual Studio Code will say hello to you.

You might think that we’ve done a lot of work only to slightly improve our working
conditions. However, when you start typing your programs, you’ll find that this text
editor is a huge improvement over the one in IDLE. Visual Studio Code is very good
at suggesting things based on what you’re typing. If you type a variable name in one
part of the program, you’ll find that the name is suggested the next time you start
to type it. There’s a lot to explore in the commands, too. The editor is very good at
various kinds of searching and replacing. It’s very easy to set breakpoints in your pro-
gram. Just click to the left of the statement at which you want your program to pause.
There’s no need to open a special debugging window, as with IDLE.

Visual Studio Code is extremely powerful and customizable, and there are lots more
useful extensions you can add. You can also integrate many Python tools that can be
used to check and test your program.

499Create a Graphical User Interface with Tkinter

Other Python editors
Visual Studio Code is my “weapon of choice” for writing Python. However, here are a
couple other development tools you might like to check out.

Visual Studio 2017 Community Edition
Visual Studio is a heavyweight development tool that’s very popular in the software
development industry. It’s available on both Windows and Mac platforms, but unfor-
tunately, at the time of writing, only the Windows version of Visual Studio supports
Python development. If you have a Windows PC, I strongly suggest that you look into
Visual Studio. The Community Edition is a free download and is extremely powerful.
You can find it at www.visualstudio.com.

Pycharm
Pycharm is not without its charms. It provides a nice place to work, and the Commu-
nity Edition is a free download from www.jetbrains.com/pycharm.

Create a Graphical User
Interface with Tkinter
The mainstay of our interactions with our programs has been the input and print
functions provided with Python, along with the BTCInput module that we created to
read numbers and text. Now we’ll find out how to use Python to create a Graphical
User Interface (GUI). You should already be very familiar with GUIs, as most modern
applications are controlled in this way.

A user interface is what people see when they use your program. A graphical user
interface displays buttons, text fields, labels, and pictures that the user works with to
get their job done. Part of the job of the programmer is to create this “front end” and
then put the appropriate behaviors behind the screen that allow the user to drive the
program and get what they want from it. In this section, we’ll find out how to create a
program that uses a graphical user interface.

It should come as no surprise that a graphical user interface on the screen is repre-
sented by objects. When a program is working with items on the screen, it is calling
methods in the object. For example, if we want to change the text displayed by a label
on the screen, we would call a method on the object that is responsible for that label
and tell it to change the text.

Build our first user interface
The best way to find out about Tkinter is to play with it. So, let’s do that. We can do so from the
Python Command Shell in IDLE. So, let’s start that up. The first thing we need to do is import all
the resources from the Tkinter module. Give the following command and press Enter:

>>> from tkinter import *

This form of input is different from others we’ve used recently. It’s a way of using the items in
a module without having to put the module name in front of each item. You can find more
discussion about this in Chapter 7 in the section “Convert our functions into a Python module.”

Now that we’ve imported the module, we can use it. The first thing we’ll do is create a “root”
window, which will act as a container for all the elements on our display. Type the statement
below and press Enter:

>>> root = Tk()

The statement creates a new window on the screen and sets the variable root to refer to the
window. You should notice that a new window has appeared on your desktop. It should look
like the one below.

MAKE SOMETHING HAPPEN

500 Chapter 13 Python and Graphical User Interfaces

We’ll use a module called Tkinter, which is shipped as part of the standard Python dis-
tribution and contains lots of different kinds of objects that represent the objects on
the screen. It’s also a very good example of a class hierarchy, in that particular display
items (for example, buttons, blocks of text, and images) are represented by classes
that are subclasses of parent items. Tkinter is actually a Python interface to a Graphical
User Interface toolkit called Tk. Tk is available for many different hardware platforms
including Windows, Mac, and Linux devices.

Let’s create a new Label and add it to the window. Label items are used to display text in a
window. The user can’t interact with a Label, but a program can change the text on the label
to display results on the screen. Type in the following statement and press Enter.

>>> hello = Label(root, text='hello')

The initializer for a Label takes two parameters. The first is the parent display object, which is
the object within which the Label will be displayed. You can put objects inside objects so that
you can build up complex displays. We won’t do that just yet; instead, we’ll display the Label
in the main window so we can pass in the value of root. The second parameter we’re giving
to the initializer is a keyword argument called text, which is the text that we want the Label
to display.

If you look at the window on the screen, you’ll notice, perhaps to your disappointment, that
the label has not appeared. This is because the graphical user interface doesn’t put anything
on the screen until it knows where to put it.

There are two ways you can position things within a display. You can use a mechanism called
pack, which, as the name implies, packs the elements together in the window. You can
give pack hints such as "LEFT" or "TOP" to tell it to put the item in that part of the display.
However, I suggest that you use a mechanism called grid. This lets you lay out your items in
a grid. This means that you’ll need to plan your screen layout before you write the program,
but a bit of planning is never a bad thing in my experience. We tell our label to use the grid
layout method by calling the grid method on the label. Type in the following statement and
press Enter.

>>> hello.grid(row=0,column=0)

This tells the Label referred to by hello to use the grid layout and to put it at grid location
(0,0). This is the top left corner of the screen. If you look at the display window, you should
notice two things. First, the label is now displayed. Second, you should see that the window
has now been shrunk to fit the label within it.

Let’s add another label. Enter the following two statements:

>>> goodbye = Label(root, text='goodbye')

>>> goodbye.grid(row=1, column=0)

501Create a Graphical User Interface with Tkinter

The display will now contain two labels.

The labels seem to be aligned at the left edge of the window. But the hello text is indented
slightly, as it is centered about the label portion of the window. We can use some settings to
improve this. We can also specify margins around items we display. But that’s for later. For
now, let’s add a button.

Buttons are one way that a user can initiate an action in our programs. The user presses a
button when they want something to happen. So, we need a way of linking a button to some
code in our application. This turns out to be very easy. We create a function, tell the button
the name of the function, and then when the button is clicked the function is called. So,
let’s make a button function. Type the following text and press Enter after each statement,
including the empty line after the print statement.

>>> def been_clicked():

 print('click')

>>>

We now have a function called been_clicked, which we can connect to our button when we
create it. Let’s do that now. Enter the following statement.

>>> btn = Button(root, text='Click me', command=been_clicked)

This creates a Button and sets the variable btn to refer to it. The second argument tells the
Button to call the been_clicked function when the button is clicked. Now, let’s place the button
on the display. Enter the following statement to place the button at the bottom of the display.

>>> btn.grid(row=2, column=0)

502 Chapter 13 Python and Graphical User Interfaces

Now, you’re really going to have to click the button.

>>> btn.grid(row=2, column=0)

>>> click

click

click

I clicked the button three times, as you can see above. Each time you click the button, the
function been_clicked is called. Functions such as been_clicked are called event handlers
because they are executed in response to an external event.

Next, we’ll change the content of one of the labels on the display. Display elements provide a
method called config, which can be used to configure them. We can set the text attribute of
the label by using the config method. Type the statement below and press Enter.

>>> hello.config(text='new hello')

The content of the hello label changes to the new text.

The final thing we’ll do is read some text from a display element, which is how we can read
things entered by the user. If the user is only entering a single line of text, we can use the Entry
component for this. Type in the following statements, pressing Enter after each of them.

>>> ent = Entry(root)

>>> ent.grid(row=3,column=0)

These statements create an Entry item at the bottom of our little program, which is referred
to by a variable called ent. I’ve typed the universal computer greeting hello world into the
text entry area, as you can see below. You can type in whatever text you like.

503Create a Graphical User Interface with Tkinter

Now that we’ve managed to enter some text, the next thing to do is to try to read it from our
program. We can use the get method on our text entry object to do this. Type in the follow-
ing statement. The get method asks an element to return the text it is holding.

>>> print(ent.get())

When you press Enter, the get method runs on the Entry object, and it returns the string
that was typed in. In my case, it shows hello world.

>>> print(ent.get())

hello world

You can type in some more text and read it again, just to prove that it works.

Building a graphical user interface
You might have some questions about the user interface we just created.

Question: What happens if we change the size of the window on the desktop?

Answer: We haven’t given the graphical user interface any special instructions about
what to do if the size of the window is changed, so if we use the mouse to grab hold of
the edges of the window and change its size, we’ll find that we can make the window far
too big, and we can also make it smaller than the components it is displaying. However,
we can set attributes on the window to make it impossible to change its size:

root.resizable(width=False, height=False)

The resizable method on the root display element lets us determine how the user
can change the size of its window on the screen. You can try it now with the window we
created in the previous “Make Something Happen.”

We can also make it possible for the user to resize the window and have the size and
position of components change automatically.

CODE ANALYSIS

504 Chapter 13 Python and Graphical User Interfaces

Question: What happens when I close the window we just created?

Answer: Because we have used the IDLE Command Shell to create the window, the
window will disappear when you close it on the desktop. However, when we create a
program that creates a graphical user interface, we’ll discover a way that our program can
get control when the user closes the window.

