Home>Store

Network Security: Private Communication in a Public World, 3rd Edition

Register your productto gain access to bonus material or receive a coupon.

Network Security: Private Communication in a Public World, 3rd Edition

Best Value Purchase

Book + eBook Bundle

  • Your Price: $75.59
  • List Price: $125.98
  • Includes EPUB and PDF
  • About eBook Formats
  • This eBook includes the following formats, accessible from yourAccountpage after purchase:

    ePubEPUBThe open industry format known for its reflowable content and usability on supported mobile devices.

    Adobe ReaderPDFThe popular standard, used most often with the freeAdobe® Reader®software.

    This eBook requires no passwords or activation to read. We customize your eBook by discreetly watermarking it with your name, making it uniquely yours.

More Purchase Options

Book

  • Your Price: $55.99
  • List Price: $69.99
  • Usually ships in 24 hours.

eBook (Watermarked)

  • Your Price: $44.79
  • List Price: $55.99
  • Includes EPUB and PDF
  • About eBook Formats
  • This eBook includes the following formats, accessible from yourAccountpage after purchase:

    ePubEPUBThe open industry format known for its reflowable content and usability on supported mobile devices.

    Adobe ReaderPDFThe popular standard, used most often with the freeAdobe® Reader®software.

    This eBook requires no passwords or activation to read. We customize your eBook by discreetly watermarking it with your name, making it uniquely yours.

About

Features

  • New edition of the classic text on computer security from legendary pioneers in network security
  • Thoroughly re-written to reflect contemporary issues in cybersecurity
  • Friendly, intuitive, rigorous, comprehensive, and practical
  • Includes detailed sections on cryptography, authentication, connection protocols, and network applications
  • Contains new coverage of quantum computing, post-quantum algorithms, electronic money, homomorphic encryption, and secure multiparty communication
  • Illuminates subtle issues missed by books focused solely on implementation details

Description

  • Copyright 2023
  • Dimensions: 7" x 9"
  • Pages: 544
  • Edition: 3rd
  • Book
  • ISBN-10: 0-13-664360-4
  • ISBN-13: 978-0-13-664360-9

The classic guide to cryptography and network security now fully updated!

Alice and Bob are back!

Widely regarded as the most comprehensive yet comprehensible guide to network security and cryptography, the previous editions ofNetwork Securityreceived critical acclaim for lucid and witty explanations of the inner workings of cryptography and network security protocols. In this edition, the authors have significantly updated and revised the previous content, and added new topics that have become important.

This book explains sophisticated concepts in a friendly and intuitive manner. For protocol standards, it explains the various constraints and committee decisions that led to the current designs. For cryptographic algorithms, it explains the intuition behind the designs, as well as the types of attacks the algorithms are designed to avoid. It explains implementation techniques that can cause vulnerabilities even if the cryptography itself is sound. Homework problems deepen your understanding of concepts and technologies, and an updated glossary demystifies the fields jargon.Network Security,第三版将appeal to a wide range of professionals, from those who design and evaluate security systems to system administrators and programmers who want a better understanding of this important field. It can also be used as a textbook at the graduate or advanced undergraduate level.

Coverage includes

  • Network security protocol and cryptography basics
  • Design considerations and techniques for secret key and hash algorithms (AES, DES, SHA-1, SHA-2, SHA-3)
  • First-generation public key algorithms (RSA, Diffie-Hellman, ECC)
  • How quantum computers work, and why they threaten the first-generation public key algorithms
  • Quantum-safe public key algorithms: how they are constructed, and optimizations to make them practical
  • Multi-factor authentication of people
  • Real-time communication (SSL/TLS, SSH, IPsec)
  • New applications (electronic money, blockchains)
  • New cryptographic techniques (homomorphic encryption, secure multiparty computation)

Sample Content

Online Sample Chapter

Introduction to Network Security

Sample Pages

Download the sample pages(includes Chapter 1)