Question: Will the window look the same on different machines?

Answer: Mostly. Because the Tk graphical toolkit uses the windowing system of the host
computer to display its output, you’ll find that the window will look like a window on the
host machine.

Question: What happens if an event handler function connected to a button takes a long
time to complete?

Answer: The function connected to a button will run when the button is pressed. The
button will be “stuck down” until the function completes. I actually tested this by creating
a version of been_clicked that contained a call to the sleep function from the time
module that made the function pause for ten seconds. When an event handler is running
in response to one event, all the other controls on the application will be unresponsive.

You should take care to make sure that event handler functions are completed as quickly
as possible. Fortunately, the kind of actions that we’ll perform when buttons are pressed
are not going to cause a problem because they all complete very quickly.

Python supports a mechanism called threading. An application can contain several
threads of execution that execute simultaneously. Each thread could run a different pro-
gram. An application could respond to a button press by starting a new program.

Creating and managing threads is beyond the scope of this book, but if you do want to
perform an action that will take more than a second or so, you should look at how to use
threading to perform the action.

Question: What happens if I place a large amount of text in a label?

Answer: The default behavior (that is, unless we specify otherwise) is for Label to
expand to fit the text inside it. So, the window in the screen would grow to hold this text.

Question: What happens if I put two items in the same cell in the grid?

Answer: The most recently added item will be drawn in preference to the “older” one. In
other words, a new item will “block out” an older one. It’s best not to do this.

Question: Can we update the contents of elements on the screen from within an event
handler function?

Answer: Absolutely. In fact, this is how applications work.

505Create a Graphical User Interface with Tkinter

506 Chapter 13 Python and Graphical User Interfaces

We now know nearly all we need to know to create applications that use a graphical
user interface. The most important thing to remember is that events generated by
the user (for example, clicking on buttons) will end up as calls to functions inside our
application. In the example program above, the function been_clicked will never be
called by any code that we write. It will be called by the button when the user clicks
the button. If we create an application that contains multiple buttons, we can connect
each button to a different event handler. If we have two distinct ways to select a par-
ticular action (perhaps from a button or from a menu), we can connect both display
elements to the same event handler function.

This form of application creation is a bit like “wiring up” electronic devices. We create
a user interface design and then connect each of the user interface components to
an event handler function. Note that events can be generated from actions such as
mouse movements as well as key presses.

Create a graphical application
Now that we know how to create a graphical user interface, we can make our first
application that works this way. This application won’t do much, but it will show
us how to create applications that work via a GUI. It’s a simple adding machine.
Figure 13-16 shows what it will look like. The user will type in two numbers, press the
Add numbers button, and the result will magically appear underneath the button.

Figure 13-16 Adding machine

This application looks deceptively simple, but there’s quite a lot to learn from build-
ing it. Let’s start with the application itself. I’ve created a class called Adder that will
contain the application. The class will contain a method called display that will display
the application:

class Adder(object):

 '''

 Implements an adding machine using a Tkinter GUI

 Call the method display to initiate the display

 '''

507Create a Graphical User Interface with Tkinter

 def display(self):

 '''

 Display the user interface

 Returns when the interface is closed by the user

 '''

In the Adder.py source file, I’ve added some Python code that will run the adding
machine if the Adder.py file is executed as a program:

if __name__ == '__main__':

 app = Adder()

 app.display()

We’ve seen this arrangement of code before. The file can be opened as a module (for
example, by pydoc for producing documentation), but it will only run as a program
if it is the main module. Now we must create the contents of the display method that
will implement our adding machine.

Lay out a grid
We’ll use the grid layout to place the elements in our display area. Figure 13-17 shows
the display with a grid laid over the top to show where each display element will go.
The label “Second Number” is at location row=1 and column=0. Some of the items
(the Add numbers button and the result value) seem to straddle two columns; we will
discover how to do this in the next section.

COLUMN
0 1

RO
W

0

2

3

1

Figure 13-17 Adding machine layout

508 Chapter 13 Python and Graphical User Interfaces

The items that display “First Number,” “Second Number,” and the result (in this case
“4.0”) are all Label elements. We also have a Button to trigger the add numbers
behavior and two Entry items to receive the two numbers that are typed in. Let’s start
positioning components:

first_number_label = Label(root, text='First Number')

first_number_label.grid(sticky=E, padx=5, pady=5, row=0, column=0)

These are the statements that create and position the first number label at the top left
corner of the display. This is in the element at row=0. There are a few extra arguments to
the grid call that we haven’t seen before: sticky, padx, and pady. Let’s look at those.

Use sticky formatting
Quite often, when laying things out in a grid, we’ll find two items of different sizes in
the same column. We can see this above, in that the label “Second Number” is slightly
longer than the label “First Number”. The layout process will always size a row or col-
umn to the largest item in that row or column, which means there will be items placed
in grid cells that are larger than they are. By default (that is, unless we state otherwise),
an item is placed in the center of a larger cell.

For the first_number_label I want the label to be close to the Entry it is labeling. So,
I’ve made the item “sticky” in an “easterly” direction. This means that the label will try
to “stick” to an item on its east side. If I wanted to move the label all the way to the left,
I’d make it sticky toward the west. If I want the item to “stretch” to fill a cell, I can make
it sticky in two directions. This is how I made the “Add numbers” button stretch to fill
the entire width of the display area. We’ll see this later in this section. If you’re not sure
about compass directions, you can find a handy reference in Figure 13-18 below.

Figure 13-18 Compass points

509Create a Graphical User Interface with Tkinter

Use padding
Padding is extra space placed around the component to “pad” it out. Otherwise, the
component will be drawn right up to the edge of the cell in which it is being drawn.
I like to add around 5 pixels or so of padding around items on the screen. You can
specify the amount of padding in the x and y directions. I put 5 pixels around each of
the items on the display in both directions.

Span grid cells
The grid must be two elements wide so that I can display the label and the entry boxes
for both numbers that the user will enter. However, I’d like the button and the result
to be drawn across the full width of the display area. I can do this by merging the cells
into which an element is to be drawn. Look at the definition of the add_button below.

add_button = Button(root, text='Add numbers', command=do_add)

add_button.grid(sticky=E+W, row=2, column=0, columnspan=2, padx=5, pady=5)

The first statement creates the Button instance, sets the text to be displayed on the
button, and tells the button to call the function do_add when the button is clicked.
The second statement places the Button in the grid in row 2, column 0. However, it
also contains the argument columnspan=2. This means that the button will be drawn in
a cell that spans two columns. This case means that the button will be the full width of
the display because the display is two columns wide.

Note also that I’ve made the button “sticky” in both easterly and westerly directions
so that it will be stretched across the entire display when it’s drawn. I use the same
technique to position the result label. Below are all the statements that position and
set up the items on the form.

first_number_label = Label(root, text='First Number')

first_number_label.grid(sticky=E, padx=5, pady=5, row=0, column=0)

first_number_entry = Entry(root, width=10)

first_number_entry.grid(padx=5, pady=5, row=0, column=1)

second_number_label = Label(root, text='Second Number')

second_number_label.grid(sticky=E, padx=5, pady=5, row=1, column=0)

second_number_entry = Entry(root, width=10)

510 Chapter 13 Python and Graphical User Interfaces

second_number_entry.grid(padx=5, pady=5, row=1, column=1)

add_button = Button(root ,text='Add numbers', command=do_add)

add_button.grid(sticky=E+W,row=2, padx=5, pady=5, column=0, columnspan=2)

result_label = Label(root, text='Result')

result_label.grid(sticky=E+W, padx=5, pady=5, row=3, column=0, columnspan=2)

Create an event handler function
We know that we can connect a function to a button so that when the button is
clicked the event handler runs. For the adding machine, the event handler should read
the text out of the two Entry objects into which the user has (hopefully) entered some
numbers. The event handler should then convert the text into numbers, add the two
numbers, and then display the result in the result label. Below you can see my version
of the event handler for the adding machine.

EG13.01 First Adding machine

class Adder(object):

 '''

 Implements an adding machine using a Tkinter GUI

 Call the method display to initiate the display

 '''

 def display(self):

 # create all the screen elements here

 def do_add():

 first_number_text = first_number_entry.get()

 first_number = float(first_number_text)

 second_number_text = second_number_entry.get()

 second_number = float(second_number_text)

 result = first_number + second_number

 result_label.config(text = str(result))

 Method called to generate the user interface

 Event handler for the add button

 Convert the second number text
into a floating-point number

 Calculate the result
 Convert the result into a string

and display it
 Get the text out of the Entry for second number

Convert the first number text into a floating-point number
Get the text out of the Entry for the first number

511Create a Graphical User Interface with Tkinter

Writing an event handler
You might have some questions about the event handler we just created.

Question: Why is the event handler defined inside the display function?

Answer: We’ve seen before that Python will allow programmers to define functions inside
other functions. The event handler function needs access to the result label and the two
Entry variables that the user uses to enter the two numbers to be added. Code running
inside a function has access to the variables in the enclosing namespace (we saw this in
Chapter 7), and so the do_add function can use variables declared in the display function.