Table of Contents

Chapter 1Introduction

1.1 Opinions, Products

1.2 Roadmap to the Book

1.3 Terminology

1.4 Notation

1.5 Cryptographically Protected Sessions

1.6 Active and Passive Attacks

1.7 Legal Issues

1.7.1 Patents

1.7.2 Government Regulations

1.8 Some Network Basics

1.8.1 Network Layers

1.8.2 TCP and UDP Ports

1.8.3 DNS (Domain Name System)

1.8.4 HTTP and URLs

1.8.5 Web Cookies

1.9 Names for Humans

1.10 Authentication and Authorization

1.10.1 ACL (Access Control List)

1.10.2 Central Administration/Capabilities

1.10.3 Groups

1.10.4 Cross-Organizational and Nested Groups

1.10.5 Roles

1.11 Malware: Viruses, Worms, Trojan Horses

1.11.1 Where Does Malware Come From?

1.11.2 Virus Checkers

1.12 Security Gateway

1.12.1 Firewall

1.12.2 Application-Level Gateway/Proxy

1.12.3 Secure Tunnels

1.12.4 Why Firewalls Dont Work

1.13 Denial-of-Service (DoS) Attacks

1.14 NAT (Network Address Translation)

1.14.1 Summary

Chapter 2Introduction to Cryptography

2.1 Introduction

2.1.1 The Fundamental Tenet of Cryptography

2.1.2 Keys

2.1.3 Computational Difficulty

2.1.4 To Publish or Not to Publish

2.1.5 Earliest Encryption

2.1.6 One-Time Pad (OTP)

2.2 Secret Key Cryptography

2.2.1 Transmitting Over an Insecure Channel

2.2.2 Secure Storage on Insecure Media

2.2.3 Authentication

2.2.4 Integrity Check

2.3 Public Key Cryptography

2.3.1 Transmitting Over an Insecure Channel

2.3.2 Secure Storage on Insecure Media

2.3.3 Authentication

2.3.4 Digital Signatures

2.4 Hash Algorithms

2.4.1 Password Hashing

2.4.2 Message Integrity

2.4.3 Message Fingerprint

2.4.4 Efficient Digital Signatures

2.5 Breaking an Encryption Scheme

2.5.1 Ciphertext Only

2.5.2 Known Plaintext

2.5.3 Chosen Plaintext

2.5.4 Chosen Ciphertext

2.5.5 Side-Channel Attacks

2.6 Random Numbers

2.6.1 Gathering Entropy

2.6.2 Generating Random Seeds

2.6.3 Calculating a Pseudorandom Stream from the Seed

2.6.4 Periodic Reseeding

2.6.5 Types of Random Numbers

2.6.6 Noteworthy Mistakes

2.7 Numbers

2.7.1 Finite Fields

2.7.2 Exponentiation

2.7.3 Avoiding a Side-Channel Attack

2.7.4 Types of Elements used in Cryptography

2.7.5 Euclidean Algorithm

2.7.6 Chinese Remainder Theorem

2.8 Homework

Chapter 3Secret Key Cryptography

3.1介绍

3.2 Generic Block Cipher Issues

3.2.1 Blocksize, Keysize

3.2.2 Completely General Mapping

3.2.3 Looking Random

3.3 Constructing a Practical Block Cipher

3.3.1 Per-Round Keys

3.3.2 S-boxes and Bit Shuffles

3.3.3 Feistel Ciphers

3.4 Choosing Constants

3.5 Data Encryption Standard (DES)

3.5.1 DES Overview

3.5.2 The Mangler Function

3.5.3 Undesirable Symmetries

3.5.4 Whats So Special About DES?

3.6 3DES (Multiple Encryption DES)