I could have created do_add as a method in the Adder class (event handlers can be
methods as well as functions), but then I would’ve had to make all the display elements
attributes of the Adder class so that the do_add method could access them, which would
have meant a bit more typing.

Question: What happens if the user doesn’t type in a valid number before pressing the Add
numbers button?

Answer: Good question. The answer is that the float function in the do_add event han-
dler will be unable to convert the text in the Entry into a floating-point number. It will fail
by raising an exception that will cause the do_add method to be abandoned when the
exception is raised. You might notice the exception being raised if you’re debugging the
program, but when the program is running the user will not see any errors at all.

Entering invalid numbers will not stop the program from running, but the user will not
see an error; they’ll just notice that the result display will not be updated. In an upcom-
ing section, we’ll discover how a program can display a pop-up warning if the user does
something like this.

CODE ANALYSIS

Create a mainloop
When we created a display window from the Python Command Shell in IDLE, we
found that it just worked. This is because the shell was running. If we had exited
the shell program, we’d have found that the display window disappears as well. If a
program just created the display components and then ended, we’d find that the
interface would flash up on the screen for a fraction of a second and then vanish when
the program ended. To keep the display active, the Tkinter module provides a method
called mainloop which a program should call once it has set up its display components:

root.mainloop()

512 Chapter 13 Python and Graphical User Interfaces

The name mainloop describes what this method does. It repeatedly fetches events and
sends them on to functions that have been created to deal with the events. When the
user closes the window on the screen (in Windows 10, they would click the X in the top
right corner of the window), the mainloop method ends. As the mainloop method is
frequently the last method call in a program that uses a graphical user interface when
mainloop ends the program probably ends, too.

You can find a complete implementation of the adder program in the example file
EG13-01 First Adding machine in the downloadable sample files for this chapter.

Handle errors in a graphical user interface
The adding machine we’ve created works quite well. However, it does have problems if
the user enters invalid text rather than numbers. Figure 13-19 shows what can happen.
The user has typed in two text strings. When they press the Add numbers button, the
result display is not updated because the do_add event handler fails with an exception.

Figure 13-19 Text as numbers

One way to deal with this would be to catch the exceptions and change the result
string to reflect the issue. We saw how to catch exceptions in Chapter 6. The code
below is part of an improved do_add function that catches exceptions if either of
the number conversions performed by the float method fail.

EG13-02 Exception handler with messages

def do_add():

 first_number_text = first_number_entry.get()

 try:

 first_number = float(first_number_text)

 except ValueError:

 result_label.config(text='Invalid first number')

 return

 second_number_text = second_number_entry.get()

 Get the number text from the Entry on the screen

 Start of exception handler
 Statement that might throw an exception

 Handler for ValueError exceptions
 Set the result to indicate

that an error has occurred

 Return from the method if the first number is not valid

513Create a Graphical User Interface with Tkinter

 try:

 second_number = float(second_number_text)

 except ValueError:

 result_label.config(text='Invalid second number')

 return

The code above works well, but it is not perfect. If the user enters invalid text in both
Entry objects on the screen, the program will only tell the user about the first error,
not the second. We can improve this code so that it builds an error string and displays
it if any errors are detected:

def do_add():

 error_message = ''

 first_number_text = first_number_entry.get()

 try:

 first_number = float(first_number_text)

 except ValueError:

 error_message = 'Invalid first number\n'

 second_number_text = second_number_entry.get()

 try:

 second_number = float(second_number_text)

 except ValueError:

 error_message = error_message + 'Invalid second number'

 if error_message != '':

 result_label.config(text=error_message)

 else:

 result = first_number + second_number

 result_label.config(text = str(result))

 Start of the try construction
 Try to convert the first string into a number

 Exception handler for a failed conversion from text to a float
 Add an error message

 Start of the try construction

 Exception handler for a failed conversion from text to a float
 Add an error message

 Is the error message empty?
 Display the error message if it is not empty

 If we get here, there are no
errors – work out the result

 Get the text from the Entry for the first value
 Create an empty error message string

 Get the text from the Entry for the second value

 Try to convert the second string into a number

 Display the calculated result

This version of the do_add function is much better. It uses a technique I’ve used many
times when dealing with user errors. It starts with an empty error string. Each time code in
the function finds something wrong, it will add text describing the error to the error string.
If at the end of the function, the error string is empty, it means that there are no errors
and the function can complete. Otherwise, it displays the error message. You can find this
version of the error handler in the sample file EG13-03 Adder with sensible messages.

514 Chapter 13 Python and Graphical User Interfaces

There is considerable scope for making this method even better. Tkinter provides
methods to set the foreground and background colors of items on the screen, so
you could make the do_add function indicate invalid user entries by changing the
background color of invalid entries to red. The statement below shows how you can
change the color of an item in the program. It configures first_number_entry so that
the background of the Entry on the screen is red and the foreground (the color of the
text in the entry box) is blue.

first_number_entry.config(background='red', foreground='blue')

Display a message box
Another way to inform the user of an error is to pop up a message box. This technique
has the advantage that the user must see and acknowledge the error before they can
continue. Tkinter provides a message box, and it’s very easy to use. The first thing the
program must do is import the messagebox module:

from tkinter import messagebox

The messagebox module contains three functions that can display messages:
showinfo, showwarning, and showerror. All the message boxes have the same format,
but a different icon is used for each. The user interface for the program displaying the
message (in our case, the Adder program) will be locked until the user clears the error
message by clicking OK or closing the message box. Each of the message functions
accepts two arguments, a title and a message. Both are strings. Below we can see how
we could use the showinfo function to show some information:

messagebox.showinfo('Rob Miles', 'Turns out Rob Miles is awesome')

Figure 13-20 shows the output of this important message. To display a warning, use
the showwarning method. To display an error, use the showerror method. You can
find a version of the Adder program that displays a message box to indicate user error
in the sample file EG13-04 Adder with message box

Figure 13-20 Important message from showinfo

Fahrenheit to centigrade. And back.
In this challenge, I’ll give you a half-finished program to complete. This is something that
happens surprisingly frequently in the software industry. When you get your first program-
ming job, it’s likely that you’ll start by modifying an existing program rather than being asked
to create an all-new program. The program you’re working on is the ultimate temperature
converter. The user can convert from Fahrenheit to centigrade or back. They type their
conversion value into one box and, depending on which button they press, the other box will
show the converted value. The program is supposed to look like this:

Unfortunately, the programmer hired to create the program has taken his job much too seri-
ously, and has gone away to Hawaii, supposedly to test the program in higher temperatures.
He has left behind a program that looks like this:

MAKE SOMETHING HAPPEN

515Create a Graphical User Interface with Tkinter

We can make a version of the Adder program that displays a message box by replac-
ing the statement that sets the result label to the error with one that generates a mes-
sage box. The code below shows the part of do_add that handles errors. If the error
message is not empty (in other words, something bad has happened), the message
box will be displayed to indicate this.

if error_message != '':

 messagebox.showerror(title='Adder',message=error_message)

 Is the error message empty?
 Display an error

message box

'''

Display a graphical user interface that lets users convert from temperature scales

'''

from tkinter import *

class Converter(object):

 '''

 Displays a Tkinter user interface to convert between Fahrenheit and centigrade

 Call the display function to display the converter on the screen

 '''

 def display(self):

 '''

 Displays the converter window

 When the window is closed, this method completes

 '''

 root = Tk()

 cent_label = Label(root, text='Centigrade:')

 cent_label.grid(row=0, column=0, padx=5, pady=5, stick=E)

 cent_entry = Entry(root, width=5)

 cent_entry.grid(row=0, column=1, padx=5, pady=5)

 fah_entry = Entry(root, width=5)

 fah_entry.grid(row=2, column=1, padx=5, pady=5)

 def fah_to_cent():

 '''

 Convert from Fahrenheit to centigrade and display the result

 '''

 fah_string = fah_entry.get()

 fah_float = float(fah_string)

 result = (fah_float - 32) / 1.89

 cent_entry.delete(0, END) # remove the old text

 cent_entry.insert(0, str(result)) # insert the new text

 def cent_to_fah():

 '''

 Convert from centigrade to Fahrenheit and display the result

 '''

516 Chapter 13 Python and Graphical User Interfaces

 cent_string = cent_entry.get()

 cent_float = float(cent_string)

 result = cent_float * 1.8 + 32

 fah_to_cent_button = Button(root, text='Fah to cent', command=fah_to_cent)

 fah_to_cent_button.grid(row=1, column=0, padx=5, pady=5)

 root.mainloop()

if __name__ == '__main__':

 app = Converter()

 app.display()

The programmer has used a feature of Tkinter that we haven’t seen before. When the pro-
gram has calculated a new result, it must display it in a text entry field. Updating the text in
an Entry is slightly more complicated than just changing the text in a Label. There are very
powerful editing features available, but we just want to replace the text with new text. The
two statements below show how this is done. The first statement deletes all the text from
cent_entry. The first argument to the delete method is the position to start deleting (0
means the beginning of the string). The second argument to the delete method is the posi-
tion to stop deleting. The variable END is declared in the Tkinter module and means “the end
of the line.”