3.6.1 How Many Encryptions?

3.6.1.1 Encrypting Twice with the Same Key

3.6.1.2 Encrypting Twice with Two Keys

3.6.1.3 Triple Encryption with Only Two Keys

3.6.2 Why EDE Rather Than EEE?

3.7 Advanced Encryption Standard (AES)

3.7.1 Origins of AES

3.7.2 Broad Overview

3.7.3 AES Overview

3.7.4 Key Expansion

3.7.5 Inverse Rounds

3.7.6 Software Implementations of AES

3.8 RC4

3.9 Homework

Chapter 4Modes of Operation

4.1 Introduction

4.2 Encrypting a Large Message

4.2.1 ECB (Electronic Code Book)

4.2.2 CBC (Cipher Block Chaining)

4.2.2.1 Randomized ECB

4.2.2.2 CBC

4.2.2.3 CBC ThreatModifying Ciphertext Blocks

4.2.3 CTR (Counter Mode)

4.2.3.1 Choosing IVs for CTR Mode

4.2.4 XEX (XOR Encrypt XOR)

4.2.5 XTS (XEX with Ciphertext Stealing)

4.3 Generating MACs

4.3.1 CBC-MAC

4.3.1.1 CBC Forgery Attack

4.3.2 CMAC

4.3.3 GMAC

4.3.3.1 GHASH

4.3.3.2 Transforming GHASH into GMAC

4.4 Ensuring Privacy and Integrity Together

4.4.1 CCM (Counter with CBC-MAC)

4.4.2 GCM (Galois/Counter Mode)

4.5 Performance Issues

4.6 Homework

Chapter 5Cryptographic Hashes

5.1 Introduction

5.2 The Birthday Problem

5.3 A Brief History of Hash Functions

5.4 Nifty Things to Do with a Hash

5.4.1 Digital Signatures

5.4.2 Password Database

5.4.3 Secure Shorthand of Larger Piece of Data

5.4.4 Hash Chains

5.4.5 Blockchain

5.4.6 Puzzles

5.4.7 Bit Commitment

5.4.8 Hash Trees

5.4.9 Authentication

5.4.10 Computing a MAC with a Hash

5.4.11 HMAC

5.4.12 Encryption with a Secret and a Hash Algorithm

5.5 Creating a Hash Using a Block Cipher

5.6 Construction of Hash Functions

5.6.1 Construction of MD4, MD5, SHA-1 and SHA-2

5.6.2 Construction of SHA-3

5.7 Padding

5.7.1 MD4, MD5, SHA-1, and SHA2-256 Message Padding

5.7.2 SHA-3 Padding Rule

5.8 The Internal Encryption Algorithms

5.8.1 SHA-1 Internal Encryption Algorithm

5.8.2 SHA-2 Internal Encryption Algorithm

5.9 SHA-3fFunction (Also Known as KECCAK-f)

5.10 Homework

Chapter 6First-Generation Public Key Algorithms

6.1 Introduction

6.2 Modular Arithmetic

6.2.1 Modular Addition

6.2.2 Modular Multiplication

6.2.3 Modular Exponentiation

6.2.4 Fermats Theorem and Eulers Theorem

6.3 RSA

6.3.1 RSA Algorithm

6.3.2 Why Does RSA Work?

6.3.3 Why Is RSA Secure?

6.3.4 How Efficient Are the RSA Operations?

6.3.4.1取幂与大数字

6.3.4.2 Generating RSA Keys

6.3.4.3 Why a Non-Prime Has Multiple Square Roots of One

6.3.4.4 Having a Small Constante

6.3.4.5 Optimizing RSA Private Key Operations

6.3.5 Arcane RSA Threats

6.3.5.1 Smooth Numbers

6.3.5.2 The Cube Root Problem

6.3.6公开密匙加密Standard (PKCS)