The second statement inserts a string containing the result into cent_entry starting at the
location 0 (the beginning of the string).

cent_entry.delete(0, END) # remove the old text

cent_entry.insert(0, str(result)) # insert the new text

You can find the starter code in the folder EG13-05 TemperatureConverter Starter in the
sample code for this chapter. The folder is all set up for use with Visual Studio Code. If you
want to “skip to the end,” you can find a complete version of the program in the folder EG13-
06 TemperatureConverter Complete. However, even the complete version could use some
attention; currently, it doesn’t handle invalid inputs.

You can use this program as the basis for any conversion you like, such as ounces to grams,
mph to kph, or dollars to euros.

517Create a Graphical User Interface with Tkinter

Investigate events and drawing
We can investigate Tkinter events from the Python Command Shell in IDLE. So, let’s start that
up. As before, the first thing we need to do is import all the resources from the Tkinter mod-
ule. Give the following command and press Enter:

>>> from tkinter import *

Next, we need to create a window on the screen. Enter the following statement and
press Enter:

>>> root = Tk()

Now we’ll create a Canvas. A Canvas is a display component that can act as a container for
lots of other display elements. We can draw and position these elements inside the canvas.
When you create a Canvas, you can tell the graphical user interface the size of the Canvas in
pixels. Enter the following statement to create a Canvas that is 500 pixels square.

>>> c = Canvas(root, width=500, height=500)

To get the Canvas displayed, we need to specify where to place it. It will be the only item on
the display, so we can place it at row 0 and column 0.

>>> c.grid(row=0, column=0)

MAKE SOMETHING HAPPEN

518 Chapter 13 Python and Graphical User Interfaces

Draw on a Canvas
We can also use graphical interfaces to allow the user to draw with the mouse on the
screen. We do this by creating a drawing area that sends our program an event each
time the user moves their mouse. If this event performs a drawing operation, we have an
instant drawing program. Let’s look at how we can get events from areas of the screen.

If you look at the window that’s been created, you should see that the program is now dis-
playing a square window.

Now we need to connect a function to the events that Tkinter generates when a mouse is
moved over the Canvas. Let’s write the function first. Enter the following function. Enter a
blank line after the print statement to end the function.

>>> def mouse_move(event):

 print(event.x,event.y)

>>>

The function is supplied with a single parameter, which is a reference to an event object. This
object has two attributes, which are the x and y positions of the mouse pointer at the time the
event occurred. The method above just prints these positions on the screen.

Now we need to connect this function to the event generated when the mouse is moved with
a button pressed. This will give us the movement detection that will make our drawing pro-
gram work, which is called binding the function to the event. Objects on the display provide a
bind method that programs can use to connect functions to events. Each event has a unique
name. Type in the following statement and press Enter. The statement calls the bind method
on the canvas and links the <B1-Motion> event (that is, mouse motion with button 1 pressed
down) to the function mouse_move. Each time the Canvas detects a mouse movement with
the button pressed, it will call the method.

519Create a Graphical User Interface with Tkinter

The bind method returns a string that describes the binding that has taken place. A program
could use this string to identify the binding and disconnect the connection later, but we can
ignore this string for now. Note that because the description string is supposed to be unique
on a specific machine, you may find that the string displayed on your machine differs from
the one shown below.

>>> c.bind('<B1-Motion>', mouse_move)

'2886099647752mouse_move'

>>>

Now for the fun bit. Move your mouse to the window displaying the canvas, hold down the
left (or only) button on the mouse and drag it. Watch the Python Command Shell in IDLE. You
should see a stream of numbers being generated. Below you can see some of the numbers
that I saw. If you drag the mouse up to the top left corner of the canvas, you should see the
numbers getting smaller. This is because the origin of the coordinates (the point 0,0) is the
top left corner of the canvas. This should not come as a surprise; it is the same way that the
grids are numbered.

>>> 283 277

290 297

290 306

289 307

Printing coordinates is nice enough, but we are making a drawing program, and we need
to draw a dot. The Canvas object provides a method called create_rectangle that should
do the trick. Tear yourself away from dragging the mouse around your canvas and enter the
following statement. This will draw a blue rectangle. The top left corner of the rectangle will
be at coordinate (100,100). The bottom right corner of the rectangle will be at coordinate
(300,200). The outline argument sets the color of the outline of the rectangle; the fill
argument sets the color used to fill in the block. Unless you specify otherwise, the outline
color will be black.

>>> c.create_rectangle(100,100,300,200,outline='blue',fill='blue')

1

>>>

If you look at the output window for your program, you should see that a blue rectangle has
duly appeared.

520 Chapter 13 Python and Graphical User Interfaces

You may be wondering why the value 1 was displayed when we created the blue rectangle. This
is because when you create an object on a canvas, the method that creates it will return a value
that identifies this object. If we just call a method, Python will just display the value returned by
it, which in this case was 1 because we have just created object number 1 on the Canvas.

A canvas manages each object by its number. We can ask the canvas to remove an object
from the display by using the delete method. Type the following command and press Enter.

>>> c.delete(1)

You should see the blue rectangle disappear. This is a very powerful feature of the Canvas.
Every single element on the screen is a separate object that we can find and manipulate after
we’ve drawn it.

Now we need to use the drawing method to allow us to draw with the mouse. We can create
a new function that draws a block at the position a mouse event was detected. Enter the
statements below. Add an empty line after the call of create_rectangle to end the func-
tion definition.

>>> def mouse_move_draw(event):

 c.create_rectangle(event.x-5,event.y-5,event.x+5,event.y+5,

 fill='red', outline='red')

>>>

521Create a Graphical User Interface with Tkinter

This method creates two points that define the rectangle to be drawn. The first point is five
pixels to the left and above the mouse position, the second point is five pixels to the right and
below the mouse position. The result is that the function will draw a ten-pixel square block
centered around the position of the mouse. Now, all we need to do is bind this new draw
function to the event generated when the mouse is moved with the pointer held down.

>>> c.bind('<B1-Motion>', mouse_move_draw)

'2886099651528mouse_move_draw'

Once you have bound the function to the event, you should be able to draw on the canvas by
clicking the left mouse button and dragging it over the canvas.

Above, you can see my not very artistic attempts at drawing. You can almost certainly do bet-
ter. You should also notice that the program no longer prints the mouse position in the IDLE
output window, which is because only one function can be bound to a particular event.

Tkinter events
Tkinter events are very powerful and flexible. Let’s look at the event we’ve been using
for drawing. Below is the statement we used to link the mouse_move function to the
event where the mouse is moved with a button held down.

c.bind('<B1-Motion>', mouse_move)

522 Chapter 13 Python and Graphical User Interfaces

523Create a Graphical User Interface with Tkinter

The event identifier is the string '<B1-Motion>'. We can break this string down into
two components. The first part is called the modifier. You can think of this as a condi-
tion that must be satisfied for the event to be generated. In our case, the condition is
that mouse button 1 is pressed. The second part is called the detail. This is the thing
that will produce the events. If we left the modifier off, and just bound a handler to an
event identified by the string '<Motion>' we would get events produced every time
the mouse was moved, which is more events than we really want. Here are a few of the
most useful events and modifiers:

MODIFIER ACTION DETAIL ACTION

Control Control key pressed Motion Mouse moved

Shift Shift key pressed ButtonPress Mouse button pressed

B1 – B4 Corresponding mouse
button pressed ButtonRelease Mouse button released

KeyPress Key pressed

KeyRelease Key released

MouseWheel Mouse wheel moved

Note that the different actions may deliver different event information when their
action is called. In other words, the events delivered when a key is pressed contain the
key information, rather than mouse coordinates. You can create more complex events
if you wish with multiple modifiers.

Create a drawing program
We can use events to create a simple drawing program. The user can draw with the
mouse and select colors with the keyboard. They can also clear the canvas and start
a new drawing.

'''

Provides a simple drawing app

Hold down the left button to draw

Provides some single key commands:

R-red G-green B-blue

C-clear

'''

from tkinter import *

524 Chapter 13 Python and Graphical User Interfaces

class Drawing(object):

 def display(self):

 root = Tk()

 canvas = Canvas(root, width=500, height=500)

 canvas.grid(row=0, column=0)

 draw_color = 'red'

 def mouse_move(event):

 '''

 Draws a 10-pixel rectangle centered about the mouse

 position

 '''

 canvas.create_rectangle(event.x-5, event.y-5,

 event.x+5, event.y+5, fill=draw_color, outline=draw_color)

 canvas.bind('<B1-Motion>', mouse_move)

 def key_press(event):

 nonlocal draw_color

 ch = event.char.upper()

 if ch == 'C':

 canvas.delete('all')

 elif ch == 'R':

 draw_color = 'red'

 elif ch == 'G':

 draw_color = 'green'

 elif ch == 'B':

 draw_color = 'blue'

 canvas.bind('<KeyPress>', key_press)

 canvas.focus_set()

 root.mainloop()

if __name__ == '__main__':

 app = Drawing()

 app.display()

 Create the display root

 Create the canvas to draw on
 Position the canvas in the display

 Set the draw color to red

 Event handler for the mouse movement

 Bind the event handler to the mouse
movement

 Make sure we use the draw_color in the enclosing namespace
 Get the character pressed and convert it into uppercase

 Is the character a C?
 Delete all the objects on the canvas

 Is the character an R?
 Set the draw color to red

 Is the character a G?
 Set the draw color to green

 Is the character a B?
 Set the draw color to blue

 Bind the event handler for keypresses
 Set the keyboard focus to the canvas

 Main loop for Tkinter

 Are we being run as a program?
 Create a drawing instance

 Start the display on the drawing

Drawing on a canvas
In the above program, I’ve used some features of Python that you haven’t seen before. You
might have some questions about the program.

Question: What is the draw_color variable used for?

Answer: As its name implies, the draw_color variable holds the color to be used for
draw actions. The Tkinter system can recognize a large range of colors by name. You can
find a chart giving all the available colors here: http://wiki.tcl.tk/37701.

If you want to specify your own colors, you can do so by giving a string that contains
three two-digit hexadecimal values, one each for the amount of red, green, and blue,
respectively.

draw_color = '#FFFF00'

This would set the draw color to yellow (all the red, all the green and none of the blue).

In the program, the draw color is set to red when the program starts and then changes
when the user presses the R, G, or B keys.

Question: How do you clear the canvas?

Answer: We saw above that we can delete items we’ve drawn if we know their ID. The
drawing program above doesn’t store the ID values of the items it draws (although it
could). The delete method can be given with the argument 'all' if you want your pro-
gram to delete everything that’s been drawn. This has the effect of clearing the display.

canvas.delete('all')

 The statement above is obeyed when the user presses C.

Question: In the key_press function, you’ve created a “nonlocal” variable called
draw_color.

def key_press(event):

 nonlocal draw_color

What does this mean?

CODE ANALYSIS

525Create a Graphical User Interface with Tkinter

Answer: The key_press function needs to be able to change the value of the
draw_color variable when the user presses a key to select a different drawing color.
The variable draw_color is declared in the function that contains the key_press function.
In Chapter 7, in the section “Global variables in Python programs,” we saw how a function
could access variables that were not created within the function by telling Python that the
variable is “global.” However, the variable draw_color is not global (global variables are
declared outside any function); it just isn’t local to the key_press function. The nonlocal
statement is used in this situation. In other words, saying that a variable is nonlocal means
“I’d like to use the variable with this name from an enclosing namespace please.”

Question: What does the call of focus_set do?

Answer: When you move the mouse pointer over a specific item on the screen, Python
knows that the item is the one that should receive any motion events. However, when the
user presses a key on the keyboard, Python has no way of knowing which component in
the application is supposed to receive a message.

The focus_set method lets a component say, “Please give me all the keyboard events.”
Note that this action is independent of what the user is doing. The user may have
selected (given focus to) the window containing your Python program, but keyboard
events will only be passed to a component if it has acquired focus using this method.

526 Chapter 13 Python and Graphical User Interfaces

Make the drawing program draw ovals
In this development challenge, you’ll have to do some detective work to find out how some of
the Tkinter functions work. The Canvas object provides a method called create_oval, which
can be used to draw ovals. It has a different set of arguments from the create_rectangle
method. Find out what the arguments are and make a version of the drawing program you can
find in the sample folder EG13-07 Drawing program that draws ovals. You could even allow
the artist to swap between brushes by pressing S for a square brush and O for an oval brush.

MAKE SOMETHING HAPPEN

Enter multi-line text
We’ve seen that you can use a Tkinter Entry object to allow the user to enter a single
line of text into the user interface, but this would not be useable if we wanted to cre-
ate a text editor. The Tkinter framework provides an object called Text that allows a
user to enter pages of text. It works in a very similar way to the Entry object, but there
are some differences.

Investigate the Text object
We can investigate the Text object from the Python Command Shell in IDLE. So, let’s start
that up. As usual, the first thing we need to do is import all the resources from the Tkinter
module. Give the following command and press Enter:

>>> from tkinter import *

Next, we need to create a Tkinter window on the screen. Enter the statement below to create
a new window and set the variable root to refer to it.

>>> root = Tk()

Now we’ll create a Text object. Type the following statement and press Enter.

>>> t = Text(width=80, height=10)

The statement above creates a Text object and sets the variable t to refer to it. If the width
and height values seem a bit smaller than we are used to (our drawing screen was 500 pixels
in size), this is because the width of the text area is given in characters and the height is given
in lines. As usual, the object will not be drawn until we’ve told Tkinter how to position it on
the screen. Enter the following statement and press Enter.

>>> t.grid(row=0, column=0)

The screenshot above shows the Text component in action. I’ve typed in a couple of lines.
You should do the same.

MAKE SOMETHING HAPPEN

527Create a Graphical User Interface with Tkinter

The Text object allows a Python program a lot of control over the contents of the text win-
dow. For now, we just want to be able to read text back from a Text object. We can do this in
a similar fashion to how we got text from the Entry object earlier in this chapter. However,
we must work a little harder to address the text area that we want to read because we can
refer to characters in the text in terms of their row and column positions. Enter the following
statement and press Enter.

>>> t.get('1.0',END)

'First line of text\nSecond line of text\nThird line of text\n'

This statement gets all the text out of the Text object, starting at row 1 (the first row of the
text), column 0 (the first column of the text). The value END specifies the end of the text, but
you can specify a position in the text for the endpoint if you wish. If you just want to read the
second line of text, you could use the following:

>>> t.get('2.0', '3.0')

'Second line of text\n'

We can use the delete method to delete portions of text from the Text object. Enter the
following statement and press Enter to clear the text display.

>>> t.delete('1.0', END)

We can add text by stating the start position and then giving the text to be added. Enter the
following statement to do just this:

>>> t.insert('1.0', 'New line 1\nNew line 2')

This inserts text into the Text area, starting at the beginning of the area. Note that the new
line character '\n' is used to split lines on the display.

528 Chapter 13 Python and Graphical User Interfaces

Group display elements in frames
A grid provides a way for you to design a layout for a complete window on the screen,
but you often want to lay out subcomponents that you want to add to the window.
We can do this by using a Frame. A Frame can act as a root for a set of elements dis-
played within it. We could use a frame to create a layout for the editing of a StockItem
from our Fashion Shop application. Once we’ve created the Frame object, we can then
include this in other display elements.

529Create a Graphical User Interface with Tkinter

Using frames is very easy. We simply create the frame and then use the frame as the
root object for all the items to be displayed within it:

frame = Frame(root)

stock_ref_label = Label(frame, text='Stock ref:')

stock_ref_label.grid(sticky=E, row=0, column=0, padx=5, pady=5)

The stock_ref_label is now part of the frame and will be positioned in the top left
corner of the frame. Frames work well if you want to display the same information in
several different applications.

Create an editable StockItem using a GUI
Now we can put these elements together to create an editable StockItem for use in
a version of the Fashion Shop application that uses a graphical user interface. We’ll
create an object that will support the following three behaviors:

 ● Clear the editor display

 ● Put a StockItem on display for the user to edit

 ● Load a StockItem from the display after editing

We can call this object StockItemEditor, and it will contain methods for each of the
behaviors above. Below, you can find an “empty” implementation of the class. It con-
tains methods that currently just contain the empty statement pass. Next, we’ll fill in
these methods.

class StockItemEditor(object):

 '''

 Provides an editor for a StockItem

 The frame property gives the Tkinter frame

 that is used to display the editor

 '''

 def __init__(self,root):

 '''

 Create an instance of the editor. root provides

 the Tkinter root frame for the editor

 '''

 pass

 Create a new frame
 Add a label to the frame

 Place the label in a
grid inside the frame

530 Chapter 13 Python and Graphical User Interfaces

 def clear_editor(self):

 '''

 Clears the editor window

 '''

 pass

 def load_into_editor(self, item):

 '''

 Loads a StockItem into the editor display

 item is a reference to the StockItem

 being loaded into the display

 '''

 pass

 def get_from_editor(self,item):

 '''

 Gets updated values from the screen

 item is a reference to the StockItem

 that will get the updated values

 Will raise an exception if the price entry

 cannot be converted into a number

 '''

 pass

We can create the initializer first. This is the method that sets up the object. It must
create all the display objects and add them to the frame. Note that we don’t create the
editor when we want to edit a StockItem; we create it when the program starts. The
editor provides the place where StockItems will be loaded to be edited.

class StockItemEditor(object):

 def __init__(self,root):

 self.frame = Frame(root)

 stock_ref_label = Label(self.frame, text='Stock ref:')

 stock_ref_label.grid(sticky=E, row=0, column=0, padx=5, pady=5)

 self._stock_ref_entry = Entry(self.frame, width=30)

 self._stock_ref_entry.grid(sticky=W, row=0, column=1, padx=5, pady=5)

 price_label = Label(self.frame, text='Price:')

 price_label.grid(sticky=E, row=1, column=0, padx=5, pady=5)

 self._price_entry = Entry(self.frame, width=30)

 Pass the constructor the root of the display for the frame
 Create the frame to hold the editor

 Stock reference editor

Creating a StockItemEditor
There are no new features being used in this initializer, but you might have some questions.