6.3.6.1 Encryption

6.3.6.2 The Million-Message Attack

6.3.6.3 Signing

6.4 Diffie-Hellman

6.4.1 MITM (Meddler-in-the-Middle) Attack

6.4.2 Defenses Against MITM Attack

6.4.3 Safe Primes and the Small-Subgroup Attack

6.4.4 ElGamal Signatures

6.5 Digital Signature Algorithm (DSA)

6.5.1 The DSA Algorithm

6.5.2 Why Is This Secure?

6.5.3 Per-Message Secret Number

6.6 How Secure Are RSA and Diffie-Hellman?

6.7 Elliptic Curve Cryptography (ECC)

6.7.1 Elliptic Curve Diffie-Hellman (ECDH)

6.7.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

6.8 Homework

Chapter 7Quantum Computing

7.1 What Is a Quantum Computer?

7.1.1 A Preview of the Conclusions

7.1.2 First, What Is a Classical Computer?

7.1.3 Qubits and Superposition

7.1.3.1 Example of a Qubit

7.1.3.2 Multi-Qubit States and Entanglement

7.1.4 States and Gates as Vectors and Matrices

7.1.5 Becoming Superposed and Entangled

7.1.6 Linearity

7.1.6.1 No Cloning Theorem

7.1.7 Operating on Entangled Qubits

7.1.8 Unitarity

7.1.9 Doing Irreversible Operations by Measurement

7.1.10 Making Irreversible Classical Operations Reversible

7.1.11 Universal Gate Sets

7.2 Grovers Algorithm

7.2.1 Geometric Description

7.2.2 How to Negate the Amplitude of |k

7.2.3 How to Reflect All the Amplitudes Across the Mean

7.2.4 Parallelizing Grovers Algorithm

7.3 Shors Algorithm

7.3.1 Why Exponentiation modnIs a Periodic Function

7.3.2 How Finding the Period ofaxmodnLets You Factorn

7.3.3 Overview of Shors Algorithm

7.3.4 Converting to the Frequency GraphIntroduction

7.3.5 The Mechanics of Converting to the Frequency Graph

7.3.6 Calculating the Period

7.3.7 Quantum Fourier Transform

7.4 Quantum Key Distribution (QKD)

7.4.1 Why Its Sometimes Called Quantum Encryption

7.4.2 Is Quantum Key Distribution Important?

7.5 How Hard Are Quantum Computers to Build?

7.6 Quantum Error Correction

7.7 Homework

Chapter 8Post-Quantum Cryptography

8.1 Signature and/or Encryption Schemes

8.1.1 NIST Criteria for Security Levels

8.1.2 Authentication

8.1.3 Defense Against Dishonest Ciphertext

8.2 Hash-based Signatures

8.2.1 Simplest Scheme Signing a Single Bit

8.2.2 Signing an Arbitrary-sized Message

8.2.3 Signing Lots of Messages

8.2.4 Deterministic Tree Generation

8.2.5 Short Hashes

8.2.6 Hash Chains

8.2.7 Standardized Schemes

8.2.7.1 Stateless Schemes

8.3 Lattice-Based Cryptography

8.3.1 A Lattice Problem

8.3.2 Optimization: Matrices with Structure

8.3.3 NTRU-Encryption Family of Lattice Encryption Schemes

8.3.3.1 Bob Computes a (Public, Private) Key Pair

8.3.3.2 How Bob Decrypts to Findm

8.3.3.3 How Does this Relate to Lattices?

8.3.4 Lattice-Based Signatures

8.3.4.1 Basic Idea

8.3.4.2Insecure Scheme

8.3.4.3 Fixing the Scheme

8.3.5 Learning with Errors (LWE)

8.3.5.1 LWE Optimizations

8.3.5.2 LWE-based NIST Submissions

8.4 Code-based Schemes

8.4.1 Non-cryptographic Error-correcting Codes

8.4.1.1 Invention Step

8.4.1.2 Codeword Creation Step

8.4.1.3 Misfortune Step

8.4.1.4 Diagnosis Step

8.4.2 The Parity-Check Matrix

8.4.3 Cryptographic Public Key Code-based Scheme

8.4.3.1 Neiderreiter Optimization

8.4.3.2 Generating a Public Key Pair

8.4.3.3 Using Circulant Matrices

8.5 Multivariate Cryptography

8.5.1 Solving Linear Equations

8.5.2 Quadratic Polynomials

8.5.3 Polynomial Systems

8.5.4 Multivariate Signature Systems

8.5.4.1 Multivariate Public Key Signatures

8.6 Homework

Chapter 9Authentication of People

9.1 Password-based Authentication

9.1.1 Challenge-Response Based on Password

9.1.2 Verifying Passwords

9.2 Address-based Authentication

9.2.1 Network Address Impersonation

9.3 Biometrics

9.4 Cryptographic Authentication Protocols

9.5 Who Is Being Authenticated?

9.6 Passwords as Cryptographic Keys

9.7 On-Line Password Guessing

9.8 Off-Line Password Guessing

9.9 Using the Same Password in Multiple Places

9.10 Requiring Frequent Password Changes

9.11 Tricking Users into Divulging Passwords

9.12 Lamports Hash

9.13 Password Managers

9.14 Web Cookies

9.15 Identity Providers (IDPs)

9.16 Authentication Tokens

9.16.1 Disconnected Tokens

9.16.2 Public Key Tokens

9.17 Strong Password Protocols

9.17.1 Subtle Details

9.17.2 Augmented Strong Password Protocols

9.17.3 SRP (Secure Remote Password)

9.18 Credentials Download Protocols

9.19 Homework

Chapter 10Trusted Intermediaries

10.1 Introduction

10.2 Functional Comparison

10.3 Kerberos

10.3.1 KDC Introduces Alice to Bob

10.3.2 Alice Contacts Bob

10.3.3 Ticket Granting Ticket (TGT)

10.3.4 Interrealm Authentication

10.3.5 Making Password-Guessing Attacks Difficult

10.3.6 Double TGT Protocol

10.3.7 Authorization Information

10.3.8 Delegation

10.4 PKI

10.4.1 Some Terminology

10.4.2 Names in Certificates

10.5 Website Gets a DNS Name and Certificate

10.6 PKI Trust Models

10.6.1 Monopoly Model

10.6.2 Monopoly plus Registration Authorities (RAs)

10.6.3 Delegated CAs

10.6.4 Oligarchy

10.6.5 Anarchy Model

10.6.6 Name Constraints

10.6.7 Top-Down with Name Constraints

10.6.8 Multiple CAs for Any Namespace Node

10.6.9 Bottom-Up with Name Constraints

10.6.9.1 Functionality of Up-Links

10.6.9.2 Functionality of Cross-Links

10.6.10 Name Constraints in PKIX Certificates

10.7 Building Certificate Chains

10.8 Revocation

10.8.1 CRL (Certificate Revocation list

10.8.2 Online Certificate Status Protocol (OCSP)

10.8.3 Good-Lists vs. Bad-Lists

10.9 Other Information in a PKIX Certificate

10.10 Issues with Expired Certificates

10.11 DNSSEC (DNS Security Extensions)

10.12 Homework

Chapter 11Communication Session Establishment

11.1 One-way Authentication of Alice

11.1.1 Timestamps vs. Challenges

11.1.2 One-Way Authentication of Alice using a Public Key

11.2 Mutual Authentication

11.2.1 Reflection Attack

11.2.2 Timestamps for Mutual Authentication

11.3 Integrity/Encryption for Data

11.3.1 Session Key Based on Shared Secret Credentials

11.3.2 Session Key Based on Public Key Credentials

11.3.3 Session Key Based on One-Party Public Keys

11.4 Nonce Types

11.5 Intentional MITM

11.6 Detecting MITM

11.7 What Layer?

11.8 Perfect Forward Secrecy

11.9 Preventing Forged Source Addresses

11.9.1 Allowing Bob to Be Stateless in TCP

11.9.2 Allowing Bob to Be Stateless in IPsec

11.10 Endpoint Identifier Hiding

11.11 Live Partner Reassurance

11.12 Arranging for Parallel Computation

11.13 Session Resumption/Multiple Sessions

11.14 Plausible Deniability

11.15 Negotiating Crypto Parameters

11.15.1套件和按菜单点菜

11.15.2 Downgrade Attack

11.16 Homework

Chapter 12IPsec

12.1 IPsec Security Associations

12.1.1 Security Association Database

12.1.2 Security Policy Database

12.1.3 IKE-SAs and Child-SAs

12.2 IKE (Internet Key Exchange Protocol)

12.3 Creating a Child-SA

12.4 AH and ESP

12.4.1 ESP Integrity Protection

12.4.2 Why Protect the IP Header?

12.4.3 Tunnel, Transport Mode

12.4.4 IPv4 Header

12.4.5 IPv6 Header

12.5 AH (Authentication Header)

12.6 ESP (Encapsulating Security Payload)

12.7 Comparison of Encodings

12.8 Homework

Chapter 13SSL/TLS and SSH

13.1 Using TCP

13.2 StartTLS

13.3 Functions in the TLS Handshake

13.4 TLS 1.2 (and Earlier) Basic Protocol

13.5 TLS 1.3

13.6 Session Resumption

13.7 PKI as Deployed by TLS

13.8 SSH (Secure Shell)

13.8.1 SSH Authentication

13.8.2 SSH Port Forwarding

13.9 Homework

Chapter 14Electronic Mail Security

14.1 Distribution Lists

14.2 Store and Forward

14.3 Disguising Binary as Text

14.4 HTML-Formatted Email

14.5 Attachments

14.6 Non-cryptographic Security Features

14.6.1 Spam Defenses

14.7 Malicious Links in Email

14.8 Data Loss Prevention (DLP)

14.9 Knowing Bobs Email Address

14.10 Self-Destruct, Do-Not-Forward,

14.11 Preventing Spoofing of From Field

14.12 In-Flight Encryption

14.13 End-to-End Signed and Encrypted Email

14.14 Encryption by a Server

14.15 Message Integrity

14.16 Non-Repudiation

14.17 Plausible Deniability

14.18 Message Flow Confidentiality

14.19 Anonymity

14.20 Homework

Chapter 15Electronic Money

15.1 ECASH

15.2 Offline eCash

15.2.1 Practical Attacks

15.3比特币

15.3.1 Transactions

15.3.2 Bitcoin Addresses

15.3.3 Blockchain

15.3.4 The Ledger

15.3.5 Mining

15.3.6 Blockchain Forks

15.3.7 Why Is Bitcoin So Energy-Intensive?

15.3.8 Integrity Checks: Proof of Work vs. Digital Signatures