Question: Why do only some of the display elements have the self in front of them?

Answer: This is because not all the items on the display will be used after the display has
been created. Consider the following:

stock_ref_label = Label(self.frame, text='Stock ref:')

stock_ref_label.grid(sticky=E, row=0, column=0, padx=5, pady=5)

self._stock_ref_entry = Entry(self.frame, width=30)

self._stock_ref_entry.grid(sticky=W, row=0, column=1, padx=5, pady=5)

These are the screen objects that provide access to the stock reference. The first object is
the Label that appears on the display next to the item. The second is the Entry object
that is used to display and enter the stock reference information. The object doesn’t need
to use the label once it has been created, so there’s no point in making it an attribute of
the class. The program simply uses a variable that will be local to the __init__ method
and discarded when the method ends.

CODE ANALYSIS

531Create a Graphical User Interface with Tkinter

 self._price_entry.grid(sticky=W, row=1, column=1, padx=5, pady=5)

 self._stock_level_label = Label(self.frame,text='Stock level: 0')

 self._stock_level_label.grid(row=2, column=0, columnspan=2, padx=5, pady=5)

 tags_label = Label(self.frame,text='Tags:')

 tags_label.grid(sticky=E+N, row=3, column=0, padx=5, pady=5)

 self._tags_text = Text(self.frame, width=50, height=5)

 self._tags_text.grid(row=3, column=1, padx=5, pady=5)

In our application, we will create a new StockItemEditor and place it on the screen
as follows:

from tkinter import *

root = Tk()

stock_frame = StockItemEditor(root)

stock_frame.frame.grid(row=0, column=0)

 Price editor

 Stock level display

 Tags editor

 Import the Tkinter library

 Create the root display

 Create the StockItemEditor
 Place the frame from the StockItemEditor

on the display

However, the Entry object will be changed when we display a StockItem, and
so it must be stored as an attribute so that it can be used by other methods in the
StockItemEditor class.

Question: What is the frame attribute of the StockItemEditor class used for?

Answer: The StockItemEditor class creates a frame that contains the objects that
perform the editing. The program creating the display needs to have access to this frame
so that it can be positioned on the display. So, the StockItemEditor class provides an
attribute, called frame, that provides this value. You can see it used in the statement that
positions the StockItemEditor on the display:

stock_frame.frame.grid(row=0, column=0)

The variable stock_frame refers to the StockItemEditor that’s just been created. The
statement above gets the frame attribute out of this object and calls the grid method on the
frame to position the StockItemEditor at row 0 and column 0 on the display.

532 Chapter 13 Python and Graphical User Interfaces

Now we can look at the method that will clear the display. We will use this in two situa-
tions: when we are loading a new element for editing (to get rid of any text that might
be there) and when we have finished editing.

def clear_editor(self):

 '''

 Clears the editor window

 '''

 self._stock_ref_entry.delete(0, END)

 self._price_entry.delete(0, END)

 self._tags_text.delete('0.0', END)

 self._stock_level_label.config(text = 'Stock level : 0')

This method just clears all display items and changes the text on the stock level label
to indicate that there are no items in stock. The next method we can examine in the
StockItemEditor is the one that takes a StockItem and makes it available for editing.
The values in the StockItem must be copied onto the editing objects. I’ve called the
method load_into_editor.

The load_into_editor method
You might have some questions about load_into_editor.

Question: For what is this method used?

Answer: We will call this method when the user has selected a StockItem that they want
to edit. In the Command Shell version of the program, we would use the print function
to ask the user to give new values and the input function to read them back. We did this
in Chapter 9 in the section “Editing a contact” for our contacts store.

An editor that uses a graphical user interface must work differently. It must display the
StockItem and then allow the user to edit it. You use this way of working every time you
edit a document using a word processor. The word processor loads the document, lets
you edit it, and then saves the document. We have just written the load behavior for our
“StockItem processor.”

Question: Why are some of the items converted to a string before editing?

Answer: The price of an item is held as an integer. We need to convert the integer into a
string so that the user can edit it. When we get the items back from the editor, we’ll have
to convert them from a string back into an integer.

CODE ANALYSIS

533Create a Graphical User Interface with Tkinter

def load_into_editor(self, item):

 clear_editor()

 self._stock_ref_entry.insert(0, item.stock_ref)

 self._price_entry.insert(0, str(item.price))

 self._stock_level_label.config(text = 'Stock level : ' + str(item.stock_level))

 self._tags_text.insert('0.0', item.text_tags)

We can get a StockItem object ready for editing by calling this method and passing
the stockitem into it. The listing below does just that. Note that this is just test code;
in the finished application, the item to be edited will be one of the items in the stock
of the shop.

item = StockItem(stock_ref='D001', price=120,

 tags='dress,color:red,loc:shop

window,pattern:swirly,size:12,evening,long')

stock_frame.load_into_editor(item)

 item is a reference to the stock item being edited
 Clear the editor

 Insert the stock reference
from the stock item

Convert the price value into a string and display it
 Display the stock level as a label

 Display the list of tags as a text string

 Create a test StockItem

 Send the StockItem to
the edit frame

Question: What is the text_tags attribute of a StockItem?

Answer: The StockItem holds a set of tags that are used by the fashion shop owner to
locate stock items with which she wants to work. The text_tags attribute is a property
that converts this set of tags into a string of text that can be displayed and edited. There’s
nothing special about the code that implements the property; it’s a variant of the code
we used in Chapter 10 when we converted a list of Session objects into a text report. Look
in the section “The Python join method” for more details.

The get_from_editor method
You might have some questions about get_from_editor.

Question: What is the purpose of this method?

Answer: This is the method that takes the edited StockItem details and puts them back
into a StockItem. You can think of this as the Fashion Shop equivalent of the code that
takes your edited text and stores it when you press Save in a word processor.

CODE ANALYSIS

534 Chapter 13 Python and Graphical User Interfaces

The next method we need is the one that fetches an edited StockItem from the frame.
The method is called get_from_editor and is used to complete the editing of a
StockItem. This will happen when the user presses a Save button on the user interface.
You can think of this method as the reverse of load_into_editor.

def get_from_editor(self,item):

 item.set_price(int(self._price_entry.get()))

 item.stock_ref = self._stock_ref_entry.get()

 item.text_tags = self._tags_text.get('1.0',END)

This code will run when the user presses a button to indicate that they’ve finished
editing. The code below shows the save_edit function and a button that can be
pressed to save the edited StockItem.

def save_edit():

 stock_frame.get_from_editor(item)

 stock_frame.clear_editor()

save_button = Button(root, text='Save', command=save_edit)

save_button.grid(row=1, column=0)

 Convert the price string
into an int and store it

 Put the stock reference
back into the stock item

 Set the tags to the
edited string

 Called to save the edited stock item
 Get the stock item from the editor

 Clear the editor

Question: Can this method fail?

Answer: Yes, it can. If the user doesn’t enter a valid number into the price Entry, it
will not be possible for the number to be converted, and the save method will raise an
exception. A user of this method would have to take this into account when they write
their program. Otherwise, there is the danger that the fashion shop owner might be left
thinking that a save had succeeded when it had failed.

535Create a Graphical User Interface with Tkinter

We can use the load_into_editor, get_from_editor and clear_editor methods to
create a test editor for StockItems. The user interface will appear as in Figure 13-21.

Figure 13-21 Editing a stockitem

The program below creates a test StockItem and allows the user to edit it. The user
can finish the edit by pressing the Save button. When Save is pressed, the updated
values are loaded from the edit window, and then the updated StockItem is printed.
Finally, the edit window is cleared. This version is very basic (it doesn’t do any check-
ing for errors), but it does show how well this works. You can find the example in the
folder EG13-08 StockEditDemo in the sample code for this chapter. You can open
the folder using Visual Studio Code and run the file StockItemEditDemo, or you can
open the same file and run it from IDLE.

EG13.08 StockItemEditDemo

from tkinter import *

from StockItem import StockItem

from StockItemEditor import StockItemEditor

item = StockItem('D001', 120,

 'dress,color:red,loc:shop

window,pattern:swirly,size:12,evening,long')

 Import the items we’re using

 Create a test stockitem

Editing Stock Items
You might have some questions about this code.

Question: Would it not make sense to put the editing behavior inside the StockItem class?

Answer: Good question. We’ve been talking about the importance of making objects
that can just look after themselves, and you might think it would make sense to put the
frame editor into the StockItem class. However, I don’t think this is a particularly good
idea. Another principle of object orientation is that an object should have a single pur-
pose. The job of a StockItem object is to hold the data about an item of stock. It is not
the job of the StockItem object to edit itself. We’re designing our application so that we
can use the same StockItem objects to store stock details, but the task of editing is quite
different from storing.

So, a separate StockItemEditor class is a better idea. Another way to consider
this would be to consider what would happen if we added the frame editor into the
StockItem class and then made a version of the program that used the command shell
user interface. We would have a lot of code floating around in the StockItem class that
was never used.

CODE ANALYSIS

536 Chapter 13 Python and Graphical User Interfaces

root = Tk()

stock_frame = StockItemEditor(root)

stock_frame.frame.grid(row=0, column=0)

def save_edit():

 stock_frame.get_from_editor(item)

 print(item)

 stock_frame.clear_editor()

save_button = Button(root, text='Save', command=save_edit)

save_button.grid(row=1, column=0)

stock_frame.load_into_editor(item)

root.mainloop()

 Start Tkinter running

 Create a stock editor frame
 Place the editor at the top of the window

 Function that saves the edited stock item
 Get the item back from the editor

 Print the edited item
 Clear the editor

 Create a Save button
 Put the Save button on the display

 Load the stockitem we’re editing

 Start the display

Investigating the Listbox object
We can investigate the Listbox object from the Python Command Shell in IDLE. So, let’s
start that up. Just like the last few investigations, the first thing we need to do is import all the
resources from the Tkinter module and create a root window. Give the following commands
and press Enter after each:

>>> from tkinter import *

>>> root = Tk()

Next, we need to create a Listbox object on the screen. Type the statements below and
press Enter after each one.

>>> lb = Listbox(root)

>>> lb.grid(row=0, column=0)

These statements create a Listbox and set the variable lb to refer to it. The Listbox is then
displayed in the window. You should now see an empty Listbox in the window. We can add
some items to the Listbox using the insert method. Type in the following and press Enter.

>>> lb.insert(0, 'hello')

MAKE SOMETHING HAPPEN

537Create a Graphical User Interface with Tkinter

Create a Listbox selector
We now know just about everything we need to know to create our graphical user
interface version of the Fashion Shop application. We can put buttons on the screen to
initiate actions, and we can edit and store StockItem objects. The last thing we need
to discover is an easy way of allowing the fashion shop owner to find and select her
stock items. We could ask her to type in the stock reference of an item for which she
wishes to search, and then press a Find button to search for the item with that stock
reference. This would work, but when we discuss this idea with our customer, she
doesn’t sound very keen on the idea. What she wants is the ability to pick stock items
out of a list. It turns out that Tkinter has a Listbox object that allows us to do this kind
of thing, so we agree to take on the project.

The first argument to the insert call is the position in the Listbox where we want to insert
the item. The second argument is the text to insert in the list. You should see the item appear
in the Listbox.

Let’s add some more items. Type in the following statements, pressing Enter after each one.

>>> lb.insert(1,'goodbye')

>>> lb.insert(0,'top line')

>>> lb.insert(END, 'bottom line')

The entry 'goodbye' is inserted after hello at position 1, whereas the entry 'top line' is
inserted right at the top. The location END means the end of the list, so you should find that
your Listbox looks like this:

We can work through the StockItem objects and use the stock reference of each item to
build up a Listbox. Now we need to know how the user can select items in the box. This
is another event to which we can bind a function. Let’s write the function first. Type in the
following statements, pressing Enter after each statement and remembering to enter a blank
line at the end.

>>> def on_select(event):

 lb = event.widget

 index = int(lb.currentselection()[0])

 print(lb.get(index))

538 Chapter 13 Python and Graphical User Interfaces

This function will run when the user clicks on one of the items in the Listbox. The first state-
ment gets the object that caused the event. This is provided by the widget attribute of the
event supplied as a parameter. We know that this is the Listbox, so we ask the Listbox to
give us the index of the currentselection. Available options allow a user to select multi-
ple items in a Listbox (although we’re not using these), so the currentselection method
returns a tuple that contains all the selected items. We’re selecting only one item, so we can
just get the first item (the one at element 0) in the tuple. We can then use this index in the
get method on the Listbox to get that item from the Listbox.

The result of these three statements is that the method will find the selected item in the
Listbox and then print it. Next, we need to bind this event handler to the “event selected”
event in the Listbox. Type in the following statement and press Enter.

>>> lb.bind('<<ListboxSelect>>', on_select)

This statement should be familiar. It is how we connected event handlers in our drawing
application. Now, when you click on an object in the Listbox, the selected item is printed on
the console. The Fashion Shop application will use the selected stock reference to locate and
display the item to which it refers.

Create a StockItem selector
We can use a Listbox to allow the user of the Fashion Shop application to select an
item from its stock reference. Now we’ll create a class called StockItemSelector that
we can use to generate a Frame that can be displayed in the GUI for our Fashion Shop.
When I make the StockItemSelector class, I’ll follow the same pattern as for the
StockItemEditor class by deciding what the StockItemSelector class needs to do
and then filling in the methods. The two things I think the StockItemSelector class
needs to do are:

 ● Accept some StockItems from which to select

 ● Tell me when an item has been selected from the list

The first of these actions seems to make sense. We just need to create a method in
the StockItemSelector class that can be called to tell the StockItemSelector to
populate the Listbox. However, the second action is a bit trickier. We’re quite happy
with the idea of calling objects to make them do things for us, and we’ve done this a
lot. We call a method in the StockItem class to add stock, and another method to tell
the StockItem that stock has been sold. But how do we make an object tell us things?
Programmers call this part of development message passing. One object is sending a
message to another. In this case, the StockItemSelector class wants to send a mes-
sage to an object to tell it that a StockItem has been selected.

539Create a Graphical User Interface with Tkinter

540 Chapter 13 Python and Graphical User Interfaces

It’s actually very easy. We just give the sender object a reference to the receiver
object and then when we want to deliver a message to the object, the code in the
StockItemSelector just calls a method on that reference. We can give this reference
when we initialize the StockItemSelector class.

class StockItemSelector(object):

 '''

 Provides a frame that can be used to select

 a given stock item reference from a list

 of stock items

 The stock item list is delivered to the

 class via the populate_listbox method

 Selection events will trigger a call

 of got_selection in the object provided

 as the receiver of selection messages

 '''

 def __init__(self, root, receiver):

 '''

 Create an instance of the editor. root provides

 the Tkinter root frame for the editor

 receiver is a reference to the object that

 will receive messages when an item is selected

 The event will take the form of a call

 to the got_selection method in the

 receiver

 '''

 pass

 def populate_listbox(self, items):

 '''

 Clears the selection Listbox and then

 populates it with the stock_ref values

 in the collection of items that have

 been supplied

 '''

 pass

Selecting Stock Items
You might have some questions about this code.

Question: What are we doing in this method?

Answer: We are setting up an instance of the StockItemSelector class that can be
used to display a Listbox of stock item references. When the user selects one of these
references, we want to tell another object that this has happened. The __init__ method
accepts two parameters: the root frame for the window that will be used to display this
frame, and a reference to the object that will receive a message each time the user selects
a stock item.

The __init__ method stores a reference to the message receiver, builds a Listbox, and
then creates an event handler that will run when the user selects something from the list.

CODE ANALYSIS

541Create a Graphical User Interface with Tkinter

This is the empty class that contains the methods that need to be filled in. Let’s look at
the __init__ method first.

def __init__(self, root, receiver):

 self.receiver = receiver

 self.frame = Frame(root)

 self.listbox = Listbox(self.frame)

 self.listbox.grid(row=0, column=0)

 def on_select(event):

 '''

 Bound to the selection event in the Listbox

 Finds the selected text and calls

 the message receiver to deliver the name

 that has been selected

 '''

 lb = event.widget

 index = int(lb.curselection()[0])

 receiver.got_selection(lb.get(index))

 self.listbox.bind('<<ListboxSelect>>', on_select)

 Initialize the StockItemSelector
 Store the reference to the receiver so that

we can deliver results to it

 Create the frame that we will use to store
the controls

 Create a Listbox in the frame
 Place the Listbox in the frame

 Gets the Listbox that produced the event
 Get the index of the selected item

 Call the got_selection method
in the message receiver object

 Bind the got_selection event
handler to the Listbox

Question: What happens if the receiver doesn’t have a got_selection method?

Answer: Good question. The idea is that the StockItemSelector will call the
got_selection method on the receiver object when the user selects an item in the
Listbox. If there is no method in the receiver object, the program will fail at this point
with an exception. Fortunately, Python provides a built-in function that can be used to
determine whether a particular object has a given attribute, so we could add an assert
to test that a given object will work:

assert hasattr(receiver, 'got_selection')

The hasattr function accepts two arguments: a reference to an object, and a string.
It returns True if the object has an attribute with the given name. The above statement
(which we should add to __init__) will cause the program to raise an exception if the
receiver (which is supposed to have a method called got_selection) does not have a
got_selection method.