15.3.9 Concerns

15.4 Wallets for Electronic Currency

15.5 Homework

Chapter 16Cryptographic Tricks

16.1 Secret Sharing

16.2 Blind Signature

16.3 Blind Decryption

16.4 Zero-Knowledge Proofs

16.4.1 Graph Isomorphism ZKP

16.4.2 Proving Knowledge of a Square Root

16.4.3 Noninteractive ZKP

16.5 Group Signatures

16.5.1 Trivial Group Signature Schemes

16.5.1.1 Single Shared Key

16.5.1.2 Group Membership Certificate

16.5.1.3 Multiple Group Membership Certificates

16.5.1.4 Blindly Signed Multiple Group Membership Certificates

16.5.2 Ring Signatures

16.5.3 DAA (Direct Anonymous Attestation)

16.5.4 EPID (Enhanced Privacy ID)

16.6 Circuit Model

16.7 Secure Multiparty Computation (MPC)

16.8 Fully Homomorphic Encryption (FHE)

16.8.1 Bootstrapping

16.8.2 Easy-to-Understand Scheme

16.9 Homework

Chapter 17Folklore

17.1 Misconceptions

17.2 Perfect Forward Secrecy

17.3 Change Encryption Keys Periodically

17.4 Dont Encrypt without Integrity Protection

17.5 Multiplexing Flows over One Secure Session

17.5.1 The Splicing Attack

17.5.2 Service Classes

17.5.3 Different Cryptographic Algorithms

17.6 Using Different Secret Keys

17.6.1 For Initiator and Responder in Handshake

17.6.2 For Encryption and Integrity

17.6.3 In Each Direction of a Secure Session

17.7 Using Different Public Keys

17.7.1 Use Different Keys for Different Purposes

17.7.2 Different Keys for Signing and Encryption

17.8 Establishing Session Keys

17.8.1 Have Both Sides Contribute to the Master Key

17.8.2 Dont Let One Side Determine the Key

17.9 Hash in a Constant When Hashing a Password

17.10 HMAC Rather than Simple Keyed Hash

17.11 Key Derivation

17.12 Use of Nonces in Protocols

17.13 Creating an Unpredictable Nonce

17.14 Compression

17.15 Minimal vs. Redundant Designs

17.16 Overestimate the Size of Key

17.17 Hardware Random Number Generators

17.18 Put Checksums at the End of Data

17.19 Forward Compatibility

17.19.1 Options

17.19.2 Version Numbers

17.19.2.1 Version Number Field Must Not Move

17.19.2.2 Negotiating Highest Version Supported

17.19.2.3 Minor Version Number Field

Glossary

Math

M.1 Introduction

M.2 Some definitions and notation

M.3 Arithmetic

M.4 Abstract Algebra

M.5 Modular Arithmetic

M.5.1 How Do Computers Do Arithmetic?

M.5.2 Computing Inverses in Modular Arithmetic

M.5.2.1 The Euclidean Algorithm

M.5.2.2 The Chinese Remainder Theorem

M.5.3 How Fast Can We Do Arithmetic?

M.6 Groups

M.7 Fields

M.7.1 Polynomials

M.7.2 Finite Fields

M.7.2.1 What Sizes Can Finite Fields Be?

M.7.2.2 Representing a Field

M.8 Mathematics of Rijndael

M.8.1 A Rijndael Round

M.9 Elliptic Curve Cryptography

M.10 Rings

M.11线性Transformations

M.12 Matrix Arithmetic

M.12.1 Permutations

M.12.2 Matrix Inverses

M.12.2.1 Gaussian Elimination

M.13决定因素

M.13.1 Properties of Determinants

M.13.1.1 Adjugate of a Matrix

M.13.2 Proof: Determinant of Product is Product of Determinants

M.14 Homework

Bibliography

9780136643609 TOC 8/2/2022

Updates

Errata

We've made every effort to ensure the accuracy of this book and its companion content. Any errors that have been confirmed since this book was published can be downloaded below.

Download the errata(175 KB .doc)

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simplyemailinformation@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through ourContact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

皮尔森可能使用第三方网络趋势分析ervices, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on theAccount page. If a user no longer desires our service and desires to delete his or her account, please contact us atcustomer-service@informit.comand we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive:www.e-skidka.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information toNevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read ourSupplemental privacy statement for California residentsin conjunction with this Privacy Notice. TheSupplemental privacy statement for California residentsexplains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Pleasecontact usabout this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020