542 Chapter 13 Python and Graphical User Interfaces

The second method in the StockItemSelector class accepts some StockItems to
display in the Listbox.

def populate_listbox(self, items):

 self.listbox.delete(0, END)

 for item in items:

 self.listbox.insert(END,item.stock_ref)

Now that we have our selection class, we can create a program that will test it. We can
create a class that contains a got_selection method and then connect an instance of
that class to the selector object.

EG13.09 StockSelectDemo

from tkinter import *

from StockItem import StockItem

from StockItemSelector import StockItemSelector

class MessageReceiver(object):

 def got_selection(self, stock_ref):

 Add the items to the Listbox
 Clear the Listbox of previous values

 Iterate through each item that has been supplied
 Add the stock_item attribute of

the item to the end of the Listbox

 Import all the required items

 Class that will act as the receiver
of the selection messages

 Method that will be called when an item is selected

543Create a Graphical User Interface with Tkinter

 print('Stock item selected :', stock_ref)

stock_list = []

for i in range(1,100):

 stock_ref = 'D' + str(i)

 item = StockItem(stock_ref, 120,

 'dress,color:red,loc:shop

window,pattern:swirly,size:12,evening,long')

 stock_list.append(item)

receiver = MessageReceiver()

root = Tk()

stock_selector = StockItemSelector(root, receiver)

stock_selector.populate_listbox(stock_list)

stock_selector.frame.grid(row=0, column=0)

root.mainloop()

The program above is a demonstration of how the StockItemSelector is used. It
creates 100 sample stock items and uses these to create a stock selector. When a stock
item is selected, the stock reference of the selected item is printed. Figure 13-22
below shows the output from the program. You can find the entire sample program in
the folder EG13-09 StockSelectDemo with the sample program files for this chapter.
Run the program StockItemSelectorDemo.py to see the demonstration.

Figure 13-22 Testing the StockItemSelector

 Print a message to show that the
selection has taken place

 Create a test stock list

 Create 100 test stock items
 Create a stock reference for this item

 Create a test stock item

 Add the test stock item to the list

 Create an instance of the
message receiver class

 Create the display
 Create a StockItemSelector

instance

 Populate the StockItemSelector
with the sample stock list

 Add the StockItemSelector frame to the display
 Start the display loop

544 Chapter 13 Python and Graphical User Interfaces

An application with a graphical
user interface
Figure 13-23 shows the completed Fashion Shop with a graphical user interface. On
the left, you can see the StockItemSelector in action, and at the right of the frame,
you can see the StockItem editor. The remaining elements on the screen are buttons
wired into the graphical user interface. They send commands to the various elements
in the application, which seems to work. On the top, I’ve added a Search button. The
fashion shop owner can enter search tags and the press the Search button to filter the
selection of stock that is shown. The application is presently showing all the blue items
with a swirly pattern.

Figure 13-23 A Fashion Shop application with a graphical user interface

The user can add and sell amounts of stock by entering a number and pressing the
appropriate button. The selected stock item is then updated. The user can also edit
the details of a stock item. The changes are stored when the user navigates away from
that item onto another. To create a new item, the user presses the Create New Stock
Item button and then enters the new stock item details. When they move off that
item, it is automatically saved in the application. When the user closes the application,
the shop data is automatically stored in a file using pickling. This would serve as the
basis of a working stock management system.

You can learn a lot by going through this code. You can find it in the folder
EG13-10 FashionShop in the sample programs for this chapter. If you start the
FashionShopShellUIApp program, you get a Fashion Shop that you can manage
via the Command Shell. If you start the FashionShopGUIApp application, you get
a Fashion Shop that you can manage via a graphical user interface. However, both
programs use the same stock management classes.

545Create a Graphical User Interface with Tkinter

PROGRAMMER’S POINT

Always try using the programs you’ve written
This sounds like a stupid observation. Of course, you should try to use a program that you
just wrote. But what I mean is that you should try to use it properly. You should try entering
ten items of stock and find out if there’s anything annoying about the way your program
works. My first version of the Fashion Shop above displayed a message box each time an
item was edited or saved. I thought this was a nice idea, but it turns out that it’s a pain to
keep clearing message box items after every action, so I changed it to now only display a
message if something goes wrong.

When I was teaching programming, I’d watch people laboriously demonstrate programs
they had written that were obviously horrible to use. I’d ask them afterward how they
would ever expect their customer to use them when even the developer had a tough time
making them work. I’m fairly happy with the Fashion Shop application, but I’m also fairly
sure that after a day spent using it, I’d make a few changes to the way it works.

Complete Fashion Shop application
You might have some questions about my Fashion Shop application.

Question: Can we change the size of the text on the screen?

Answer: Yes. When you create a Label object, you can set the font and text size to be
used for the label. You can even create labels that contain images. The Tkinter framework
is extremely powerful, and it is well worth finding out more about it.

Question: Can we stop the Fashion Shop application from displaying the Command Shell
each time it runs?

Answer: Yes, you can. You do this by changing the file extension of the Python program
from .py (which means “contains a Python program”) to .pyw (which means “contains a
Python windows program”). I’ve done this for the FashionShopGUIApp in the folder
EG13-10 FashionShop.

CODE ANALYSIS

546 Chapter 13 Python and Graphical User Interfaces

What you have learned
In this chapter, you started by learning a bit about Visual Studio Code, a development
tool that makes creating programs made from multiple components easier. Then you
found out about graphical user interfaces. These are made up of objects that rep-
resent items on the screen—for example, labels, text to be entered, and buttons to
be pressed. The screen display serves as a container for these objects, which can be
positioned on the screen using a grid to lay them out. Each display object is placed at
a specific location (a cell) in the grid and can be made to span one or more grid cells.
An object can be positioned within the cell using “sticky” points of the compass. If an
object is made to stick to both sides of a cell (for example the “east” and the “west” of
the cell), then it is stretched to fill the cell boundaries.

Objects on the screen can generate events, which are mapped onto calls to a Python
function or method in a class. An example of this behavior is the Button display com-
ponent, which calls a command method when the button is pressed by the user. How-
ever, a program can bind to events generated by all components. The events can be
originated by mouse, keyboard, or screen events. We saw these in action and learned
how to draw graphics on a canvas when we made a simple drawing program.

You also extended the event mechanism into your own programs, where a stock item
selector was made to generate an event in the Fashion Shop user interface when the
user of the program selects an item.

Here are some points to ponder about graphical user interfaces.

Build your own application
The Fashion Shop program is a great jumping-off point for any application that you might
like to write to store information about items. Think of something you’d like to store data
about—perhaps favorite football players, recipes, monster trucks, or whatever—identify the
items about each that you’d like to store, and then use the Fashion Shop code as the basis of
an application that can manage that data.

MAKE SOMETHING HAPPEN

547What you have learned

Is Tkinter the only way to create Graphical User Interfaces in Python?

No. I like Tkinter because it is part of Python (and therefore available everywhere),
easy to start with, and it does what I want. However, there are lots of other systems
that your program can use to create a graphical user interface. If you want to try
something different, try Kivy (kivy.org/#home) or PyQT (wiki.python.org/moin/PyQt).
The thing to remember is that having used Tkinter you now know the fundamentals
of graphical user interface construction and you can apply this knowledge to other
libraries that you might want to use in the future.

Are programs with a graphical user interface easier to create than those that
use a Command Shell?

This is a very good question. When we were writing the programs that used the
Python Command Shell, the program had to ask the user questions and then make
sense of the replies. But with a GUI, we can just provide buttons for the user to press.
A program with a GUI doesn’t need to worry about what to do if the user enters an
invalid command, because all the user can do is press the buttons on the screen.

This seems to imply that programs with a GUI might be easier to create, and in some
ways, they are. However, you need to spend time making sure that what happens
when buttons are pressed are the right actions, which can be tricky and will test your
organizational skills.

Is a program with a GUI still a “data processing” program?

This is a very good question. When we started programming, we had this model of a
computer program as something that takes in some data, does something with it, and
then produces an output. A program with a GUI doesn’t seem to work this way. The
user will type in some data in one place and then press a button to perform an action.

I find it best to think of the event handlers that run inside a program with a graphi-
cal user interface as tiny programs that all cooperate to make the system work. The
programmer just needs to ensure that the actions fit together to make a complete
system. At the beginning of this book, I said “If you can plan a birthday party, you can
write a program.”

When you’re creating a program that uses software components and a graphical user
interface, you find yourself in the role of an organizer as much as a programmer, as
you seek to ensure that messages from one source are used to trigger actions in com-
ponents to produce the results that the user wants. From a design perspective, it’s also
a good idea to separate the classes that deal with the user interface from those that
store the data. We’ve seen that this gives flexibility, in that we have created a Fashion
Shop application with a Graphical User Interface that uses exactly the same data stor-
age code as our previous text version of the application.

